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Portfolio Selection with Time Constraints and a Rational
Explanation of Insufficient Diversification and Excessive

Trading

Armin Dolzer and Bernhard Nietert

Abstract

Private investors have limited time available fearhing about stocks as they need to divide
their time between stock analysis and work. Thiggpanalyzes the influence of learning con-
straints in the form of time constraints on poitidelection and derives both optimal portfo-
lio holdings and time allocation.

Under time constraints, rational private investorake portfolio choices similar to those of
investors with bounded rationality, i.e., insuféiot diversification and excessive trading.
Thus, time constraints offer an alternative, fuliyional explanation for these real-world in-
vestment phenomena, which have to date been istepprimarily in the light of behavioral

finance.
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Portfolio Selection with Time Constraints and a Rational
Explanation of Insufficient Diversification and Excessive

Trading

1. Preliminaries
1.1. Introduction to the problem

The Internet and financial news on television equipate investors, at no charge, with an
abundance of data concerning stocks, includingohcstl stock quotes, companies’ funda-
mental data, and analysts’ reports. Moreover, &etien costs for trading are low. Therefore,
it comes as no surprise that Goetzmann/Kumar’'s4R6mMpirical study finds that transaction
costs, as well as data acquisition costs, do goifgantly limit portfolio selection.

However, data cannot be used for decision makirfgrmation is required, i.e., messages that
are relevant to decision makih@.hus, data must be transformed into informatiothsd pri-
vate investors can use a posteriori instead ofaai histributions of stock prices. This transi-
tion from a priori to a posteriori distributionsniitutes a learning process and, obviously,
learning takes time. Time is a scarce resourcdtarstarcity is seen as one of the major prob-
lems in decision making (see, e.g., Juster/Stafft®d1; Mankins, 2004). Hence, limited time
means learning constraints for decision makerstladjuestion arises as to how the time that
is available should be allocated between learnbayaistocks via stock analysis and other ac-
tivities such as work.

Starting from this description of the problem, thtgectives of our paper are twofold. First,
we aim to determine the optimal solution to thetfotio selection and time allocation prob-

lems. Second, we want to demonstrate that normptvtfolio selection with time constraints

1 This understanding of information combines Mag'977, p. 4) definition of information with the disttion
between information and knowledge in Kuhlen (192538).



can be applied to explain two real-world investmgmtnomena, namely, insufficient diversi-
fication and excessive trading. To date, thesesimrent phenomena have been interpreted
primarily in the light of behavioral finance.

To achieve these two objectives, we consider ailegiprocess where a private investor can
influence the a priori distribution of stock prickg investing time in stock analysis. The al-
ternative use of time (i.e., instead of learnin@uthstock prices) involves working longer
hours than contractually required so as to earmdpayments.

Based on this framework, the following results ab¢ained. Time constraints introduce in-
vestor-specific components into the structure dino@l portfolio holdings. Moreover, time
constraints make it optimal for decision makeraddher analyze one stock completely nor to
invest an equal amount of time in the analysisaahestock. Therefore, decision makers have
different information on different stocks at diféet points of calendar time even though the
amount of publicly available data has not changamhsequently, as it is reasonable to adapt
the portfolio strategy to this unequal level ofarrhation, insufficient diversification and fre-

quent portfolio restructuring can be seen as ratibehavior.

To better illustrate the contributions of our papee contrast it with the literature. Our pa-
per’s normative portfolio model with time constri@irdistinguishes itself from the literature
on learning constraints (van Nieuwerburgh/Veldka@2@)5; Peng, 2005) in three major as-
pects. First, this literature constrains learniggube of an entropy constraint following Sims
(2003); we use time constraints instead. Sinceopptconstraints are often justified based on
limited computer capacity and computer capacityhmige increased via investment in IT
technology, entropy constraints can be approximatadvealth constraints. However, deci-
sion makers can do little to increase limited tifpee, e.g., Mintzberg, 1973, p. 173) and thus
time constraints remain a problem even if decisitakers are not confronted with strictly

binding budget constraints. Second, van Nieuweltbigjdkamp (2005) and Peng (2005)



work with model-exogenous learning constraints wherour model employs endogenous
learning constraints: Time must be optimally diddeetween either stock analysis or extra
work that will earn bonus payments, thus makingtiime budget for stock analysis endoge-
nous. Third, van Nieuwerburgh/Veldkamp (2005) ardd(2005) deal only with insufficient
diversification, but neglect excessive trading;la@k at both.

Our paper’s normative portfolio model is also diffet from Ahn/Kim/Yoon’s (2006) portfo-
lio selection with time constraints. They use a sl@kogenous time constraint to penalize
holdings of the risky asset, similar to transactosts, and thereby explain investors’ limited
participation in the stock market. However, theimg constraint is not designed to cope with
the influence of time constraints on investorsrigag. In particular, Ahn/Kim/Yoon (2006)
neither derive the optimal time allocation betwseneral stocks nor do they analyze the in-
teractions between portfolio selection and timedcation.

Finally, our paper’s application aspect, the usaeamative portfolio selection with time con-
straints to explain the real-world phenomena afififisient diversification and excessive trad-
ing, distinguishes it from that part of behavidiahnce literature that deals with portfolio se-
lection (see, e.g., Barberis/Thaler, 2003). As gepoto behavioral finance, which uses rela-
tively frictionless markets and bounded rationalestors to explain insufficient diversifi-
cation and excessive trading, this paper emplaysiieg constraints in the form of time con-

straints and fully rational investors.

The paper is organized as follows. The remaindeBeaaftion 1 outlines the model setup. In
Section 2, the optimal solution to portfolio selentand time allocation is derived. Section 3
applies the normative model of Section 2 to insigfit diversification and excessive trading.

The paper ends with a conclusion (Section 4) aodraal appendix.



1.2. Model setup

Two forces drive the selection of our model sekipst, time constraints must be adequately
portrayed; second, explicit solutions for investinéacisions should be obtainable to enable
economic interpretations.

An adequate representation of time constraints dall a discrete-time model. In a continu-

ous-time model such as Peng (2005), a time consitannot be integrated since the learning
process must be instantaneous by definition. A taspeed of learning can be captured only
with discrete-time models. Unfortunately, discretee models often cannot be solved in ex-
plicit form (e.g., Breeden, 2004), so in this regpgmntinuous-time models are preferable be-
cause they yield an easy-to-hangle-calculus. To deal with these conflicting requirense

we chose a compromise framework that is outlinethbyfollowing assumptions.

Assumption 1: Objective function of the decisionkera

Our decision maker is a private investor who dostswork as a professional portfolio man-

ager. Otherwise, decisions about how much timgémd on work as opposed to investment
analysis would not be relevant. The private invests exponential utility and maximizes ex-

pected utility over terminal wealth. His objectifumction reads:
1 -0t WV,

wherea denotes the private investor's absolute risk awer€{} the unconditional expecta-

tion operator, and Wis terminal wealth at planning horizon T.

Assumption 2: Investment opportunity set

The private investor can choose between n riskgkstand one riskless asset. Stocks are not
subject to short selling constraints, and theicgsiare jointly normally distributed. The risk-
less rate is constant through time, identical fmrdwing and lending, and the term structure

is assumed to be flat.



In addition to stochastic income from capital invesnts, the private investor receives deter-
ministic income from employment. This income cotssisf two parts: contractual income
from employment and income from bonus payments. ddrgractual income from employ-
ment is independent of additional working hours #@yddefinition fixed. Bonus payments
equal zero if no additional hours are spent working are some positive amount when extra
hours are worked. Bonus payments can reach a maxismce companies do not usually of-
fer indefinitely high bonus payments. Bonus payrsere a concave function of additional
working hours due to assumed decreasing margibatf laroductivity.

Finally, to simplify notation, we assume that teadth of the time interval during which the
private investor cannot rebalance his portfoliodivays is the same as the time interval that is
the basis for the determination of bonus paymdfas.example, if private investors receive

monthly bonus payments, they rebalance portfolioa smonthly basis as well.

Assumption 3: Learning process

It is assumed that all investors have the same doeess to data such as historical stock
quotes, companies’ fundamental data, and analegtsrts and that no investor is privy to in-
sider information.

Historical stock quotes allow deriving a priori whisutions of stock prices. Stock quotes,
companies’ fundamental data, and analysts’ repantsbe regarded as signals from which in-
vestors derive a posteriori distributions. If ateosri distributions are more informative than
a priori distributions, information is differentoim data; otherwise, data and information are
equal. The transition from a priori to a posterdistributions constitutes the learning process
by which private investors can influence how muick & posteriori distribution is more in-
formative than the a priori distribution by inveggitime. Note that investment in the riskless

asset does not require learning.



More formally, the learning process develops alWa. It is assumed that signals and stock
prices are jointly normally distributed. This medhat the a posteriori distribution is normally
distributed and can be characterized completelyth@avector of conditional means and the

conditional variance/covariance matrix. Furthermdreth the conditional meas{p/s} and
the conditional variance/covariance matti>§T s are functions of correlation coefficients be-

tween the random variables signals and stock p(ees, e.g., Mardia/Kent/Bibby, 1992, p.

63)
efp, 5} = EfP,} + COV,.. C2s- ElS) @
CPT\S =Cp ~COVps C;COV;TS 3)

wheres denotes the m 1 vector of signalsg{s} the mx 1 vector of unconditional expected
values of signalsg{p;} the nx 1 vector of unconditional expected values of stpakes at
calendar time T, andtOV, is the nx m unconditional covariance matrix between stock
prices at calendar time T and signags. is the mx m unconditional variance/covariance ma-
trix of signals,C, the nx n unconditional variance/covariance matrix of ktpdces at cal-
endar time T.

Therefore, in our model, learning means that tinaper investor improves the correlation co-
efficient between signals and stock prices via timestmentt and it holdsCOV(t) in-
stead ofCOV, as in Equations (2) and (3). If no time is investeorrelation coefficients be-

tween signals and stock prices equal zero andoai jamd a posteriori distributions coincide.
The more time the private investor invests in stacklysis, the closer the absolute values of
correlation coefficients converge toward 1 andrtigee informative a posteriori distributions
of stock prices become. This increase in absolalges of the correlation coefficients is con-

cave in the time invested because it seems redsot@lassume that learnirexhibits de-
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creasing marginal productivity. Keep in mind thate the a posteriori distribution has been
derived from stock analysis, this knowledge carapplied to any numbers of stocks bought
and sold. For example, to obtain information orpigtes of stock i, the same amount of time
must be invested as for obtaining information oa piece of stock i.

Finally, it is assumed that the private investotsimall” in the sense that his transactions do
not influence stock prices. Therefore, stock pridesot reflect the information via learning

gleaned by the private investor.

Assumption 4: Time constraint

The private investor must meet his physiologicadseand work the contractually required
number of hours. He wants to spend any additiarred awvailable either working more hours
SO as to earn a bonus and/or learning about stbtlksimmary, although the private investor

is rational, he is subject to learning constraintthe form of the following time constraint:

T, = izn:tisj,e Y (4)
=1 =1

where T, denotes the time available for stock analysisaotfliiring bonus payments at calen-

dar time6 U {current calendar timg, T + 1, ..., T — 1, planning horizon T}, , the time in-

vested in the analysis of signgl ®ut of m signals) for stock i (out of n stocks)calendar
time 6, and ¢ is the time invested in acquiring bonus paymerdsmorking longer than con-
tractually required at calendar tirie

Two things must be kept in mind when considering Eqoa4). First, T, is the time avail-
able after time for physiological needs (e.qg., regtisleeping, etc.) and contractual working
hours are deducted from total time available. Tia¢ available equals the length of the time

interval in our model as outlined in AssumptiorS2cond,T, is investor-specific; e.g., a pri-

vate investor contractually required to work eigbturs per day will have less time for stock
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analysis and fewer hours available in which to dasnus payments than a private investor

who is contractually required to work only six heyrer day.
2. Portfolio selection and time allocation

To analyze optimal portfolio selection and time edltion, we proceed in two steps. First, we
develop the general portfolio and time allocatioodel. Second, we discuss special cases to
illustrate optimal portfolio and time allocatiomse the general portfolio and time allocation

model does not have closed-form solutions.
2.1. General portfolio selection and time allocatio

Intuitively, the process of portfolio and time alédion evolves as follows. At current calendar
time 1 the private investor chooses, first, the time edrvested in the analysis of each stock.
Then he observes a realization of each signal. Sed@sed on the realization of each signal,
he selects his portfolio of stocks. At calendaretimt+ 1, he obtains wealth as a consequence
of his portfolio decision at calendar timeUsing wealth at calendar tinte+ 1 as the starting
point, the process of portfolio selection with tigmnstraints starts anew — the private investor
determines his time allocation based on the wealtdl at calendar time + 1, observes new
signals at calendar time+ 1, and may even be able to use the signals wisext calendar
time 1 in the form of intertemporal learning. In accordanvith the signals observed at calen-
dar timest andt + 1 and the wealth level achieved at calendar timel, he selects his port-
folio holdings. This process is repeated every adetimed until calendar time T — 1.

To implement this process, the private investor bseg&ward induction. He first derives port-
folio holdings at calendar time T — 1 for every pbkesrealization of wealth at calendar time
T — 1 and every possible realization of signals ketwcalendar timesand T — 1. Based on
this optimal conditional portfolio selection, theate investor next determines the optimal

time allocation at calendar time T — 1. Using optisanditional portfolio selection and time
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allocation at calendar time T — 1, he calculategmgitportfolio selection at calendar time T —
2 for every possible realization of signals betwealendar times and T — 2. These portfolio
holdings are the starting point for determining dipéimal time allocation at calendar time T —

2. This process is repeated until calendar timeormally, the decision problem reads as fol-

lows:
1 —alV; (5)
MaxE MaxE:- - MaxE Max &) == (€™ [S,_,, 8,1 5, Wry fSqr-asWey (S,
inner problem attime T-1
outer problem attime T-1
inner problem attime t
outer problem attime t
o m n
sti Ty=) D tisettyg forall@ 0{t,t+1,..,T-1}
=1 i=1
tise20 for all i O{L,...,n} and jO{L,...,m}
foralle 0 {t,t+1, ..., T-1}
0<t o <T., forall@ O{t,t+1,..,T-1}

with: W, = N'e(Pe+1 - (1+ r) EPe)"' h(th,e) +W, [(1"' r)
whereNg denotes the ® 1 vector of numbers of stocks bought or sold &rar timed, Wy
wealth at calendar tim@& ~ transposition of vectors or matric€s,; the nx 1 vector of stock

prices at calendar tim&@+ 1, r the riskless rate, k) deterministic bonus payments at calen-

dar time® + 1 as a function of additional working hours atendar timed, and T, , is the

time investment at calendar tirBethat leads to maximum bonus paymefs, is the mx 1
vector of signals for all stocks at calendar time T, S; 1., stands for signals for all stocks and
at all calendar times betweerand T — 2 (encompasses intertemporal learning)t@isdthe

vector of time invested in the analysis of all silgrfor all stocks at calendar tirfie
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In the general model, time constraints are suliig@n assumption concerning stock price
movements during the process of stock analysiseSiearning does not happen instantane-
ously but, by definition, takes time, stock prieé$i change between the beginning and end of
the stock analysis period, i.e., during the leagnimocess. Additionally, a new stock price

might contain new information, meaning that thenésy process must begin anew, meaning
that more time will pass, during which, possibhg stock will change price again, containing
yet more new information etc. To avoid this circiypath, we assume, in our model, that stock
analysis happens outside of trading hours. ThisnagBan solves the circular-path problem

because stock prices will no longer change durgprocess of stock analysis. We believe
this to be a reasonable assumption since privaesiars will usually be at their regular em-

ployment during stock trading hours.

The solution to decision problem (5) is as followke optimal portfolio holdings at calendar

time T — 1 stem from the solution to the inner peobl at calendar time T - 1:

N;(S. -, Su, W, ). Therefore, portfolio holdings at calendar time T are conditional on
W, , S 1-2, andSr.1, as well as on the time invested in stock analysall calendar times be-
tweent and T — 1. Therefore, the dependencenof(s,,_,.S,,,W;_,) on S, 12 indicates in-

tertemporal learning. The optimal time investmenstiock analysis at calendar time T — 1 can

be derived from the solution to the outer probldncadendar time T — 1tT—1(ST,T—2’WT—1)'

This makes the optimal time investment at calendase T — 1 conditional on Wi andS; 1.2
and, as such, conditional on the time invested| aladendar times betweenand T — 2. The
solution to the inner problem at calendar time T ye2ds optimal portfolio holdings at cal-

endar time T — 2N, (S, ;,,S,,W;_,) that are conditional on bot® 1> and the time in-

vested at each calendar time betweamd T — 2. Finally, the optimal time investmentait

endar time T — 2t{.,) stems from the solution to the outer problemadémrdar time T — 2.
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This process of determining optimal portfolio holgsnand time allocations is repeated until
calendar tima.

Obviously, decision problem (5) is impossible tdvedn its general forrd.On the one hand,
the optimal time investment cannot be derived iplieit form since learning is nonlinear due
to decreasing marginal productivity (see Assump8»nOn the other hand, conditional ex-
pectations contain optimal portfolio holdings ande investments and, as such, are highly
nonlinear functions of the random variables stockgs and signals. Therefore, the repeated
calculation of conditional expectations for calentlmes T, T — 1, T — 2,..1 is beyond an
explicit solution.

Consequently, we analyze intertemporal learningname detail instead of deriving the formal
characteristics of optimal portfolio holdings andhe allocations in the general case. The
forms of intertemporal learning are:

1. The correlation betwedpy., andS;g allows the private investor to exert direct infice

onp, . (t,) via time investment, i.e., the a posteriori digition of Pe.» can be improved

through signals that have occurred at least twm@erearlier. This form of learning, however,
stresses the time constraint at calendar me
2. The private investor may learn about correlatoefficients between signals and stock

prices in the form o, ¢ (t,, +t,). This means that the private investor does not teteiy

forget what he learned in previous periods aboaitchnnection between stock prices and sig-
nals and thus learning becomes easier at latendaidimes, here termed “intertemporal in-
formational synergies.”

3. A correlation between signébse andSg+1 makes the a posteriori distributionf., more

informative than its a priori distribution.

2 Appendix 2 contains some calculations to illustrthie solutions to the special case of a two-pesiothlem.
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4. A correlation betweeRg.1 undPg., also improves the a posterior distributiorPgf».

The second, third, and fourth forms of learning do siress time constraints at calendar time
0.

The fact that information about individual stocks adange due to intertemporal learning,
even though the amount of data has not necesshidiyged, has an interesting consequence
for portfolio selection. The private investor mugidate his portfolio via trading to take ad-

vantage of the new information.

2.2. Special cases of portfolio selection and tahacation

Since decision problem (5) cannot be solved iniexgbrm, it is difficult to gain an adequate
understanding of optimal portfolio holdings and gimllocations with time constraints. Thus
we next consider special cases that bring us ctoser even achieve explicit solutions of the

optimal portfolio and time allocation problem.

2.2.1. First special case: Portfolio selection aide allocation in the last period

In the first special case it is assumed that tivaf® investor has reached calendar tmeT
— 1 so that he is just one period prior to his piag horizon T. This means that general deci-

sion problem (5) simplifies t®:

tra N7

Max E{ Max E{—% e SH} (6)

inner problemat T-1

outer problemat T-1

m n

st: T,y = Zztisi,T—l o
=1 i=1
tisra 20 for all i Oft,...,n} and jO{L,...,m}

3 Note that this special case is not identical tufing on the period between T — 1 and T of detipimblem
(5). In the latter case, optimal portfolio holdirgysd time allocations at calendar time T — 1 aragtmnal on
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O< th,T—l s Th,T—1
with: W, = Ni_, (P = @+ r) 0P, )+ W, (L +r)+h(t, )

Optimal portfolio holdings follow from the soluticdi the inner problem, which solution can

be found by solving the following equivalent prabté

Max E{w|s} - % a ar(w,|s) 7)

N7

with: E{WT|S} =N, (E{PT|S} - (1+ r) DPT—l) +Wr [(1"' r) + h(th,T—l)
var(W;[S)= N;,Cp, (tr) Ny

Relying on the definitions of conditional expeatat (Equation (2)) and variance/covariances
matrices (Equation (3)), the following optimal golio holdings are obtained as the solution
to decision problem (7):

N = %[C R COVPTS(tT—l)C;LCOVI;TS(tT—l)]_l(E{PT} - (1+ r) DPT—l) (8)

1 - ) - -
+ a [Cpr - Covprs(tT—1)CleOVprs(tT—1)] 1COVprs(tT—1)Csl(S_ E{S})

The portfolio holdings (8) consist of three compuaise First, a volume componeﬂu that de-
a

termines the allocation of funds between risky &ekless assets. Second, a structural com-
ponent that allocates the risky invested fundsrgls stocks. This structural component itself
consists of two parts. The first part (first liné Bquation (8)), is the tradeoff between ex-

pected value and risk of each stock that can teeinfed through learningov,(t,,). The

second part (second line of Equation (8)) is coragdosf a correction portfolio that adapts

portfolio holdings to signal observations. Notetthiak COV,4(t,,) dependent on learning

the optimal portfolio and time allocation decisiatsall calendar times prior to T — 1. In specise (6), the
one-period decision is, by definition, unconditibaa all calendar times priorto T — 1.

4 Since signals occur only at calendar time T — & henceforth drop the signals’ time index to sifggtiota-
tion.
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and the correction portfolio are exactly those comgmts that distinguish the portfolio hold-

ings (8) from neoclassical optimal portfolio holgain the hybrid model, i.e.,

N.o= =, (P - )m,) ©

The decomposition of portfolio holdings into an estor-dependent volume component and
an investor-independent structural component isMknas Tobin separation. Equation (8)
shows that the Tobin separation breaks down iretlemt of time constraints. The structural

component contains learning-dependent m@shv, 4(t,,) as a function of time invested in
stock analysis. The time invested in stock analysisvever, is investor-specific because it

depends on both the investor-specific speed oiegrand the time constraint.

Inserting the optimal portfolio holdings (8) intbet inner decision problem (6) provides the
foundation for calculating optimal time allocatioms other words, the outer problem of deci-

sion problem (6) reads (see Appendix A.1):

1 ' ~-1
Min e‘amquE(Mr)—Gm(th,H) @_EEE{PT_(H)[?FI} Ory S{Pr-{tar)Pro] detB™(t,) (10)

trq

n

m
siti Ty = Z tisj 11 Tl

=1 i=l

tis 7420 for all i O{L,...,n} and jO{L...,m}
O< th,T—l s Th,T—1
with: B(t,_,) = Id
A\ 4, -1 _
+ (Ch0|e3k§psls)) pPTS(tT—l)[pPTPT - pPTs(tT—l)PslsPPTs(tT—l)] pPTS(tT—l) ChOIESkﬁ’sls)
where det(.) denotes the determinant of a matlixieinotes the ) m identity matrix,p the
m x m matrix of correlation coefficients between signg,. the nx n matrix of correlation

coefficients between stock prices at calendar fimandp,. (i) is the nx m matrix of cor-
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relation coefficients between stock prices at addertime T and signals. Note the dependence
of p.s(t;,) on the time invested in stock analysis and, thius,potential to improve stock

analysis through investing time.
The necessary condition of the timg,(._,) invested in stock i's analysis through learning

about its connection to signal®ads (interior solution):

ddetB(t;,))
dti:sj T-1

detB™(t,))

"distributional effect"

anly)
dtisj T-1

1 _
5 =0 (11)

"income effect"
According to Equation (11), the optimum time alltbea is determined in a two-step proce-
dure. Note that in actuality, both steps occur siameously and are separated here for illus-
trative purposes only.

In the first step, it is determined how the timelget is divided between learning about stocks
on the one hand, and working extra hours to eamub@ayments on the other hand. In the
optimum, the negative impact of investing time tock analysis on riskless bonus payments
(“income effect”) must be exactly offset by its fine effect on stocks’ a posteriori distribu-
tions (“distributional effect”). The “income effécstems from the fact that a higher time in-
vestment in stock analysis leads to a decreaseskiess bonus payments because time in-
vested in stock analysis cannot be used to eamashpayments by working extra hours. Note,
however, that both effects have different starpogqts. The “income effect” describes direct,
the “distributional effect” indirect consequencdslearning on the private investor’s objec-
tives. The indirect consequences stem from the tfadt the “distributional effect” needs a
transformation vehicle, namely, optimal portfolioltingsN+.1, to enter the private investor’s
objectives. Furthermore, stock prices at calenislae T are random variables and a better a
posteriori distribution is no guarantee that thiggie investor achieves higher utility ex post.

Consequently, a private investor with a higher alisarisk aversioro invests more time in
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stock analysis to improve correlation coefficiebetween signals and stock prices. The “dis-
tributional effect” is especially pronounced in teent of informational synergies. “Informa-
tional synergies” occur when information about savstocks can be obtained by analyzing
just one stock. More formally, the time investedimalysis of signal;®xerts influence on the

correlation coefficients of stocks i and i + 1,.eqg . (t,,) andp, . (t,;), compared to the

absence of informational synergies where, (ts ,,) andp, |t holds.

i+1s],T—1)
The second step involves dividing the time budgesfock analysis as a whole, determined in

the first step, between individual stocks.

2.2.2. Second special case: Portfolio selection amek allocation in the last period with

specified learning and bonus payment functions

To characterize the optimal time allocation furthed, in particular, to examine the “distri-
butional effect” beyond the general statements niadgection 2.2.1, it is necessary to solve
Equation (11). This task can be achieved only btiqdarizing the bonus payment and learn-

ing functions.

m n
In a first step, assumet !Vmax M., = Wina [ETH—ZZt.S N lJ, i.e., a linear bonus
T ’ ST

h,T—l) = T
hT-1 hT-1 =1 i=1

payment function. Then, Equation (11) simplifies to

ddefB(t,,))

dtg o

o Mo 41 S =0 (12)
Toa 2 detlB(try)

"income effect" "distributional effect"

Equation (12) shows that both the optimal time gtweent in the acquisition of bonus pay-
ments and in the analysis of signaloSstock i is independent oF,_,. Obviously, a private

investor with a high time budget due to, e.g.,v& fmmber of contractual working hours, will
choose an allocation of time between the acqursitibbonus payments and stock analysis

that is identical to that chosen by a private itnwewith a low time budget. This is because a
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linear bonus payment function means that the “ine@fiect” is independent df, ;_,, and,

thus, via the time constraint in problem (10), ipeledent ofT,_,. This constant “income ef-
fect” is complemented by a “distributional effe¢tiat depends by definition only oL 1y
notonT,.

In a second step, assume uncorrelated signalsravmiralated stocks in addition to linear bo-
nus payment functions. Furthermore, specify a legrenvironment where one stock i has

only one signal $there are no informational synergies, and legrmmthe form of stock

analysis develops according to

tis
Prs (tisra) = |5 (13)
Xmmﬂ

where X is the time that must be invested in analysisigia S of stock i so that the

is T-1

correlation coefficient between signalaé®d stock i’s price equals 1.

The higherx is, the more data are available on stock i andhidpeer the time investment

is,T-1
must be to reach a certain correlation coefficittveen stock prices and signals compared to

a lower X Therefore, it is reasonable to sef; ., larger thanT,_, because then correla-

i T-1"
tion coefficients between stock prices and sigealsnot reach 1, i.e., stocks cannot be ana-

lyzed completely. Despite the dependencexqf, , on stock i, signal Sand calendar time,

is independent of the individual private invesfor, X ., is related to data and the

xisxﬂ
amount of data is identical for all investors adoog to Assumption 3.
Individual aspects do affect learning however, adicg to (13), through the speed of learn-

ing. A private investor with a learning function cacding to Equation (13) takes

L, , , . , , ,
tisra = Pa,s X,sra (0 reach a certain correlation levgl  ; a private investor with a learn-

t.
5T takes longer, namely, ;. , =p, ¢ X
iS,T-1

ing functionp, _ (t

i&Iﬂ): i T
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Based on the learning function of Equation (13§ dptimal time investment; ,_, is (see
Appendix A.1.4):

1 Tor
g i :XiS,T—l_EGﬁ (14)

max
Equation (14) provides several insights into optitimae allocations. First, the private inves-
tor does not analyze one stock completely. Thizeisause he holds a portfolio of stocks and
wants to learn something about each stock in tingtio. This is especially true as there are
no informational synergies in the sense that infdrom about all stocks cannot be obtained by
analyzing any one stocék.

Second, the private investor does not spend an aquaunt of time analyzing each stock. In-
stead, he invests more time analyzing those stimck&hich more data are available (stocks

with higher X ;). Stocks for which less data are available (stawib lower X ¢ ;) do
not need as high a time investment to achieve aguadep,,  (t 4 ;) as do stocks for which

more data are available. To get a feeling whiclesypf stocks have a high and which have a

low X consider real-world stock analysis. Smallcap leadicap companies, which have

iS,T-1?
great difficulty in attracting analyst coveragedse.g., Shearer, 2003, p. 2), create less date

than large companies or exciting high-growth conigrLess data result in a smaller;

for smallcap and midcap companies;

mallcapSsmaiicap T 1

<X .- Moreover, complex sig-

| argecapS argecap!T_
nals like balance sheets are more difficult to ywe&akthan simpler signals like order flow of a

company; thereforex. Finally, the amount of data available about

i,balancesheef, T-1 >X i,orderflow; T-1"
stocks can change over time. For example, in theHoquarter of 2005, solar energy stocks

received a great deal of coverage by analysts,hwdneated a huge amount of data that had to

5 This type of learning behavior is in contrasthe bne in van Nieuwerburgh/Veldkamp (2005) wheresa
tors choose to learn about one stock. The differeartses because in van Nieuwerburgh/Veldkamp (2005
stock prices have common factors that can be ldabyeanalyzing any stock — what we call informagibn
synergies — and, also, their investors cannot labaut stocks’ risk, but only about stocks’ means.
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be transformed into information. Therefore, solaergy stocks changed from being quick to
analyze stocks before the fourth quarter 2005 bogoeore slowly to analyze stocks from the

fourth quarter 2005 on, i.ex

solars; ,3rd <X solarS; /4th *

Third, Equation (14) demonstrates that time investirin the analysis of stock i increases

and higher Wax Since the slope of the bonus payment functi&m in-

hT-1

with lower T, .,

creases with lower, .,

and higher Wax it becomes easier to achieve bonus payment. There
fore, private investors feel less pressure to intiege in bonus payments and the saved time

can be invested in stock analysis.

3. Time constraints and a rational explanation of insufficient diversification and exces-

sivetrading

This section deals with the second goal of the pagpbe application aspect. We will demon-
strate that learning constraints in the form ofeticonstraints offer a fully rational explanation
for two of the most discussed real-world investmgmenomena: insufficient diversification

and excessive trading. Those phenomena are tondaeelequately explained by neoclassical

portfolio selection (see, e.g., Barberis/ThaleQ205ection 7).
3.1. Insufficient diversification

Insufficient diversification is characterized byrgolio holdings that are much less diversified
than recommended by normative portfolio selectimdets (see, e.g., Barberis/Thaler, 2003,
pp. 1101). However, it is not exactly clear how evauld define “much less diversified than
recommended by normative portfolio selection madléfsthe sections that follow, we par-
ticularize insufficient diversification and illusiie how adding time constraints to the neo-

classical model of portfolio selection contributeexplaining insufficient diversification.
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3.1.1. Test criterion

We define the test criterion to detect potentiadraxtions between insufficient diversification

and learning constraints in the form of time caaistis as follows:

the development of the quotient of neoclassicatfplow holdings for two stocks i and j com-

pared with that of the pure learning componentsaotfolio holdings with time constraints.

To apply this test criterion, we have to particidarits components. In this connection, we

employ the special case of Section 2.2.1. Thergfweespecify the quotient of neoclassical

portfolio holdings asm using portfolio holdings (9). The quotient of puearning

j,T-Lneocl
components of portfolio holdings with time constitai consists of the tradeoff between ex-

pected value and risROV,(t,,) dependent on learning, i.e., the first part oftfetio hold-

ings (8) Ni,T—l,Iearn .

j,T-1learn

If a decreasing time budgét yields Nir-seam (for all stock i# j) farther away from 1 than

j,T-1learn

—iT-treod (for gll stock i# j), then tight time constraints can contributeatoational explana-

j,T=1neocl

Z| 2

tion of insufficient diversification.

The test criterion is justified as follows. Barls#fihaler (2003, p. 1101) associate normative
portfolio models with neoclassical portfolio theomeoclassical (unconditional) portfolio
holdings, as in Tobin (1965) and Merton (1969),nbd contain a reference to learning and,
thus, do not distinguish between a priori and agyasi distributions. Therefore, they can be
described with the help of the portfolio holding3. (

Since a posteriori (conditional) portfolio holdin(f® contain learning constraints in the form
of time constraints, they might be a good starpomt in the comparison with unconditional

portfolio holdings. However, caution is needed rdgesy two aspects. First, conditional port-
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folio holdings (8) are characterized by rislov,(t,,) dependent on learning and the correc-

tion portfolio. The correction portfolio containsccambination of limited learning due to time
constraints and signal-induced correction termsthedefore is a mixture of two completely
different components. To analyze the relation betwlearning constraints in the form of time
constraints and insufficient diversification, itngcessary to concentrate on pure learning ef-

fects and, thus, on the tradeoff between expecttaevand riskCov,4(t,,) dependent on

learning. Second, a direct comparison of the pliotfeoldings (9) with the pure learning ef-
fects of Equation (8) is inadequate. Equation (Ohtains an information level of zero,

whereas Equation (8) is characterized by variofisrimation levels depending on the time

budget T. To get around this problem, it is reasonable dou$ on the development of

Nir-sean relative to Nir-ueod for several time budgets. Neithep.r-tiean compared to
N N

j,T-1learn j,T-Lneocl Nj,T—LIeam

Nir-ineon for a fixed time budget nor the size of the pditfdnoldings (8) compared to that

j,T=1neocl

based on Equation (9) are adequate measures.
3.1.2. Results and interpretation

The connections between learning constraints irfdhra of time constraints and insufficient
diversification can be best illustrated by means afumerical example. To do this, we will
employ the framework of Section 2.2.1 (portfolidestion and time allocation in the last pe-
riod) and the learning environment of Section 2(®12e stock i has only one signa) there

are no informational synergies, and learning infdren of stock analysis develops according
to Equation (13)). To further simplify the analysige assume that signals are uncorrelated

and that there are no payments from contractugt @wod no bonus payments.



25

The following parameters are the basis for our mipakanalysi$. The private investor can
choose between two stocks and one riskless asigbtstock prices at calendar time T — 1

P, =P,,, =100, expected value€{P}=105 and E{p,;}=1075, and variance/covariance

atrix [ var(P,; ) 0, [0, mpmpﬂj: [512 2576

. The riskless rate equals 2%
O, 05 [Pp 5, var(P, 2576 1058

per annum, and the private investor has an exogemzome of W.; = 25,000 EUR. The

private investor’s absolute risk aversiof ds:i

1700C°
With respect to stock analysis, two scenarios aresidered. In the first scenario, there are

more data available for Stock 1 than for Stocke?, K 5 ;, =1 > X, ;, =08. In the second

scenarioX g r, = 064 < X 4 1, =08.

Using these preliminaries, we plot the test cratergquotient =m based on Equation

j,T-1learn

(8) (conditional holding), versugm, based on Equation (9) (unconditional holdings), a

j,T-Lneocl

a function of the time budgét and obtain:

6 We do not strive to explain portfolio holdings falin the empirical literature. In particular, we dot claim
that the parameters dealing with the time condtrai@ empirically valid although we believe theg aealis-
tic.

7 A riskless rate of 2% is in accordance with therent term structure of interest rates in Germa%;000
EUR is approximately the gross national income qagita for Germany in 2004 according to World Bank

statistics.
Nir4 (P14 do not contain a short
WT—l

sale of one risky or the riskless assetyw= 25.13%, wr.; = 29.23%, and yv.; = 45.63%.

8 The absolute risk aversion is chosen so that tintfgtio weightsw_t_l -
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Fig. 1a. Stocks’ test criterion quotients when  Fig. 1b. Stocks’ test criterion quotients when

X =1>X 25,71 = 08 (Scenario 1) X s 14 = 064 < X 25,71 = 08 (Scenario 2)

15,71
Figures 1la and 1b illustrate that the interactietwieen availability of data (different levels of
X in Scenarios 1 and 2) and time budgélg provides rich diversification patterns, including
insufficient diversification: In Scenario 1, thestecriterion quotient for conditional portfolio
holdings is closer to 1 than that for unconditionaldings, irrespective of the tightness of the
time constraint. For time budgeTs around 0.4, conditional portfolio holdings evemwsma-
ive diversification, i.e., the test criterion coeint is around 1. By contrast, in Scenario 2,
conditional portfolio holdings are significantly meounequal than unconditional portfolio
holdings for all time budgets considered. This nsedrat investors with different time budg-
ets follow completely different levels of diversidition even though they have identical data,
risk aversions, and wealth. Moreover, stocks withifierent amount of data (different X) in-
duce different diversification patterns, as Scargfi and 2 illustrate, although their uncondi-
tional portfolio holdings are independent of theoammt of data X.

Since a private investor optimally invests a défgramount of time analyzing each stock, he
possesses different information on each stock enojitimum. Consequently, insufficient di-

versification of portfolio holdings can be explaihthrough a normative portfolio selection
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model, namely, portfolio selection with learningnstraints in the form of time constraints.

There is no need to attribute it solely to boundsbnality.
3.2. Excessive trading

Excessive trading occurs when portfolios are retiined more often than can be justified by
the availability of new information (see, e.g., Benis/Thaler, 2003, p. 1103). However, once
again, it is not exactly clear how one would defirestructured more often than can be justi-
fied by the availability of new information.” In ¢hsections that follow, we particularize ex-
cessive trading and illustrate how adding time traigts to the neoclassical model of portfo-

lio selection contributes to explaining excessragling.
3.2.1. Test criterion

We define the test criterion to detect potentiahrextions between excessive trading and

learning constraints in the form of time constraias follows:

the quotient of the pure learning components offplie holdings with time constraints for
one stock i at different calendar times T — 1 andZafter the incentive to rebalance neoclas-

sical portfolio holdings has been eliminated.

To apply this test criterion, we have to particizarts components. Based on the special case

of Section 2.2.1, we specify the quotient of pwarhing components of portfolio holdings

with time constraints at different calendar tims%w, the multi-period analog@ef the

j,T=1learn

pure learning component of the portfolio holding} (

Nir-siean (for all stocks i) differs for different time buets T even though the incentive for

j,T-1learn

If

rebalancing neoclassical portfolio holdings hasnbeleninated, then time constraints can be

successfully connected with excessive trading.
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The test criterion is justified as follows. The seaableness of concentrating on the pure
learning component of the portfolio holdings (8)drder to study the effects of time con-
straints was previously justified (see Section13.1To elaborate the frequency aspect of ex-
cessive trading it is, in addition, necessary tasuee the frequency of portfolio restructurings
with time constraints against the frequency of fotid rebalancing in a neoclassical world,
i.e., to separate information-induced trading froominformation-induced trading. All neo-
classical dynamic portfolio selection models adveqgaortfolio restructurings. For example,
the discrete-time models of Fama (1970) and Hakengk970) restructure their optimal port-
folio holdings at every point in calendar time. Té¢mntinuous-time models of, e.g., Merton
(1969, 1971, 1973), even rebalance portfolio hgslinontinuously and thus make excessive
trading impossible. Portfolio rebalancing in nesslaal dynamic portfolio selection is based
on the fact that calculated and actual portfolitdimys usually deviate when the random vari-
able stock price becomes known. The reason fornbisnformation-induced rebalancing is
that the calculated portfolio holdings are basedrmments of the stock price distribution,
whereas actual portfolio holdings are based onahstiock prices. This means that neoclassi-
cal portfolio holdings are not restructured onlaitertain realization of the random variable
stock price occurs. This realization of the randaariable stock price is what we call “com-
pensated stock price.” Using compensated stoclkeg@and calculating portfolio holdings (8),
we can be sure that every restructuring of M\earn must be information induced, i.e., related

to learning constraints in the form of time conistisalone.
3.2.2. Results and interpretation

The numerical analysis in this section is basetherparameters of Section 3.1.2. In addition,

we use the following parameters to extend our exanaptbe dynamic world.

9 A derivation of portfolio holdings for this spetizase is contained in Appendix A2.
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The private investor is put into a two-period frameek. Stock prices’ expected values at cal-

endar time T are&{p,,}=11025 and E{P,, }=11556. The variance/covariance matrix at calen-

dar time T — 1 read o1z 0 , that of calendar time 0240 , and all intertemporal
0 58 0 2116

correlation coefficients between stock prices ated® zero. The compensated stock prices can
be calculated within this environment as folloW®$; 1.1 = 96.23 and $£r;= 91.43. To sim-

plify notation, we further assumg_, =T, andX o, =X s ;-

Using these parameters, we plot the test critegiostient :M, based on Equation (8),

j,T=Llearn

versus Nir-zneo =1, based on Equation (9), as a functiorof T,_, =T,_, and obtain:

i,T-1neocl
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Fig. 2a. Stocks’ test criterion quotients when  Fig. 2b. Stocks’ test criterion quotients when

X 15,,T-2 =X 15,,T-1 =1 > X 25, T-2 =X 25, T-1 =08 X =X T-1 =064 < X 25, T-2 = XZSZ,T—l =08

15,72 ~ N1y

(Scenario 1) (Scenario 2)

Figures 2a and 2b demonstrate that different tinndgbts T ) and different availability of
data (different levels of X in Scenarios 1 anded to different portfolio restructurings since
the test criterion quotients are usually unequal.tdn fact, in this numerical example, the

more time that is available, the more the privateestor can learn and the more pronounced

10 The calculations are available from the authorslagle file.
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the portfolio restructuring will be. Only for onanicular T is no portfolio restructuring opti-
mal (test criterion quotient equals 1).

This means that investors with different time budgeill restructure their portfolios differ-
ently even though they have identical data, rislrsions, and initial wealth. Moreover, stocks
with different amount of data (different levels XJ induce different rebalancing patterns —
see Scenarios 1 and 2 — even though their neczdhgsirtfolio holdings are not restructured
in the optimum.

Since, at each point of calendar time, a privatesior optimally spends a different amount of
time analyzing each stock, he possesses diffenémimation on each stock at different calen-
dar times. Consequently, frequent portfolio rebeilagn can be explained through a normative
portfolio selection model, namely, portfolio seleatwith learning constraints in the form of
time constraints. There is no need to attributeolely to bounded rationality or to label as

“excessively” frequent portfolio rebalancing.
4. Conclusion

We began this paper with the observation that i délge of the Internet and the ready avail-
ability of financial news on television, privatevastors can obtain, without cost, an abun-
dance of data concerning stocks, including hisabrstock quotes, companies’ fundamental
data, and analysts’ reports. However, private itoresdo not have enough time to transform
data into information because they must meet plogical needs and work, leaving little
time to obtain information about stocks via stonklgsis.

Starting from this framework, the following resulise obtained. Time constraints introduce
investor-specific components into the structurgaitfolio holdings. Moreover, due to time
constraints, it is not optimal for decision makersither analyze one stock completely or in-
vest an equal amount of time to the analysis oh estiock. Therefore, decision makers have

different information on different stocks at diféert calendar times even though the amount of
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publicly available data has not changed. Consegenis reasonable to adapt the portfolio
strategy to this unequal level of information, whimight result in insufficient diversification

and frequent portfolio restructuring.

By basing our model on a fully rational insteadadfounded rational private investor, we of-
fer a new explanation of real-world investment gitaena, phenomena that have, to date,
primarily been interpreted in light of behavioraldnce. We do not reject the findings based
on behavioral finance; rather, we point out thar¢hare other explanations for real-world in-
vestment phenomena. We believe we have takentasfap toward the unification of mainly
descriptive behavioral finance and normative ptidftheory. Also, we believe we may have
found an answer to the questions posed by Shigé&0, p. 195): Why do different investors
have different models of what are good investmantswhy do they trade so much with each
other? Perhaps it is because they are subjectfevatit time constraints and, thus, have dif-

ferent amounts of information available to guidenth
Appendix
A.1l. Optimal time allocation in the static model

To transform decision problem (6) into the basisdetermining optimal time allocation in
problem (10) using the optimal the portfolio holgn(8), several intermediate steps are nec-

essary.

A.1.1. First step: Calculation of the expected eabd the inner problem (6) using optimal the

portfolio holdings (8)

Since W and signalsS are jointly normally distributed, the expecteduebf the inner prob-

lem (6) reads
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E{_% L |S} = -2 st (AL1)

Wlth E{W |S} ( {P |S} (1+ r) |:IPT—l) + WT—l [(14- r) + h(th,T—l)
Var(WT|S) = N;'—lcpT\s(t T—1) NT—l

Using the optimal portfolio holdings (8) — in th&erests of simplification, the expression for

C;Tl‘s(tT_l) has not been substituted into portfolio holdings —

Noy = 207 () (B[P} - (L 1) PLy) (AL.2)

1

+— C;l\s(tT—l) COVPTs(t T—1)Cgl (S_ E{S})

E{w,|S} and var(w,[S) in Equation (A1.1) can be calculated.

E{WT|S} reads, after using its definition in Equation §2d performing some simplifications

E{wi[s} = W, dft+r)+h(t,.) (A1.3)

+ P} - (L) PL) Ot ) (ER - ) P)
+ 20 E{R} - (L41) TP Cla(tr) COVo(t7)CE(S- )

+— [GS E{S) C_lCOVPrS(tT 1)CP\s(tT—1) COVPFS(tT—l)Cél(S_ E{S)

var(WT|S) reads, after using its definition in Equation &) performing some simplifica-

tions

varl,[8) = HE(P} - (+ )Py Crlelty ) (B[P} - @) P ) (AL4)

+20 HER) - (L+1)(PrL) Crlalty ) COVye(ty)CE (S ElS)

#— 5-E[S) C COVyet; ) Clty ) COVye(t, )CE(S- EIS)
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Inserting theexpected value from Equation (A1.3) and the vaednom Equation (Al.4) into

Equation (Al1.1), we obtain for the expected uti(ifyL.1)

E{_l GE_GIWT |S} — _1 @‘UWVT—l[Cﬂ”)‘Um(th‘T—l) (A15)
o a

xp] -5 HE(P) - () P) Gt D (EP - (1))
B (E{PT} B (1+ I’) DPT—l) 'C;Tl\s(tT—l) COVPTs(tT—l)C;I(S_ E{S})
P [GS E{S}) C_l COVPTS(tT 1)Cpr\s(tT—l)COVPTs(tT—l)C;l(S_ E{S})}

A.1.2. Second step: Calculation of the expectedevaf the outer problem (6) using the ex-

pression for the inner problem (A1.5)

To calculate the expected value of the outer prold@d, thus, to have a foundation for de-

termining the optimal time allocation, the followiexpectation with respect to sign&lsnust
be computed:

E{ E{—i e s}} (A1.6)
a

Calculations will be simplified by switching fronormally distributed variableS to standard

normally distributed variables Ys by using the transformation

-1
S= E{S}+[(cholesk3(€;l))] v_.11 For that reason, it holds

E{ E{_ 1 BB_GNVT |S}} - _ 1 E_GNVT—l[Cu"H)_qm(th,T—l) (Al7)
a a

ool L ElP - 1 1) ) e ElP ) - ) omy )

11 This transformation stems from the consideratibat t(S- E{S}) cholesk)(C‘l)(cholesky(C )) (s-E{s})
should be transformed int¥; Id Y4 and has in the event of just one random varidigentell-known mani-
festationS = E{S} + std(S) Y
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B (BP - (14 1) Py, ' (t) choleskiC2) Y,

. % [ cholesk{Cat ) COVye(ty 1) Crlg(try) COVps(ty ) cholesk(cgl)vs}

Using the signals’ m-dimensional standard normaisdg function to calculate the expected

value in Equation (A1.7) (last two lines of Equati@Al.7)), Equation (A1.7) can be written

E{ E{ _1 @ oW
a

g e -0+ 1)Pr) Gttt (ER) - )P,

S}} — _1 @‘UWVTA[@-”)‘U[E(%.T&) (A18)
a

00

h 1 1

O - | ——= -=yLl

j 2[11[%{ 2ysdy5j

@xp(— (B[P}~ @+ )P, ) C oty 1) COVig(t ) choleskiC )y

;{ L1y, (choleskg2) covi(t, 1)cpS(tH)covF,TS(tT_l)cholesk(¢;1)y3)

whereys denotes the realizations of the random variablgs@nd Id is the identity matrix.

To compute the integrals in Equation (A1.8), wévstto transform the integrants in Equation

(A1.8) to density functions so that the integradma 1. This requires, first, that the terms
1, _
ex;{—zys Id ysj and ;{ L1y cholesk{ez)) covyt, )Cg(tr4) COVig(t )

choleskfC:')y,) are combined and, second, that they are transébiinte a new standard

normally distributed random variable with realipa$zs; formally

ex;{—;z's Id zsj

ex;{—éy’s Id ysj (A1.9)
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Eax;{ ;@/S (choleskicz))cov;, ot l)cF,TS(tT_l)covprs(tT_l)choles,k;(c;})ysj

= 1, - ,
~ex —2y3[|d+(cholesk(ﬁ?S )) COVps(ty l)CF,S(tT_l)COVF,TS(tT_l)cholesl‘(ﬁsl)}yS

=B(t,)

Applying the argument set out in footnote 11 letadg, :[(cholesk‘B(tT_l)))'}_lzs- Along with

changing the exponent froy to zs, we also need to adapt the integration varialNese that

dys contains the first row of the vectoys and thus equals the first row of
A =[(Ch0|eSk)(B(tT_1)))'Tzs- For that reasondy, ---dys can be obtained by multiplying the
s -

elements of the main diagonal [c(&hmesk)(g(tT_l)))']l and switching taizg ---dz

Therefore, the next problem is writing “multiplyintge elements of the main diagonal” of

! _l - - - - -
[(chmesk)(s(tT_l)))} in a more concise form. From the transformatiomafmally distrib-

uted random variables into standard normally disted random variables (see the argument

in footnote 11 and the text accompanying same)knesv that the product of the elements of

-1
the main diagonal Oﬁ‘(cholesk)(cgl))} equals,/defC.), where det(.) denotes the determinant

of a matrix. By analogy, we obtain for the prodottthe elements of the main diagonal of

[(cholesk)(B(tT_l)))’]l the shorter expressiafde(B™(t,_,))-

Based on the above findings, Equation (A1.8) sifigslito

E{ E{ L o,
a

g BP0+ 1)Pr) Gttt (ER) - )P,

S}} — _l GE_GNVT—lme")_Um(th.T—l) (AllO)
a
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00

Dj 1 Eéxp{ —zsldz j
02

BEXF{_ (E{PT} B (1+ I’) [Py ) P \s(tT 1) COVis(try) Ch0|eSk)(C )
[(cholesk;(B(tT_l)))'TZS]

[z, ---dzg l/deﬂB‘l(tH)i

Finally, to finish the transformation to densityn@tions, we need to complete the square of

I

the exponent in Equation (A1.10). Defing'(t, )=g{p, -(1+r)P,,} C2

Pls

(tT—l) COVPTS
Cholesk)(Cgl[(cholesk)(B(tT_l)))'J_l, then the square can be completed by adding

i%K'(tT_l)K(tT_l) to the exponent of the term in the second and toitast lines of Equation

(A1.10). After these transformations, Equation (Al).reads

E{ E{ _1 @ oW
a

g e -0+ 1)Pr) Gttt (ER) - )P,

S}} — _l GE_QNVT—lme")_O‘m(th.T—l) (Alll)
a

% K'(tr-1)K (tr-)

1 '
D,[ Iﬁ [exp(—a(zs +K (tT_l)) Id (zS +K (tT—l))j

s dzg JdefB(t,.,))

which yields

E{ E{— L o |s}} = -1 reweten-an(r) (A1.12)
a a



37

oxpl L ElP - (1 1) ) o) ElP ) - )17y

@%K'(tH)K(tH) Q/m
A.1.3. Third step: Simplification of the componenit€£quation (A1.12) to derive Equation
(10)
Problem (10) distinguishes itself from Equation (B) in two respects. On the one hand, the
second line of Equation (A1.12) must be merged "%jm'(tT_l)K(tT_l)? on the other hand,

B(tt.1) must be simplified.

Tedious calculatiorig lead to
ex -2 {ElP) - (L )PL) ol (P - ()P (113

%K’(tT—l)K(tT—l) _ e_%[E{PT_(l"'r)lPT—l}’C;ﬁl-E{PT_(l+r)[E’T—1}

To expressBi(t,.,) = Id + (cholesk{cZ )| cova(t, ) Cilis(ty 1) COV,g(t, ) cholesk{c) with the

help of correlation coefficients, proceed as fokowVrite all variance/covariance or covari-
ance matrices as the product of the matrix of stethdeviations and the matrix of correlation
coefficients, i.e..Cq = diagpss, COV,s(ty,) =diag, pps(ty,)diag, andC, =diag, p,, , Where
diag-t denotes the diagonal matrix of standard deviatainstock prices, diagthe diagonal
matrix of standard deviations of signals, gndenotes the matrix of correlation coefficients
between random variables.

With these substitutions, we obtain

B(t,.,)= Id (A1.14)

+(choleskic )) diag phs(tr)diag, C3s(tr) diag, ps(tr)diag cholesk{c!)
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with

CpT\s = diag, ppp diag, - diagPTpPTS(tT—l)p;]épPTS(tT—l) diag,
and

choleskyC;!) = choleskydiags* p2L diag:!)
Sinces choleskyC3') = diags'choleskypsl), Equation (A1.14) can be written as
B(t,.,)= Id (A1.15)
+ cholesidpat)] st ) diag, ot ) diag, pys(tr-0) choleskdp)
with
Cp(tr) =diag, [prn —Prs(trs)pesprs(try)|diag,
From Equation (A1.15) follows immediately the exgsi®n ofB(tr.1) used in Equation (10).

A.1.4. Derivation of the special case of Equatidt){ Uncorrelated signals and uncorre-

lated stocks

In the event of uncorrelated signals, the correfatnatrix of signalsp., equals an identity

matrix; the same is true for the correlation matrsstocksp,, . . Finally, p, (t,,) transforms

. . . pPLTSl (t l,Sl,T—l) 0 . .
into the diagonal mat”)f)st(tT_l) = 0 Prs (tos,ra) O Based on these simpli-
. 0 :
. . 1- ppzausl (t 1,Sl,T—1) 0
flcatlons,cmS readsCPT‘s - diag, 0 1-p o (tyr0) O |diag, "
. 0 .

Inserting this expression fca]:P‘S into Equation (A1.15), yields

12 These calculations are too lengthy to be set ew;thowever, they are available from the authpenure-
quest as Maple files.

13 This can be seen as foIIowsholesk)(cgl)(choleskicgl)) = C_' by definition. Using the pretended rela-
tion diag;'choleskypsl), we calculate diagglcholesk)(pgls)(diag;lcholesk)(pgg)) , which equals
diagglcholesk)(pgls)(cholesk)(pgls)) diag', i.e., diag;'posdiags' = CJ .



P, (tisra)
0

B(t,,)=Id +

1- péusl (tl,Sl,T—l)

In other words,

0

pPZYTSZ (t 252,T—1) 0|0
0 K

0

1- piz‘Tsz (t 2SZ,t—1) 0

0

1
Pr,s (tis 1)
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(A1.16)

Pp,.s, (t 2,32,T—1) 0

Prs (tis 1) 0
10 l_pé”sl (tl,Sl,T—l)
,
t -
B(t,,)=|0 1 0|+ 0 pPZ;S?( 25,71 (AL.17)
Lo l_pszTSZ (t2521,T—1)
0
and finally
2 1 O
:I-_pp”sl (tl,Sl,T—l)
_ 1 (A1.18)
B(t,.) = 0 0
= 1-p5, s, (tos, 70)
0
CalculatingdetB(t,_,)™*) with the help of Equation (A1.18), results in
det(B(t T—l)_l) = (1_ p;imsl (tl,Sl,T—l))l:Ql_ plius2 (t 252,T—1))D~ . (A1.19)

Assuming a functional relationship between timeestment and the correlation coefficient

between stock prices and signalas (t.. . )= t'ﬁ# Equation (A1.19) simplifies to
TS i5,T-1 X IS T-1

det(B(tT_l)‘l) = [1— bisra j EEl— L2511 j 0. (A1.20)

X 18,71 X 28, T-1

Furthermore, assume a bonus payment functiongHisigar in § 1_1:

h(t,r.) = ¥V S P (A1.21)

hT-1
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Using the time constrairti;ﬂ_l =T, -

i=1

tigra @S well as Equations (A1.20) and (Al1.21), the

necessary condition for the time invested in thalyais of stock i (Equation (11)) simplifies

in this special case to

g =0= O(% (A1.22)
ot T
is.T-1 hT-1
1- Dera gy e |
+1 O X 15, T-1 X 25, T-1 Eﬁ_ 1 J
2 1 tl,Sl,T—l 1- tZ,SZ,T—l 1- ti,s,T—l 0 xiSW,T—l
Xis11 X 25,71 Xigi1
that is,
1
t; X,
1- X.a _ %G V\I/S (A1.23)
is of — max
Thra
and finally
1. Tor
tigta = Xigra 5 GO( &X/l_ (A1.24)

A.2. Optimal portfolio holdings and time allocat®m the dynamic model of the numerical

example

A.2.1. First step: Calculation of the inner problencalendar time T — 1 of decision prob-

lem (5)

The inner problem at calendar time T — 1 of our-peoiod decision problem reads

1

— E_GW\IT
a

Max E{

Nt

St-1:Sr-2» WT—l} (A2.1)

Key to its solution is calculating the distributiohWr conditional orSr.1, Sr.,, and W;.



41

Using the n dimensional multinormal density of &tquices at calendar time T (see, e.g.,

Mardia/Kent/Bibby , 1992, p. 37), the expected eadfi Equation (A2.1) can be written as

(A2.2)

Pr|Sr1.Sr- ZWTl)

Edax;{—% E(IOT ~Easiusaw )’C

B:,\_O”WT d Py

I j \/det(Z ChiC

_l _
Pr/Sr_1.Sr_p Wr sy (pT SN )j

dpn,T
where dor denotes the realization of the random variableepof stock i at calendar time T

andpr is the vector of the realization of stock pricesaendar time T

with
Ee s w, = E{Pr}+COV, (tr,,t,)CH (S - E{S))
Crsrsamr, = Cr ~COVps(tr 5 t,)CICOVY o(t 5. tr,)
and

:( 1 St v St Sy WT—l)

Assuming two signals, the abstract conditional etgek values, variances, and covariances

can be particularized as follows:

COV,':TS(t T2 tra) =

covS, 14 Sora)
var(s, )

CO\’(SLT—z ’SZ,T—l)

coMS, 1, Syr)

CO\’(WT—l ’SZ,T—l)

coS,r4 Sors)

) CO\(SZ,T—l ’SZ,T-Z)
CO\(SLT-Z ’SZ,T-Z)

var(s, )

) co WT—l ’SZ,T—Z)
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where cov( St l,WT_l) = cov(SzyT_l,WT_l) =0 because signals at calendar time T — 1 influence

future wealth, but not wealth at the same caletideeg when signal realizations become ob-
servable. &.i denotes the random variable signa&Scalendar time T —i,; price of stock

j at calendar time T — i, antk() portrays the dependence of covariances on theitiwested

in stock analysis at calendar time T — .

Differentiation of Equation (A2.2) with respecty.; yields the optimal portfolio numbers at

calendar time T — N, (S,_,,S;,, W,_,).

A.2.2. Second step: Calculation of the outer probég calendar time T — 1 of decision prob-

lem (5)
The outer problem at calendar time T — 1 of our-pgaod decision problem reads

Max E{—% ™S, WH} (A2.3)

trg
where W containsN’_, (S;_,, S, W;_, ).

Using the m dimensional multinormal density of silgnat calendar time T — 1, the expected

value of Equation (A2.3) can be written as

00 o0

imf I\/det(ZDT[C

(A2.4)

Pr|Sr_2 Wy )

[exp(_% E(S‘T—l ~Es s ) Cs s o (SH "Bl )j

[e"d SR d Sm1-1

where ¢ 1.1 denotes the realization of the random signat®alendar time T — 1 arsgl; is
the vector of the realization of signals at calericthae T — 1,
with

E =E{s; ,}+CoV,_CH(S-Es))

Sroi|Sroo Wiy
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c =C,  —COV, CJCOVY

SroalSr—o Wry

and
S’:( T-2 SZ,T—Z WT—l)

cov = CO\'(SJ-T‘l ’SLT—Z) CO\’(SJ.T—l ’SZ,T—Z) COV(SLT—l'WT—l)
SraS COV(SZ,T—l Sn-z) c0\/(SZT_l ’SZ,T—Z) CO\I(SZ,T—l’WT—l)

Var(SLT—Z ) COV(SLT—Z Sy7- ) COV(SLT—Z , WT—l)
Cs = COV(SZ,T—Z ’S:LT—Z) Var(sz,T—z) COV(Sz,T—z ; WT—:L)
COV(WT—l St ) COV(WT—l Sy1-2 ) Var(WT—l)

Differentiation of Equation (A2.4) with respect tp; yields the optimal time investment at

calendar time T — 1t% (S,_,, W,_,).

A.2.3. Third step: Calculation of the inner probl@mcalendar time T — 2 of decision prob-

lem (5)

The inner problem at calendar time T — 2 of our-pmeoiod decision problem reads

Max E{—% e ™ |5T_2} (A2.5)

Nt_2

where W containsN’_ (S;_,, Sy, W, ) andt;_ (S;_,, W, ).
Using the n dimensional multinormal density of &q@eices at calendar time T — 1, the ex-

pected value of Equation (A2.5) can be written as

00 00

imf .[ \/del(ZDT[C

, (A2.6)
..

@X[{_% E(pT—l - EF’H\ST_2 )’C;Tl_l\ST_z (pT—l a EF’T-l\Sr-z )j

E_ade pl,T—l --d pn,T—l

where o 1.1 denotes the realization of the random variableepof stock i at calendar time T

— 1 andpr.; is the vector of the realization of stock pricesaendar time T — 1,
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with

E, s, = E{Pr}+COV, (t;,)C5(S-E(s))
Cp s, =Cpn, ~COVy (t;,)CSCOVL o(ty-,)
and

S' = (Sl,T—Z SZ,T—Z)

coMP, 1 Siro Ntr)  CoMPyry ,sz,T_z)(tT_z)j

COVPH ° (t-2) = (COV(PZT—l ’SLT—Z )(t 1-2) CO\’(Pz,T—l 1SZ,T—2 )(t T-2)

C — [ Var( T—Z) Cov(sl,T—Z 'SZ,T—Z )j
® COV(SZ,T—Z ’S:LT—Z) Var(S2,T—2)
Differentiation of Equation (A2.6) with respectif.; yields the optimal portfolio numbers at

calendar time T — 2N, (S,_,).

A.2.4. Fourth step: Calculation of the outer prablat calendar time T — 2 of decision prob-

lem (5)

The outer problem at calendar time T — 2 of our-pgdod decision problem reads

Max E{—% E@“’WVT} (A2.7)

where W ContainSN*T—l (ST—Z'ST—l’WT—l)’ tfl'—l(ST—Z’WT—l)’ and N*T—z (ST—Z)'
Using the m dimensional multinormal density of silgnat calendar time T — 2, the expected

value of Equation (A2.7) can be written as

00 0

1 1 1 PUR
_ED_[) J' Jdeizmm%_z)[exp(—ztﬂsT_z—EsT_z)csT_z(sT_z EST_Z)j (A2.8)

[e"d Sir27 d Sm1-2

where o 12 denotes the realization of the random signat®alendar time T — 2 arsgl; is

the vector of the realization of signals at calerithae T — 2,
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with

S=(Srs Surc)

Differentiation of Equation (A2.8) with respect $., yields the optimal time investment at

calendar time T — 2t7_,.
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