Enders, Zeno

Working Paper
Heterogeneous consumers, segmented asset markets, and the effects of monetary policy

Bonn econ discussion papers, No. 2010,8

Provided in Cooperation with:
Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Enders, Zeno (2010) : Heterogeneous consumers, segmented asset markets, and the effects of monetary policy, Bonn econ discussion papers, No. 2010,8, Graduate School of Economics, Bonn

This Version is available at:
http://hdl.handle.net/10419/38808

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Heterogeneous consumers, segmented asset markets, and the effects of monetary policy

by

Zeno Enders

April 2010
Financial support by the
Deutsche Forschungsgemeinschaft (DFG)
through the
Bonn Graduate School of Economics (BGSE)
is gratefully acknowledged.

Deutsche Post World Net is a sponsor of the BGSE.
Heterogeneous consumers, segmented asset markets, and the effects of monetary policy *

Zeno Enders
University of Bonn

April 2010

Abstract

This paper examines the implications of segmented assets markets for the real and nominal effects of monetary policy. I develop a model, in which varieties of consumption bundles are purchased sequentially. Newly injected money thus disseminates slowly through the economy via second-round effects and induces a non-degenerate, long-lasting heterogeneity in wealth. As a result, the effective elasticity of substitution differs across households, affecting optimal markups chosen by producers. In line with empirical evidence, the model predicts a short-term inflation-output trade-off, a liquidity effect, countercyclical markups, and procyclical profits and wages after monetary shocks.

Keywords: Segmented Asset Markets, Monetary Policy, Countercyclical Markups
Liquidity Effect, Limited Participation

JEL-Codes: E31, E32, E51

*I want to thank Jordi Galí, Stefano Gnocchi, Giovanni Lombardo, Gernot Müller, Stefan Niemann and Gerald Seidel for helpful discussions and valuable comments on earlier versions. The usual disclaimer applies. Please address correspondence to zeno.enders@uni-bonn.de
1 Introduction

Which role does heterogeneity of economic agents play in the transmission of monetary policy? Standard models of the monetary transmission mechanism use a representative agent and thus ignore this question. Instead, they implicitly assume that either all agents are affected in the same way by actions of the monetary authority or that firms do not pay attention to the potential heterogeneity of their customer base when setting prices.\(^1\) In this paper, I explicitly account for heterogeneity of firms and consumers and its implications for monetary non-neutrality. I do so by developing a heterogeneous-agents model of segmented asset markets and overlapping shopping sequences. The resulting time-varying distribution of money across agents and its effects on optimal markups turn out to be important dimensions in the transmission of monetary policy. In addition, a calibrated version of the model accounts well for the empirically estimated dynamics of output, inflation, hours, interest rates, and profits after a monetary policy shock as well as their volatilities.

Monetary non-neutrality follows from the assumption that agents manage their asset portfolio only infrequently.\(^2\) In the present model, the consumers divide their labor and financial income between an interest-bearing illiquid and a liquid asset, which is needed for purchasing consumption. They acquire their consumption bundle on shopping trips, visiting one shop after the other. Since consumers start shopping at different times, their sequences overlap, resulting in a heterogeneous customer base faced by each shop. In particular, customers at the beginning of their shopping sequence have a higher elasticity of substitution because they can substitute with more shops further down the shopping trip. Since the producer cannot price-discriminate, she faces a trade-off between extracting a higher profit from low-elasticity customers and attracting more high-elasticity customers.\(^3\) The trade-off is altered if the distribution of money holdings in the population changes, affecting the effective demand elasticity, which in turn gives rise to optimal time-varying markups. Specifically, the markup is countercyclical because of the following reason. Monetary injections reach only those agents currently participating in the asset market. These agents will therefore receive a higher weight, as they account for a larger share of sales. Since they are in the beginning of their shopping sequence, this raises the effective elasticity of substitution, leading to a lower markup. A lower markup implies higher output, such that a short-term inflation-output trade-off obtains. Countercyclical markups are empirically supported by Rotemberg and Woodford (1999). Moreover, the model predicts countercyclical markups at the firm level, in line with evidence in the supermarket industry presented by Chevalier and Scharfstein (1996). These authors also confirm that prices are strategic complements, as in the present model. Note that because of the sequential structure, the model predicts an increase in the dispersion of prices after a monetary shock for a finite elasticity of substitution, as empirically observed by Balke and Wynne (2007). Additional to the above explained effect of the wealth distribution on markups, individual labor-supply decisions are also affected. These heterogeneous labor-leisure trade-offs, created by different wealth levels, can affect aggregate real variables as well.

The combination of countercyclical markups and a changing, persistent money distribution generates plausible dynamics of a variety of variables. In order to establish empirical evidence, I estimate the

\(^1\)Textbook examples of these kind of models are presented in Woodford (2003) and Gali (2008).

\(^2\)Jovanovic (1982) derives optimality conditions for this behavior in a general equilibrium model of the Baumol-Tobin type, while Christiano et al. (1996) provide empirical support.

\(^3\)This aspect is related to Bils (1989), where a monopolist faces a trade-off between extracting profits from loyal customers and attracting new ones.
second moments and the dynamic responses to a monetary expansion of a range of variables. A comparison of the model responses to their empirical counterparts shows that the model does well in reproducing the impulse-response functions and second moments of these variables, once small labor market frictions are considered. Specifically, output, inflation, labor, wages, profits, and velocity rise after a monetary contraction, while the interest rate falls, i.e., a liquidity effect is observed. If a monetary injection reaches all agents, keeping the staggered bank visits, hump-shaped responses are obtained. Standard models of the monetary transmission mechanism have difficulties generating these responses.

If monetary injections reach all agents simultaneously, the wealth distribution remains unaffected and real variables are not affected by monetary policy. Hence, a heterogeneous wealth distribution is crucial for monetary non-neutrality in the model. If the number of goods in the consumption bundle moves towards infinity, markups are constant as the weight of each good approaches zero. Similarly, if the elasticity of substitution reaches infinity, the markup is constant at unity. While in the first case the heterogeneous labor-supply decisions affect the price distribution and aggregate real variables, the latter case of perfect competition implies equal prices among all firms. The individual differences in the labor supply cancel in the aggregate, leaving real variables unaffected. The model therefore nests the cases of a constant markup and fixed exogenous output. In both cases, the liquidity effect is still present.

Models of segmented asset markets in which only a part of the population participates in an open-market operation of the central bank go back to Grossman and Weiss (1983), who develop a Baumol-Tobin-type model of staggered money withdrawals. Subsequent work along these lines focuses on the implications for financial variables. Alvarez and Atkeson (1997) show that such a model of segmented asset markets can generate volatile and persistent real as well as nominal exchange rates. In a similar model of a closed-economy, Alvarez et al. (2009) examine the dynamics of money, velocity, and prices. Alvarez et al. (2002) develop a model of endogenous asset market segmentation and find plausible implications for interest rates, expected inflation and exchange rates. Occhino (2004) uses a model where a part of the population is constantly excluded from asset trading, and studies the implications for money and interest rates. Common to these models is the exogeneity of output. An exception is Rotemberg (1984), who combines segmented asset markets with production based on capital and a fixed labor supply. He finds that after a monetary expansion, output increases and returns slowly to the steady state. However, because of perfect competition, the optimal markup is not considered. This implies that firms continue to ignore the potentially heterogeneous composition of their customer base. The effects of a changing wealth distribution on labor supply are ruled out by assumption.

The implications of heterogeneous agents for price setting and labor-supply decisions were often neglected because of complicated wealth effects that arise after monetary injections, which affect only a part of the population. One solution to this problem was proposed by Lucas (1990). In his model, the economy consists of families that pool their resources at the end of the period. A large body of literature uses this approach to build and simulate models of the transmission of monetary policy, including Fuerst (1992) and Christiano et al. (1997). While tractability is reached with this method, the heterogeneity of money holdings is limited to the period of the shock, eliminating longer-lasting wealth effects. Similarly, Alvarez et al. (2009) remove wealth effects by allowing for

4See, among others, Christiano et al. (1997) and Galí (2003).
trade in a complete set of state-contingent assets. However, as also argued by Menzio et al. (2009) in the context of a search model of money, long-lasting non-degenerate wealth distributions can have potentially important effects. In the present model, tractability is reached despite unrestricted money distributions by an ownership structure of shops that leads to a slow dissemination of newly injected money throughout the economy. This mechanism gives rise to persistent effects of monetary shocks due to second-round effects and long-lasting changes in the wealth distribution. Because over time all agents in the economy benefit from the monetary injection via increased profits and wages, the wealth distribution returns to its pre-shock level in the long run, thereby guaranteeing stationarity. Hence, the model can be analyzed with standard tools for the simulation of dynamic stochastic general equilibrium models.

The remainder of this paper is organized as follows. The model is developed in section 2. I calculate empirical impulse-response functions and second moments in section 3, and compare them to predictions of the model in section 4. Section 5 concludes the paper, while the appendix shows additional impulse-response functions and lists data sources.

2 A model of sequential purchases

Standard models of monopolistic competition assume that each agent is consuming an infinite number of different varieties. Furthermore, although one period is assumed to be of considerable length, all actions of the agents are done simultaneously, including buying the varieties. If one is to relax these assumptions, important changes for strategic interaction and price setting will emerge. To account for these points, I introduce shopping sequences similar to Grossman and Weiss (1983) and Rotemberg (1984). Instead of visiting all shops simultaneously, the consumers visit one shop after the other. The number of shops visited is finite.\(^5\) Note that this does not imply that the total number of shops in the economy is finite, but merely that each consumer spends a positive amount on each good. After having acquired all goods which enter the consumption bundle, the consumer aggregates and consumes this bundle at home. As in standard models, it takes the length of one period to buy a complete bundle.

Before starting their shopping sequences, consumers visit the bank, where they have access to their account. All income from labor and dividends up to this point are paid to the account. At the bank, agents can participate without costs in the asset market, dividing their wealth in liquid and interest-bearing illiquid assets.\(^6\) As in, e.g., Grossman and Weiss (1983) and Alvarez et al. (2002), only those agents currently participating in the asset market receive monetary injections from the central bank. After having settled their financial transactions, consumers start a new shopping sequence, using the liquid assets for payments. Each consumer works in the last shop of her shopping sequence, receiving wage income on her bank account.\(^7\) In addition, the consumer owns the shares of the same shop, such that the corresponding profits also get paid to her account. After having worked, the consumer visits the bank, has access to her income, and the sequence starts over again.

\(^5\)The case of a finite number of varieties was already discussed by Dixit and Stiglitz (1977).

\(^6\)For the results it does not matter if the liquid asset also yields some return. In the linearized version of the model it is only important that the illiquid asset dominates the liquid asset in the rate of return.

\(^7\)Alternatively, one could assume that the consumer works in the first shop of the sequence. While this adds an additional channel of internal propagation to the model, it has the disadvantage of assuming that considerable time passes until the agents have access to their wage income, which was transferred to their accounts.
If it takes some time to acquire a consumption bundle, it is unlikely that all consumers start and finish their shopping sequences and adjust their financial assets at the same dates. I therefore assume that the above explained sequence starts at different points in time for each consumer. Specifically, there are n consumers—or n types of consumers—in the economy, each of which is at a different stage of her sequence. All consumers visit a particular shop at the same time, where the shop cannot price discriminate. This assumption has the advantage that from the shops’ perspective, the setup is equivalent to an economy with a representative consumer and uncertainty about the current stage of the shopping sequence of this consumer. The timing of the model is visualized in figure 1 for $n = 3$. One shop after the other is serving all consumers, while in between the visits there is always one agent consuming the bundle and passing by the bank, and another one is working for the next shop. Heterogeneity of agents arises endogenously because of the different points in time when the agents visit the asset market, resulting in potentially different money holdings and labor-leisure trade-offs.

As visible in the figure, I make the following assumptions regarding the timing of information in between the visits to two subsequent shops. First, one of the agents is consuming her bundle—acquired over the course of the last shopping sequence—visits the bank and participates in the asset market, where she receives a potential monetary injection. The amount of this injection is instantaneously common knowledge to all agents in the model. The agent divides her assets in liquid and illiquid assets, and leaves the bank. The shop that is going to be visited next subsequently produces goods using labor input of the agent with the next higher index, sets its price and sells the produced goods to the customers. Since the shop owner is free to adjust prices and no new information arrives between production, price setting, and sales, only the amount demanded will be produced. Concerning notation, agents are ordered such that the agent with index i starts her shopping sequence at the shop with index $j = i$.

![Figure 1: Timing of the model. Notes: 'Shop j' denotes purchases at shop j, 'Bank' the participation in the asset market. 'Cons.' stands for consumption of the previously bought bundle, while arrows depict the transfer of income from labor and business activity to the account of the respective agent. Thick lines represent shopping sequences.](image-url)
2.1 Setup

Households Agent i maximizes her expected value of lifetime utility, which depends positively on consumption C, negatively on labor L, and is non-separable in consumption and leisure.\(^8\)

$$U_t = \sum_{s=t}^{\infty} \beta^s \frac{1}{1-\sigma} [C_{i,s}(1 - L_{i,s})^\mu]^{1-\sigma},$$

(1)

where $C_{i,t}$ is a consumption bundle consisting of n different goods:

$$C_{i,t} = \frac{1}{n^{\gamma-1}} \left(\sum_{j=1}^{n} C_{i,t-1}^{\gamma-1}(j) + \sum_{j=1}^{i-1} C_{i,t}^{\gamma-1}(j) \right)^{\gamma-1} \gamma > 1,$$

(2)

with $C_{i,t}(j)$ being the consumption of agent i of good j. If the consumer happens to start her shopping sequence at the beginning of a period, she acquires the complete consumption bundle in the course of a single period and consumes in the beginning of the next period. This is the case for agent 1 only, who is the first in the period to visit the bank and start shopping. The other agents started somewhere in the middle of last period and consume this period. This implies that they buy a specific good j either in period $t-1$ or t. The period changes between shop $j = n$ and $j = 1$.

While being at the bank, i.e., after having visited shop $j = i - 1$ (shop $j = n$ for agent $i = 1$), the agent has access to her account. Her nominal labor income $W_{i,t}L_{i,t}$, a fixed cost of production ϕ, and the dividends $\Pi_{i,t}$ of the shop of which she owns the shares have been transferred to this account.\(^9\) Furthermore, she can participate in the asset market, i.e., divide her assets into illiquid assets $B_{i,t}$ (bonds etc.) and liquid assets $M_{i,t}$ (money/checking account). $M_{i,t}^j \geq 0$ denotes agent i’s holdings of the liquid asset after having acquired good j. Hence, after having used the liquid asset for shopping in her first shop after the bank, an amount of $M_{i,t}^j$ remains. The illiquid assets from last period pay the amount $(1 + r_{i,t})B_{i,t}$. Finally, the agent may also receive a monetary injection $S_{i,t}$. The budget constraint of the agent who participates in the asset market ($i = j$) is therefore

$$M_{i,t}^j + B_{i,t+1} + P_t(j)C_{i,t}(j) = (1 + r_{i,t})B_{i,t} + \Pi_{i,t} + W_{i,t}L_{i,t} + \phi + S_{i,t} + M_{i,t}^{j-1} \quad i = j.$$ (3)

The liquid asset can then be used for purchasing consumption. During the shopping sequence the agent has to obey a series of cash-in-advance constraints

$$M_{i,t}^j + P_t(j)C_{i,t}(j) = M_{i,t}^{j-1} \quad i \neq j,$$

(4)

with $M_{i,t}^0 = M_{i,t-1}^n$.

If a change of period lies between two visits of shops, the time index of the liquid asset changes, as described in the last equation. I solve the model under the assumption that all liquid assets are spent during the shopping sequence, i.e., $M_{i,t}^{j-1} = 0$.\(^{10}\) As, e.g., Grossman and Weiss (1983), Rotemberg (1984), and Alvarez et al. (2009), I make the assumption that inter-household borrowing and lending is not possible. This would contradict the structure of the model, in which consumers are not visiting the bank during their shopping sequence. Hence, consumers currently at the bank do not engage in borrowing and lending with the consumers not at the bank.

\(^8\)For a discussion of the properties (including balanced growth) of this kind of utility functions, see King et al. (1988).

\(^9\)In this setup, the fixed cost can be interpreted as a base salary for the worker.

\(^{10}\)This spending pattern is optimal if the following holds

$$\frac{U_{C_{i,t}}}{P_t(i-1)} \frac{\partial C_{i,t}}{\partial C_{i,t}(i-1)} > E_t \frac{U_{C_{i,t+1}}}{P_{i,t+1}} \quad i \neq 1,$$
Shops Producer j maximizes the profit function

$$\Pi_t(j) = Y_t(j)P_t(j) - W_t(j)L_t(j),$$

where the wage can differ across firms because each shop employs a different worker. However, the shop takes the wage as given, i.e., each worker stands for a continuum of workers of the same type, just as each consumer could stand for a continuum of consumers of the same type. The maximization problem is subject to a production function that features labor as the sole input

$$Y_t(j) = A_t L_t(j) - \phi,$$

where ϕ represents the fixed cost of production, see Christiano et al. (1997). The technology level A_t is common to all firms.

Monetary authority The central bank controls the money supply. It does so by setting the monetary injections S_t according to a money growth rule

$$S_t = \eta_s S_{t-1} + \epsilon_t, \quad (5)$$

which is the same as specifying a movement of the total money stock M_t according to

$$\Delta M_t = \eta_s \Delta M_{t-1} + \epsilon_t.$$

I assume that the central bank injects money only at the beginning of the period. This simplifies the exposition since no shocks occur in the course of the period, allowing me to use the expectational operator for agents’ expectations based on the common information set of one period. In the baseline scenario I assume that the complete injection is transferred to the account of the agent who starts her shopping sequence at the beginning of the period, i.e., $S_{1,t} = S_t$ and $S_{i,t} = 0 \; \forall \; i \neq 1$. As a sensitivity analysis, I also consider the case of an equal transfer to the accounts of all agents in the economy, i.e., $S_{i,t} = S_t / n \; \forall \; i$. This implies that all agents benefit from the monetary injection but access it at different points in time, namely when visiting the bank.

In equilibrium, the money stock M_t has to equal money demand by the households in each moment in time. This yields for the end of period t

$$M_t = \sum_{i=1}^{n} M_{i,t}^{n} \quad (6)$$

Timing and ownership structure As described above, each agent receives dividends from the shop where she has worked and shopped before entering the bank, i.e., agent i receives her wage and profits from shop $i - 1$. In addition, she also receives the fixed cost ϕ. Since dividends and wages are paid on the account before the worker has access to the account, the time index changes if the period ends in

with a corresponding restriction for $i = 1$.The individual price index P_i of a consumption bundle is defined via $P_iC_i = \sum_j P_i(j)C_i(j)$. In order to support the above assumption, I check that this condition is fulfilled for each agent in all shopping sequences when calculating impulse-response functions or second moments in section 4. A similar approach is used by Alvarez et al. (2009). Under normal circumstances, this inequality is always satisfied, since it is clearly not optimal to carry over non-interest bearing liquid asset holdings between visits to the bank. In times of high deflation, e.g. due to a strong negative demand shock, agents would postpone their consumption. Hence, the model would endogenously generate a liquidity trap. I do not consider this kind of shocks in the present paper, but leave this possibility for future research.
between. This is the case for agent 1, who receives the profits of shop \(n \). Hence in terms of notation we have

\[
\Pi_{i,t} = \Pi_t(i-1) \quad i \neq 1 \quad \Pi_{1,t} = \Pi_{t-1}(n).
\]

For the same reason

\[
W_{i,t} = W_t(i-1) \quad i \neq 1 \quad W_{1,t} = W_{t-1}(n),
\]

\[
L_{i,t} = L_t(i-1) \quad i \neq 1 \quad L_{1,t} = L_{t-1}(n).
\]

2.2 First-order conditions

Due to the different timing assumptions, some differences in the first-order conditions arise relative to a standard model. Notably, the consumers are heterogeneous with respect to their money holdings, which changes the effective elasticity of substitution faced by the producers. Furthermore, strategic interaction exists because each consumer buys at a finite number of shops. Due to this different consumption behavior, price setting of firms is also affected.

Households

While being at the bank, each agent has to decide how much of the liquid asset to hold for the next shopping sequence, and how much to invest into the illiquid asset for saving, resulting in a bond Euler equation.

\[
\lambda_{i,t+1} = \beta E_t(1 + r_{i,t+1}) \left(\frac{P_{i,t+1}}{P_{i,t+2}} \lambda_{i,t+2} \right).
\]

The expected marginal utility of consumption is

\[
\lambda_{i,t+1} = E_t C_{i,t+1}^{-\sigma}(1 - L_{i,t+1})^{\mu(1-\sigma)}.
\]

Note that the agent decides on holdings of the liquid asset that she is then using for shopping, resulting in consumption in the following period. The first-order condition concerning the labor-leisure trade-off is

\[
\mu C_{i,t}^{-\sigma}(1 - L_{i,t})^{\mu(1-\sigma)-1} = \beta W_{i,t} E_t \left(\frac{\lambda_{i,t+1}}{P_{i,t+1}} \right),
\]

where the left hand side is the marginal disutility of working, and the future price level enters because today’s wage can only be used for the coming shopping sequence.

During the shopping sequence, the consumer is optimizing the value of the consumption bundle, yielding the condition

\[
C_{i,t}(j) = \left(E_t \frac{P_t(j)}{\Psi_{t,j}(j)} \right)^{-\gamma} E_t \left[C_{i,t}^{1/\gamma} \right]^{\gamma},
\]

where, because of the possible change of period between buying and consuming,

\[
\bar{C}_{i,t} \equiv C_{i,t+1} \quad \text{if } j \geq i \text{ in (7)},
\]

\[
\bar{C}_{i,t} \equiv C_{i,t} \quad \text{if } j < i \text{ in (7)}.
\]

The binding money-in-advance constraint in the last shop of the sequence,

\[
C_{i,t}(i-1) = \frac{M_{i,t}^{i-2}}{P_t(i-1)},
\]
renders the solution by backward-induction straightforward. The time-varying variable $\Psi_{i,t}(j)$ is responsible for a non-constant elasticity of substitution, and can be interpreted as the price level for the remaining goods in the sequence, adjusted for the cash-in-advance constraint.\footnote{This interpretation is better visible in the reformulation \[\frac{C_{i,t}(j+1)}{C_{i,t}} = \left(\frac{P_{i}(j+1)}{\Psi_{i,t}} \right)^{-\gamma} \] for $j \neq i - 1$.} It is defined as follows (for better readability, $i-1 \equiv n$ for $i = 1$ and $j+1 \equiv 1$ for $j = n$).

\[
\Psi_{i,t}(j) = \left(\frac{C_{i,t}(j+1)}{C_{i,t}} \right)^{\frac{1}{\gamma}} P_{i}(j+1) \quad j \neq i - 1, \\
\Psi_{i,t}(j) = \frac{C_{i,t}^{-\frac{1}{\gamma}}}{C_{i,t}^{-\frac{1}{\gamma}}} \left(M_{i,t}^{-\frac{1}{\gamma}} \right)^{\frac{1}{\gamma}} P_{i}(j)^{-\frac{1}{\gamma}} \quad j = i - 1.
\]

Equations (7) and (9) imply

\[E_t[\Psi_{i,t}(j)^{-1}] = E_t[\Psi_{i,t}(j + 1)^{-1}] \quad j \neq i - 1. \]

Shops Since shopping periods overlap, the shops face consumers in different stages of their shopping sequence. Market clearing requires that production equals total demand, which is for good j at time t

\[Y_t(j) = \sum_{i=1}^{n} C_{i,t}(j), \quad (10) \]

The first-order condition for the producer is then

\[\frac{\partial Y_t(j)}{\partial P_t(j)} [MC_t(j) - P_t(j)] = Y_t(j). \]

Using equations (7) and (10) yields the optimal price as a time-varying markup over marginal costs.

\[P_t(j) = \frac{\eta_t(j)}{\eta_t(j) - 1} W_t(j)/A_t \quad (11) \]

with

\[\eta_t(j) \equiv \gamma \left(1 - \frac{\sum_{i=1}^{n} C_{i,t}(j) \kappa_{i,t}(j)}{\sum_{i=1}^{n} C_{i,t}(j)} \right), \]

\[\kappa_{i,t}(j) \equiv \varphi_{C,i,t}(j) - \varphi_{\Psi,i,t}(j), \]

where $\varphi_{C,i,t}(j)$ and $\varphi_{\Psi,i,t}(j)$ denote the elasticities of $E_t(\overline{C}_{i,t}^{1/\gamma})$ and $E_t(\Psi_{i,t}(j)^{-1})$ with respect to $P_t(j)$, respectively. The effective elasticity of substitution $\eta_t(j)$ faced by shop j is hence composed of the standard term γ and an average of individual terms, weighted by their consumption shares. The optimal markup is higher relative to the standard case of infinitely many goods. Note that as in standard models the firm is taking household expectations about future prices as given, i.e., a single firm does not assume that its price setting affects future prices. The implications of the above pricing rule are discussed in the following.
2.3 The inflation-output trade-off

The inflation-output trade-off relies on a varying wealth distribution, created by the limited participation in asset markets. If a monetary injection reaches all agents—indeed, if they are currently at the bank or not—in a way that the money distribution is merely shifted upwards, nominal variables jump to a higher level while real variables are not affected. This can be seen by multiplying all nominal variables above, including the cash-in-advance constraints (4) of agents currently not trading, with a fixed scalar (observing that in equilibrium $B = 0$).

Monetary policy under limited participation affects real variables in two different ways. On the household’s side, a monetary shock affects the wealth distribution, thereby changing individual labor-leisure decisions. Hence, real variables can be altered via heterogeneous labor supply decisions. On the firm’s side, a monetary shock influences the markup (which corresponds to the inverse of real marginal costs) in the following way. For a finite n, consumers at the beginning of their shopping sequence have a higher elasticity of substitution—a higher $\kappa_{i,t}(j)$ in absolute terms—than the consumers further down the sequence. Hence, when setting its price, the firm faces a trade-off between extracting more profits from the customers with a low elasticity, and losing profits from the customers at the beginning of the sequence, who might substitute to shops that come later in the row. Since the consumers at the beginning of their shopping sequence are the ones that have benefited from a monetary injection, their weight in $\eta_{t}(j)$ increases, leading to a countercyclical markup after expansionary monetary shocks. A countercyclical markup is important for achieving procyclical marginal costs (wages), and a dampened initial inflation response.

For $n \to \infty$ the terms $\overline{\phi_{i,t}}(j)$ and $\phi^{\psi}_{i,t}(j) \to 0$, since the weight of each variety in the bundle approaches zero, see equation (2). This implies that decisions on the consumption of a particular variety have no effect on the value of the bundle (first term), nor on the resources available for acquiring other varieties (second term). Hence, $n \to \infty$ implies $\kappa_{i,t}(j) \to 0$ and a constant markup. For $\gamma \to \infty$, the variable $\eta_{t}(j)$ approaches infinity. The markup reaches unity, reflecting perfect competition. Thus, in both cases, $n \to \infty$ and $\gamma \to \infty$, the markup is constant. With this transmission channel missing, monetary policy can have an effect on real variables only via the heterogeneous labor supply decisions. In the latter case of $\gamma \to \infty$, however, perfect competition leads to equal prices among all firms, thereby eliminating any impact of heterogeneous labor supplies on the distribution of final goods prices. With prices being the same for all producers, changes in demand are only due to wealth effects and the impact of labor supply on the marginal utility of consumption. In the linearized model these effects cancel in the aggregate, such that aggregate real variables are unaffected by monetary policy under perfect competition. Hence, the model nests the case of exogenously given output, used in earlier papers mentioned in the introduction. Note that under both scenarios, $n \to \infty$ and $\gamma \to \infty$, the dispersion of money holdings still prevails. In particular, since only few agents participate in the asset market at the time of the monetary injection, the basic limited participation mechanism is effective, yielding a liquidity effect.12

Pre-set wages I will also consider the case of labor market frictions, as proposed by Erceg et al. (2000) and suggested by Christiano et al. (1997) for enhancing the empirical success of limited participation models. Assuming that the first ξ^{H} shops after a monetary injection cannot re-negotiate their

12Impulse-response functions for both discussed cases are available upon request.
nominal wages, equation (11) is replaced by

\[W_t(j) = E_{t-1} \frac{\eta_t(j) - 1}{\eta_t(j)} A_t P_t(j) \quad j = 1, \ldots, \xi^n. \]

Due to the higher profits at the time of the shock under pre-set wages, a stronger output responses is generated because of the muted response of marginal costs. If I assume pre-set real instead of nominal wages, equation (11) is replaced by\(^{13}\)

\[\frac{W_t(j)}{P_t(j)} = E_{t-1} \frac{\eta_t(j) - 1}{\eta_t(j)} A_t \quad j = 1, \ldots, \xi^r, \]

with \(\xi^r\) denoting the number of shops that cannot change their real wages after a monetary shock. Pre-set real wages alone do not generate monetary non-neutrality. I.e., as under flexible wages, simultaneous monetary transfers to all agents in the economy—indeed, if they are currently at the bank or not—lead to an increase in the price level without any real effects since no heterogeneous wealth levels arise. I will therefore use the case of pre-set real wages in order to isolate the effects of the sequential structure in section 4.

2.4 Aggregation

Aggregation concerns the question how to derive aggregate variables from the heterogeneous agents in the model. Aggregate output is defined as the sum of this variable over all producers in one period. Since there is no government nor investment, consumption equals output. Note that by this convention aggregate consumption is not the consumption bundle but real consumption expenditure, as in official statistics. Concerning wages, prices, marginal costs, labor, profits, and the markup, I use averages over all producers in one period. All these variables are counted in the period when production takes place. Since the agents participate in the asset market at different times in one period, they are offered potentially different interest rates. The aggregate interest rate is defined as the average. The total money supply is the total amount of the liquid asset in the economy at the end of the period.\(^{14}\)

Velocity can then be calculated given aggregate output, the price level, and the money supply.

2.5 Steady state

The steady state is characterized by a fixed money stock and a constant technology level. Since these are the only exogenous driving forces in the model, all other variables are also constant. The only steady-state variable that will play a role later on (in the calibration section) is the velocity of money. Because \(n\) measures the total number of bank visits of all agents during one period, velocity depends on this parameter. In any moment of time there is one agent in each stage of the shopping sequence. Money held by the agent in the last shop of her sequence, \(M^{t-2}\), divided by the steady-state price level equals per capita consumption per shop, see equation (8). Total output is per capita output per shop times \(n^2\), since there are \(n\) agents and \(n\) shops. Hence,

\[Y = \frac{n^2 M^{t-2}}{P}, \]

\(^{13}\)Blanchard and Gali (2007) discuss extensively the case of sticky real wages.

\(^{14}\)This ensures comparability with the data, which measures also the end-of-period money stock.
where variables without time and agent subscripts denote steady-state values. To relate \(M^{i-2} \) to the total money supply \(M \), including bank account balances, note that in steady state according to (6) and (4)

\[
M = \sum_{j=1}^{n} M^n = \sum_{k=1}^{n} kM^{i-2} = \frac{n(n + 1)}{2} M^{i-2}.
\]

Hence,

\[
Y = \frac{2n^2}{n(n + 1)} M,
\]

and steady-state velocity is given by

\[
V = \frac{2n^2}{n(n - 1)}.
\]

(12)

In order to demonstrate the basic mechanics of the model, appendix A shows a simulation for the case of flexible wages and two agents visiting the bank in each period. Section 4 brings the model to the data by using plausible values for wage stickiness and the number of bank visits. Before simulating the model, empirical evidence is established in the next section.

3 Empirical evidence

To compare the predictions of the model to their empirical counterparts, I calculate impulse-response functions to monetary shocks and conditional second moments based on time series for the United States.

3.1 Data and estimation procedure

The series employed are the log of the gross domestic product (GDP), the change in the log of the personal consumption expenditure deflator (Inflation), corporate profits of non-financial firms, hours worked, real wages, unit labor costs, real wages, velocity, M1, and the federal funds rate (FFR). Following Clarida et al. (2000), the data start in 1979Q3, the date when Paul Volcker was appointed chairman of the Fed, and run through 2008Q3. For sources and details of the data, see appendix B.\(^\text{15}\)

The identification scheme follows standard techniques. Specifically, I estimate a VAR of the form

\[
A(L)Y_t = \epsilon_t,
\]

where \(A(L) \) denotes a matrix polynomial in the lag operator \(L \). A constant and a linear trend is omitted to simplify the exposition. In the baseline regression, the lag length is four and the vector \(Y_t \) includes four variables

\[
Y_t = \begin{pmatrix}
\ln(GDP_t) \\
\ln(\text{Inflation}_t) \\
\ln(\text{Profits}_t) \\
\text{FFR}_t
\end{pmatrix}.
\]

Identification is achieved by the assumption that a change in the federal funds rate has no impact on real variables in the same quarter. This implies that \(A(0) \) is lower-triangular and the interest rate is ordered last, or second-to-last if M1 or velocity are included. See Christiano et al. (1996) for further details. In order to economize on the degrees of freedom, I re-estimate the VAR five more times, replacing in turn profits with the logs of hours, real unit labor costs, real wages, velocity, and the monetary base. Re-assuringly, the responses of the fixed three variables do not change significantly.

\(^{15}\)I use the PCE deflator instead of the GDP deflator since inflation in the model refers to inflation of consumer expenditure. Furthermore, usage of this variable prevents the so-called prize puzzle.
3.2 Impulse-response functions

The estimated responses of the variables under consideration are plotted in figure 2. Dashed lines represent bootstrapped 90% confidence intervals based on 1000 replications. The results are in line with established views in the literature. After an unexpected fall in the federal funds rate of 100 basis points, output, inflation, hours worked, unit labor costs, velocity, M1, and profits increase. While inflation and output rise by around the same amount, real wages increase by much less. The finding of an increase in the monetary base after a fall in the interest rate documents a liquidity effect. As discussed in Christiano et al. (1997), rising profits constitute a problem for standard sticky-price models.

3.3 Counterfactual second moments

Additional to the presented impulse-response functions I am also interested in the second moments of the data, in order to compare them to the predictions of the model in section 4.4. Specifically, since the model is designed to explain effects of monetary policy shocks, I calculate second moments based on counterfactual time series that would have been observed if monetary policy shocks had been the only source of fluctuations. To this end, the above identified monetary policy shocks are fed back into the estimated VAR system (i.e., the respective A_0’s until A_4’s for each of the estimated systems), shutting off all other shocks. Conditional second moments can be calculated based on the resulting time series. Note that since the model is calibrated to annual data, I first annualize the

16 See Christiano et al. (1997), who report similar findings for the responses of output, inflation, interest rates, wages, and profits. Altig et al. (2005) also include velocity, yielding almost the same picture.

17 As starting values I employ hypothetical trending values of the variables that would occur if no shocks had happened at all, instead of historical values. By this, it is guaranteed that a zero shock variance leads to a zero variance of the variables.
<table>
<thead>
<tr>
<th>Statistic</th>
<th>Empirical Values</th>
<th>Theoretical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev. Output</td>
<td>0.52 (0.18)</td>
<td>0.50</td>
</tr>
<tr>
<td>Std. Dev. Infl.</td>
<td>0.22 (0.19)</td>
<td>0.36</td>
</tr>
<tr>
<td>Std. Dev. Velocity</td>
<td>0.94 (0.34)</td>
<td>0.58</td>
</tr>
<tr>
<td>Std. Dev. Hours</td>
<td>0.41 (0.20)</td>
<td>0.44</td>
</tr>
<tr>
<td>Std. Dev. Wage</td>
<td>0.32 (0.14)</td>
<td>0.002</td>
</tr>
<tr>
<td>Std. Dev. Profits</td>
<td>4.54 (1.56)</td>
<td>1.47</td>
</tr>
<tr>
<td>Std. Dev. FFR</td>
<td>0.78 (0.16)</td>
<td>0.21</td>
</tr>
<tr>
<td>Std. Dev. M1 Growth</td>
<td>0.62 (0.12)</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 1: Empirical and theoretical business cycle statistics in percent. Notes: Empirical values: counterfactual time series based on identified monetary shocks only; theoretical values: averages of 1000 simulations of the model. All series were HP-filtered with a smoothing coefficient of 100. Standard deviations are given in parenthesis.

The quarterly data were already expressed in annualized values. The annualized time series are then HP-filtered with a smoothing parameter of 100, see Hodrick and Prescott (1997). The results are presented in the left column of table 1. Note that because of the annualization of the data, the results differ relative to studies based on higher frequency data.

4 Simulation

After having established empirical evidence, I compute the impulse-response functions of the model as well as its theoretical second moments and compare them to their empirical counterparts. In order to do so, I linearize the model around its symmetric (and unique) non-stochastic steady state and solve the resulting system of linear equations using standard techniques.

4.1 Calibration

The baseline parameters used for the simulation of the model are summarized in table 2. The elasticity of substitution between the varieties γ is chosen such that the markup in steady state is 20%, see Rotemberg and Woodford (1993). Different values are used in the literature for the coefficient of relative risk aversion σ. Basu and Kimball (2002) report empirical findings for its inverse, the intertemporal elasticity of substitution, ranging from 0.2-0.75. The Frisch elasticity of labor supply was estimated between 1/3 and 1/2 by Domeij and Flodén (2006). I choose a parameter constellation in the baseline calibration with $\sigma = 3$ and a Frisch elasticity of 1/2 ($\mu = 0.65$). Later in this section I conduct a robustness check regarding these parameter, employing 2 and 5 for σ and 1/3 for the Frisch elasticity. The fixed cost is set such that the steady-state profit share corresponds to the empirical av-

18 The quarterly data were already expressed in annualized values.

19 Rotemberg and Woodford (1993) report values between 20% and 40%. Due to the finite number of goods in the consumption bundle, the monopoly power of firms for a given γ is higher relative to the case of infinitely many goods. With infinitely many goods the markup that corresponds to the chosen γ would be 15%.
Table 2: Baseline calibration of the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Calibration Target</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intratemporal elasticity of subst.</td>
<td>γ</td>
<td>7.51</td>
<td>SS Markup 20.0%</td>
</tr>
<tr>
<td>Coefficient of rel. risk aversion</td>
<td>σ</td>
<td>3</td>
<td>Intertemp. elasticity of subst. 1/3</td>
</tr>
<tr>
<td>Weight on leisure</td>
<td>µ</td>
<td>0.65</td>
<td>Frisch Elasticity 1/2</td>
</tr>
<tr>
<td>Fixed costs</td>
<td>φ</td>
<td>0.019</td>
<td>Profit share 5.5%</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.96</td>
<td>SS interest rate 4%</td>
</tr>
<tr>
<td>Total # visits to the bank</td>
<td>n</td>
<td>14</td>
<td>Average velocity 1.87</td>
</tr>
<tr>
<td>Autocorrelation of money shock</td>
<td>ρₘ</td>
<td>0.34⁴</td>
<td>Quarterly autocorrelation 0.34</td>
</tr>
<tr>
<td>Wage stickiness</td>
<td>ξⁿ</td>
<td>3</td>
<td>Time until 50% of all shops adjust 1.14 Q.</td>
</tr>
</tbody>
</table>

Concerning the length of one period, I follow Alvarez et al. (2009) and use one year.²¹ The latter authors refer to Vissing-Jorgensen (2003), who shows that around 1/2 to 1/3 of households trade in asset markets in a given year, which would correspond to even longer periods of 2-3 years. Christiano et al. (1996) find that households’ assets do not change significantly for one year after a monetary policy shock, such that the choice of one year seems appropriate. The discount factor is therefore set to 0.96, implying an annual steady-state interest rate of four percent. The parameter \(n \) determines how often the bank is visited by different agents in one period, and governs therefore velocity. Choosing \(n = 14 \) implies, according to equation (12), a steady-state velocity of 1.87, corresponding to the mean over the empirical sample. The money growth rate after a monetary policy shock is estimated in the VAR model of section 3 to be 0.34 in quarterly terms, implying an annual value for \(ρₘ \) of 0.34⁴ since the model does not allow for intra-period injections.²²

Concerning the degree of wage stickiness, a large body of literature employs a Calvo-lottery scheme for generating a slow adjustment of wages. The values used for the corresponding Calvo parameter range from the estimates of 0.64 in Christiano et al. (2005) and 0.72 in Altig et al. (2005) to the value of 0.75 in Erceg et al. (2000). I convert them to pre-set wages along the following thought. During the time of pre-set wages, firms cannot adjust at all, while afterwards firms are free to adjust fully. I therefore set the length of the pre-set wage period such that it corresponds to the time when half of the price setters can adjust after a shock in a Calvo-style model. With a Calvo parameter of 0.7, this period is around one quarter.²³ I will therefore consider a small friction of nominal wages being pre-set for slightly below one quarter. With \(n = 14 \) this implies \(ξⁿ = 3 \), i.e., the first four shops in the period cannot change their nominal wage after a monetary injection. Furthermore, I will use \(ξⁿ = 4 \) as a robustness check, such that wages are pre-set slightly above one quarter, as well as \(ξ⁰ = 3 \) for a further investigation of the model’s mechanics.

²⁰Again, see the appendix for data and their sources.
²¹Alvarez et al. (2009) use values between 11 and 38 for their variable \(N \), assuming that each month a fraction \(1/N \) of households are active in the asset market. In the present model, each household participates in the asset market in every period. This implies that one period has a length of \(N \) months.
²²The responses do not change if alternatively each agent receives a monetary injection of 0.34 times the injection that was received by the agent who visited the bank last. Only dispersions increase somewhat. However, notation would become more cumbersome with intra-period money injections.
²³Letting \(ξᶜ \) denote the quarterly Calvo parameter, a fraction of \(1 − ξᶜ \) adjust in the period of the shock. One quarter later, this fraction reaches \((1 − ξᶜ)(1 + ξᶜ) \), which is 1/2 for \(ξᶜ = 0.707 \)
Figure 3: Effects of different wage rigidities. Theoretical responses to an unanticipated expansionary monetary policy shock at $t=0$. Black solid lines: nominal wages set in advance for three shops. Red dashed-dotted lines: nominal wages set in advance for four shops. Blue dashed lines: real wages set in advance for three shops. Notes: Horizontal axis denotes quarters, vertical axis shows log deviations from steady state.

4.2 Impulse-response functions

Figure 3 shows the theoretical responses to an unanticipated, positive shock to the total money supply of 0.5%, corresponding to the observed change in the first period of the money stock after an expansionary shock in section 3. As described in the previous section, I consider several cases for the labor market frictions. The baseline calibration with $\xi^n=3$ (wages pre-set for 0.86 quarters) is plotted with the solid black line. A longer duration of $\xi^n=4$ (wages pre-set for 1.14 quarters) is depicted by the red dashed-dotted line. The resulting impulse-responses functions are quite similar. In order to isolate the effect of asset market segmentation I also explore the case of pre-set real wages, as discussed in section 2. The corresponding impulse-response functions for $\xi^r=3$ are plotted with blue dashed lines in the same figure. While pre-set nominal wages create another channel through which monetary policy can affect labor supply, this is not the case for pre-set real wages. The latter friction alone does not create monetary non-neutrality. Combined with the sequential structure of the model, however, a significant inflation-output trade-off is created.

After the increase in the money stock, a dispersion of money holding arises, which gives rise to a falling markup, as discussed in section 2. A lower markup prevents prices to move one-for-one with the money stock, thereby increasing demand. This reaction in sales increases profits, despite the falling markup. Real wages increase by a small amount. Agents who did not receive the injection increase their labor supply because of a negative wealth effect stemming from higher nominal prices, adding to the positive output response. The increased money supply depresses interest rates because agents currently at the bank have to be induced to hold more money, creating a liquidity effect. In the model, output equals consumption. Lacking direct data on the markup, this variable cannot be compared to empirical observations.
Comparing figures 2 and 3 shows that the model with small labor market frictions performs quite well in replicating the empirical responses. Output, inflation, profits, and hours increase by around the same amount as found in the data. Also velocity rises by an empirical plausible value, without the initial fall. An exception is the real wage, which responds much too little in the model compared with the point estimate in section 3. However, the estimated confidence intervals are very wide and include the theoretical response. Also the interest rate falls less then the corresponding reaction in the data. Unit labor costs (not shown in order to save space) react stronger than wages because of the fixed costs. They are therefore more in line with the empirical estimates than wages. Considering the stylized structure of the model without capital and further features that would add additional dynamics, the proximity of most responses to their empirical counterparts is quite satisfying. Note that the model is able to deliver quantitative satisfying results without resorting to high markups and/or a high labor supply elasticity, which Christiano et al. (1997) report as crucial for the empirical success of a basic limited participation model.

Figure 4 plots the standard deviations of selected variables over the agents in the model after the same shock as in the previous exercise. Again, the black line stands for $\xi^n = 3$, the red dashed-dotted line for $\xi^n = 4$, and the blue dashed one for $\xi^r = 3$. As mentioned before, the increased dispersion of money holdings, i.e., money withdrawn from the bank for shopping trips, is important in generating the fall in the markup. But since firms are visited sequentially, also the markup and output are dispersed over firms, leading to quite large differences in the reaction of profits. While the real wage develops similar for all workers, hours worked differ to a larger extent. The prediction of an increase in the dispersion of prices after a monetary shock if empirically supported by Balke and Wynne (2007).

4.3 Sensitivity analysis

As discussed in the calibration section, the estimates for the intertemporal elasticity of substitution (IES) and the Frisch elasticity of labor supply are estimated within broad ranges in the empirical literature. I therefore calculate the impulse-response functions for four different parameter constellations in figure 5. The black lines reproduce the baseline calibration ($\sigma = 3, \mu = 0.65$, i.e., IES=3, Frisch elasticity=1/2), while the red dashed-dotted lines depict the case of $\sigma = 3$ and $\mu = 0.38$, correspond-
Figure 5: Effects of different elasticities. Theoretical responses to an unanticipated expansionary monetary policy shock at \(t=0 \). Black solid lines: baseline calibration. Red dashed-dotted lines: Frisch elasticity=1/3. Blue dashed lines: \(\sigma=5 \). Green dashed-dotted lines: \(\sigma=2 \). Notes: Horizontal axis denotes quarters, vertical axis shows log deviations from steady state.

I also explore the alternative distribution mechanism for the monetary injection described in section 2. Keeping the staggered bank visits of the agents but assuming that all agents benefit from central bank actions, i.e., the central bank transfers equal amounts of money on all accounts in the economy \(S_{i,t} = S_t/n \forall i \), generates the impulse-response function in figure 6. I consider the same parameter variations as in figure 5. Slightly hump-shaped responses for output, hours, and profits emerge, in line with the empirical evidence. Furthermore, velocity now falls on impact and then rises, also a feature of the empirical impulse-response function in figure 3. On the other hand, most variables react less than before. This is due to the reduced wealth effect. Since agents, who did not benefit from a monetary injection, know that a part of the monetary injection has been transferred to their accounts, they expand labor supply less than in the baseline case. This is also visible in the response of hours worked.

4.4 Business-cycle statistics

As an additional check concerning the empirical performance of the model, I compute its predictions for several business-cycle statistics and compare them to the corresponding empirical moments in table 1. The left column reports the second moments generated from time series, which would have been observed if only monetary shocks had occurred, see section 3.3. In order to compare the model with the data, I simulate the model 1000 times for the baseline case with \(\xi_n = 3 \) for 117 periods, corresponding to the length of the empirical sample, with an additional initial 117 burn-in periods that are then cut off. The resulting series are HP-filtered with a smoothing parameter of 100, as the data in
Figure 6: Theoretical responses to an unanticipated expansionary monetary policy shock at $t=0$ with $S_{i,t} = S_t / n \forall i$. For description of different line colors see figure 5. Notes: Horizontal axis denotes quarters, vertical axis shows log deviations from steady state.

Section 3.3. Averages over the repetitions for the baseline calibration are reported in the right column of table 1. I set the standard deviation of monetary shocks in the model such that the standard deviation of the exogenous growth rate of the money stock is the same in the data and in the simulated model, yielding a standard deviation of the percentage innovation to the money stock of 0.676. The table shows that the model does well in some dimensions to explain business cycle fluctuations. Concerning the volatilities of output, inflation, and hours, the model is very close to the empirical counterparts. The biggest failing is the underprediction of the volatility of the real wage. The standard deviations of profits, the interest rate, and velocity are also underpredicted, but to a lesser extent.

5 Conclusion

Considering the slow spreading of newly injected money and its effects on price setting and labor supply in a model of segmented asset markets can replicate several empirical observations: 1) a short-term inflation-output trade-off after a monetary injection, 2) quantitatively empirical plausible impulse-response functions for output, inflation, hours worked, profits, and velocity after monetary injections, 3) a liquidity effect, 4) a countercyclical markup at the firm level after monetary shocks, and 5) procyclical wages. Without labor market frictions, the impulse-response functions for most variables are qualitatively in line with the evidence. The model generates a microfounded, internal propagation mechanism which does not rely on capital or sticky prices, but on the slow spreading of newly inserted money. This can be seen as a way of describing the effects of central bank actions, where only parts of the population benefit through first-round effects, while others are affected indirectly and later.
As stated, after monetary shocks the optimal markup falls. Strategic complementarity is important in this model. Each firm wants to maintain a higher markup, but would suffer too large a drop in sales if it raised prices first, because customers substitute away to other firms. As other firms slowly adjust their prices, each firm can raise its price only gradually, thereby limiting price increases of competitors and so on. This effect arises due to the sequential structure of the model. In discrete-time models with symmetry assumptions on firms, this process of reacting to other firms’ price adjustments is done instantaneously. Price setters calculate their own optimal price knowing that all firms are alike. Hence, other firms’ price increases are completely anticipated before setting their own price, and the new steady state is reached instantaneously. In the present model, firms do not increase prices relying on the belief that all other firms will adjust at the same time. Instead, the probability of being the only firm changing prices in a particular moment in time is one. Only if all firms adjust at the same time will customers not have the possibility of substituting to a cheaper competitor, who did not yet adjust. These insights into the role of coordination devices could be used to, e.g., study the mechanisms present during the introduction of the Euro. Moreover, interesting welfare conclusions emerge, since the central bank faces a trade-off between stabilizing policy and a considerable increase in the consumption dispersion.
References

A Impulse-response functions for the basic setup

In order to demonstrate the basic mechanism of the model, figure A-1 shows the impulse-response functions after an unanticipated monetary policy shock of 0.5% to the money supply at $t=0$ for the simplest case, namely $n=2$, flexible wages, and $\rho_M=0$. The remaining values are as in table 2. The figure compares the baseline calibration of an intertemporal elasticity of substitution $(1/\sigma)$ of $1/3$ and a Frisch elasticity of $1/2$ (black solid lines) with the same variations as in section 4.3. In particular, the cases of a Frisch elasticity of $1/3$ (red dashed-dotted lines), $\sigma = 5$ (blue dashed lines), and $\sigma = 2$ (green dashed-dotted lines) with a Frisch elasticity of $1/2$ are considered. The results are similar. Except for profits, the model does qualitatively well in reproducing the empirical impulse-response functions of section 3. As in the empirical counterpart, velocity falls on impact. However, it fails to rise above zero in subsequent periods. While the responses of the basic model are somewhat weak, a combination with small nominal or real frictions delivers results that are also quantitatively in line with empirical evidence. To this end, plausible values for nominal or real wage rigidities are employed in section 4.

![Figure A-1: Theoretical responses to an unanticipated expansionary monetary policy shock at $t=0$ under flexible wages for $n=2$. Black solid lines: $\sigma=3$, Frisch elasticity=$1/2$ (baseline calibration). Red dashed-dotted lines: Frisch elasticity=$1/3$. Blue dashed lines: $\sigma=5$. Green dashed-dotted lines: $\sigma=2$. Notes: Horizontal axis denotes quarters, vertical axis shows log deviations from steady state.](image)

The workings of model, explained in more detail in section 4, are repeated here for convenience. After the increase in the money stock, the distribution of money holdings is changed, which gives rise to a falling markup. A lower markup prevents prices to move one-for-one with the money stock, thereby increasing demand. In the basic case here, however, profits fall due to a larger increase in the real wage. They rise after a monetary injection for higher n or sticky wages. The agent who did not receive the injection increases her labor supply because of a negative wealth effect stemming from higher nominal prices, adding to the positive output response. These mechanisms generate a short-term inflation-output trade-off. Over time, more and more agents benefit from the initial injection via higher wages, leading to long-lasting responses. The increased money supply depresses interest rates because agents currently at the bank have to be induced to hold more money, creating a liquidity effect.
B Data sources

Data for section 3 are taken from the OECD Economic Outlook 84 in OECD (2008), OECD.Stat in OECD (2009), and the Bureau of Labor Statistics. All data are for the United States, the time period is as indicated in the main text with four additional quarters for the four lags of the VAR.

From OECDStat: ‘Narrow Money (M1) Index 2005=100, SA’ and ‘Immediate interest rates, Call Money, Interbank Rate, Per cent per annum’ (quarterly, i.e., mean of last month in quarter).

From the Bureau of Economic Analysis: ‘Profits before tax (without IVA and CCAdj) (nonfinancial corporate business); Seasonally adjusted at annual rates’ from NIPA Table 1.14. divided by ‘Consumer Price Index’.