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Portfolio Selection with Time Constraints and a Rational 

Explanation of Insufficient Diversification and Excessive 

Trading 

 

Armin Dolzer and Bernhard Nietert ∗ 

 

Abstract 

Private investors have limited time available for learning about stocks as they need to divide 

their time between stock analysis and work. This paper analyzes the influence of learning con-

straints in the form of time constraints on portfolio selection and derives both optimal portfo-

lio holdings and time allocation. 

Under time constraints, rational private investors make portfolio choices similar to those of 

investors with bounded rationality, i.e., insufficient diversification and excessive trading. 

Thus, time constraints offer an alternative, fully rational explanation for these real-world in-

vestment phenomena, which have to date been interpreted primarily in the light of behavioral 

finance. 
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Portfolio Selection with Time Constraints and a Rational 

Explanation of Insufficient Diversification and Excessive 

Trading 

1. Preliminaries 

1.1. Introduction to the problem 

The Internet and financial news on television equip private investors, at no charge, with an 

abundance of data concerning stocks, including historical stock quotes, companies’ funda-

mental data, and analysts’ reports. Moreover, transaction costs for trading are low. Therefore, 

it comes as no surprise that Goetzmann/Kumar’s (2004) empirical study finds that transaction 

costs, as well as data acquisition costs, do not significantly limit portfolio selection. 

However, data cannot be used for decision making; information is required, i.e., messages that 

are relevant to decision making.1 Thus, data must be transformed into information so that pri-

vate investors can use a posteriori instead of a priori distributions of stock prices. This transi-

tion from a priori to a posteriori distributions constitutes a learning process and, obviously, 

learning takes time. Time is a scarce resource and its scarcity is seen as one of the major prob-

lems in decision making (see, e.g., Juster/Stafford, 1991; Mankins, 2004). Hence, limited time 

means learning constraints for decision makers and the question arises as to how the time that 

is available should be allocated between learning about stocks via stock analysis and other ac-

tivities such as work. 

Starting from this description of the problem, the objectives of our paper are twofold. First, 

we aim to determine the optimal solution to the portfolio selection and time allocation prob-

lems. Second, we want to demonstrate that normative portfolio selection with time constraints 

                                                           
1 This understanding of information combines Mag’s (1977, p. 4) definition of information with the distinction 

between information and knowledge in Kuhlen (1995, p. 38). 
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can be applied to explain two real-world investment phenomena, namely, insufficient diversi-

fication and excessive trading. To date, these investment phenomena have been interpreted 

primarily in the light of behavioral finance. 

To achieve these two objectives, we consider a learning process where a private investor can 

influence the a priori distribution of stock prices by investing time in stock analysis. The al-

ternative use of time (i.e., instead of learning about stock prices) involves working longer 

hours than contractually required so as to earn bonus payments. 

Based on this framework, the following results are obtained. Time constraints introduce in-

vestor-specific components into the structure of optimal portfolio holdings. Moreover, time 

constraints make it optimal for decision makers to neither analyze one stock completely nor to 

invest an equal amount of time in the analysis of each stock. Therefore, decision makers have 

different information on different stocks at different points of calendar time even though the 

amount of publicly available data has not changed. Consequently, as it is reasonable to adapt 

the portfolio strategy to this unequal level of information, insufficient diversification and fre-

quent portfolio restructuring can be seen as rational behavior. 

To better illustrate the contributions of our paper, we contrast it with the literature. Our pa-

per’s normative portfolio model with time constraints distinguishes itself from the literature 

on learning constraints (van Nieuwerburgh/Veldkamp, 2005; Peng, 2005) in three major as-

pects. First, this literature constrains learning by use of an entropy constraint following Sims 

(2003); we use time constraints instead. Since entropy constraints are often justified based on 

limited computer capacity and computer capacity might be increased via investment in IT 

technology, entropy constraints can be approximated via wealth constraints. However, deci-

sion makers can do little to increase limited time (see, e.g., Mintzberg, 1973, p. 173) and thus 

time constraints remain a problem even if decision makers are not confronted with strictly 

binding budget constraints. Second, van Nieuwerburgh/Veldkamp (2005) and Peng (2005) 
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work with model-exogenous learning constraints whereas our model employs endogenous 

learning constraints: Time must be optimally divided between either stock analysis or extra 

work that will earn bonus payments, thus making the time budget for stock analysis endoge-

nous. Third, van Nieuwerburgh/Veldkamp (2005) and Peng (2005) deal only with insufficient 

diversification, but neglect excessive trading; we look at both. 

Our paper’s normative portfolio model is also different from Ahn/Kim/Yoon’s (2006) portfo-

lio selection with time constraints. They use a model-exogenous time constraint to penalize 

holdings of the risky asset, similar to transaction costs, and thereby explain investors’ limited 

participation in the stock market. However, their time constraint is not designed to cope with 

the influence of time constraints on investors’ learning. In particular, Ahn/Kim/Yoon (2006) 

neither derive the optimal time allocation between several stocks nor do they analyze the in-

teractions between portfolio selection and time allocation. 

Finally, our paper’s application aspect, the use of normative portfolio selection with time con-

straints to explain the real-world phenomena of insufficient diversification and excessive trad-

ing, distinguishes it from that part of behavioral finance literature that deals with portfolio se-

lection (see, e.g., Barberis/Thaler, 2003). As opposed to behavioral finance, which uses rela-

tively frictionless markets and bounded rational investors to explain insufficient diversifi-

cation and excessive trading, this paper employs learning constraints in the form of time con-

straints and fully rational investors. 

The paper is organized as follows. The remainder of Section 1 outlines the model setup. In 

Section 2, the optimal solution to portfolio selection and time allocation is derived. Section 3 

applies the normative model of Section 2 to insufficient diversification and excessive trading. 

The paper ends with a conclusion (Section 4) and a formal appendix. 
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1.2. Model setup 

Two forces drive the selection of our model setup. First, time constraints must be adequately 

portrayed; second, explicit solutions for investment decisions should be obtainable to enable 

economic interpretations. 

An adequate representation of time constraints calls for a discrete-time model. In a continu-

ous-time model such as Peng (2005), a time constraint cannot be integrated since the learning 

process must be instantaneous by definition. A lower speed of learning can be captured only 

with discrete-time models. Unfortunately, discrete-time models often cannot be solved in ex-

plicit form (e.g., Breeden, 2004), so in this respect continuous-time models are preferable be-

cause they yield an easy-to-handle µ-σ-calculus. To deal with these conflicting requirements, 

we chose a compromise framework that is outlined by the following assumptions. 

Assumption 1: Objective function of the decision maker 

Our decision maker is a private investor who does not work as a professional portfolio man-

ager. Otherwise, decisions about how much time to spend on work as opposed to investment 

analysis would not be relevant. The private investor has exponential utility and maximizes ex-

pected utility over terminal wealth. His objective function reads: 







 ⋅

α
− ⋅α− TWe

1
Emax  (1) 

where α denotes the private investor’s absolute risk aversion, E{} the unconditional expecta-

tion operator, and WT is terminal wealth at planning horizon T. 

Assumption 2: Investment opportunity set 

The private investor can choose between n risky stocks and one riskless asset. Stocks are not 

subject to short selling constraints, and their prices are jointly normally distributed. The risk-

less rate is constant through time, identical for borrowing and lending, and the term structure 

is assumed to be flat. 
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In addition to stochastic income from capital investments, the private investor receives deter-

ministic income from employment. This income consists of two parts: contractual income 

from employment and income from bonus payments. The contractual income from employ-

ment is independent of additional working hours and by definition fixed. Bonus payments 

equal zero if no additional hours are spent working, but are some positive amount when extra 

hours are worked. Bonus payments can reach a maximum since companies do not usually of-

fer indefinitely high bonus payments. Bonus payments are a concave function of additional 

working hours due to assumed decreasing marginal labor productivity. 

Finally, to simplify notation, we assume that the length of the time interval during which the 

private investor cannot rebalance his portfolio holdings is the same as the time interval that is 

the basis for the determination of bonus payments. For example, if private investors receive 

monthly bonus payments, they rebalance portfolios on a monthly basis as well. 

Assumption 3: Learning process 

It is assumed that all investors have the same free access to data such as historical stock 

quotes, companies’ fundamental data, and analysts’ reports and that no investor is privy to in-

sider information. 

Historical stock quotes allow deriving a priori distributions of stock prices. Stock quotes, 

companies’ fundamental data, and analysts’ reports can be regarded as signals from which in-

vestors derive a posteriori distributions. If a posteriori distributions are more informative than 

a priori distributions, information is different from data; otherwise, data and information are 

equal. The transition from a priori to a posteriori distributions constitutes the learning process 

by which private investors can influence how much the a posteriori distribution is more in-

formative than the a priori distribution by investing time. Note that investment in the riskless 

asset does not require learning. 
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More formally, the learning process develops as follows. It is assumed that signals and stock 

prices are jointly normally distributed. This means that the a posteriori distribution is normally 

distributed and can be characterized completely via the vector of conditional means and the 

conditional variance/covariance matrix. Furthermore, both the conditional mean { }SPTE  and 

the conditional variance/covariance matrix 
SPT

C  are functions of correlation coefficients be-

tween the random variables signals and stock prices (see, e.g., Mardia/Kent/Bibby, 1992, p. 

63) 

{ } { } { }( )SSCCOVPSP EEE 1
SSPTT T

−+= −  (2) 

SP
1

SSPPSP TTTT
VCOCCOVCC ′−= −  (3) 

where S  denotes the m × 1 vector of signals, { }SE  the m × 1 vector of unconditional expected 

values of signals, { }TE P  the n × 1 vector of unconditional expected values of stock prices at 

calendar time T, and SPT
COV  is the n × m unconditional covariance matrix between stock 

prices at calendar time T and signals. SC  is the m × m unconditional variance/covariance ma-

trix of signals, 
TPC  the n × n unconditional variance/covariance matrix of stock prices at cal-

endar time T. 

Therefore, in our model, learning means that the private investor improves the correlation co-

efficient between signals and stock prices via time investment t and it holds )(SPT
tCOV  in-

stead of SPT
COV  as in Equations (2) and (3). If no time is invested, correlation coefficients be-

tween signals and stock prices equal zero and a priori and a posteriori distributions coincide. 

The more time the private investor invests in stock analysis, the closer the absolute values of 

correlation coefficients converge toward 1 and the more informative a posteriori distributions 

of stock prices become. This increase in absolute values of the correlation coefficients is con-

cave in the time invested because it seems reasonable to assume that learning exhibits de-
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creasing marginal productivity. Keep in mind that once the a posteriori distribution has been 

derived from stock analysis, this knowledge can be applied to any numbers of stocks bought 

and sold. For example, to obtain information on 10 pieces of stock i, the same amount of time 

must be invested as for obtaining information on one piece of stock i. 

Finally, it is assumed that the private investor is “small” in the sense that his transactions do 

not influence stock prices. Therefore, stock prices do not reflect the information via learning 

gleaned by the private investor. 

Assumption 4: Time constraint 

The private investor must meet his physiological needs and work the contractually required 

number of hours. He wants to spend any additional time available either working more hours 

so as to earn a bonus and/or learning about stocks. In summary, although the private investor 

is rational, he is subject to learning constraints in the form of the following time constraint: 

θ
= =

θθ +=∑∑ ,h

m

1j

n

1i
,S,i ttT

j
 (4) 

where θT  denotes the time available for stock analysis and acquiring bonus payments at calen-

dar time θ ∈ {current calendar time τ, τ + 1, …, T – 1, planning horizon T), θ,S,i j
t  the time in-

vested in the analysis of signal Sj (out of m signals) for stock i (out of n stocks) at calendar 

time θ, and th,θ is the time invested in acquiring bonus payments via working longer than con-

tractually required at calendar time θ. 

Two things must be kept in mind when considering Equation (4). First, θT  is the time avail-

able after time for physiological needs (e.g., eating, sleeping, etc.) and contractual working 

hours are deducted from total time available. Total time available equals the length of the time 

interval in our model as outlined in Assumption 2. Second, θT  is investor-specific; e.g., a pri-

vate investor contractually required to work eight hours per day will have less time for stock 
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analysis and fewer hours available in which to earn bonus payments than a private investor 

who is contractually required to work only six hours per day. 

2. Portfolio selection and time allocation 

To analyze optimal portfolio selection and time allocation, we proceed in two steps. First, we 

develop the general portfolio and time allocation model. Second, we discuss special cases to 

illustrate optimal portfolio and time allocation since the general portfolio and time allocation 

model does not have closed-form solutions. 

2.1. General portfolio selection and time allocation 

Intuitively, the process of portfolio and time allocation evolves as follows. At current calendar 

time τ the private investor chooses, first, the time to be invested in the analysis of each stock. 

Then he observes a realization of each signal. Second, based on the realization of each signal, 

he selects his portfolio of stocks. At calendar time τ + 1, he obtains wealth as a consequence 

of his portfolio decision at calendar time τ. Using wealth at calendar time τ + 1 as the starting 

point, the process of portfolio selection with time constraints starts anew – the private investor 

determines his time allocation based on the wealth level at calendar time τ + 1, observes new 

signals at calendar time τ + 1, and may even be able to use the signals observed at calendar 

time τ in the form of intertemporal learning. In accordance with the signals observed at calen-

dar times τ and τ + 1 and the wealth level achieved at calendar time τ + 1, he selects his port-

folio holdings. This process is repeated every calendar time θ until calendar time T – 1. 

To implement this process, the private investor uses backward induction. He first derives port-

folio holdings at calendar time T – 1 for every possible realization of wealth at calendar time 

T – 1 and every possible realization of signals between calendar times τ and T – 1. Based on 

this optimal conditional portfolio selection, the private investor next determines the optimal 

time allocation at calendar time T – 1. Using optimal conditional portfolio selection and time 
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allocation at calendar time T – 1, he calculates optimal portfolio selection at calendar time T – 

2 for every possible realization of signals between calendar times τ and T – 2. These portfolio 

holdings are the starting point for determining the optimal time allocation at calendar time T – 

2. This process is repeated until calendar time τ. Formally, the decision problem reads as fol-

lows: 

44444444444444444 344444444444444444 21

444444444444444 3444444444444444 21

L

44444444444 344444444444 21

4444444 34444444 21

L

τ   timeatproblemouter

τ   timeatprobleminner

1T   timeatproblemouter

1T2T,

1T   timeatprobleminner

1T2T,1T
W W,W,,e

1
EMaxEMaxEMaxEMax T

1T1T



















































































 ⋅

α
− τ

−

−−τ

−

−−τ−
⋅α−

−−ττ

SSSS
NtNt

 (5) 

s.t.: θ
= =

θθ +=∑∑ ,h

m

1j

n

1i
,S,i ttT

j
 for all θ ∈ {τ, τ + 1, …., T – 1} 

 0t ,S,i j
≥θ  for all { }n,...,1i ∈  and { }m,...,1j ∈  

  for all θ ∈ {τ, τ + 1, …., T – 1} 

 θθ ≤≤ ,h,h Tt0  for all θ ∈ {τ, τ + 1, …., T – 1} 

with: =+θ 1W  ( )( ) ( )θθ+θθ +⋅+−′ ,h1 thr1 PPN ( )r1W +⋅+ θ  

where Nθ denotes the n × 1 vector of numbers of stocks bought or sold at calendar time θ, Wθ 

wealth at calendar time θ, ` transposition of vectors or matrices, Pθ+1 the n × 1 vector of stock 

prices at calendar time θ + 1, r the riskless rate, h(th,θ) deterministic bonus payments at calen-

dar time θ + 1 as a function of additional working hours at calendar time θ, and θ,hT  is the 

time investment at calendar time θ that leads to maximum bonus payments. ST-1 is the m × 1 

vector of signals for all stocks at calendar time T – 1, Sτ,T-2 stands for signals for all stocks and 

at all calendar times between τ and T – 2 (encompasses intertemporal learning), and tθ is the 

vector of time invested in the analysis of all signals for all stocks at calendar time θ. 
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In the general model, time constraints are subject to an assumption concerning stock price 

movements during the process of stock analysis. Since learning does not happen instantane-

ously but, by definition, takes time, stock prices will change between the beginning and end of 

the stock analysis period, i.e., during the learning process. Additionally, a new stock price 

might contain new information, meaning that the learning process must begin anew, meaning 

that more time will pass, during which, possibly, the stock will change price again, containing 

yet more new information etc. To avoid this circular path, we assume, in our model, that stock 

analysis happens outside of trading hours. This assumption solves the circular-path problem 

because stock prices will no longer change during the process of stock analysis. We believe 

this to be a reasonable assumption since private investors will usually be at their regular em-

ployment during stock trading hours. 

The solution to decision problem (5) is as follows. The optimal portfolio holdings at calendar 

time T – 1 stem from the solution to the inner problem at calendar time T – 1: 

( )1T1T2T,1T W,, −−−τ− SSN . Therefore, portfolio holdings at calendar time T – 1 are conditional on 

1TW − , Sτ,T-2, and ST-1, as well as on the time invested in stock analysis at all calendar times be-

tween τ and T – 1. Therefore, the dependence of ( )1T1T2T,1T W,, −−−τ− SSN  on Sτ,T-2 indicates in-

tertemporal learning. The optimal time investment in stock analysis at calendar time T – 1 can 

be derived from the solution to the outer problem at calendar time T – 1: ( )1T2T,1T W, −−τ− St . 

This makes the optimal time investment at calendar time T – 1 conditional on WT-1 and Sτ,T-2 

and, as such, conditional on the time invested at all calendar times between τ and T – 2. The 

solution to the inner problem at calendar time T – 2 yields optimal portfolio holdings at cal-

endar time T – 2: ( )2T2T3T,2T W,, −−−τ− SSN  that are conditional on both Sτ,T-2 and the time in-

vested at each calendar time between τ and T – 2. Finally, the optimal time investment at cal-

endar time T – 2 (tT-2) stems from the solution to the outer problem at calendar time T – 2. 
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This process of determining optimal portfolio holdings and time allocations is repeated until 

calendar time τ. 

Obviously, decision problem (5) is impossible to solve in its general form.2 On the one hand, 

the optimal time investment cannot be derived in explicit form since learning is nonlinear due 

to decreasing marginal productivity (see Assumption 3). On the other hand, conditional ex-

pectations contain optimal portfolio holdings and time investments and, as such, are highly 

nonlinear functions of the random variables stock prices and signals. Therefore, the repeated 

calculation of conditional expectations for calendar times T, T – 1, T – 2,…, τ is beyond an 

explicit solution. 

Consequently, we analyze intertemporal learning in more detail instead of deriving the formal 

characteristics of optimal portfolio holdings and time allocations in the general case. The 

forms of intertemporal learning are: 

1. The correlation between Pθ+2 and Sτ,θ allows the private investor to exert direct influence 

on ( )θθτ+θ
tρ

,2SP
 via time investment, i.e., the a posteriori distribution of Pθ+2 can be improved 

through signals that have occurred at least two periods earlier. This form of learning, however, 

stresses the time constraint at calendar time θ. 

2. The private investor may learn about correlation coefficients between signals and stock 

prices in the form of ( )θ−θ +
θ+θ

ttρ 1SP 1
. This means that the private investor does not completely 

forget what he learned in previous periods about the connection between stock prices and sig-

nals and thus learning becomes easier at later calendar times, here termed “intertemporal in-

formational synergies.” 

3. A correlation between signals Sτ,θ and Sθ+1 makes the a posteriori distribution of Pθ+2 more 

informative than its a priori distribution. 

                                                           
2 Appendix 2 contains some calculations to illustrate the solutions to the special case of a two-period problem. 
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4. A correlation between Pθ+1 und Pθ+2 also improves the a posterior distribution of Pθ+2. 

The second, third, and fourth forms of learning do not stress time constraints at calendar time 

θ. 

The fact that information about individual stocks can change due to intertemporal learning, 

even though the amount of data has not necessarily changed, has an interesting consequence 

for portfolio selection. The private investor must update his portfolio via trading to take ad-

vantage of the new information. 

2.2. Special cases of portfolio selection and time allocation 

Since decision problem (5) cannot be solved in explicit form, it is difficult to gain an adequate 

understanding of optimal portfolio holdings and time allocations with time constraints. Thus 

we next consider special cases that bring us closer to or even achieve explicit solutions of the 

optimal portfolio and time allocation problem. 

2.2.1. First special case: Portfolio selection and time allocation in the last period 

In the first special case it is assumed that the private investor has reached calendar time τ = T 

– 1 so that he is just one period prior to his planning horizon T. This means that general deci-

sion problem (5) simplifies to:3 

444444 3444444 21

4444 34444 21

1Tat    problemouter

1Tat    probleminner

1T

WT

1T1T

e
1

EMaxEMax

−

−

−
⋅α−

























 ⋅

α
−

−−

S
Nt

 (6) 

s.t.: 1T,h

m

1j

n

1i
1T,S,i1T ttT

j −
= =

−− +=∑∑  

 0t 1T,S,i j
≥−  for all { }n,...,1i ∈  and { }m,...,1j ∈  

                                                           
3 Note that this special case is not identical to focusing on the period between T – 1 and T of decision problem 

(5). In the latter case, optimal portfolio holdings and time allocations at calendar time T – 1 are conditional on 
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 1T,h1T,h Tt0 −− ≤≤  

with: ( )( ) ( ) ( )1T,h1T1TT1TT thr1Wr1W −−−− ++⋅+⋅+−′= PPN  

Optimal portfolio holdings follow from the solution to the inner problem, which solution can 

be found by solving the following equivalent problem:4 

{ } ( )SS
N

TT Wvar
2

1
WEMax

1T

⋅α−
−

 (7) 

with: { } { } ( )( ) ( ) ( )1T,h1T1TT1TT thr1Wr1EWE −−−− ++⋅+⋅+−′= PSPNS  

 ( ) 1T1TSP1TT )(Wvar
T −−−′= NtCNS  

Relying on the definitions of conditional expectations (Equation (2)) and variance/covariances 

matrices (Equation (3)), the following optimal portfolio holdings are obtained as the solution 

to decision problem (7): 

=−1TN  [ ] { } ( )( )1TT

1

1TSP
1

S1TSPP r1E)()(
1

TTT −
−

−
−

− ⋅+−′−
α

PPtVCOCtCOVC  (8) 

 [ ] { }( )SSCtCOVtVCOCtCOVC E)()()(
1 1

S1TSP

1

1TSP
1

S1TSPP TTTT
−′−

α
+ −

−
−

−
−

−  

The portfolio holdings (8) consist of three components. First, a volume component 
α
1  that de-

termines the allocation of funds between risky and riskless assets. Second, a structural com-

ponent that allocates the risky invested funds to single stocks. This structural component itself 

consists of two parts. The first part (first line of Equation (8)), is the tradeoff between ex-

pected value and risk of each stock that can be influenced through learning )( 1TSPT −tCOV . The 

second part (second line of Equation (8)) is composed of a correction portfolio that adapts 

portfolio holdings to signal observations. Note that risk )( 1TSPT −tCOV  dependent on learning 

                                                                                                                                                                                     
the optimal portfolio and time allocation decisions at all calendar times prior to T – 1. In special case (6), the 
one-period decision is, by definition, unconditional on all calendar times prior to T – 1. 

4 Since signals occur only at calendar time T – 1, we henceforth drop the signals’ time index to simplify nota-
tion. 
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and the correction portfolio are exactly those components that distinguish the portfolio hold-

ings (8) from neoclassical optimal portfolio holdings in the hybrid model, i.e., 

=−1TN  { } ( )( )1TT
1

P r1E
1

T −
− ⋅+−

α
PPC  (9) 

The decomposition of portfolio holdings into an investor-dependent volume component and 

an investor-independent structural component is known as Tobin separation. Equation (8) 

shows that the Tobin separation breaks down in the event of time constraints. The structural 

component contains learning-dependent risk )( 1TSPT −tCOV  as a function of time invested in 

stock analysis. The time invested in stock analysis, however, is investor-specific because it 

depends on both the investor-specific speed of learning and the time constraint. 

Inserting the optimal portfolio holdings (8) into the inner decision problem (6) provides the 

foundation for calculating optimal time allocations. In other words, the outer problem of deci-

sion problem (6) reads (see Appendix A.1): 

( )1T,h1T

1T

th)r1(WeMin −−

−

⋅α−+⋅⋅α−

t

( ){ } ( ){ }1TT
1
TP1TT r1Er1E

2

1

e
−

−
− ⋅+−′⋅+−⋅−

⋅
PPCPP ( ))(det 1T

1
−

−⋅ tB  (10) 

s.t.: 1T,h

m

1j

n

1i
1T,S,i1T ttT

j −
= =

−− +=∑∑  

 0t 1T,S,i j
≥−  for all { }n,...,1i ∈  and { }m,...,1j ∈  

 1T,h1T,h Tt0 −− ≤≤  

with: ≡− )( 1TtB  Id  

 ( )( ) ( ) ( ) ( )[ ] ( ) ( )1
SS1TSP

1

1TSP
1

SS1TSPPP1TSP
1

SS choleskycholesky
TTTTTT

−
−

−
−

−
−−

− ′−′′+ ρtρtρρtρρtρρ  

where det(.) denotes the determinant of a matrix, Id denotes the m × m identity matrix, SSρ  the 

m × m matrix of correlation coefficients between signals, 
TTPPρ  the n × n matrix of correlation 

coefficients between stock prices at calendar time T, and ( )1TSPT −tρ  is the n × m matrix of cor-
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relation coefficients between stock prices at calendar time T and signals. Note the dependence 

of ( )1TSPT −tρ  on the time invested in stock analysis and, thus, the potential to improve stock 

analysis through investing time. 

The necessary condition of the time (
1T,S,i j

t − ) invested in stock i’s analysis through learning 

about its connection to signal Sj reads (interior solution): 

( )
( )

( ) 0
)(det

td

)(detd

2

1

td

thd

effect"  onaldistributi"

1T
1

1T,S,i

1T
1

effect"  income"

1T,S,i

1T,h j

j

=⋅+α−
−

−
−

−
−

−

−

444 3444 214434421
tB

tB

 (11) 

According to Equation (11), the optimum time allocation is determined in a two-step proce-

dure. Note that in actuality, both steps occur simultaneously and are separated here for illus-

trative purposes only. 

In the first step, it is determined how the time budget is divided between learning about stocks 

on the one hand, and working extra hours to earn bonus payments on the other hand. In the 

optimum, the negative impact of investing time in stock analysis on riskless bonus payments 

(“income effect”) must be exactly offset by its positive effect on stocks’ a posteriori distribu-

tions (“distributional effect”). The “income effect” stems from the fact that a higher time in-

vestment in stock analysis leads to a decrease in riskless bonus payments because time in-

vested in stock analysis cannot be used to earn bonus payments by working extra hours. Note, 

however, that both effects have different starting points. The “income effect” describes direct, 

the “distributional effect” indirect consequences of learning on the private investor’s objec-

tives. The indirect consequences stem from the fact that the “distributional effect” needs a 

transformation vehicle, namely, optimal portfolio holdings NT-1, to enter the private investor’s 

objectives. Furthermore, stock prices at calendar time T are random variables and a better a 

posteriori distribution is no guarantee that the private investor achieves higher utility ex post. 

Consequently, a private investor with a higher absolute risk aversion α invests more time in 
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stock analysis to improve correlation coefficients between signals and stock prices. The “dis-

tributional effect” is especially pronounced in the event of informational synergies. “Informa-

tional synergies” occur when information about several stocks can be obtained by analyzing 

just one stock. More formally, the time invested in analysis of signal Sj exerts influence on the 

correlation coefficients of stocks i and i + 1, e.g., ( )1T,jSP t
jT,i −ρ  and ( )1T,jSP t

jT,1i −+
ρ , compared to the 

absence of informational synergies where ( )1T,S,iSP jjT,i
t −ρ  and ( )1T,S,1iSP jjT,1i

t −++
ρ  holds. 

The second step involves dividing the time budget for stock analysis as a whole, determined in 

the first step, between individual stocks. 

2.2.2. Second special case: Portfolio selection and time allocation in the last period with 

specified learning and bonus payment functions 

To characterize the optimal time allocation further and, in particular, to examine the “distri-

butional effect” beyond the general statements made in Section 2.2.1, it is necessary to solve 

Equation (11). This task can be achieved only by particularizing the bonus payment and learn-

ing functions. 

In a first step, assume 













−⋅=⋅≡ ∑∑

= =
−−

−
−

−
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1i
1T,S,i1T
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1T,h
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T

W
t

T

W
)t(h , i.e., a linear bonus 

payment function. Then, Equation (11) simplifies to 
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( ) 0
)(det

td

)(detd

2
1

T

W

effect"  onaldistributi"

1T
1

1T,S,i

1t
1

effect"  income"

1T,h

max j =⋅+α
−

−
−

−
−

− 44 344 21321
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 (12) 

Equation (12) shows that both the optimal time investment in the acquisition of bonus pay-

ments and in the analysis of signal Sj of stock i is independent of 1TT − . Obviously, a private 

investor with a high time budget due to, e.g., a low number of contractual working hours, will 

choose an allocation of time between the acquisition of bonus payments and stock analysis 

that is identical to that chosen by a private investor with a low time budget. This is because a 
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linear bonus payment function means that the “income effect” is independent of 1T,ht − , and, 

thus, via the time constraint in problem (10), independent of 1TT − . This constant “income ef-

fect” is complemented by a “distributional effect” that depends by definition only on 
1T,S,i j

t − , 

not on 1TT − . 

In a second step, assume uncorrelated signals and uncorrelated stocks in addition to linear bo-

nus payment functions. Furthermore, specify a learning environment where one stock i has 

only one signal Si, there are no informational synergies, and learning in the form of stock 

analysis develops according to 

1T,S,i

1T,S,i
1T,S,iSP

i

i

iiT,i X

t
)t(

−

−
− =ρ  (13) 

where 1T,S,i i
X −  is the time that must be invested in analysis of signal Si of stock i so that the 

correlation coefficient between signal Si and stock i’s price equals 1. 

The higher 1T,S,i i
X −  is, the more data are available on stock i and the higher the time investment 

must be to reach a certain correlation coefficient between stock prices and signals compared to 

a lower 1T,S,i i
X − . Therefore, it is reasonable to set 1T,S,i i

X −  larger than 1TT −  because then correla-

tion coefficients between stock prices and signals cannot reach 1, i.e., stocks cannot be ana-

lyzed completely. Despite the dependence of 1T,S,i i
X −  on stock i, signal Si, and calendar time, 

1T,S,i i
X −  is independent of the individual private investor, for 1T,S,i i

X −  is related to data and the 

amount of data is identical for all investors according to Assumption 3. 

Individual aspects do affect learning however, according to (13), through the speed of learn-

ing. A private investor with a learning function according to Equation (13) takes 

1T,S,i
2

SP1T,S,i iiT,ii
Xt −− ⋅ρ=  to reach a certain correlation level 

iT,i SPρ ; a private investor with a learn-

ing function 
1T,S,i

1T,S,i
1T,S,iSP

i

i

iiT,i X

t
)t(

−

−
− =ρ  takes longer, namely, 1T,S,iSP1T,S,i iiT,ii

Xt −− ⋅ρ= . 
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Based on the learning function of Equation (13), the optimal time investment 1t,S,i i
t −  is (see 

Appendix A.1.4): 

max

1T,h
1T,S,i1t,S,i W

T

2

1
Xt

ii ⋅α
⋅−= −

−−  (14) 

Equation (14) provides several insights into optimal time allocations. First, the private inves-

tor does not analyze one stock completely. This is because he holds a portfolio of stocks and 

wants to learn something about each stock in the portfolio. This is especially true as there are 

no informational synergies in the sense that information about all stocks cannot be obtained by 

analyzing any one stock.5 

Second, the private investor does not spend an equal amount of time analyzing each stock. In-

stead, he invests more time analyzing those stocks for which more data are available (stocks 

with higher 1T,S,i i
X − ). Stocks for which less data are available (stocks with lower 1T,S,i i

X − ) do 

not need as high a time investment to achieve an adequate )t( 1T,S,iSP iiT,i −ρ  as do stocks for which 

more data are available. To get a feeling which types of stocks have a high and which have a 

low 1T,S,i i
X − , consider real-world stock analysis. Smallcap and midcap companies, which have 

great difficulty in attracting analyst coverage (see, e.g., Shearer, 2003, p. 2), create less data 

than large companies or exciting high-growth companies. Less data result in a smaller 1T,S,i i
X −  

for smallcap and midcap companies: 
1T,S,capeargl1T,S,capsmall capearglcapsmall

XX −− < . Moreover, complex sig-

nals like balance sheets are more difficult to analyze than simpler signals like order flow of a 

company; therefore, 1T,floworder,i1T,sheetbalance,i ii
XX −− > . Finally, the amount of data available about 

stocks can change over time. For example, in the fourth quarter of 2005, solar energy stocks 

received a great deal of coverage by analysts, which created a huge amount of data that had to 

                                                           
5 This type of learning behavior is in contrast to the one in van Nieuwerburgh/Veldkamp (2005) where inves-

tors choose to learn about one stock. The difference arises because in van Nieuwerburgh/Veldkamp (2005), 
stock prices have common factors that can be learned by analyzing any stock – what we call informational 
synergies – and, also, their investors cannot learn about stocks’ risk, but only about stocks’ means. 
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be transformed into information. Therefore, solar energy stocks changed from being quick to 

analyze stocks before the fourth quarter 2005 to being more slowly to analyze stocks from the 

fourth quarter 2005 on, i.e., th4,S,solarrd3,S,solar ii
XX < . 

Third, Equation (14) demonstrates that time investment in the analysis of stock i increases 

with lower 1T,hT −  and higher Wmax. Since the slope of the bonus payment function 
1T,h

max

T

W

−

 in-

creases with lower 1T,hT −  and higher Wmax, it becomes easier to achieve bonus payment. There-

fore, private investors feel less pressure to invest time in bonus payments and the saved time 

can be invested in stock analysis. 

3. Time constraints and a rational explanation of insufficient diversification and exces-

sive trading 

This section deals with the second goal of the paper – the application aspect. We will demon-

strate that learning constraints in the form of time constraints offer a fully rational explanation 

for two of the most discussed real-world investment phenomena: insufficient diversification 

and excessive trading. Those phenomena are to date not adequately explained by neoclassical 

portfolio selection (see, e.g., Barberis/Thaler, 2003, Section 7). 

3.1. Insufficient diversification 

Insufficient diversification is characterized by portfolio holdings that are much less diversified 

than recommended by normative portfolio selection models (see, e.g., Barberis/Thaler, 2003, 

pp. 1101). However, it is not exactly clear how one would define “much less diversified than 

recommended by normative portfolio selection models.” In the sections that follow, we par-

ticularize insufficient diversification and illustrate how adding time constraints to the neo-

classical model of portfolio selection contributes to explaining insufficient diversification. 
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3.1.1. Test criterion 

We define the test criterion to detect potential connections between insufficient diversification 

and learning constraints in the form of time constraints as follows: 

the development of the quotient of neoclassical portfolio holdings for two stocks i and j com-

pared with that of the pure learning components of portfolio holdings with time constraints. 

To apply this test criterion, we have to particularize its components. In this connection, we 

employ the special case of Section 2.2.1. Therefore, we specify the quotient of neoclassical 

portfolio holdings as 
neocl,1T,j

neocl,1T,i

N

N

−

−  using portfolio holdings (9). The quotient of pure learning 

components of portfolio holdings with time constraints consists of the tradeoff between ex-

pected value and risk )( 1TSPT −tCOV  dependent on learning, i.e., the first part of portfolio hold-

ings (8): 
learn,1T,j

learn,1T,i

N

N

−

− . 

If a decreasing time budget T  yields 
learn,1T,j

learn,1T,i

N

N

−

−  (for all stock i ≠ j) farther away from 1 than 

neocl,1T,j

neocl,1T,i

N

N

−

−  (for all stock i ≠ j), then tight time constraints can contribute to a rational explana-

tion of insufficient diversification. 

The test criterion is justified as follows. Barberis/Thaler (2003, p. 1101) associate normative 

portfolio models with neoclassical portfolio theory. Neoclassical (unconditional) portfolio 

holdings, as in Tobin (1965) and Merton (1969), do not contain a reference to learning and, 

thus, do not distinguish between a priori and a posteriori distributions. Therefore, they can be 

described with the help of the portfolio holdings (9). 

Since a posteriori (conditional) portfolio holdings (8) contain learning constraints in the form 

of time constraints, they might be a good starting point in the comparison with unconditional 

portfolio holdings. However, caution is needed regarding two aspects. First, conditional port-
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folio holdings (8) are characterized by risk )( 1TSPT −tCOV  dependent on learning and the correc-

tion portfolio. The correction portfolio contains a combination of limited learning due to time 

constraints and signal-induced correction terms and therefore is a mixture of two completely 

different components. To analyze the relation between learning constraints in the form of time 

constraints and insufficient diversification, it is necessary to concentrate on pure learning ef-

fects and, thus, on the tradeoff between expected value and risk )( 1TSPT −tCOV  dependent on 

learning. Second, a direct comparison of the portfolio holdings (9) with the pure learning ef-

fects of Equation (8) is inadequate. Equation (9) contains an information level of zero, 

whereas Equation (8) is characterized by various information levels depending on the time 

budget T . To get around this problem, it is reasonable to focus on the development of 

learn,1T,j

learn,1T,i

N

N

−

−  relative to 
neocl,1T,j

neocl,1T,i

N

N

−

−  for several time budgets. Neither 
learn,1T,j

learn,1T,i

N

N

−

−  compared to 

neocl,1T,j

neocl,1T,i

N

N

−

−  for a fixed time budget nor the size of the portfolio holdings (8) compared to that 

based on Equation (9) are adequate measures. 

3.1.2. Results and interpretation 

The connections between learning constraints in the form of time constraints and insufficient 

diversification can be best illustrated by means of a numerical example. To do this, we will 

employ the framework of Section 2.2.1 (portfolio selection and time allocation in the last pe-

riod) and the learning environment of Section 2.2.2 (one stock i has only one signal Si, there 

are no informational synergies, and learning in the form of stock analysis develops according 

to Equation (13)). To further simplify the analysis, we assume that signals are uncorrelated 

and that there are no payments from contractual work and no bonus payments. 
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The following parameters are the basis for our numerical analysis.6 The private investor can 

choose between two stocks and one riskless asset, with stock prices at calendar time T – 1 

100PP 1T,21T,1 == −− , expected values { } 105PE T,1 =  and { } 5.107PE T,2 = , and variance/covariance 

matrix 
( )

( ) =









ρ⋅σ⋅σ
ρ⋅σ⋅σ

T,2P,PPP

P,PPPT,1

Pvar

Pvar

T,2T,1T,2T,1

T,2T,1T,2T,1  








10586.257

6.257512 . The riskless rate equals 2% 

per annum, and the private investor has an exogenous income of WT-1 = 25,000 EUR.7 The 

private investor’s absolute risk aversion is8 
17000

1=α . 

With respect to stock analysis, two scenarios are considered. In the first scenario, there are 

more data available for Stock 1 than for Stock 2, i.e., 1X 1T,S,1 1
=−  > 8.0X 1T,S,2 2

=− . In the second 

scenario, 64.0X 1T,S,1 1
=−  < 8.0X 1T,S,2 2

=− . 

Using these preliminaries, we plot the test criterion quotient = 
learn,1T,j

learn,1T,i

N

N

−

− , based on Equation 

(8) (conditional holding), versus 
neocl,1T,j

neocl,1T,i

N

N

−

− , based on Equation (9) (unconditional holdings), as 

a function of the time budget T  and obtain: 

                                                           
6 We do not strive to explain portfolio holdings found in the empirical literature. In particular, we do not claim 

that the parameters dealing with the time constraint are empirically valid although we believe they are realis-
tic. 

7 A riskless rate of 2% is in accordance with the current term structure of interest rates in Germany. 25,000 
EUR is approximately the gross national income per capita for Germany in 2004 according to World Bank 
statistics. 

8 The absolute risk aversion is chosen so that the portfolio weights 
1T

1T,i1T,i
1t,i W

PN
w

−

−−
−

⋅
=  do not contain a short 

sale of one risky or the riskless asset: w1,T-1 = 25.13%, w2,T-1 = 29.23%, and w0,T-1 = 45.63%. 
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Fig. 1a. Stocks’ test criterion quotients when 

1X 1T,S,1 1
=−

 > 8.0X 1T,S,2 2
=−

 (Scenario 1) 

Fig. 1b. Stocks’ test criterion quotients when 

64.0X 1T,S,1 1
=−

 < 8.0X 1T,S,2 2
=−

 (Scenario 2) 

Figures 1a and 1b illustrate that the interaction between availability of data (different levels of 

X in Scenarios 1 and 2) and time budgets (T ) provides rich diversification patterns, including 

insufficient diversification: In Scenario 1, the test criterion quotient for conditional portfolio 

holdings is closer to 1 than that for unconditional holdings, irrespective of the tightness of the 

time constraint. For time budgets T  around 0.4, conditional portfolio holdings even show na-

ïve diversification, i.e., the test criterion coefficient is around 1. By contrast, in Scenario 2, 

conditional portfolio holdings are significantly more unequal than unconditional portfolio 

holdings for all time budgets considered. This means that investors with different time budg-

ets follow completely different levels of diversification even though they have identical data, 

risk aversions, and wealth. Moreover, stocks with a different amount of data (different X) in-

duce different diversification patterns, as Scenarios 1 and 2 illustrate, although their uncondi-

tional portfolio holdings are independent of the amount of data X. 

Since a private investor optimally invests a different amount of time analyzing each stock, he 

possesses different information on each stock in the optimum. Consequently, insufficient di-

versification of portfolio holdings can be explained through a normative portfolio selection 
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model, namely, portfolio selection with learning constraints in the form of time constraints. 

There is no need to attribute it solely to bounded rationality. 

3.2. Excessive trading 

Excessive trading occurs when portfolios are restructured more often than can be justified by 

the availability of new information (see, e.g., Barberis/Thaler, 2003, p. 1103). However, once 

again, it is not exactly clear how one would define “restructured more often than can be justi-

fied by the availability of new information.” In the sections that follow, we particularize ex-

cessive trading and illustrate how adding time constraints to the neoclassical model of portfo-

lio selection contributes to explaining excessive trading. 

3.2.1. Test criterion 

We define the test criterion to detect potential connections between excessive trading and 

learning constraints in the form of time constraints as follows: 

the quotient of the pure learning components of portfolio holdings with time constraints for 

one stock i at different calendar times T – 1 and T – 2 after the incentive to rebalance neoclas-

sical portfolio holdings has been eliminated. 

To apply this test criterion, we have to particularize its components. Based on the special case 

of Section 2.2.1, we specify the quotient of pure learning components of portfolio holdings 

with time constraints at different calendar times as 
learn,1T,j

learn,1T,i

N

N

−

− , the multi-period analogue9 of the 

pure learning component of the portfolio holdings (8). 

If 
learn,1T,j

learn,1T,i

N

N

−

−  (for all stocks i) differs for different time budgets T  even though the incentive for 

rebalancing neoclassical portfolio holdings has been eliminated, then time constraints can be 

successfully connected with excessive trading. 
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The test criterion is justified as follows. The reasonableness of concentrating on the pure 

learning component of the portfolio holdings (8) in order to study the effects of time con-

straints was previously justified (see Section 3.1.1). To elaborate the frequency aspect of ex-

cessive trading it is, in addition, necessary to measure the frequency of portfolio restructurings 

with time constraints against the frequency of portfolio rebalancing in a neoclassical world, 

i.e., to separate information-induced trading from noninformation-induced trading. All neo-

classical dynamic portfolio selection models advocate portfolio restructurings. For example, 

the discrete-time models of Fama (1970) and Hakansson (1970) restructure their optimal port-

folio holdings at every point in calendar time. The continuous-time models of, e.g., Merton 

(1969, 1971, 1973), even rebalance portfolio holdings continuously and thus make excessive 

trading impossible. Portfolio rebalancing in neoclassical dynamic portfolio selection is based 

on the fact that calculated and actual portfolio holdings usually deviate when the random vari-

able stock price becomes known. The reason for this noninformation-induced rebalancing is 

that the calculated portfolio holdings are based on moments of the stock price distribution, 

whereas actual portfolio holdings are based on actual stock prices. This means that neoclassi-

cal portfolio holdings are not restructured only if a certain realization of the random variable 

stock price occurs. This realization of the random variable stock price is what we call “com-

pensated stock price.” Using compensated stock prices and calculating portfolio holdings (8), 

we can be sure that every restructuring of Ni,T-1,learn must be information induced, i.e., related 

to learning constraints in the form of time constraints alone. 

3.2.2. Results and interpretation 

The numerical analysis in this section is based on the parameters of Section 3.1.2. In addition, 

we use the following parameters to extend our example to the dynamic world. 

                                                                                                                                                                                     
9 A derivation of portfolio holdings for this special case is contained in Appendix A2. 
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The private investor is put into a two-period framework. Stock prices’ expected values at cal-

endar time T are { } 25.110PE T,1 =  and { } 56.115PE T,2 = . The variance/covariance matrix at calen-

dar time T – 1 reads 








10580

0512 , that of calendar time T 








21160

01024 , and all intertemporal 

correlation coefficients between stock prices are set to zero. The compensated stock prices can 

be calculated within this environment as follows:10 P1,T-1 = 96.23 and P2,T-1 = 91.43. To sim-

plify notation, we further assume 1T2T TT −− =  and 1T,S,i2TS,i ii
XX −− = . 

Using these parameters, we plot the test criterion quotient = 
learn,1T,j

learn,1T,i

N

N

−

− , based on Equation (8), 

versus 1
N

N

neocl,1T,i

neocl,2T,i =
−

− , based on Equation (9), as a function of T  = 1T2T TT −− =  and obtain: 

  

Fig. 2a. Stocks’ test criterion quotients when 

1XX 1T,S,12T,S,1 11
== −−

 > 8.0XX 1T,S,22T,S,2 22
== −−

 

(Scenario 1) 

Fig. 2b. Stocks’ test criterion quotients when 

64.0XX 1T,S,12T,S,1 11
== −−

 < 8.0XX 1T,S,22T,S,2 22
== −−

 

(Scenario 2) 

Figures 2a and 2b demonstrate that different time budgets (T ) and different availability of 

data (different levels of X in Scenarios 1 and 2) lead to different portfolio restructurings since 

the test criterion quotients are usually unequal to 1. In fact, in this numerical example, the 

more time that is available, the more the private investor can learn and the more pronounced 

                                                           
10 The calculations are available from the authors as Maple file. 
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the portfolio restructuring will be. Only for one particular T  is no portfolio restructuring opti-

mal (test criterion quotient equals 1). 

This means that investors with different time budgets will restructure their portfolios differ-

ently even though they have identical data, risk aversions, and initial wealth. Moreover, stocks 

with different amount of data (different levels of X) induce different rebalancing patterns – 

see Scenarios 1 and 2 – even though their neoclassical portfolio holdings are not restructured 

in the optimum. 

Since, at each point of calendar time, a private investor optimally spends a different amount of 

time analyzing each stock, he possesses different information on each stock at different calen-

dar times. Consequently, frequent portfolio rebalancing can be explained through a normative 

portfolio selection model, namely, portfolio selection with learning constraints in the form of 

time constraints. There is no need to attribute it solely to bounded rationality or to label as 

“excessively” frequent portfolio rebalancing. 

4. Conclusion 

We began this paper with the observation that in this age of the Internet and the ready avail-

ability of financial news on television, private investors can obtain, without cost, an abun-

dance of data concerning stocks, including historical stock quotes, companies’ fundamental 

data, and analysts’ reports. However, private investors do not have enough time to transform 

data into information because they must meet physiological needs and work, leaving little 

time to obtain information about stocks via stock analysis. 

Starting from this framework, the following results are obtained. Time constraints introduce 

investor-specific components into the structure of portfolio holdings. Moreover, due to time 

constraints, it is not optimal for decision makers to either analyze one stock completely or in-

vest an equal amount of time to the analysis of each stock. Therefore, decision makers have 

different information on different stocks at different calendar times even though the amount of 
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publicly available data has not changed. Consequently, it is reasonable to adapt the portfolio 

strategy to this unequal level of information, which might result in insufficient diversification 

and frequent portfolio restructuring. 

By basing our model on a fully rational instead of a bounded rational private investor, we of-

fer a new explanation of real-world investment phenomena, phenomena that have, to date, 

primarily been interpreted in light of behavioral finance. We do not reject the findings based 

on behavioral finance; rather, we point out that there are other explanations for real-world in-

vestment phenomena. We believe we have taken a first step toward the unification of mainly 

descriptive behavioral finance and normative portfolio theory. Also, we believe we may have 

found an answer to the questions posed by Shleifer (2000, p. 195): Why do different investors 

have different models of what are good investments and why do they trade so much with each 

other? Perhaps it is because they are subject to different time constraints and, thus, have dif-

ferent amounts of information available to guide them.  

Appendix 

A.1. Optimal time allocation in the static model 

To transform decision problem (6) into the basis for determining optimal time allocation in 

problem (10) using the optimal the portfolio holdings (8), several intermediate steps are nec-

essary. 

A.1.1. First step: Calculation of the expected value of the inner problem (6) using optimal the 

portfolio holdings (8) 

Since WT and signals S are jointly normally distributed, the expected value of the inner prob-

lem (6) reads 
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{ }STWE  and ( )STWvar  in Equation (A1.1) can be calculated. 

{ }STWE  reads, after using its definition in Equation (2) and performing some simplifications 
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( )STWvar  reads, after using its definition in Equation (3) and performing some simplifica-

tions 

( )STWvar  = { } ( )( ) { } ( )( )1TT1T
1

SP1TT2
r1E)(r1E

1
T −−

−
− ⋅+−′⋅+−⋅

α
PPtCPP  (A1.4) 

{ } ( )( ) { }( )SSCtCOVtCPP E)()(r1E
1

2 1
S1TSP1T

1
SP1TT2 TT

−′⋅+−⋅
α

⋅+ −
−−

−
−  

{ }( ) { }( )SSCtCOVtCtVCOCSS E)()()(E
1 1

S1TSP1T
1

SP1TSP
1

S2 TTT
−′′−⋅

α
+ −

−−
−

−
−  



 33 

Inserting the expected value from Equation (A1.3) and the variance from Equation (A1.4) into 

Equation (A1.1), we obtain for the expected utility (A1.1) 
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A.1.2. Second step: Calculation of the expected value of the outer problem (6) using the ex-

pression for the inner problem (A1.5) 

To calculate the expected value of the outer problem and, thus, to have a foundation for de-

termining the optimal time allocation, the following expectation with respect to signals S must 

be computed: 
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Calculations will be simplified by switching from normally distributed variables S to standard 

normally distributed variables YS by using the transformation 
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Using the signals’ m-dimensional standard normal density function to calculate the expected 

value in Equation (A1.7) (last two lines of Equation (A1.7)), Equation (A1.7) can be written 

as 
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where yS denotes the realizations of the random variables YS, and Id is the identity matrix. 

To compute the integrals in Equation (A1.8), we strive to transform the integrants in Equation 

(A1.8) to density functions so that the integrals equal 1. This requires, first, that the terms 
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Applying the argument set out in footnote 11 leads to ( )( ) S
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Based on the above findings, Equation (A1.8) simplifies to 
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Finally, to finish the transformation to density functions, we need to complete the square of 
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A.1.3. Third step: Simplification of the components of Equation (A1.12) to derive Equation 

(10) 

Problem (10) distinguishes itself from Equation (A1.12) in two respects. On the one hand, the 

second line of Equation (A1.12) must be merged with )()(
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1T1T −−′ tKtK ; on the other hand, 

B(tT-1) must be simplified. 
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help of correlation coefficients, proceed as follows. Write all variance/covariance or covari-

ance matrices as the product of the matrix of standard deviations and the matrix of correlation 

coefficients, i.e., SSSS diag ρ=C , S1TSPP1TSP diag)(diag)(
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diagPT denotes the diagonal matrix of standard deviations of stock prices, diagS the diagonal 

matrix of standard deviations of signals, and ρρρρ denotes the matrix of correlation coefficients 

between random variables. 
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From Equation (A1.15) follows immediately the expression of B(tT-1) used in Equation (10). 

A.1.4. Derivation of the special case of Equation (11): Uncorrelated signals and uncorre-

lated stocks 

In the event of uncorrelated signals, the correlation matrix of signals SSρ  equals an identity 

matrix; the same is true for the correlation matrix of stocks 
TTPPρ . Finally, )( 1TSPT −tρ  transforms 

into the diagonal matrix 
















ρ
ρ

= −

−

−

OM

L

0

0)t(0

0)t(

)( 1T,S,2SP

1T,S,1SP

1TSP 22T,2

11T,1

T
tρ . Based on these simpli-

fications, 
SPT

C  reads 
T22T,2

11T,1

TT P1T,S,2
2

SP

1T,S,1
2

SP

PSP diag

0

0)t(10

0)t(1

diag
















ρ−
ρ−

= −

−

OM

L

C . 

Inserting this expression for 
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C  into Equation (A1.15), yields 
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and finally 
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Calculating ( )1
1T )(det −

−tB  with the help of Equation (A1.18), results in 

( ) ( ) ( ) K⋅ρ−⋅ρ−= −−
−

− )t(1)t(1)(det 1T,S,2
2

SP1T,S,1
2

SP
1

1T 22T,211,T,1
tB  (A1.19) 

Assuming a functional relationship between time investment and the correlation coefficient 

between stock prices and signals as 
1T,S,i

1T,S,i
1T,S,iSP

i

i

iiT,i X

t
)t(

−

−
− =ρ , Equation (A1.19) simplifies to 
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Furthermore, assume a bonus payment function that is linear in th,T-1: 

( ) 1T,h
1T,h

max
1T,h t

T

W
th −

−
− ⋅=  (A1.21) 
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Using the time constraint ∑
=

−−− −=
n

1i
1T,S,i1T1T,h i

tTt  as well as Equations (A1.20) and (A1.21), the 

necessary condition for the time invested in the analysis of stock i (Equation (11)) simplifies 

in this special case to 
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and finally 

max

1T,h
1T,S,i1T,S,i W

T

2

1
Xt

ii ⋅α
⋅−= −

−−  (A1.24) 

A.2. Optimal portfolio holdings and time allocations in the dynamic model of the numerical 

example 

A.2.1. First step: Calculation of the inner problem at calendar time T – 1 of decision prob-

lem (5) 

The inner problem at calendar time T – 1 of our two-period decision problem reads 







 ⋅

α
− −−−

⋅α−

−
1T2T1T

W W,,e
1

EMax T

1T

SS
N

 (A2.1) 

Key to its solution is calculating the distribution of WT conditional on ST-1, ST-2, and WT-1. 
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Using the n dimensional multinormal density of stock prices at calendar time T (see, e.g., 

Mardia/Kent/Bibby , 1992, p. 37), the expected value of Equation (A2.1) can be written as 

( )∫ ∫
∞

∞−
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where d pi,T denotes the realization of the random variable price of stock i at calendar time T 

and pT is the vector of the realization of stock prices at calendar time T 

with 
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where ( ) ( ) 0W,ScovW,Scov 1T1T,21T1T,1 == −−−−  because signals at calendar time T – 1 influence 

future wealth, but not wealth at the same calendar time when signal realizations become ob-

servable. Sj,T-i denotes the random variable signal Sj at calendar time T – i, Pj,T-i price of stock 

j at calendar time T – i, and (tT-i) portrays the dependence of covariances on the time invested 

in stock analysis at calendar time T – i. 

Differentiation of Equation (A2.2) with respect to NT-1 yields the optimal portfolio numbers at 

calendar time T – 1: ( )1T1T2T
*

1T W,, −−−− SSN . 

A.2.2. Second step: Calculation of the outer problem at calendar time T – 1 of decision prob-

lem (5) 

The outer problem at calendar time T – 1 of our two-period decision problem reads 
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where WT contains ( )1T1T2T
*

1T W,, −−−− SSN . 

Using the m dimensional multinormal density of signals at calendar time T – 1, the expected 

value of Equation (A2.3) can be written as 
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where d si,T-1 denotes the realization of the random signal Si at calendar time T – 1 and sT-1 is 

the vector of the realization of signals at calendar time T – 1, 

with 
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Differentiation of Equation (A2.4) with respect to tT-1 yields the optimal time investment at 

calendar time T – 1: ( )1T2T
*

1T W, −−− St . 

A.2.3. Third step: Calculation of the inner problem at calendar time T – 2 of decision prob-

lem (5) 

The inner problem at calendar time T – 2 of our two-period decision problem reads 
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where WT contains ( )1T1T2T
*

1T W,, −−−− SSN  and ( )1T2T
*

1T W, −−− St . 

Using the n dimensional multinormal density of stock prices at calendar time T – 1, the ex-

pected value of Equation (A2.5) can be written as 
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where d pi,T-1 denotes the realization of the random variable price of stock i at calendar time T 

– 1 and pT-1 is the vector of the realization of stock prices at calendar time T – 1, 
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with 

{ } { }( )SSCtCOVPE SP E)(E 1
S2TSP1T 1T2T1T

−+= −
−− −−−

 

)()( 2TSP
1

S2TSPP 1T1T1T2T1T −
−

− −−−−−
′−= tVCOCtCOVCC SP  

and 

( )2T,22T,1 SS −−=′S  

=−−
)( 2TS,P 1T

tCOV
( ) ( )
( ) ( ) 









−−−−−−

−−−−−−

)(S,Pcov)(S,Pcov

)(S,Pcov)(S,Pcov

2T2T,21T,22T2T,11T2

2T2T,21T,12T2T,11T,1

tt

tt
 

=SC
( ) ( )

( ) ( ) 








−−−

−−−

2T,22T,12T,2

2T,22T,12T,1

SvarS,Scov

S,ScovSvar
 

Differentiation of Equation (A2.6) with respect to NT-2 yields the optimal portfolio numbers at 

calendar time T – 2: ( )2T
*

2T −− SN . 

A.2.4. Fourth step: Calculation of the outer problem at calendar time T – 2 of decision prob-

lem (5) 

The outer problem at calendar time T – 2 of our two-period decision problem reads 
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where WT contains ( )1T1T2T
*

1T W,, −−−− SSN , ( )1T2T
*

1T W, −−− St , and ( )2T
*

2T −− SN . 

Using the m dimensional multinormal density of signals at calendar time T – 2, the expected 

value of Equation (A2.7) can be written as 
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2T,m2T,1
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−−
⋅α−⋅ L  

where d si,T-2 denotes the realization of the random signal Si at calendar time T – 2 and sT-2 is 

the vector of the realization of signals at calendar time T – 2, 
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with 

( )2T,22T,1 SS −−=′S  

Differentiation of Equation (A2.8) with respect to ST-2 yields the optimal time investment at 

calendar time T – 2: * 2T−t . 
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