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Abstract

Within a default intensity approach we discuss the optimal exercise of the
callable and convertible bonds. Pricing bounds for convertible bonds are derived in
an uncertain volatility model, i.e. when the volatility of the stock price process lies
between two extreme values.

1 Introduction

A callable and convertible bond refers to a bond which can be converted into a firm’s
common shares at a predetermined number at the bondholder’s decision, while the bond
is also callable by the issuer, i.e. the bondholder can be enforced to surrender the bond to
the issuer for a previously agreed price. Two sources of risks are essential for the valuation
of the contract, one stemming from the randomness of prices, the other stemming from
the randomness of the termination time, namely the contract can be stopped by call,
conversion and default.

Empirical research indicates that firms that issue convertible bonds often tend to be highly
leveraged, the default risk may play a significant role. Moreover, the equity and default
risk cannot be treated independently and their interplay must be modeled explicitly. In
the case that the true complex nature of the capital structure of the firm and information
asymmetry make it hard to model the firm’s value and the capital structure, the reduced-
form model would be a more proper approach for the study of convertible bonds. Stock
prices, credit spreads and implied volatilities of options are used as model inputs.

One of the early models which treat the callable and convertible bond with a reduced-form
approach is proposed by Davis and Lischka (1999). They construct a model framework
that incorporate Black-Scholes stock price, Gaussian stochastic interest rate and stochas-
tic default intensity driven by a Brownian motion that also governs the movement of the
stock price. It is called two-and-a-half factors model and has found its application in the
industry. A similar model has been developed by Ayache, Forsyth and Vetzal (2003).
Linetsky (2006) and Duffie and Singleton (2003)(p.206ff) model the default intensity as
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a negative power function of the underlying stock price. Duffie and Singleton (2003) val-
uate a callable and convertible bond with the intensity-based default model. In Bielecki,
Crèpey, Jeanblanc and Rutkowski (2007) and Kovalov and Linetsky (2008) the default
intensity is modeled as a deterministic function of the underlying stock price. The valua-
tion of callable and convertible bond is explicitly related to the defaultable game option
and BSDE or PDE is applied to solve the optimization problem.

In this paper the stock price is described by a jump diffusion. It jumps to zero at the
time of default. In order to describe the interplay of the equity risk and the default risk of
the issuer, we adopt a parsimonious, intensity-based default model, in which the default
intensity is modeled as a function of the pre-default stock price. This assumes, in effect,
that the equity price contains sufficient information to predict the default event. To make
the combined effect of the default and equity risk of the underlying tractable, it is assumed
that the default intensity has two values, one is the normal default rate, and the other one
is much higher if the current stock price falls beneath a certain boundary. Thus, during
the life time of the bond, the more time the stock price spends below the boundary, the
higher the default risk. This model has certain similarity with some structural models,
e.g. in the first-passage approach, the firm defaults immediately when its value falls below
the boundary, while in the excursion approach, the firm defaults if it reaches and remains
below the default threshold for a certain period.

In the intensity-based default model the default time is modeled as the time of the first
jump of a Poisson process and it is not adapted to the filtration (Ft)t∈[0,T ] generated by the
pre-default stock price process. To price a defaultable contingent claim we need not only
the information about the evolution of the pre-default stock price but also the knowledge
whether default has occurred or not which is described by the filtration (Ht)t∈[0,T ] . The
filtration (Gt)t∈[0,T ] , with Gt = Ft ∨ Ht , contains the full information and is larger than
the filtration (Ft)t∈[0,T ] . This problem can be circumvented with specific modeling of
the default time, e.g. Lando (1998) shows that if the time of default is modeled as the
first jump of a Poisson process with random intensity, which is called doubly stochastic
Poisson process or Cox process and under some measurable conditions, the expectations
with respect to Gt can be reduced to the expectation with respect to Ft. With the
help of the filtration reduction we move to the fictitious default-free market in which
cash flows are discounted according to the modified discount factor which is the sum of
the risk free discount factor and the default intensity. Hence the results of the game
option in the default-free setting can be extended to the defaultable game option in the
intensity model. The embedded option rights owned by both of the bondholder and the
issuer can be exercised optimally according to the well developed theory on the game
option. The optimization problem is not approximated with recursions on a tree as in
the case of the structural approach, it is formulated and solved with help of the theory
of doubly reflected backward stochastic differential equations (BSDE) which is a more
general approach developed by Cvitanić and Karatzas (1996). The parabolic partial
differential equation (PDE) related to the doubly reflected BSDE is provided by Cvitanić
and Ma (2001) and it can be solved with finite-difference methods. Furthermore, pricing
bound is derived under rational optimal behavior, if the stock volatility is assumed to lie
in a certain interval.
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2 Intensity-based Default Model

In the following we will formulate the default event according to Lando (1998), where the
time of default is modeled directly as the time of the first jump of a Poisson process with
random intensity, which is called Cox process.

2.1 Cox process and default time

A Cox process is a generalization of the Poisson process in which the intensity is allowed to
be random but in such a way that if it is conditional on a particular realization h(·, ω) of
the intensity, the jump process becomes an inhomogeneous Poisson process with intensity
h(s, ω) . The random intensity is often characterized as a function of the current level of
a set of state variables

h(s, ω) = h(Xs).

X is an R
d -valued stochastic process in the filtered probability space (Ω,G, (Gt)t∈[0,T ], Q) .

And h : R
d → [0,∞) is a nonnegative, continuous function. According to this construc-

tion the Cox process has the following properties

EQ[dN ] = h(t)dt

and given the realization (path) of the intensity h ,

P [Nt − Ns = n] = EQ

[

P [Nt − Ns = n]| h
]

= EQ

[

1

n!

(
∫ t

s

h(u)du

)n

exp
{

−

∫ t

s

h(u)du
}

]

.

In particular, the probability of no jumps in [s, t] equals

P [Nt − Ns = 0] = EQ

[

exp
{

−

∫ t

s

h(u)du
}

]

. (1)

Lando (1998) models the default time as the first jump time of a Cox process with intensity
process h(Xt) ,

τ = inf

{

t ≥ 0 :

∫ t

0

h(Xs)ds ≥ E1

}

.

where E1 is an exponentially distributed random variable with parameter 1. The state
variables X may include information about stock price, risk-free interest rate and other
economical relevant factors which can predict the likelihood of default. Given that a firm
survives till time t , its default probability within the next small time interval ∆t equals
h(Xt)∆t+o(∆t) . According to Equation (1) the survival probability of a firm thus equals

P [τ > t] = EQ

[

exp
{

−

∫ t

0

h(u)du
}

]

.
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2.2 Defaultable stock price dynamics

The literature on stock options usually model the firm’s stock price as geometric Brow-
nian motions and preclude the possibility of default. Whereas modeling of default event
and credit spread is an essential task of study on corporate bond. Apart from convertible
bonds there are also other hybrid products which have both the characteristics of equity
and debt. Facing these problems, the two strands of research have merged recently. De-
fault risk is integrated in the diffusion of the stock prices. In the reduced-form framework,
one specifies the default intensity as a decreasing function of the underlying stock price.
The default event is modeled as the first jump time of a doubly stochastic Poisson process.
For example, Linetsky (2006) and Duffie and Singleton (2003) (p.206ff) model the default
intensity as a negative power function of the underlying stock price. This assumes, in
effect, that the equity price conveys sufficient information for the prediction of the default
probability.

We assume that the Brownian motion which governs the movement of the stock prices is
1-dimensional1. The model framework is established according to Linetsky (2006).

Assumption 2.1. A filtered probability space (Ω,G, G, Q) where G := {Gt}t∈[0,T ] is as-
sumed. It supports a 1-dimensional Brownian motion {Wt, t ≥ 0}, and an exponentially
distributed random variable E1 with parameter 1. The random variable E1 is indepen-
dent of the Brownian motion W . The stock price process S is subject to default. The
pre-default stock price is denoted as S̃t . The default intensity is specified as a decreasing
function of the underlying stock price, and is denoted as h(S̃) where h : R → [0,∞) is
a nonnegative, continuous function. The default time τ is modeled as

τ = inf

{

t ≥ 0 :

∫ t

0

h(S̃u)du ≥ E1

}

. (2)

It corresponds to the first jump time of a doubly stochastic Poisson process with intensity
h(S̃t) . Take an equivalent martingale measure Q as given. Under Q , the pre-default
stock price S̃t is a diffusion process solving the following stochastic differential equation

dS̃t = (rt + h(S̃t))S̃tdt + σtS̃tdWt, (3)

where rt is the risk-free instantaneous interest rate and σt is the volatility of the pre-
default stock price. Furthermore, it is assumed that if the firm defaults the stock price
jumps to zero. Therefore the price process of the defaultable stock S follows the jump
diffusion

dSt = St−(rtdt + σtdWt − dMt), (4)

with

Mt = 1{τ≤t} −

∫ t∧τ

0

h(S̃u)du ,

which is a martingale with respect to the filtration G .

Assumption 2.2. In particular, we assume that the intensity function h(S̃t) has two
values

h(S̃t) =

{

a if S̃t ≤ K

b if S̃t > K
(5)

1It is a rough approximation of the reality but it makes the computation tractable.
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where a , b and K are constant and a > b > 0 .

The firm has a normal default intensity b . If the firm is in trouble, i.e. the stock price
is lower than the constant level K , it has a higher default rate a . Thus, during the life
time of the bond, the more time the stock price spends below the boundary, the higher
the default risk. Thus, the default intensity is strongly influenced by the stock price but
they are not perfectly correlated. Moreover, this model has certain similarity with some
structural models, e.g. in the first-passage approach, the firm defaults immediately when
its value falls below the boundary, while in the excursion approach, the firm defaults if it
reaches and remains below the default threshold for a certain period.

Linetsky (2006) and Duffie and Singleton (2003)(p.206ff) model the default intensity as
a negative power function of the underlying stock price. In Linetsky (2006) closed-form
solutions in form of spectral expansions are derived for bonds and stock options. The
expansions contain several special functions and integration of them. In both papers, the
parameters of the negative power function are chosen in the way that, there is a small
region, if the stock price is above it, the default probability is quite low. As soon as the
stock price goes below this region, the default probability rises dramatically. Therefore
our simple assumption can be seen as an approximation of the power function modeling.

2.3 Information structure and filtration reduction

At first, we will explain the information structure due to the interplay of the stock and
default risk. According to assumption 2.1 on the stock price and the default intensity,
the information about the aforementioned two risks is contained in the full-filtration G ,
which is composed of two sub-filtrations

G = F ∨ H,

where G := {Gt}t∈[0,T ] is given by Gt = Ft ∨ Ht . Ft = σ{S̃s : 0 ≤ s ≤ t} contains

information about the evolution of the pre-default stock price S̃t. In our model the default
intensity h(S̃t) depends only on the pre-default stock price S̃t, and there are no other
state variables involved, therefore, the information about the likelihood of the default is
given by Ft . Ht = σ{1τ≤s : 0 ≤ s ≤ t} holds the information whether there has been a
default till time t . Gt = Ft ∨Ht then corresponds to knowing the evolution of the stock
price up to time t and whether default has occurred or not. E1 is independent of sigma
field FT and Ht ⊆ σ(E1) . In this information setting,

Ft ⊆ Gt ⊆ Ft ∨ σ(E1). (6)

Under such construction of filtration, it has been shown in Lando (1998) that, under
some measurable conditions, the expectations with respect to Gt can be reduced to the
expectation with respect to Ft. There are three basic components for the valuation of
default contingent claims: promised payment X at expiry, a stream of payments Ys1τ>s

which stops when default occurs and recovery payment Zτ at time of default. In particular
for convertible bonds the expiry time can be the maturity date T , the conversion or call
time τb or τs , which is written as T̃ = τb ∧ τs ∧ T . For a given equivalent martingale
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measure Q , the expected value of these three basic components are:

EQ

[

exp
(

−

∫ T̃

t

rsds
)

X1τ>T

∣

∣

∣
Gt

]

= 1τ>tEQ

[

exp
(

−

∫ T̃

t

(rs + hs)ds
)

X
∣

∣

∣
Ft

]

, (7)

EQ

[

∫ T̃

t

Ys1τ>s exp
(

−

∫ s

t

rudu
)

ds
∣

∣

∣
Gt

]

= 1τ>tEQ

[

∫ T̃

t

Ys exp
(

−

∫ s

t

(ru + hu)du
)

ds
∣

∣

∣
Ft

]

,

(8)
and

EQ

[

exp
(

−

∫ τ

t

rsds
)

Zτ

∣

∣

∣
Gt

]

= 1τ>tEQ

[

∫ T̃

t

Zshs exp
(

−

∫ s

t

(ru + hu)du
)

ds
∣

∣

∣
Ft

]

, (9)

Where X is FT̃ measurable2, i.e. X ∈ FT̃ . Y and Z are adapted processes, i.e. Yt

and Zt are measurable for each t ∈ [0, T̃ ] . hu is the abbreviation of h(S̃u) and stands
for the default intensity. The lhs (left hand sides) of Equations (7), (8) and (9) show that,
in the original market subject to default risk, cash flows are discounted according to the
risk free discount factor exp(−

∫ t

s
rudu). With the help of filtration reduction we move

to the fictitious default-free market in which cash flows are discounted according to the
modified discount factor exp(−

∫ t

s
(ru + hu)du) . This effect is demonstrated by the rhs

(right hand sides) of Equations (7), (8) and (9).

Remark 2.3. If the market is complete, e.g. the defaultable stock and defaultable dis-
count bond with maturity T are tradeable, there exists a unique martingale measure
P ∗ for the valuation. In incomplete market, the equivalent martingale measure Q can
e.g. be the so-called minimal martingale measure introduced by Föllmer and Schweizer
(1990) or the minimal entropy martingale measure proposed by Frittelli (2000). The
former measure emerges from the mean-variance optimal hedging strategy which mini-
mizes the variance between the random payoff and the terminal wealth generated from a
self-financing strategy. Whereas the latter minimizes the relative entropy to the original
objective measure P. Both measures have the nice property that zero risk premium is
associated with default timing risk, i.e. the risk-neutral intensity under Q remains the
same as the original intensity under P . Details about these results can be found e.g. in
Blanchet-Scalliet, El Karoui and Martellin (2005).

3 Contract Feature

The bondholder can stop and convert the bond into stocks according to the prescribed
conversion ratio γ. The conversion time of the bondholder is τb ∈ [0, τ ], where τ is the
default time. The issuer which is often the shareholder can stop and buy back the bond
for a price given by the maximum of call level H and the current conversion price, where
H can be constant or time dependent. The call time of the seller is τs ∈ [0, τ ] .

The payoff of a defaultable callable and convertible bond can be distinguished in four
cases. The principal of the bond is L , Rt stands for the recovery process, St is the stock
price at time t and c the coupon rate.

2Note that τb and τs can be any time in the interval [0, T ] . The measurable condition is satisfied
because conversion and call payoff are adapted processes.
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(i) Let τb < τs ≤ T, such that the contract begins at time 0 and is stopped and
converted by the bondholder. In this case, the discounted payoff ccb(0) of the
callable and convertible bond at time 0 is composed of the accumulated coupon
payments and the payoff through conversion

conv(0) = c

∫ τb∧τ

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤τb} + β(0, τb)1{τb<τ}γSτb
.

(ii) Let τs < τb ≤ T, such that the contract is bought back by the issuer before the
bondholder converts. In this case, the discounted payoff call(0) of the callable and
convertible bond at time 0 is composed of the accumulated coupon payments and
the payoff through call,

call(0) = c

∫ τs∧τ

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤τs} + β(0, τs)1{τs<τ} max[H, γSτs
].

(iii) If τs = τb < T the discounted payoff of the bond equals the smaller value, i.e. the
discounted payoff with conversion.

(iv) For τb ≥ T and τs ≥ T, the discounted payoff of a callable and convertible bond
at time 0 is

term(0) = c

∫ τ∧T

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤T} + β(0, T )1{T<τ} max[γST , L].

Denote the minimum of conversion and call time by ζ = τs ∧ τb. Then, the discounted
payoff of a callable and convertible bond in all four cases can be expressed with one
equation,

cbb(0) := 1{ζ<τ}

(

c

∫ ζ∧T

0

β(0, s)ds + 1{ζ=τs<τb≤T}β(0, ζ) max {H, γSζ}

+1{ζ=τb<τs<T}β(0, ζ)γSζ + 1{ζ=T}β(0, T )γST

)

+ 1{τ≤ζ}

(

c

∫ τ∧T

0

β(0, s)ds + 1{τ≤T}β(0, τ)Rτ + 1{T<τ}β(0, T )L
)

.

(10)

Theorem 3.1. The payoff of a callable and convertible bond can be decomposed into a
straight bond and a defaultable game option component g(0) .

ccb(0) = d(0) + g(0) (11)

with

d(0) := c

∫ τ∧T

0

β(0, s)ds + 1{τ≤T}β(0, τ)Rτ + 1{T<τ}β(0, T )L

and

g(0) := 1{ζ<τ}β(0, ζ)
{

1{ζ=τb<τs<T} (γSζ − φζ)

+1{ζ=τs<τb≤T} (max {Hζ , γSζ} − φζ) + 1{ζ=T} (γST − L)+
}

.

7



where

φζ := c

∫ τ∧T

ζ

β(0, s)ds + 1{τ≤T}β(ζ, τ)Rτ + 1{T<τ}β(ζ, T )L (12)

is the discounted value (discounted to time ζ ) of the sum of the remaining coupon pay-
ments and the principal payment of a straight coupon bond given that it has not defaulted
till time ζ .

4 Optimal Strategies

As the call value is strictly larger than the conversion value prior to maturity and they are
the same at the maturity, thus, we can apply the the theories of game option developed by
Kallsen and Kühn (2005). Within the reduced-form approach, the max-min and min-max

strategies are still valid for the callable and convertible bond but they are derived with
respect to the filtration (Gt)t∈[0,T ] . The optimal strategy for the bondholder is to select
the stopping time which maximizes the expected payoff given the minimizing strategy
of the issuer, while the issuer will choose the stopping time that minimizes the expected
payoff given the maximizing strategy of the bondholder. This max-min strategy of the
bondholder leads to the lower value of the convertible bond, whereas the min-max strat-

egy of the issuer leads to the upper value of the convertible bond. For a given martingale
measure, the assumption that the call value is always larger than the conversion value
prior to the maturity and they are the same at maturity T ensures that the lower value
equals the upper value such that there exists a unique solution.

Under an equivalent martingale measure Q , the no-arbitrage price of the callable and
convertible bond at the inception of the contract, CCB(0) is given by

CCB(0) = sup
τb∈G0T

inf
τs∈G0T

EQ[ccb(0)|G0] = inf
τs∈G0T

sup
τb∈G0T

EQ[ccb(0)|G0]. (13)

where G0T is the set of stopping times with respect to the filtration {Gu}0≤u≤T with
values in [0, T ]. After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = esssupτb∈GtT
essinfτs∈GtT

EQ[ccb(0)|Gt] (14)

= essinfτs∈GtT
esssupτb∈GtT

EQ[ccb(0)|Gt].

where GtT is the set of stopping times with respect to the filtration {Gu}t≤u≤T with values
in [t, T ]. Furthermore, the optimal stopping times for the equity holder and bondholder
respectively are

τ ∗
b = inf{t ∈ [0, T ] | conv(0) ≥ CCB(t)}

τ ∗
s = inf{t ∈ [0, T ] | call(0) ≤ CCB(t)}. (15)

It is optimal to convert as soon as the current conversion value is equal to or larger than
the value function CBB(t), while the optimal strategy for the issuer is to call the bond
as soon as the current call value is equal to or smaller than the value function CBB(t).
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In general, the optimization problem formulated via equation(13) has no closed-form
solution.3 After the reduction of the filtration from (Gt)t∈[0,T ] to (Ft)t∈[0,T ] the no-
arbitrage value can be formulated as adapted solution of backward stochastic differential
equations (BSDE) with two reflecting barriers. In Section 6 we give a brief summary of
the results on BSDE which are closely related to the financial market. At first we show
the reduction of the filtration.

5 Expected Payoff

Applying the methodology of filtration reduction described in Section 2.3 expected payoffs
related to a callable and convertible bond have simple and explicit expressions. For a given
equivalent martingale measure Q , the no-arbitrage price of a straight coupon bond with
face value L , constant continuous coupon rate c , maturity T and a constant recovery
amount R upon default time τ is

D(t) = 1τ>tEQ

[

exp
(

−

∫ T

t

(rs + hs)ds
)

L
∣

∣

∣
Ft

]

(16)

+1τ>t EQ

[
∫ T

t

(c + R · hs) · exp
(

−

∫ s

t

(ru + hu)du
)

ds
∣

∣

∣
Ft

]

.

In the fictitious default-free market, the sum of the discounted cash flows in equation(16)
corresponds to a default-free coupon bond with face value L and variable coupon rate
c̄+R ·hs . The modified discount factor amounts exp(−

∫ t

s
(ru +hu)du) . At the inception

of the contract, t = 0 , the expression can be simplified to

D(0) = EQ

[

exp
(

−

∫ T

0

(rs + hs)ds
)

L

]

(17)

+EQ

[
∫ T

0

(c̄ + R · hs) · exp
(

−

∫ s

0

(ru + hu)du
)

ds

]

.

where EQ[ . ] is an abbreviation for EQ[ . |F0] .

Equations (13) and (14) can be reformulated as

CCB(0) = sup
τb∈F0T

inf
τs∈F0T

EQ[ccb(0)|F0] = inf
τs∈F0T

sup
τb∈F0T

EQ[ccb(0)|F0], (18)

where F0T is the set of stopping times with respect to the filtration {Fu}0≤u≤T with
values in [0, T ]. After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = esssupτb∈FtT
essinfτs∈FtT

EQ[ccb(0)|Ft] (19)

= essinfτs∈FtT
esssupτb∈FtT

EQ[ccb(0)|Ft],

3The continuous time problem can be approximated with a discrete time one and the no-arbitrage
price of the callable and convertible bond can then be derived e.g. by recursion alongside the branches
of a tree. But the dynamic of the stock price is modeled as jump diffusion with varying drifts and it
is sometimes difficult to construct a recombining tree especially if the uncertain volatility is considered.
Therefore we need to solve it with the help of BSDE.
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where FtT is the set of stopping times with respect to the filtration {Fu}t≤u≤T with
values in [t, T ], and

EQ[ccb(0)|Ft] = 1{τ>t}EQ

[
∫ ζ∧T

t

(c̄ + R · hs) · exp
(

−

∫ s

t

(ru + hu)du
)

ds

+1{ζ=τb<τs<T} exp
(

−

∫ ζ

t

(rs + hs)ds
)

γS̃ζ

+1{ζ=τs<τb<T} exp
(

−

∫ ζ

t

(rs + hs)ds
)

max[H, γS̃ζ ]

+ 1{ζ=T} exp
(

−

∫ T

t

(rs + hs)ds
)

max[L, γS̃T ]
∣

∣

∣
Ft

]

.

6 Excursion: Backward Stochastic Differential Equa-

tions

The study of non-linear BSDE is initiated by Pardoux and Peng (1990). The authors prove
existence and uniqueness of the solution under suitable assumptions on the coefficient
and the terminal value of the BSDE. Since then it has been recognized that the theory
of BSDE is a useful tool to formulate and study many problems in finance, e.g. hedging
and pricing of European contingent claims, see El Karoui and Quenez (1997). Further
studies are carried out in El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) to
BSDE’s with reflection, i.e., the solution is forced to stay above a given stochastic process.
Existence and uniqueness of the solution is proved. Moreover they show that in a special
case the solution is the value function of a mixed optimal stopping and optimal stochastic
control problem. Concrete examples are pricing of American option in complete and
incomplete market. These results are further generalized in Cvitanić and Karatzas (1996)
to the case of two reflecting barrier processes, i.e. the solution process of the BSDE has
to remain between the prescribed upper- and lower-boundary processes. They prove the
existence of the solution and show that the solution coincides with the value of a Dynkin
game, therefore establish the uniqueness of the solution. There are numerous studies on
theory and numerics of BSDE’s. A comprehensive review will go out of the range of our
study. We will only summarize the results closely related to financial market, especially
the game option.

6.1 Existence and uniqueness

The existence and uniqueness of the backward stochastic differential equation was first
treated in Pardoux and Peng (1990).

Definition 6.1. Let T ∈ R+. Given a filtered probability space (Ω,F , {Ft}t∈[0,T ], P ).
The filtration {Ft}t∈[0,T ] is generated by a d -dimensional Brownian motion W . Consider
the following BSDE

− dYt = f(t, Yt, Zt)dt − Z⊤
t dWt, YT = ξ, (20)

or equivalently

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds −

∫ T

t

Z⊤
s dWs

10



where

- The terminal value ξ is an n -dimensional FT -measurable square integrable random
vector.

- f maps Ω × R+ × R
n × R

d×n into R
n . f is assumed to be P

⊗

Bn
⊗

Bd×n

measurable. P denotes σ -algebra of Ft -progressively measurable subsets of Ω ×
R+ . Moreover f is uniformly Lipshitz, i.e. there exists C > 0 such that dt × dP

a.s. for all y1, z1, y2, z2

|f(t, y1, z1) − f(t, y2, z2)| ≤ C(|y1 − y2| + |z1 − z2|).

- Y and Z are R
n and R

d×n valued progressively measurable processes and Y is
continuous. Z⊤ denotes the transpose of the matrix Z .

- f is called the driver of the BSDE.

There exists a unique pair of adapted process (Y, Z) satisfies equation (20).

6.2 Forward backward stochastic differential equation

A well-investigated class of BSDE’s is of the following form, it is also called forward
backward stochastic differential equation (FBSDE)

Yt = g(XT ) +

∫ T

t

f(s, Xs, Ys, Zs)ds −

∫ T

t

Z⊤
s dWs

where g and f are deterministic functions and X satisfies the following SDE

Xt = x +

∫ t

0

b(s, Xs)ds +

∫ t

0

σ(s, Xs)
⊤dWs

where b and σ are measurable functions. The adapted solution of Y is associated to
the solution of a quasi-linear parabolic PDE







ut +
1

2
tr{σσ⊤uxx} + bux + f(t, x, u, uxσ) = 0

u(T, x) = g(x).
(21)

The explicit expression of the solution (Y, Z) is

Yt = u(t,Xt), Zt = ∂xu(t,Xt)σ(t,Xt).

6.3 Financial market

Consider a complete market there are n + 1 primary assets which are denoted by the
vector S = (S0, S1, ..., Sn)⊤ . S0 is a non-risky asset and has the following price dynamic

dS0
t = S0

t rtdt

11



rt is the deterministic interest rate. The price process for Si , i ∈ (1, ..., n) is modeled by
the linear SDE driven by an n -dimensional Brownian motion W , defined on the filtered
probability space (Ω,F , (Ft)t∈[0,T ], P ),

dSi
t = Si

t

(

bi
tdt +

n
∑

j=1

σ
i,j
t dW

j
t

)

.

P is the objective probability measure. Assume that the number of risky assets equals
the dimension of the Brownian motion4. By absence of arbitrage there exists an n -
dimensional bounded and progressively measurable vector θ such that

bt − rt1 = σtθt, dt × dP a.s.,

where 1 denotes n -dimensional unit vector. σt is an n × n matrix and is assumed to
have full rank. θ is called the premium of the market risk. Under these assumptions the
market is complete.

For hedge of a European contingent claim in complete market a self-financing and repli-
cating portfolio can be builded. At time t the trading strategy φt = (φ1

t , ..., φ
n
t )⊤ can be

decided. And under the assumption of self-financing the investment in the risk-less asset
must satisfy φ0

t S
0
t = Vt −

∑n

i=1 φi
tS

i
t . Therefore the value of the self-financing portfolio

has the following dynamic

dVt = rtVtdt + π⊤
t (bt − rt1)dt + π⊤

t σtdWt

= rtVtdt + π⊤
t σt(dWt + θtdt).

The vector πt = (π1
t , ..., π

n
t )⊤ with πi

t = φi
tS

i
t denotes the amount of the money invested

in risky assets i at time t . In expression of BSDE

Vt = ξ +

∫ T

t

f(s, Vs, Zs)ds −

∫ T

t

Z⊤
s dWs,

where ξ is the terminal value of contingent claim, Z⊤
t = π⊤

t σt and

f(t, y, z) = −rty − z⊤t θt. (22)

The driver in equation (22) is a linear function of y and z .

7 Hedging and Optimal Stopping Characterized as

BSDE with Two Reflecting Barriers

In general, the optimization problem formulated via Equation (18) has no closed-form
solution. Cvitanić and Karatzas (1996) show that, the no-arbitrage value can be formu-
lated as adapted solution of backward stochastic differential equations (BSDE) with two
reflecting barriers. The proper BSDE for valuation of callable and convertible bond is
derived via hedging arguments. It has been shown in literatures that the most significant

4This assumption and the full rank of volatility matrix ensure the completeness of the market
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risk factor for a typical convertible bond is the equity price subject to default risk. Interest
rate risk is usually a secondary consideration. Therefore we assume that the default-free
interest rate is deterministic. Another hypothesis which make the hedge possible, requires
that two kinds of risky assets are traded in the market:

- defaultable stock, with its dynamic described by equation(4),

- defaultable zero-coupon bond with zero recovery, based on the assumption of absence
of interest rate risk, its dynamic can be expressed as

dB̄t = B̄t−(rtdt − dMt), (23)

with

Mt = 1{τ≤t} −

∫ t∧τ

0

h(S̃u)du ,

equivalently, the pre-default bond price B̃t satisfies

dB̃t = (rt + h(S̃t))B̃tdt.

The bond holder pays the price, which is a non-random amount at time zero and is
entitled to the cumulative coupon payments and the lump-sum settlement at conversion
or call time, or at default. While the issuer receives the price, but must provide the
aforementioned random payments to the bondholder. The issuer’s objective is to hedge
his short position by trading in the market in such a way as to make the necessary
payments and still be solvent at the termination of the contract, almost surely. The price
process of the callable and convertible bond is then associated with the following hedging
strategy, with investment in risky zero bonds and stock,

dCCB(t) + (c̄ + R · ht)dt = (rt + ht)CCB(t)dt − dK+(t) + dK−(t) + πtσtdWt, (24)

where K+(t) and K−(t) are two continuous, increasing and adapted processes satisfy

∫ T

0

(CCB(t) − CV (t))dK+(t) =

∫ T

0

(CCB(t) − Call(t))dK−(t) = 0

where πt denotes the amount of money invested in the risky stock, CV (t) the conversion
value, Call(t) the call value.

Proposition 7.1. In standard expression of BSDE,














CCB(t) = g(S̃T ) +
∫ T

t
f(s, S̃s, CCB(s))ds −

∫ T

t
ZsdWs +

∫ T

t
dK+

s −
∫ T

t
dK−

s

CV (S̃t) ≤ CCB(t) ≤ Call(S̃t) ∀0 ≤ t ≤ T
∫ T

0
(CCB(s) − CV (S̃s))dK+

s =
∫ T

0
(Call(S̃s) − CCB(s))dK−

s = 0

(25)

with

dS̃t = (rt + h(S̃t))S̃tdt + σtS̃tdWt

f(t, CCB(t)) = (c̄ + R · ht) − (rt + ht)CCB(t).

where Zt = πtσt , and f(t, CCB(t)) is the driver.

13



The value process of the convertible bond is forced to stay between the upper- and lower-
boundary, which are the call and conversion value respectively. This effect is achieved
through the two reflection processes K+(t), and K−(t), , which push the value process of
the callable and convertible bond upward or downward to prevent the boundary crossing.
The ”push” is minimal in the sense that it will only be carried out in the case that
CCB(t) = CV (t) or CCB(t) = Call(t) . According to Cvitanić and Karatzas (1996),
the existence and uniqueness of the solution of equation(25) is ensured, if additional to the
general conditions on terminal value and the driver defined in definition 6.1, the following
conditions are satisfied

- K+ and K− are continuous, increasing and adapted processes.

- CV and Call are two continuous, progressively measurable processes and satisfy

CV (t) < Call(t), ∀ 0 ≤ t ≤ T and CV (T ) ≤ ξ ≤ Call(T ) a.s.

Having formulated the no-arbitrage value of the callable and convertible bond as solution
of BSDE with two reflecting barriers, our next task is to derive numerical solutions.

Remark 7.2. According to our assumptions, the bondholder can only exchange the bond
against stock of one prescribed firm. However, BSDE with two reflecting barriers usually
encompasses the more general case, where the bondholder can convert the bond into a
basket of risky stocks, i.e. Z can be R

d, d ≥ 1 valued and the hedge portfolio contains
positions in d different risky stocks.

8 Numerical Solution

There are basically two types of schemes for solving BSDE’s. The first type is the numer-
ical solution of a parabolic PDE related to the BSDE and the second type of algorithms
works backwards and treats the stochastic problem directly via simulation. For financial
problems with few random factors, the associated PDE provided by Cvitanić and Ma
(2001) can be solved with finite-difference methods. For callable and convertible bond
with more than three risky stock as underlying, a direct treatment with Monte Carlo
method is a better method. A recursion algorithm is provided e.g. in Chassagneux
(2007). Equation (25) belongs to a well-investigated class of BSDE’s in a Markovian
framework, the FBSDE.

Proposition 8.1. According to Cvitanić and Ma (2001) the solution of equation (25) is
associated with the following PDE, which is called the obstacles problem,







(Call − CV ) ∧ {(u − Call) ∨ −[ut +
1

2
σ2x2uxx + (r + ht)xux + f(t, x, u)]} = 0

u(T, x) = g(x).
(26)

For simplicity of the notations, x stands for S̃ and ht the default intensity h(S̃t) . The
driver f(t, x, u) = (c+R·ht)−(rt+ht)u . The explicit expression of the solution (CCB, Z)
is

CCB(t) = u(t, xt), Zt = ∂xu(t, xt)σ(t, xt).
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Here, we will not give an exact mathematical definition of the obstacle problem, and
discuss the existence and uniqueness of its solution, for details see Cvitanić and Ma
(2001). We apply explicit finite difference method for derivation of the numerical solution,
i.e. we work step by step down the grid. Finite difference methods can be thought as
a generalization of the binomial concept and is more flexible. In the finite-difference
methods the grid is fixed but parameters change to reflect a changing diffusion. At first,
we derive the value ũk

i backwardly from the next time period, then compare it with the
payoffs by conversion or call. If ũk

i is greater or lesser than the call or conversion value,
it will be replaced by the call or conversion value respectively. For each time step k and
stock step i ,

uk
i = min[Call, max[CV, ũk

i ]].

Example 8.2. As an illustrative example we compute the no-arbitrage price of a de-
faultable callable and convertible bond. The default intensity is modelled as piecewise
constant function of the pre-default stock price.

h(S̃t) =

{

a if S̃t ≤ K

b if S̃t > K

In default case, the stock value jumps to zero, while the bond has a constant recovery
rate of R = 30% of the face value. The convertible value is CVt = γS̃t , and the call
value is always lager than the convertible value and amounts Callt = max[H, γS̃t] . The
model parameters are given as T = 4, r = 0.06, S0 = 70, a = 0.5, b = 0.02, K =
30, L = 100, c = 3, γ = 1.2. The no-arbitrage values by different stock volatilities and
the comparison with the default free case are summarized in table 1. The stability of
numeric is ensured by proper choice and combination of the steps for the stock price and
time.

H = 110 H = 120 H = 130

σ defaultable default-free defaultable default-free defaultable default-free
0.1 95.02 96.52 96.59 97.73 97.51 98.36
0.2 97.34 99.21 99.56 101.45 101.11 102.94
0.3 98.33 100.88 101.32 103.99 103.45 106.32
0.4 97.85 101.96 101.25 105.68 103.70 108.65
0.5 96.85 102.65 100.33 106.84 102.91 110.21

Table 1: No-arbitrage prices of callable and convertible bonds without and with default
risk

The results in table 1 show that, in default free case, the price of callable and convertible
bond increases in volatility. But if default risk is considered and the default intensity is
explicitly linked to the stock price, the price increases at first with increasing volatility then
decreases after the volatility excesses a certain value. The increasing volatility increase
the conversion value but it also increases the default probability.
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9 Uncertain Volatility

Suppose that the seller and buyer relax the assumption of constant volatility by the
valuation and adopt the assumption of uncertain volatility. In this case the market is
incomplete, i.e. there is no unique price of market risk, there is a set of possible equivalent
martingale measures which are compatible with the no arbitrage requirement.

Proposition 9.1. Suppose that only a buy-and-hold strategy is allowed in the callable
and convertible bond, while only the risky stock and defaultable zero-coupon bond can be
traded dynamically. The set of initial no-arbitrage prices is determined by super hedging
and lies in the interval [CCBlow(0), CCBup(0)] with

CCBlow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[ccb(0)] = inf
τA∈F0T

inf
Q∈Q

sup
τB∈F0T

EQ[ccb(0)], (27)

CCBup(0) = inf
τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[ccb(0)] = sup
τB∈F0T

sup
Q∈Q

inf
τA∈F0T

EQ[ccb(0)], (28)

where Q is the family of equivalent martingale measures.

Proof 9.2. Applying theorem 2.2 of Kallsen and Kühn (2005).

The lower and upper bound are derived under the most pessimistic expectations of the
buyer and seller respectively.

Theorem 9.3. Combine proposition 8.1 with proposition 9.1. The solution of equation
(27) and (28) is associated with the following PDE






(Call − CV ) ∧
{

(u − Call) ∨ −
[

ut +
1

2
Σ2[uxx]x

2uxx + (r + hs)xux + f(t, x, u)
]}

= 0

u(T, x) = g(x).
(29)

where Σ2[x] stands for a volatility parameter which depends on x. CCBlow is derived
by setting

Σ2 [x] =







σ2
max if x ≤ 0

σ2
min else

and CCBup is derived by setting

Σ2 [x] =







σ2
max if x ≥ 0

σ2
min else

Example 9.4. The volatility of stock is supposed to lie within the interval [0.2, 0.4].
The other model parameters are the same as in example 8.2, with T = 4 , R = 30% ,
r = 0.06 , K = 30 , S0 = 70 , L = 100 , and c = 3 . The bid and ask prices are listed in
Table 2.

Default risk reduces the price but explicit modeling of default risk does not enlarge the
price spread. The reason is that default risk brings varying convexity and concavity to
the value function. Moreover, both parties can decide when they exercise. Therefore each
of them must bear the strategy of the other party in mind. The pricing bound is not only
determined by the default risk and volatility but also depends on the optimal exercises.
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a = 0.5, b = 0.02 a = 0, b = 0

H lower upper spread buyer lower upper
120 99.19 102.97 3.79 101.45 105.68 4.22
130 100.76 105.69 4.94 102.91 108.65 5.73
140 101.64 107.75 6.11 103.70 110.85 7.15
150 102.15 109.17 7.02 104.11 112.36 8.25

Table 2: No-arbitrage pricing bounds with stock price volatility lies within the interval
[0.2, 0.4]

10 Summary

The exposure of callable and convertible bonds to both credit and equity risk and the
corresponding optimal conversion and call strategies build the focus of our study. The
interplay between equity and credit risk is taken into account by adopting an intensity-
based default model in which the risk-neutral default intensity is linked to the equity price.
The embedded option rights owned by both of the bondholder and issuer is treated by
the well developed theories on the Dynkin game and is solved with help of the associated
doubly reflected backward stochastic differential equations (BSDE). Valuation of callable
and convertible bond as defaultable game option has been proposed by Bielecki et al.
(2007). But our model framework is more simple and we give pricing bounds for uncertain
stock volatility. Subject of future study could be inclusion of the mixed-strategies and
their effects on the pricing bound. In this paper the stock price follows a simple jump
diffusion and a further step could be modeling the stock price with a more flexible Lévy
process.
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Advanced Lévy Models, Wiley, pp. 277–291.

Kovalov, P. and Linetsky, V.: 2008, Valuing convertible bonds with stock price, volatility,
interest rate, and default risk. Working paper.

Lando, D.: 1998, Cox processes and credit-risky securities, Review of Derivatives Research

2, 99–120.

Linetsky, V.: 2006, Pricing equity derivatives subject to bankruptcy, Mathematical Fi-

nance .

Longstaff, F. and Schwarz, R.: 2001, Valuing american options by simulation: A simple
least-square approach, Review of Financial Studies 14, 113–147.

Musiela, M. and Rutkowski, M.: 1998, Martingale Methods in Financial Modelling,
Springer.

Pardoux, E. and Peng, S.: 1990, Adapted solution of a backward stochastic differential
equation, Systems Control Lett. 14, 55–61.

Xu, M.: 2007, Reflected backward sdes with two barriers under monotonicity and general
increasing conditions, Journal of Theoretical Probability 20, 1005–1039.

19


	Introduction
	Intensity-based Default Model
	Cox process and default time
	Defaultable stock price dynamics
	Information structure and filtration reduction

	Contract Feature
	Optimal Strategies
	Expected Payoff
	Excursion: Backward Stochastic Differential Equations
	Existence and uniqueness
	Forward backward stochastic differential equation
	Financial market

	Hedging and Optimal Stopping Characterized as BSDE with Two Reflecting Barriers
	Numerical Solution
	Uncertain Volatility
	Summary
	References

