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Abstract 
 

We describe the economics literature on auction markets, with an emphasis on the 
connection between theory, empirical practice, and public policy, and a discussion of out-
standing issues. We describe some basic concepts, to highlight some strengths and 
weaknesses of the literature, and so indicate where further research may be warranted.  
We discuss identification and estimation issues, with an emphasis on the connection 
between theory and empirical practice. We also discuss both structural and reduced form 
empirical approaches. 
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1 Introduction

Auctions are an important market institution. Our purpose in this chapter is to review the

theoretical and empirical literature on bidding in auction markets, although the discussion

of the theory will be limited to instances where the models have a direct bearing on some

empirical literature. The emphasis is instead on empirical work.

There are many auction markets in which excellent data are available. There are several

di¤erent types of auction data sets that have been analyzed in the literature. These include

government sales, such as sales of timber and mineral rights, oil and gas rights, treasury

bills, and import quotas, privatization sales, spectrum auctions and auctions of SO2 emission

permits. Auctions are important in government procurement, including defense contracts,

and contracts for highway construction and repair, and for school milk. In the private sector,

auction houses such as Sotheby�s and Christies sell art, wine and memorabilia. There are

agricultural sales (e.g., eggplants in Marmande, France), estate sales, real estate auctions,

and used durable goods sales, for used cars and farm machinery. Burlington Northern

has employed auctions to allocate future railcar capacity. The recently created wholesale

electricity markets in the United Kingdom, Australia, various regions in the United States,

and elsewhere often employ auctions. There are also now many internet auctions, with eBay

the most prominent. Finally, auctions are frequently the subject of experimental research,

both in the laboratory and in �eld experiments.

Auction data sets are often better than the typical data set in industrial organization.

The auction game is relatively simple, with well-speci�ed rules. The actions of the partici-

pants are observed directly, and payo¤s can sometimes be inferred.

Why use an auction as a trading mechanism, rather than posting prices, bargaining or

contracting? There is usually some uncertainty about the buyers�willingness to pay, and

heterogeneity among potential buyers. Also, some degree of product heterogeneity is often

present, so that past transactions are not a reliable guide to current market prices. In these

circumstances, auctions can be an e¤ective price discovery process.

There are many possible auction mechanisms. They can be characterized in terms of (1)

a message space (i.e., what information do the bidders send to the seller) and (2) the seller�s

allocation rule, specifying which, if any, bidders might receive the item, and the probability

that they receive it, and payments from (or transfers to) the bidders, as a function of the

messages received. For example, consider a seller who has one item to allocate, and where
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messages are bids. Then one can roughly categorize common auction mechanisms into one

of four cells:
Highest Bid Second Highest

Open Dutch English

Closed FPSB Vickrey (SPSB)

In closed auctions, submitted bids are considered simultaneously by the seller. In a �rst

price, sealed bid (FPSB) auction, the item is awarded to the highest bidder, who pays his

bid. In a Vickrey or second price sealed bid (SPSB) auction, the highest bidder wins and

pays the highest losing bid. In open auctions, bidders call out their bids sequentially. In a

Dutch auction, the seller starts the auction at a high price, and lowers the price until a bidder

says �stop.�That bidder wins the item at the stop price. Thus, only the winning �bid�is

submitted. In an English auction, the seller starts the auction at a low price, and the price

increases until no bidder is willing to raise it further. As we will describe in more detail

in Section 3, there are many ways to run an English auction. Under several variants, the

winning bidder acquires the item at the drop out price of the last remaining losing bidder,

so that the outcome is like a second price auction. Similarly, the Dutch auction is akin

to a FPSB auction. Variations on these mechanisms include secret or publicly announced

reserve prices or minimum bids, and entry fees or subsidies.

In this chapter we describe the economics literature on auction markets, with an empha-

sis on the connection between theory, empirical practice, and public policy, and a discussion

of outstanding issues. Auction markets are the subject of a large and distinguished theo-

retical literature. Klemperer (2004), Krishna (2002) and Milgrom (2004) provide excellent

summaries of the theory and applications to public policy issues. There are also older

thorough surveys by McAfee and McMillan (1987) and by Wilson (1993). An extensive

empirical literature using data from auction markets has emerged recently. Our goal in

this chapter is to provide an introduction to the empirical literature. Our intention is to

describe some basic concepts, and to highlight some strengths and weaknesses of the lit-

erature, and so indicate where further research may be warranted. There are two other

contemporaneous reviews of note, which complement our chapter. Athey and Haile (2005)

survey various approaches to the estimation of structural models of equilibrium bidding,

with an emphasis on nonparametric identi�cation issues. Paarsch and Hong (2006) also

discuss structural modeling, with an emphasis on estimation issues, often in a parametric

context. We will also discuss identi�cation and estimation issues, but our emphasis will
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be on the connection between theory and empirical practice. We will also discuss both

structural and reduced form empirical approaches. The surveys by Hendricks and Paarsch

(1995) and by La¤ont (1997) describe some of the early empirical analysis of auction data

sets. Finally, Kagel (1995) surveys the considerable literature on laboratory experimental

auction markets, and Harrison and List�s (2004) survey of �eld experiments describes some

auction market �eld experiments. We refer to the experimental literature only occasionally,

and interested readers should consult the surveys for more detail.

Auctions o¤er the prospect of a close connection between theory and empirical work.

Moreover, much of the theoretical work on auctions has speci�c positive or normative goals

in mind, and so empiricists are not usually required to re-cast the theory before testing

theoretical predictions. Given a speci�c auction mechanism, the positive role of theory is

to describe how to bid rationally, which usually involves characterizing the Bayesian Nash

equilibrium (BNE) of the bidding game. Given the number of bidders, the joint distribution

of their valuations and signals, and some behavioral assumption, the normative role of theory

is to characterize optimal or e¢ cient selling mechanisms. These two roles are re�ected in

the way theoretical work has been employed to guide empirical work and policy advice.

Theory helps to shed light on how to interpret patterns in the data, suggests comparative

static results that can be tested, and guides optimal mechanism design.

Empirical work also has positive and normative goals. The positive goal is to answer

questions such as how agents behave, and whether their valuations are correlated and, if

so, the sources of the correlation. Given the auction environment, a bidder�s strategy is a

mapping from his private information to a bid. Hence, a realization of bidder signals induces

a distribution of bids. One can then ask whether an observed bid distribution is consistent

with BNE, and test for such properties as independence. With experimental data, the

researcher knows what signals were received, but not the preferences of the bidders, and one

can compare predicted to actual bids under di¤erent assumptions concerning preferences.

Thus, the consistency question is well-de�ned. However, with �eld data, the researcher

does not know what signals were received, and real modeling issues arise in examining the

consistency question. The positive analysis can be of more than academic interest, since

bid rigging or collusion may be distinguishable from non-cooperative behavior, if the two

have di¤erent positive implications. One can also ask whether risk aversion is an important

feature.

The normative goal of empirical work is to answer questions such as what the revenue
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maximizing or e¢ cient auction might be. If one knows or one can estimate the relevant fea-

tures of the auction environment, especially the joint distribution of valuations and signals

for potential bidders, and one knows which behavioral model is appropriate, then optimal

auction design is feasible. Alternatively, one can test whether the auction design is optimal.

For example, McAfee and Vincent (1992) ask whether the reserve price is chosen optimally

in the �rst-price, sealed bid (FPSB) auctions they study.

For want of a better description, there have been two kinds of approaches adopted

in the empirical literature, which we term reduced form and structural. Reduced form

analysis tests predictions of the theory to draw inferences about behavior and the bidding

environment. The goal of the structural approach is to estimate the data generating process

directly, in particular the joint distribution of valuations and signals, usually under the

assumption of risk neutrality and BNE. The strategy is to characterize the Bayesian Nash

equilibrium of the auction to obtain a functional relationship between signals and bids, and

therefore between the distributions of signals and bids. Assuming a BNE equilibrium exists,

one can use the relationship between signal and bid distributions to construct a likelihood

function for the data. The di¢ culty, or constraint on applicability, is that equilibrium

strategies can be complex, they are often highly non-linear, and there may not be a closed-

form representation for the bid strategy, or more precisely, for the inverse bid function. In

addition, there are the usual existence and uniqueness issues to worry about. We will survey

papers according to this perspective, to give a �avor of what�s being done, where progress

has been made, and what the outstanding issues are.

This survey is concerned primarily with single object auctions. The data, of course,

often consists of many auctions, conducted either sequentially over time or simultaneously.

For much of this survey, we follow the literature and treat each auction as an indepen-

dent event, ignoring any factors, strategic or structural, that link participation and bidding

decisions across auctions. Section 2 describes a model of bidding and introduces the no-

tation we employ throughout. Section 3 focuses on structural estimation of second-price

auctions. Section 4 discusses structural estimation of �rst-price auctions. Section 5 looks

at tests that distinguish between information environments, and Section 6 describes tests of

the theoretical implications of equilibrium bidding. Section 7 reviews empirical work that

compares revenues across auction formats, in both single- and multi-unit settings. Section

8 examines work on collusion or bid rigging schemes. We close with a brief discussion of

some outstanding empirical issues.
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2 Model and Notation

In this section we describe a model of bidding based upon the general symmetric information

model introduced by Milgrom and Weber (1982). This model will serve to establish the

notation that will be used throughout this chapter. Random variables will be denoted by

upper case and realizations by lower case.

Consider a bidding environment in which n potential risk neutral buyers bid to purchase

a single item. The buyers are indexed by i. Each bidder i observes a real-valued signal xi.

Here Xi is private information, observed only by bidder i. In addition, there is some random

variable V , which may be multidimensional, and which in�uences the value of the object to

the bidders. The values of (V;X1; ::; Xn) are governed by some joint distribution denoted

by F . The joint distribution is assumed to be symmetric in the signals and to have a

density function f . Let x�i = (x1; ::; xi�1; xi+1; ::; xn). A generic signal is denoted by X

with realization x. Bidder i�s payo¤ or valuation is given by Ui = ui(V;Xi; X�i) in the

event that bidder i obtains the object being sold. The seller announces a minimum bid, or

reserve price, r.

The primitives of the model are the number of bidders n, the distribution function

F , and the utility functions fuigni=1: These are assumed to be common knowledge among
the buyers. The main assumptions of the model are (i) ui is non-negative, continuous,

increasing in each argument and symmetric in the components of X�i and (ii) (V;X1; ::; Xn)

are a¢ liated.1 These two assumptions imply that the valuations U1; :::; Un are a¢ liated

random variables. Let Y1; ::; Yn�1 denote the ordering of the largest through the smallest

signals from (X2; ::; Xn); the signals of bidder 1�s rivals. By Theorem 2 of Milgrom and

Weber (1982), (V;X1; Y1; ::; Yn�1) are a¢ liated random variables.

There are several restrictive aspects of the model worth noting. First, the assumption

that private information is single dimensional rules out situations in which bidders have

private information about the di¤erent components of their payo¤s. The only empirical

work in auctions that we know of that allows for multi-dimensional signals is Cantillon and

Pesendorfer (2004). Second, symmetry of F in the signals rules out the possibility that some

1The n random variables X = (X1; ::; Xn), with joint density f(x), are a¢ liated if, for all x and y,

f(x ^ y)f(x _ y) � f(x)f(y), where ^ denotes the component-wise minimum, and _ the component-wise

maximum. If random variables are a¢ liated, then they are non-negatively correlated. See Milgrom and

Weber (1982).
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bidders have more precise signals of common unknown components of the payo¤s. We relax

this assumption when we discuss auctions with asymmetrically informed bidders. Third,

there is an implicit assumption that, in the event that someone else obtains the object,

bidder i�s valuation is independent of the identity of that agent. Jehiel and Moldovanu

(2000) consider the strategic implications of the alternative assumption that the winner�s

identity matters, as in an auction of an input prior to downstream oligopoly competition, for

example. Fourth, the assumption that the number of potential bidders is common knowledge

can be relaxed to account for uncertainties about whether rivals are serious bidders. For

example, a costly decision to acquire a signal might be private. See Hendricks, Pinkse and

Porter (2003), for an example of this sort of model.

A bidding (pure) strategy for bidder i is a correspondence �i : Xi �! <+: It maps the
private signal into a nonnegative real number. As we shall see, empirical work in auctions

relies heavily upon the assumption that �i is a strictly increasing function and hence invert-

ible. Theoretical work in auctions informs us that the conditions under which a Bayesian

Nash equilibrium in non-decreasing bid functions exists are a¢ liation of (V;X1; ::; Xn) and

symmetric payo¤ functions ui. If either of these conditions are not satis�ed, an equilibrium

in increasing bid functions may not exist, although we will consider special cases in which

such an equilibrium exists. For a discussion, see Athey (2001) or Krishna (2002, Appendix

G).

Two special cases of the above model are frequently discussed in the theoretical litera-

ture:

1. Private values: ui(�; xi; x�i) = xi. Bidder i knows his own valuation and is only

uncertain about how much others value the item.

2. Pure common values: ui(�; xi; x�i) = � (or one component of � when it is multi-

dimensional). All buyers have the same valuation, which is unknown to them when

they bid. If so, then each buyer�s signal may be informative. However, each bidder i

knows only its own signal and does not observe the other bidders�signals, x�i.

The presence of common components in bidders�payo¤s does not imply that valuations

are not private. When the common components are known to the bidders, then bidders

may be uncertain about their rivals� valuations but they know their own private valua-

tions. When the common components are uncertain then, in terms of our notation, the
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important strategic issue is whether rival signals are informative about the realization of

the common component V , given the realization of their own private signal, xi. If the dis-

tribution of V conditional on xi is independent of X�i, then the bidding environment is one

with private values. In practice, the private valuation can then be de�ned as the expected

value of ui(V;Xi; X�i) given the signal xi received by bidder i, which in a private values

environment is independent of X�i. The location of the signal distribution is arbitrary,

and if E[UijXi = xi; X�i = x�i] = f(xi) for some monotone increasing function f , signals
can be re-normalized to equal f(xi): In a common values environment, the distribution

of V conditional on xi is not independent of X�i and the realization x�i matters, i.e.,

E[UijXi = xi; X�i = x�i] depends on x�i. In summary, if valuations depend on known

common components, or on unknown common components about which bidders have no

private information, then the bidding environment can be characterized as one of private

values (PV). If valuations depend on unknown common components about which bidders

have private information, then we will characterize the bidding environment as one of com-

mon values (CV), and distinguish the special case in which valuations depend solely on

the unknown common component as pure common values (PCV). Within the private and

common values bidding environments, we will sometimes distinguish between independent

signals (IPV and ICV respectively) and a¢ liated signals (APV and ACV respectively).2

Consider, for example, the bidding environment for o¤shore oil and gas leases. The

argument for the common value case is that the �rms are uncertain about common compo-

nents of the value of the lease being sold, such as the size of any oil or gas deposits under the

tract, the prices of oil and gas over the likely production horizon if the lease is productive,

and the common costs of exploration and development. The �rst component is likely to

lead to common values, to the extent that �rms have private information about the size

of the deposits based on the seismic data they obtain, and especially their interpretation

of that data. In contrast, �rms may not have private information about future prices, and

uncertain prices are then not inconsistent with private values.

Alternatively, one might argue that there is little discrepancy in private assessments of

2The theoretical literature classi�es auctions in terms of the �reduced form�valuation

w(xi; x�i) = E[UijXi = xi; X�i = x�i]

rather than the primitives. Values are private if w(xi; x�i) = xi and interdependent otherwise. Common

values is a special case of interdependent values.
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these common components, and instead that valuations di¤er because of di¤erences in bidder

speci�c components of valuations. The most likely sources of bidder payo¤heterogeneity are

the private components of exploration and drilling costs. Bidders are not likely to di¤er in

their valuation of recovered deposits, to the extent that there is a well developed market for

oil and gas. Under this alternative view, valuations are best modelled as private, although

they may be a¢ liated because of the common unknown components of payo¤s that may be

correlated with publicly available information.

An intermediate case, introduced by Wilson (1977), that nests the private and pure

common value cases assumes that ui(v; xi; x�i) = u(v; xi). Here bidder i�s valuation has a

common component and an idiosyncratic component, and the former a¤ects every bidder�s

payo¤ in the same way. In terms of oil and gas auctions, the Wilson model allows the

bidders�payo¤s to depend upon the common, unknown size of the deposit and upon their

private drilling costs. Private information, however, must still be real-valued. Consequently,

the private signal plays two roles: it is informative of the size of the deposit and of drilling

costs. The Wilson model is a restricted class of common values models, but we shall adopt

it as the base model since almost all empirical work on auctions can be discussed in the

context of this model. Throughout the remainder of this chapter, we will often use common

values to refer to the Wilson model when discussing empirical work.

As we shall see, one of the important roles of empirical work on auctions is to determine

whether values are private or common. The distinction is fundamental to both the positive

goal of characterizing bidding behavior and the normative goal of auction design. In an

independent private values environment, the standard logic of competitive markets prevails

and more competition raises bids and increases revenues. (Note, however, that this result

need not obtain in an APV environment, as shown by Pinkse and Tan (2005).) On the

other hand, if the common component is the main determinant of bidder valuations, then

more competition does not necessarily lead to higher bids and more revenue. Winning the

auction is an informative event, with respect to the value of the item. The information

is �bad news,� and it has sometimes been called the �winner�s curse.� A bidder is more

likely to bid high and win the item when he overestimates the item�s value. In particular,

bidding one�s ex ante expectation (i.e., not conditioning on the event of winning) is an

inferior strategy; one needs to bid more conservatively. As a result, restricting the number

of bidders can be a revenue enhancing policy for the seller.

More formally, suppose the common value of the item, v, is unknown to the bidders and
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independent of the identity of the winner. Given a signal x, bidder 1�s ex ante estimate of

the item is

�1(x) = E[V jX1 = x] =
Z
vfV jX1(vjx)dv

where fV jX1 is the posterior conditional density function, derived by Bayes rule. By con-

struction, E[V1jv] = v; where V1 = �1(X1), so that ex ante estimates are conditionally

unbiased. Suppose the bidding strategy for each bidder i is monotone increasing in its

signal. Then, in a symmetric equilibrium, the winner is the bidder with the highest signal,

and hence the highest estimate. But

E[max
i
fVigjv] � max

i
fE[Vijv]g = v

by Jensen�s inequality, since max is a convex function. This is in essence the winner�s curse.

Winning is bad news (in the sense of Milgrom (1981a)) for bidder 1, since

E[V jX1 = x; Y1 < x] < E[V jX1 = x]:

Recall that Y1 is de�ned to be the maximum signal among bidder 1�s rivals, and if bidders

employ symmetric strategies bidder 1 wins only when his signal is highest, and therefore

exceeds Y1. Thus, independent of strategic considerations, bidder 1 should bid less than

his ex ante estimate V1 to account for the information contained in the event that he has

the highest bid.

3 Structural Analysis of Second-Price Auctions

In structural estimation, the empirical researcher posits a theory of equilibrium bidding and

estimates the unobserved bidders�utilities and the joint distribution of their signals from

bid data. Interest in this exercise is based on the normative objective of �nding the optimal

selling mechanism, or the positive objective of describing behavior, or distinguishing between

alternative behavioral models, such as competition vs. collusion, or risk neutrality vs. risk

aversion. This section reviews the work that has been done on English and second-price,

sealed bid auctions.

3.1 Theory

It will be useful to �rst characterize bidder�s payo¤s and the symmetric Bayesian Nash

equilibrium for an English auction. In deriving the equilibrium, we take the perspective of
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bidder 1. De�ne

w(x; y) = E[u(V; x)jX1 = x; Y1 = y]

and let x denote the lower bound of the support of Xi. The function w(x; y) denotes the

expected payo¤ of the bidder, given a signal x, in the event that the highest rival signal is

y.

There are many ways to run an English auction. In one variant, bidders call out their

bids, while in another the auctioneer calls out the bids. Bids may rise continuously or in

increments. A bidder�s willingness to pay the bid called may be privately communicated to

the auctioneer or it may be observed by rival bidders. These institutional details matter

since they a¤ect equilibrium behavior. As a result, the di¤erent variants of English auctions

constitute di¤erent data generating mechanisms, and the analyst needs to bear this in mind

in interpreting bids and deriving the likelihood function for the data.

Most empirical work is based on a version of the English auction known as a button

auction. In this auction, the price rises continuously and bidders stay active as long as they

keep their �ngers on the button. A bidder wins once all other bidders take their �ngers

o¤ their buttons, and the price paid is the exit point of the penultimate active bidder.

In this context, a strategy for bidder i speci�es, at any bid level, whether to stay active

or drop out of the bidding. The symmetric equilibrium is characterized by a �no regret�

property: a bidder remains active as long as his expected value of the object conditional on

winning at the current price exceeds that price, and he drops out otherwise. The critical

issue in characterizing the bidder�s drop out point is what he observes about rivals�bidding

decisions.

One possibility is to assume that each bidder does not observe the prices at which rival

bidders drop out. The only inference an active bidder can draw from the fact that the

bidding has not ended is that at least one rival is still active. In this case, the equilibrium

strategy for bidder 1 is to drop out at

�(x) = E[u(V; x)jX1 = x; Y1 = x] = w(x; x): (1)

The reasoning is as follows. Suppose bidder 1�s rivals bid according to the above strategy

and bidding has reached b = �(y). Bidder 1�s payo¤ conditional upon winning is w(x; y)�b,
because to win means that everyone else has dropped out and at least one rival has signal

y: A¢ liation implies that bidder 1�s payo¤ is positive if x > y and negative if x < y. Hence,
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he should stay active until the bidding reaches �(x) and then drop out. The English auction

with unobserved exits is strategically equivalent to a second-price, sealed bid auction. In

that case, equation (1) represents bidder 1�s bid strategy.

Another formulation assumes that active bidders observe the prices at which rivals drop

out of the bidding. Furthermore, no bidder who drops out can become active again. In

this case, bidder 1�s strategy at any bid will depend upon how many rivals have previously

dropped out and the prices at which they dropped out. Let �k specify the price at which

bidder 1 drops out of the bidding if k rivals have dropped out previously, at the prices

b1; ::; bk. The no regret property implies that

�k(x) = E[u(V; x)jX1 = x; Y1 = ::: = Yn�k�1 = x; Yn�k = �k�1(bk); ::; Yn�1 = �0(b1)]: (2)

Here �k() denotes the inverse of the function �k(). (To economize on notation, we suppress

the dependence of the bid on b1; ::; bk.) The reasoning is similar to the case considered before.

At any bid b = �k(y), bidder 1 calculates the expected value of the object conditional on

winning and the prices at which k rivals have dropped out in prior rounds. Given those

prices, and the inverse bidding rule with n � k remaining rivals, the signals of the bidders
who dropped out can be inferred. For example, the �rst bidder to drop at price b1 must

have had the signal �0(b1). In this case, however, winning at b means that the n � k � 1
rivals who were active in the previous round of bidding must all drop out at b: For this to

happen, they must all have the same signal, y. A¢ liation implies that bidder 1�s payo¤

from staying active is positive if x > y and negative if x < y:

In most auctions, sellers set a reserve price, r. If r > w(x; x), the expected value if all

bidders have the lowest possible signal, then bidders with low signals may not participate.

Let x� denote the participation threshold. In the symmetric equilibrium of the button

auction described above, Milgrom and Weber (1982) show that participation threshold for

each bidder is given by

x�(r) = inffxjE[w(x; Y1)jX1 = x; Y1 < x] � rg:

Since a¢ liation implies that expectations are increasing in x and y, x� is unique. Bidders

with signals less than x� do not bid, and bidders with signals larger than x� participate.

Therefore, the marginal participant is someone who is just willing to pay r even if he �nds

out that no one else is willing to pay r. It is straightforward to show that the screening level

is increasing in r and, in a common values model, increasing in n, the number of bidders. In
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the latter case, the participation threshold x� increases in n to compensate for more rivals

having pessimistic signals.

When values are private, the information conveyed by bidders who drop out is irrelevant

to each bidder�s participation and bidding decisions. Each bidder bids if and only if his value

exceeds r, that is x�(r) = r: The equilibrium strategy given in equations (1) and (2) reduces

to �(x) = �k(x) = x: Each bidder stays active until bidding reaches his private value and

then drops out. The private values equilibrium is compelling because it is unique if one

restricts attention to weakly dominant strategies. It is also an equilibrium in private values

auctions with asymmetric bidders.

When values are common, the equilibrium is not unique. Bikhchandani, Haile and

Riley (2002) characterizes the set of symmetric separating equilibria in English auctions

with common values. They show that there are many ways for the n � 2 bidders with
the lowest valuations to exit the auction. The restriction to symmetric equilibria does pin

down the transaction price since the equilibrium to the subgame that begins after the n� 2
bidders with the lowest valuations drop out is unique. Unfortunately, this subgame has a

continuum of asymmetric equilibria.

Consider the following simple example, which Klemperer (1998) calls the wallet game.

There are two players, denoted by 1 and 2. Each player�s wallet contains money. Let Xi

denote the money in player i�s wallet, and assume that X1 and X2 are independent random

variables uniformly distributed on [0; x]. Each player knows how much is in his own wallet

but does not know the amount in his rival�s wallet. They are asked to bid for the sum of

the contents of the two wallets in a second-price, sealed bid auction. Klemperer shows that

the auction has a continuum of equilibria indexed by � > 0 in which

�1(x1) = (1 + �)x1; �2(x2) = (1 +
1

�
)x2:

Here � can be interpreted as a measure of how aggressively player 1 bids. The symmetric

equilibrium, where � = 1, is for each player to bid twice the amount in his wallet, as

w(x; x) = 2x. But, if player 1 bids more aggressively, player 2 will bid less aggressively

since he knows that if he wins, the amount in player 1�s wallet is less than half of the price

that he has to pay. Conversely, if player 1 bids less aggressively, then player 2 can a¤ord

to bid more aggressively.

The wallet game illustrates the e¤ects of common values. The symmetric equilibrium

is no longer in dominant strategies, and it is no longer unique. In fact, there are typically
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many asymmetric equilibria. The wallet game result is a special case of a more general result

established by Milgrom (1981b). He proves that for every continuous, increasing function

g, the two player, second-price, common values auction has an equilibrium in which

�1(x1) = w(x1; g(x1)), �2(x2) = w(g
�1(x2); x2):

Bikhchandani and Riley (1991) establish similar results for common value English auctions

in which bidder exit times are observable.

The symmetric equilibria may not be robust to slight asymmetries in the payo¤s. In

the wallet game, suppose player 1 values the contents of the wallets by a small amount �

in addition to the total amount of money, whereas player 2 only cares about the money. In

that case, Klemperer (1998) shows that the equilibrium consists of player 2 always bidding

x2 and bidder 1 bidding x1 + x: Thus, bidder 1 always wins and pays x2. The intuition

is that it is common knowledge that bidder 1 values the object more than bidder 2, and

bidder 1 can use this fact to threaten credibly to always bid more than bidder 2.

Many oral, ascending price auctions are open outcry auctions in which bidders call out

their bids. These are continuous time, dynamic games that are di¢ cult to formalize since

bidders can announce a �jump� bid at any time. Bidders can use jump bids to signal

information about their valuations (as in Avery (1998)). The idea behind a jump bid is to

convince rival bidders to concede the auction before the bidding reaches their values. The

strategy can be e¤ective because, if a bidder is certain that his value is less than the value

of the jump bidder, then dropping out of the auction is a weakly dominant strategy. As a

result, the jump bidder may win the auction at a lower price than he would have had to pay

in the equilibrium in which bids increase incrementally. The jump bidder does run the risk

of paying more than might have been necessary to win. A jump bid could also be e¤ective

if it is costly to continue submitting bids. Then a player might drop out early, if he views

his chances of winning as low.

More generally, it is inherently di¢ cult to model continuous time, dynamic games with

few limitations on the strategy space. Absent any such limitations, such as those of the

button auction, the theoretical literature does not suggest a suitable behavioral model for

open outcry auctions.
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3.2 Estimation

We now turn to a discussion of estimation issues. The structural econometric exercise we

consider consists of �nding F , the joint distribution of private signals and the payo¤ relevant

random variable, V , that best rationalizes the bidding data.

Consider �rst the case of a button auction with symmetric independent private values.

The mechanism generating the data consists of the identity function, �(x) = x; for signals

above the reserve price r. Denote the common distribution of bidder values by FX , which we

wish to estimate. As discussed above, the bid levels at which bidders drop out of the auction

are often not observed with the exception of course of the bidder with the second-highest

valuation. Suppose therefore that the only data available are:

fwt; nt; rtgTt=1 if mt � 1;

where wt denotes the winning bid, nt the number of potential bidders, and rt the reserve

price in auction t = 1; :::; T . Here mt denotes a latent (unobserved) variable, the number

of bidders who are active, by which we mean those whose values exceed the reserve price,

and therefore submit bids. We assume that we observe data only from auctions in which

at least one bid is submitted. The winning bid wt = maxfx2:nt ; rtg; the maximum of the

second highest order statistic from a sample of nt valuations and the reserve price.

Donald and Paarsch (1996) describe how to construct the likelihood function. The re-

searcher needs to take into account three possible outcomes:

1. If mt = 0; P rfmt = 0g = FX(rt)nt .

2. If mt = 1; then wt = rt and Prfmt = 1g = ntFX(rt)nt�1[1� FX(rt)]:

3. If mt > 1; then wt � ht(w) = nt(nt � 1)FX(w)nt�2[1� FX(w)]fX(w):

The �rst outcome occurs when no bids are submitted at an auction. We interpret this

event as evidence that all of the bidders�valuations are below the reserve price. The second

outcome occurs when the winning bid in the auction is the reserve price. We interpret this

event as the case where only one bidder values the item more than the reserve price. The

third, and �nal, outcome arises when the winning bid exceeds the reserve price. In this

17



case, nt � 2 bidders have valuations below wt, the winning bidder�s valuation exceeds wt,
and the second highest valuation is equal to wt: Let

Dt =

(
1 if mt = 1

0 if mt > 1

Then the likelihood function for the data set, which includes only auctions in which bids

are submitted, is:

L = �t[
ht(wt)

1�Dt Prfmt = 1gDt
(1� Prfmt = 0g)

]:

Estimation then might proceed by choosing a family for FX(�j�), parameterized by �, and
recovering the distribution function FX above r using maximum likelihood methods. Note

that this method remains valid when the assumptions of risk neutrality and/or symmetry

are relaxed since bit = xit remains a dominant strategy. In the asymmetric case, one recovers

FXi above r for each bidder i.

Interest in this exercise is based on the normative objective of selecting the optimal

auction design, such as �nding the revenue maximizing reserve price. Note that in IPV

auctions, the optimal reserve price is independent of n and depends only upon FX . For

example, in the English button auction, expected revenue to the seller who values the item

at x0 is

R = x0FX(r)
n + rnFX(r)

n�1[1� FX(r)] +
Z x

r
wn(n� 1)FX(w)n�2[1� FX(w)]fX(w)dw:

The �rst term corresponds to events when the item is not sold, the second when the item

is sold at the reserve price, and the third when the winning bid exceeds r. Di¤erentiating

with respect to r yields the optimal reserve price as the solution to:

r = x0 + [1� FX(r)]=fX(r):

Thus the optimal reserve price in an IPV auction depends only on x0 and FX , and not the

number of bidders. (See, for example, Riley and Samuelson (1981).)

If the bid levels at which losing bidders drop out of the auction are observed, then the

likelihood function becomes

L = �Tt=1f[1� FX(wt)](�mt
i=2fX(bit))F

nt�mt
X (rt)g;

where bit denotes the drop out point of bidder i for object t, i = 1; ::; nt, and bids are

ordered so that b1t � b2t::: � bmt � rt: The highest bid is not observed, in the sense that
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the winning bidder may have been willing to stay active at a higher price than wt. If i did

not submit a bid, we de�ne bit � 0: If more than one bidder is active, then the winning

bid is b2t. If only one bidder is active, then the winning bid, and the lower bound on x1t,

is the reserve price rt. If the reserve price is binding, then the likelihood function should

be modi�ed as above to account for the sample selection associated with observing auction

outcomes only if mt � 1.
If the number of potential bidders nt is not observed, the researcher could assume nt = n

for all t and estimate n as a parameter. Alternatively, one could assume n = maxtfmtg, i.e.,
the maximum number of active bidders observed in any auction, or a count of all bidders who

are ever active. A third approach is to assume that nt is the realization of a random variable

N which has some distribution (e.g., Poisson) and estimate the distributional parameters

(here of a truncated Poisson, since nt � mt): Note that in this case, where values are

private, bidding behavior is independent of the number of bidders nt. Hence, one could

instead specify the likelihood function as

L = �Tt=1f�mt
i=1[fX(bit)=(1� FX(rt))]g:

That is, obeserved bids are draws from the truncated distribution fX=(1 � FX) above
the reserve price rt.

Observable heterogeneity in the items being auctioned can be accommodated by condi-

tioning the distribution of values on a vector of covariates, Zt. In this case, one recovers

the family of conditional distributions, FX(�jZt = zt). For example, one could express

xit = �+ zit� + uit:

Then

xit � bit () uit � bit � �� zit�:

Heterogeneity in the items that is observed by the bidders but not by the researcher is a

much bigger problem. The presence of unobserved heterogeneity implies that the signals

xit (and therefore the bids) are not independent given t nor is their distribution identical

across t. Furthermore, if nt is not observed and unobserved heterogeneity is present, the

researcher has an identi�cation problem: are a few, low bids observed because nt is low, or

because FX(�jZt = zt) is unfavorable?
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When values are private but a¢ liated, it is still a dominant strategy for bidder i to bid

his signal and to participate if xi exceeds r. From an empirical viewpoint, the researcher

needs to treat the auction rather than the individual bid as the unit of observation, and the

joint distribution of signals, F<X>, rather than FX as the object of interest. Sample size

may become a problem. If all bids are observed, then it is straightforward to specify and

maximize a likelihood function to obtain an estimate of F<X>: If some of the bids are not

observed due to censoring, the speci�cation of the likelihood function is complicated by the

need to integrate over some of the components of F<X>. With more than two bidders, these

integrations are likely to render the maximum likelihood approach infeasible. An alternative

approach is simulation methods (McFadden (1989) and Pakes and Pollard (1989)). Note

that, because these auctions are dominance solvable, signals do not have to be a¢ liated.

In many instances, researchers observe submitted bids in an open outcry English auction.

Any given bidder may submit many bids, or none. Let bit now denote the highest bid

submitted by bidder i for object t; i = 1; :::; nt: If bidder i did not submit a bid, let bit = 0:

But note that bidder i might be active yet not submit a bid. Order the bidders so that

b1t � b2t � ::: � bmt � rt, where now mt denotes the number of bidders who submit a

bid, as opposed to the number of active bidders. Here the winning bid is submitted by

the bidder with the highest valuation, and so wt = b1t. If agents play according to their

dominant strategy (i.e., stay active until the high bid surpasses their valuation), then we

know that x1t � b1t, xit 2 [bit; wt] for i = 2; :::;mt, and wt � xit for i = mt + 1; :::; nt.

Both the winning bidder and the losing bidders are willing to pay at least their �nal bid,

whereas the willingness to pay of losing bidders is less than the winning bid. The absence

of a bid by bidder i implies that xit is less wt; but not necessarily less than the reserve

price rt: If we observe nt, and if we assume that the second highest bidder drops out at the

winning bid, or just below, then the likelihood function is as described above for the button

version of an English auction. The winning bid is then distributed according to the density

function ht(wt), as de�ned at the beginning of this section, when there is more than one

active bidder. Maximum likelihood estimation is possible even without observing the losing

bids. Losing bid information might be used to obtain a more e¢ cient estimator of FX ,

although it is not clear how to do so, as there is not a one-to-one mapping from valuations

to bids.

The problem with the likelihood approach in this context is the assumption that the

winning bid equals the second highest valuation. If bids rise in discrete steps, or especially
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if there is jump bidding, with bids increasing faster than the required minimum increment,

then the assumption is unlikely to be valid.

The likelihood approach as described here is parametric. Haile and Tamer (2003) pro-

pose a nonparametric approach to address the problem of inference when bidders do not

indicate whether they are �in�as the ascending auction proceeds, which we describe in the

next section. Their approach exploits the information embodied in the losing bids, and they

do not require that the winning bid equal the second highest valuation.

We now discuss two empirical studies of bidding in ascending auctions.

Bajari and Hortacsu (2003) study bidding and auction design issues in eBay coin auc-

tions. They treat this environment as a second-price, sealed bid auction. They note that

eBay auctions have hard closing times, in that bids are not accepted after a pre-speci�ed

time. Moreover, a disproportionate fraction of bids are submitted close to the ending time,

a practice known as sniping. Some preliminary empirical analysis indicates that, in their

sample, winning bid levels are not correlated with early bidding activity, as measured by a

dummy variable indicating whether the losing bids were submitted more than 10 minutes

before the closing time (in which case the winning bidder would have had time to respond).

They argue that the auctions they study are therefore strategically equivalent to a second

price sealed bid auction.

A second potentially controversial assumption is that the coin auctions they study are

a pure common value environment. They point to an active resale market, and to some

evidence that bids are negatively correlated with the number of people who bid. The latter

is likely endogenous, but the correlation persists if they use minimum bids as an instrument.

Negative correlation between bids and the number of bidders is not consistent with private

values in a second price sealed bid auction, as bidding one�s value is a dominant strategy.

As Bajari and Hortacsu note, the eBay coin market should probably instead be modeled as

a more general common values setting, but to do so would be technically challenging.

Bajari and Hortacsu restrict attention to symmetric equilibria, so that bids are generated

according to the strategy described above, whereby �(x) = w(x; x), if x is greater than

or equal to the screening level x�(n; r). In a common values environment, the screening

level depends on the number of bidders, which we make explicit here. Although this is

the unique symmetric equilibrium, as noted above there are a continuum of asymmetric

equilibria in second price sealed bid auctions with common values. They also assume that

the common value is normally distributed, with mean and variance linear functions of
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observable covariates, and that signals conditional on the common value are unbiased and

normally distributed, with variance proportional to the variance of the common value, v.

Given these assumptions, the likelihood function for the bid data is well-de�ned but di¢ cult

to estimate. One complication is that the inverse mapping from bids to signals is no longer

the identity function. The likelihood that bidder i submits a bid bit in auction t, conditional

on the common value, is given by

fBjV (bitjvt) = fXjV (�(bit)jvt)�0(bit);

where � denotes the inverse bid function, and fXjV is the density of the signals conditional

on the common value.3 Since neither � nor its derivative �0 are available in closed form, they

must be estimated numerically. A second complication is that, in auctions with binding

reserve prices, each bidder�s participation decision depends upon the level of competition.

As noted above, the screening level is a decreasing function of the number of bidders; the

winner�s curse causes expected pro�ts to fall. This is not true in private value auctions,

where each bidder participates as long as his value exceeds r. The likelihood function for

the data is

L =
TY
t=1

�Z
FXjV (x

�(nt; rt)jv)nt�mt [�mt
i=2fBjV (bitjv)](1� FXjV (�(wt)jv))

1fmt�1gfV (v)dv

�
;

where 1fmt � 1g is an indicator variable for at least one active bidder in the auction, and
x�(nt; rt) is the screening level, below which the signals of inactive bidders fall. Although

eBay observes all bids, the data records only the losing bids and not b1t; the winning bid.

As above, if the auction receives only one bid, then b1t is bounded below by the announced

reserve price rt. The likelihood contains no correction for sample selection since auctions

that attract no bidders are observed and are assigned a positive probability. Finally, Bajari

and Hortacsu argue that in eBay auctions, the number of rival bidders is not known to

the bidders. They assume that nt follows a Poisson distribution, with mean determined

endogenously by a zero ex ante expected pro�t condition. Bidders are assumed to incur an

entry cost before learning their signal. The function w(x; x) must be modi�ed to be the

expectation of the common value, conditional on the bidder�s signal x, where the expectation

is now over both the realizations of the rival bidders�signals and the number of rival bidders.

The screening level must also be modi�ed to account for this uncertainty.

3A¢ liation implies that �(x) is strictly increasing in x; so the inverse function exists.
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Bajari and Hortacsu�s analysis of reserve price policy demonstrates the value of struc-

tural estimation. One caveat, which is more a complaint about the empirical eBay literature,

is that the auctions are treated in isolation, when similar items are often sold at the same

time. Thus the optimal reserve price calculation is treated like a monopoly pricing problem,

and the bidder participation decision does not account for the outside option of bidding for

comparable items.

Hong and Shum (2003) estimate a structural model of an asymmetric, ascending auction

in a common value environment, where bidder�s preferences depend on an idiosyncratic

component and an unknown common component. The basic idea of their paper is to infer

bidders�real-valued private signals from the bids at which they drop out, and to build a

likelihood function for the observed drop out sequence. One can thus obtain estimates of the

parameters of the distribution of bidder valuations. Since the likelihood function involves

high dimensional integrals, Hong and Shum adapt the simulated nonlinear least squares

method developed by La¤ont, Ossard and Vuong (1995) for �rst-price auctions, which is

described in more detail below, to estimate their model.

Hong and Shum tackle a di¢ cult problem using state-of-the-art econometrics. The

main weakness is the restricted domain of application. The key step in the analysis infers

the bidders�private signals from the bids at which they drop out. From a computational

viewpoint, this works only for the class of preferences which admits closed-form solutions

for the conditional expectations, since these can be inverted. Hong and Shum use Wilson�s

(1998) log-additive speci�cation with the common and idiosyncratic components distributed

lognormal. From a practical viewpoint, drop out bids are typically not observed, for example

because bidders do not have to bid to be active. This is a problem with the data from the

FCC auctions that Hong and Shum examine. Hong and Shum assign a dropout price to a

given bidder equal to the last submitted bid of the next bidder to drop out on a given local

spectrum license.

In a simultaneous English auction, such as the PCS spectrum auction, there may be

payo¤ complementarities across objects, binding budget constraints, or activity rules based

on overall participation. There will then be strategic interdependence across objects, and

inferring valuations from bids may be di¢ cult. For example, with the FCC activity rules,

bidder i may bid more than xit for t in order to retain eligibility to bid on other licenses

(a practice known as �parking�). An extreme example of such bidding behavior occurred

when Sprint bid on both Oklahoma City C block licenses at once, even though the rules
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stipulated that they could win at most one of the two licenses.

3.3 Identi�cation

Identi�cation is central to structural estimation, and it informs the interpretation of reduced

form estimates of comparative static properties. The models presented in the previous sec-

tion are identi�ed by functional form assumptions but may not be nonparametrically iden-

ti�ed. Nonparametric identi�cation reduces to the following question: given an equilibrium,

is there a one-to-one relationship between the joint distribution of bidder values and the

joint distribution of bids? One could argue that this standard of identi�cation is too much

to ask. After all, economists often make parametric assumptions in estimating demand and

supply functions. One di¤erence between these studies and empirical studies of bidding

is that the main object of interest in structural models of auctions is often the distribu-

tion of the idiosyncratic private component of bidder valuations, and not the deterministic

component of bidder valuations. Theory provides some insight on how bidder and auction

characteristics should a¤ect bidder valuations, but it o¤ers little guidance on the functional

form of the distribution of the idiosyncratic component. Yet the latter is often the primary

source of bidder rents and the focus of mechanism design. Consequently, we believe that it

is desirable for auction models to be identi�ed nonparametrically. If identi�cation is only

by functional form, then a given parametric family of distributions for valuations may not

approximate the true unknown distribution, and so speci�cation can play a pivotal role in

the analysis.

Athey and Haile (2002) synthesize and extend a fragmented literature on identi�cation

of the distribution of bidder values (or information) in a variety of auction settings, in-

cluding English and second-price auctions. They show when non-parametric identi�cation

of valuations is possible, and, if so, what kinds of data are needed. The necessary data

depends on whether the value distribution is symmetric or asymmetric, whether values are

correlated, and whether the correlating factors are observed. In button auctions with pri-

vate values, the bid function is the identity function, so bids have a clear interpretation, as

losing bids correspond to valuations, and the winning bidder�s valuation must not be less

than the winning bid. Athey and Haile show, however, that the general private value model

is not identi�ed unless all bids are observed. This is a problem in English auctions, since

the highest valuation is not observed, but known only to be bounded below by the winning
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bid. However, if bidder valuations are independent and symmetric, and if the winning bid

equals the second highest valuation, then only the winning bid and the number of bidders

needs to be observed. The winning bid is then the second highest order statistic from a

sample of size n whose distribution is uniquely determined by the marginal distribution,

FX : The asymmetric IPV model is also identi�ed if, in addition to the winning bid, the

identity of the winner is known. Li, Perrigne and Vuong (2000) show that a restricted

class of pure common values auctions is identi�ed if all bids are observed. For example,

suppose that signals are independent conditional on the common value, and that signals

are additively separable in the common value and the idiosyncratic information. But non-

parametric identi�cation fails when there are idiosyncratic value components, i.e., for more

general common values settings, or if some bids are not observed.

A second challenge to the structural approach is multiplicity of equilibria. The equi-

librium of the second-price, sealed bid auction, and that of the English button auction, is

unique if values are private. But, as noted above, in the English button auction with com-

mon values, Bikhchandani, Haile and Riley (2002) have shown that there are many ways

in which the bidders who don�t have one of the two highest values might exit the auction.

This multiplicity calls into question the interpretation of the losing bids as the valuations of

the losing bidders. Hence, one should not draw strong inferences from the last bid of losing

bidders, apart from the highest losing bid. The winning bid is unique in the symmetric

equilibrium. But there is a continuum of asymmetric equilibria in which auction outcomes

have quite di¤erent implications for the distribution of valuations. The latter point also

applies to second-price, sealed bid auctions with common values. Thus, in our view, the

structural modeling program that identi�es the distribution of valuations by inverting the

mapping from values or their order statistics to bids is on solid ground when values are

private, but it is on shaky ground when values are common. In the latter case, the model

has many equilibria, and even after selecting an equilibrium and assuming that bidders

play according to this equilibrium in all of the auctions, the model can only be identi�ed

by functional form.

Most second-price auctions are open outcry auctions, and not sealed bid or English

button auctions. The free form bidding can generate many possible bid histories for any

pro�le of private signals. The observed bids in these histories are not very informative, even

when values are private. Bidders often do not have to indicate whether they are �in� or

�out�at every high bid, and even if they do, the bid increments associated with jump bids
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can be large. Thus, �nal recorded bids of bidders may be a poor approximation of their

values, and even the winning bid may not be a good approximation of the second-highest

valuation. As a result, the likelihood function is not well-de�ned, since the distribution of

�nal bids is not unique given the distribution of values, nor is the distribution of values

uniquely de�ned given the observed distribution of �nal bids. This is one reason why there

have been almost no structural econometric studies of English auctions.

Haile and Tamer (2003) provide a novel solution to the non-uniqueness problem in the

IPV model. They exploit two plausible components of equilibrium play. First, the winning

bidder may have been willing to bid more than the �nal bid, as noted above. In addition,

none of the other bidders submit a bid more than they were willing to pay. Second, losing

bidders were not willing to raise the winning bid by the minimum bid increment. This

assumes that there are no costs associated with submitting bids, or with keeping bidding

open. The latter feature would not necessarily be satis�ed in an equilibrium with jump

bidding. The upper bound on the valuations of bidders may also be violated if bidders

collude. These two suppositions can be shown to provide bounds on the distribution of

valuations, which are assumed to be private.

Let xi denote the private value of bidder i, and bi the highest bid submitted by that bid-

der. If a bidder does not submit a bid, then let bi be zero. The two behavioral assumptions

are then: (A1) xi � bi for all i and (A2) xi � w+ M for all i except the winning bidder,
where M denotes the minimum bid increment. These two assumptions are not su¢ cient to

identify FX , the distribution of private values, which for convenience are here assumed to

be independent and identically distributed. But the two assumptions do put bounds on

FX . The �rst assumption bounds values below by observed bids, and hence the observed

distribution of bids bounds FX from above. Similarly, the second assumption bounds FX

from below.

The bounds can be derived as follows. Suppose that there are n bidders (as opposed to

the number of players who submit bids). Denote the distribution function of the ith highest

order statistic from the distribution FX by Fi:n. Let Gi:n denote the empirical distribution

the ith highest bid. Then assumption (A1) implies that Fi:n(x) � Gi:n(x) for all i; n; and x.
Similarly, (A2) implies that F2:n(x) � G1:n(x+ M) for all n and x. If all losing bidders were
not willing to raise the winning bid by the minimum bid increment, it su¢ ces to characterize

the highest losing bidder.

These bounds are not the end of the story, since the ordering of bids does not necessarily
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correspond to the order of valuations. For example, a bidder with an intermediate value

might not bid at all, and so register a zero bid, while a lower value bidder might submit

a bid early in the auction. Nevertheless, Haile and Tamer show how to pool the bounds

across n and i in the case of the upper bound, and across n for the lower bound, in order

to derive upper and lower bounds on FX for all values of x.

If bidders employ the dominant strategy of the button auction, and so the losing bidders�

�nal bids equal their valuation, then it can be shown that the upper and lower bounds

coincide, and FX is uniquely determined. Otherwise, there will be a gap between the

bounds on FX .

An important identifying assumption is that the number of bidders is known. In the

Forest Service auctions considered by Haile and Tamer, bidders pre-qualify by submitting

a sealed bid, usually at the reserve price, that serves a binding lower bid in the subsequent

English auction. Given the number of pre-quali�ed bidders, Haile and Tamer exploit prop-

erties of order statistics to derive bounds on the distribution of valuations. These bounds

are surprisingly tight, and they show that they also imply a relatively tight bound on the im-

plied optimal reserve price, i.e., the reserve price that would maximize the seller�s revenues.

They also provide some Monte Carlo evidence that indicates that their bounds approach

can provide much better estimates than a structural model that assumes exit prices re�ect

valuations, especially when there is jump bidding, or when some bidders are silent (i.e.,

they never submit a bid, although their valuation exceeds the outstanding high bid at some

point before the end of the auction).

In conclusion, the structural maximum likelihood methods that exploit the information

embodied in the winning bid, described in the previous sub-section, are valid only if the

winning bid can be interpreted as the second highest valuation. The interpretation of losing

bids is problematic in many instances. The nonparametric bounds approach of Haile and

Tamer indicates how to circumvent both of these potential di¢ culties in private values

environments.

4 Structural Analysis of First Price Auctions

In this section we discuss structural estimation of �rst price, sealed bid auctions. There

are few empirical studies of �eld data from Dutch auctions. A notable exception is La¤ont,

Ossard and Vuong (1995), which we discuss below. (See also van den Berg and van der
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Klaauw (2000).) We �rst review the theory of equilibrium bidding, then describe the main

estimation approaches, and end with a discussion of identi�cation issues.

4.1 Theory

In a �rst-price sealed bid auction, each bidder must independently submit a bid to the

auctioneer. The high bidder wins and pays his bid, if it exceeds the reserve price. For

example, in federal o¤shore oil and gas auctions, the Department of Interior announces

several months in advance that it intends to sell production rights to a set of tracts in a

speci�c geographical area. The announced reserve price for wildcat tracts was $15 per acre

in the 1960s, for example. Firms are invited to submit bids in sealed envelopes at any time

prior to the sale date. On the day of the sale, the envelopes are opened, and the values of the

bids and the identities of the bidders are announced. The �rm or consortium that submits

the highest bid on a tract is usually awarded the tract at a price equal to its bid, although

the government rejected as inadequate many high bids above the announced reserve price.

Assume that bidder 1�s rivals in a �rst-price sealed bid auction are using a common

increasing bid function � that has an inverse function � at bids above the reserve price.

Then bidder 1�s pro�ts from bidding b given a signal x are

�(b; x) =

Z �(b)

x
[w(x; y)� b]dFY1jX1(yjx):

The bidder wins in the event that the highest rival bid is less than b or, equivalently, that

the highest rival signal is less than �(b). Di¤erentiating with respect to b and imposing the

symmetry restriction that bidder 1�s best reply is b = �(x) yields the di¤erential equation

[w(x; x)� �(x)]fY1jX1(xjx)� �
0(x)FY1jX1(xjx) = 0: (3)

If the auction has a binding reserve price, then bidders who obtain very low signals may

not bid. The participation decision in the symmetric equilibrium of the �rst-price sealed

bid auction is the same as in the second-price sealed bid auction. The screening level x�(r)

is the lowest signal at which the expected value of the object conditional on winning is at

least the reserve price. We assume that the reserve price is binding so that x�(r) exists and

exceeds x; the lowest possible signal.

The equilibrium bid function for x � x� is obtained by solving equation (3) subject to
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the boundary condition �(x�) = r: It is given by

�(x) = rL(x�jx) +
Z x

x�
w(s; s)dL(sjx)

where

L(sjx) = expf�
Z x

s

fY1jX1(tjt)
FY1jX1(tjt)

dtg:

We de�ne �(x) = 0 for x < x�: The symmetric equilibrium exists under fairly weak reg-

ularity conditions on F: The assumption of a binding reserve price ensures that there is a

unique symmetric equilibrium. See the account in Athey and Haile (2005), for example.

In the special case of a¢ liated private values, the equilibrium bid function reduces to

�(x) = x�
R x
r FY1jX1(sjx)ds
FY1jX1(xjx)

which further reduces to

�(x) = x�
R x
r FX(s)

n�1ds

FX(x)n�1

in the case of independent private values. The bid falls below the valuation by a mark-down

factor. In the case of private values, the mark-down factor, x � �(x), is decreasing in the
number of bidders, n, and increasing in the dispersion of the value distribution. If there

was no dispersion in values, then the equilibrium strategy is to bid one�s own value. The

equilibrium bid strategy for bidder 1, in the case of private values, can also be expressed as:

�(x) = E[maxfr; Y1gjX1 = x; Y1 � x]:

The bid equals the expectation of the highest rival signal, where the seller�s reserve price

is treated like another rival signal, conditional on having the highest signal and therefore

being the winning bidder in a symmetric equilibrium. This amount corresponds to the

expected payment in a second price private values auction, conditional on being the winning

bidder.

In the case of independent private values, Lebrun (1996, 1999) and Maskin and Riley

(2000a,b) have extended the existence and uniqueness results to auctions with asymmetric

bidders under the assumption that the supports of the bidder distributions are identical

and FXi satis�es certain mild regularity conditions.
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4.2 Estimation

The IPV model can be estimated in a variety of ways. Paarsch (1992) derives a maximum

likelihood estimator and applies it to procurement auctions for treeplanting contracts in

British Columbia. Donald and Paarsch (1993) discuss related econometric issues in more

detail. Suppose the data consists of fwt; rt; ntgTt=1 for the sample where the number of
submitted bids mt � 1: Their approach relies on functional form assumptions, as the class

of distributions considered guarantee that (�; �) have closed form representations. The

winning bid wt is observed if and only if the highest signal x(1:nt) � rt; otherwise no bids
are observed. The probability of the latter event is FX(rt)nt : The probability distribution

function of w is

ht(w) = ntFX(�t(w))
nt�1fX(�t(w))�

0
t(w) =

ntFX(�t(w))
nt

(nt � 1)(�t(w)� w)
:

Note that the bid and inverse bid functions depend on t since the number of bidders nt and

the reserve price rt vary across auctions. Note also that the valuation distribution FX is

assumed to be independent of nt. The bid and inverse bid functions also both depend on the

parameters of FX , which we suppress for notational convenience. Therefore the likelihood

function is

L = �tfht(wt)=[1� FX(rt)nt ]g:

The parameters of FX are chosen to maximize L subject to wt � �t(x) for all t, where x is the
highest possible signal, and subject to the requirement that �; �; and FX be conformable.

Clearly, the main di¢ culty with this estimation approach lies in computing the inverse

�t; which is typically nonlinear and often does not have a closed form solution. Another

technical issue associated with the maximum likelihood method is that the asymptotic

distribution of the estimator is non-standard, since the upper bound of the support of the

bid distribution depends upon the parameters of interest. Moreover, the likelihood function

may be discontinuous at the associated boundary of the parameter space. See Donald and

Paarsch (1993, 1996, 2002) for more detail, as well as Chernozhukov and Hong (2004) and

Hirano and Porter (2003), who advocate Bayesian estimators.

In his thesis, Bajari (1997) extends the likelihood approach to auctions with asym-

metric bidders. His application is to procurement auctions of highway repair contracts in

Minnesota. The lowest bid wins, and there is no reserve price, so the data consists of

ffbit; zitgnti=1 ; nt; ztg
T
t=1 where zit is the vector of �rm i characteristics in auction t and zt is
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the vector of contract t characteristics. The �rm speci�c characteristics are the distances

between the locations of �rms and contract t, and measures of the �rms�committed capaci-

ties at the time of auction t. The likelihood of �rm i submitting bid bit in auction t is given

by

fBi(bitjzit; zt) = fXi(�it(bit)jzit; zt)�0it(bit):

In this case, the inverse bid functions and their derivatives are obtained by numerically

solving the system of nt di¤erential equations derived from the �rms��rst order conditions.

Bajari takes a Bayesian approach to estimation, simulating the posterior distribution of the

parameters by taking random draws from a prior and evaluating the likelihood function

for each draw. The Bayesian approach �nesses some of the technical di¢ culties that arise

with maximum likelihood estimators. It is also computationally easier to implement than

maximum likelihood and allows the researcher to compare non-nested models such as col-

lusion versus competition in a relatively straightforward way. The prior distribution must

be chosen with care, however.

The main drawbacks of the likelihood approach are discussed in Bajari (1998). One

di¢ culty is that the approach is computationally intensive. The need for �exible functional

forms means that the inverse bid functions have to be computed numerically. A second

di¢ culty is that the likelihood function typically does not have full support, which means

that zero likelihoods often arise in practice. Outliers may be di¢ cult to rationalize, and

they can have a disproportionate e¤ect on estimated parameter values.

La¤ont, Ossard, and Vuong (1995) develop a simulated non-linear least squares estima-

tor. They exploit the fact that the bid function in the FPSB auction in an IPV environment

can be expressed as

�(x) = E[maxfrt; X2:ntgjX1:nt = x]:

where Xk:nt denotes the k
th highest order statistic from a sample of size nt. The winning

bid therefore satis�es

wt = �(x1:nt) = E[maxfrt; X2:ntgjX1:nt = x1:nt ]:

Hence, the expectation of the winning bid, conditional on at least one bid being submitted,

is

E[WtjX1:nt � rt] = E[maxfrt; X2:ntgjX1:nt � rt]:
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The expectation involves high dimensional integrals. Instead of computing it, La¤ont,

Ossard, and Vuong use simulation to approximate the expectation. They choose an �im-

portance function� to weight the simulated samples. They then choose the parameters of

FX to minimize the average squared distance between the observed sample of winning bids,

fwtg, and the simulated sample mean of maxfrt; x2:ntg, conditional on x1:nt exceeding the
reserve price, after correcting for the estimation error of the simulated sample. La¤ont, Os-

sard, and Vuong apply this method to eggplant sales in Marmande, France. Their method

circumvents the need to compute the inverse bid function at each parameter value. As a re-

sult, their method allows for a much larger set of distributions than do maximum likelihood

methods, although they just consider the lognormal distribution in their application. In

their data, as in many applications, the number of bidders nt is not observed. The authors

assume the number is constant, n, treat n as a parameter, and estimate it.

The main restriction in applying their method is that it relies heavily upon the assump-

tions of the symmetric IPV model. If bidder valuations are not independent draws, or the

distributions from which they are drawn are not symmetric, the bid function cannot be

expressed as a conditional expectation of a second order statistic. Independence may be

a problem in theory, but it may be more of a problem in practice because of unobserved

heterogeneity. For example, the bidders may all observe some factor that shifts the location

of the distribution of values, where that factor is not observed in the data. In the applica-

tion, unobserved heterogeneity that is also observed by the seller might result in correlation

between the reserve price and the distribution of bidder valuations, in which case the re-

serve price is not exogenous. Symmetry is also frequently a problem. For example, in the

Marmande eggplant market, one buyer was much larger. La¤ont, Ossard and Vuong show

how to adapt their method to account for this latter issue, under the assumption that the

large buyer�s valuation can be represented as a draw from F kX , where k can be thought of

as the number of agents the large buyer represents as an intermediary at the auction. Then

the large buyer�s valuation is the highest of the k agents he represents, where the agents�

valuations are drawn from the same distribution as the other bidders.

A third estimation procedure for private value models has been developed by Elyakime,

La¤ont, Loisel and Vuong (1994) and by Guerre, Perrigne and Vuong (2000). Their method

can be non-parametric, and so not rely upon functional form assumptions. It is compu-

tationally easy to implement, nor does it require bidders� values to be independently or
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identically distributed. Suppose the researcher has data available on all bids submitted,

ffbitgmt
i=1; nt; rtg

T
t=1

plus perhaps covariates Zt for auction t where mt � 1: Here nt again denotes the number
of potential bidders, and mt the number who submit bids. Now assume that nt = n for all

t. In practice, applications of this method often estimate the value distribution separately

for each value of nt. In a symmetric equilibrium, the optimal bid for bidder 1 with signal

x1 = �(b) solves

(�(b)� b)fY1jX1(�(b)j�(b))�
0(b)� FY1jX1(�(b)j�(b)) = 0:

De�neM1 = �(Y1) as the maximum bid of bidder 1�s rivals, and let the conditional distrib-

ution ofM1 given bidder 1�s bid B1 be denoted by GM1jB1(�j�) and its density by gM1jB1(�j�):
Monotonicity of � and � implies that for any b 2 (r; �(x))

GM1jB1(mjb) = FY1jX1(�(m)j�(b)):

Here GM1jB1(mjb) is the probability that the highest bid among bidder 1�s rivals is less
than m conditional upon bidder 1�s bid of b: The associated density function is given by

gM1jB1(mjb) = fY1jX1(�(m)j�(b))�
0(m):

Substituting the above relations into the �rst order condition for bidder 1 yields

�(b) = b+
GM1jB1(bjb)
gM1jB1(bjb)

:

In the special case of IPV, GM1jB1 = Gn�1, where G is the marginal bid distribution of

individual bidders, gM1jB1 = (n � 1)gGn�2, and the inverse bid function for bidder 1 is
given by

�(b) = b+
G(b)

(n� 1)g(b) :

The estimation procedure consists of two steps.

Step 1: Estimate bgMijBi(mjb); bGMijBi(mjb), either parametrically or non-parametrically,
from the observed bids of all bidders. Here bidders are treated symmetrically, and auc-

tions as independent and identical implicitly, except to the extent that one conditions on

observable auction characteristics. Form �data,�

bxit = bit + bGMijBi(bitjbit)bgMijBi(bitjbit)
:
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This yields a sample of pseudo-values fbxitgni=1 ; t = 1; :::; T:
Step 2: Given ffbit;bxitgni=1gTt=1; for the subsample with nt = n , estimate fX(bxit) and
FX(bxit). One can also estimate �, parametrically or nonparametrically, as bit = �(bxit): If the
value distribution FX is assumed to be identical across subsamples with di¤erent numbers

of bidders, the data from these subsamples can be pooled at this stage. In principle, the

symmetry assumption (of FX across nt) can be tested. (This assumption might equivalently

be viewed as an assumption that the variation in the number of bidders is exogenous.) Note

that one could not similarly pool estimation of the bid function across subsamples, as the

bid function should depend on the number of bidders.

In their application to French timber auctions, Elyakime, La¤ont, Loisel and Vuong

modi�ed the method to account for the fact that rt is not announced to the bidders, so that

there is a secret reserve price. The seller is treated as another potential bidder, but with an

objective function that di¤ers from that of the buyers. This can confound the estimation

of FX , since the bidding behavior of the buyers depends upon the distribution of seller

valuations. Also, the researcher must recover two distributions instead of one. The authors

simplify matters by assuming that seller always sets the reserve price equal to her valuation,

which is optimal in their framework. They also assume that the seller valuation, and hence

her behavior, is independent of the buyers�valuations. Their method relies heavily upon

the independence assumption.

Since the two-step approach is based on �rst order conditions, it is easily modi�ed in

an IPV model to deal with asymmetric bidders. Bidder 1 with signal x1 chooses his bid,

given that there are n potential bidders, to maximize

�1(b; x1) = (x1 � b)
nY
j=2

Fj(�j(b))

His optimal bid solves

(�1(b)� b)
nX
j=2

fXj (�j(b))�
0
j(b)

[1� FXj (�j(b))]
= 1:

Using the same change of variables as above, each bidder�s inverse bid function can be

expressed as a function of his rivals�bid distributions,

�i(b) = b�
1X

j 6=i

gBj (b)

[1�GBj (b)]

:
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In this case, the sample of pseudo-values has to be generated separately for each bidder.

The samples can then be used to estimate the bidders�valuation distributions. Applica-

tions of this approach include Bajari and Ye (2003), who study collusive bidding in auctions

of highway repair contracts in Minnesota, and Bajari, Houghton, and Tadelis (2006), who

study auctions of highway repair contracts in California. The latter paper argues that re-

searchers need to be careful in de�ning contract revenues since, in many cases, subsequent

contract changes or renegotiations lead to payment adjustments. The authors assume that

ex post adjustments, and ex ante beliefs about these adjustments, are the same for all bid-

ders, and do not depend upon their costs or bids, and hence upon their private information.

Given this assumption, contract revenues can be de�ned as the amount bid plus ex post

adjustments, where the latter serves as a proxy for the bidders�expectations, and bidder

markups can be estimated accordingly. The authors �nd that only a fraction of the ex post

adjustments are passed through to bids, and attribute the di¤erence from full pass-through

to transaction costs.

Krasnokutskaya (2004) and Athey, Levin, and Seira (2004) extend the two-stage ap-

proach to allow for auction characteristics that are observed by the bidders but not by the

econometrician. The unobserved heterogeneity accounts for the positive correlation in bids

within an auction. This is important because failure to account for this correlation leads

to an upward bias in bidder markups. Krasnokutskaya takes a semi-parametric approach.

In her application to Michigan highway procurement contracts, she assumes that bidder i�s

costs take the form

ci = xiv:

Here the private signal Xi is independent of Xj , but not necessarily identically distrib-

uted, and also independent of the common, and commonly known, component V . The

multiplicative structure implies that bidder i�s equilibrium bid strategy can be decomposed

into a component that is common to all bidders and an idiosyncratic component that is a

function of his private signal:

�(ci) = v�i(xi):

Let Ai denote the idiosyncratic component. Krasnokutskaya shows that, under mild regu-

larity conditions, the distribution functions of V and the Ai�s are uniquely determined from

the joint distribution of two bids. Thus, the probability distribution functions of V and the

Ai�s can be obtained non-parametrically, based on bid data from auctions with at least two
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bidders. To generate a sample of pseudo values for bidder i, �rst draw a random sample

of L pseudo bids faigLi=1 from the estimated distribution of Ai and then use the inverse

bid function under the assumption that v = 1 to infer the pseudo value bxi associated with
each ai. The sample of pseudo values can then be used to nonparametrically estimate FXi .

Note that, while the distributions of V and the Ai�s are identi�ed, one cannot uniquely

decompose any individual bid into its two components.

Athey, Levin, and Seira (2004) study timber auctions. They distinguish between two

types of bidders, mills and loggers. Mills are thought to have stochastically higher willing-

ness to pay for cutting rights than loggers. Athey, Levin, and Seira adopt a parametric

approach. They assume that the distribution of bids for each bidder type conditional on V ,

the unobserved auction characteristic, is Weibull, and that V has a Gamma distribution.

Here V is assumed to be independent of the observable auction characteristics, including

the number of bidders. After integrating V out of the likelihood function, the parameters of

the distributions of Bi and V are estimated by maximum likelihood. The procedure yields

estimates of the conditional distributions of bids and inverse bid functions for loggers and

mills. Since v is not observed, it is not possible to use the inverse bid function to infer a

bidder�s values from his bids. However, one can still recover the conditional distribution

function of values for loggers, FXLjV ; and for mills, FXM jV ; from the identities

FXkjV (xjv) = Gk(�k(b; v)jv); for k = L;M:

The average bid functions and the unconditional distributions of bidder values are obtained

by integrating �(x; v) and FXkjV over v, for k = L;M .

4.3 Identi�cation

La¤ont and Vuong (1996) discuss identi�cation in �rst-price sealed bid auctions. In the

symmetric common values model, the optimal bid by bidder 1 with signal x1 = �(b) satis�es

w(�(b); �(b)) = b+
GM1jB1(bjb)
gM1jB1(bjb)

� �(b;G):

Recall that in the case of independent private values, this equation reduces to

�(b) = b+
G(b)

(n� 1)g(b) :

It then follows in the IPV case that FX is identi�ed from G if � is strictly increasing and

limb#r�(b) = r, i.e., there is not a mass point in the bid distribution at r. The identi�cation

36



condition requires G=g to be well-behaved, which is an equilibrium requirement of the data.

Furthermore, a distribution G can be rationalized by F if and only if � satis�es the above

properties. A similar argument establishes that a¢ liated private value models are also

identi�ed.

In the common values model,

w(�(b); �(b)) = E[u(x; V )jX = �(b); Y = �(b)]:

Thus, �(b;G) identi�es bidder 1�s expected utility conditional on the event that his signal

is �(b) and the maximum signal of his rivals is also �(b). This conditional expectation is

invariant to any increasing transformation of the signal. Even in a pure common values

model, if X is normalized so that E[XjV = v] = v, mean-preserving transformations of

FXjV cannot be distinguished in the data. Hence, knowing the value of w(�(b); �(b)) is not

su¢ cient to identify the value of the signal x = �(b), and G does not identify F . In fact, as

La¤ont and Vuong note, by de�ning a new signal

ex = w(x; x)
and utility u(ex) = ex, one can transform the a¢ liated common values (ACV) model into an

a¢ liated private value (APV) model. If the reserve price is not binding, then any symmetric

ACVmodel is observationally equivalent to some symmetric APVmodel. La¤ont and Vuong

extend this result to asymmetric models.

In summary, La¤ont and Vuong (1996) and Athey and Haile (2002) have shown that,

while private value models are often identi�ed, common value models are typically not

identi�ed, at least not without imposing strong restrictions on the primitives or on the

type of data that are available. The lack of identi�cation challenges the usefulness of the

structural program for the class of common values models. One alternative, discussed by

Hendricks, Pinkse, and Porter (2003) in their study of auctions of o¤shore oil and gas leases,

is to assume a pure common value model and augment bid data with ex post data on lease

values. In this case, one can resolve the identi�cation problem by imposing a moment

restriction on the joint distribution of (Xit; Vt). For example, Wilson (1977) adopts the

normalization E[XitjVt = v] = v, where signals are measured so that the mean signal on a
tract is equal to the tract�s value. Hendricks, Pinkse, and Porter instead assume that

E[VtjXit = x;Zt = z] = x:
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The condition states that if a �rm obtains a signal x on a tract with observable character-

istics z, then the expected value of that tract is equal to the value of the signal. Signals

are normalized in terms of ex post value and the bidders�posterior estimates are assumed

to be correct on average. Identi�cation of the bid function follows immediately from the

above condition and monotonicity of the bid function, since

x = E[VtjXit = x;Zt = z] = E[VtjBit = �(x; z); Zt = z]

=) �(b; z) = E[VtjBit = b; Zt = z]: (4)

The inverse bid function can be estimated as follows. For every bid level b on a tract with

characteristics z, de�ne a neighborhood B(z) of b, and compute the average ex post value

of all leases with characteristics z that received a bid in B(z). To implement this idea, the

authors employ a kernel estimator of the mean ex post value in the neighborhood of any bid

b for tracts with similar characteristics. The inverse bid function can be used to generate the

sample of signals ffbxitgnti=1gTt=1which, together with the sample of ex post values fvtgTt=1;
can be used to identify F .

Within the class of private value models, there is a second identi�cation problem that

remains an open issue. Can the APV model be distinguished from an IPV model with

unobserved heterogeneity? In the former model, the correlation in bids is generated by a

common factor that is not observed by the bidders; in the latter model, the correlation is

generated by a common factor that is observed by the bidders but not by the econometrician.

Krasnokutskaya (2004) conjectures that the two models are observationally equivalent.

5 Tests of Private Versus Common Values

The identi�cation results make it important to develop ways of distinguishing between pri-

vate and common value environments. Another reason is auction design. If the idiosyncratic

component of valuations is the main determinant of bids, and values are independent, then

under the standard logic of competitive markets more competition implies lower procure-

ment costs. On the other hand, if the common component is the main determinant, more

competition does not necessarily lead to lower procurements costs because bidders have to

worry about the winner�s curse. Restricting the number of bidders can then be a revenue

enhancing policy.
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Paarsch (1992) attempts to distinguish between a PCV model and an IPV model by

estimating the structural parameters of each model and comparing the models using a non-

nested hypothesis test. However, he has to adopt restrictive parametric assumptions on the

distribution of bidder valuations in order to estimate the structural parameters of the IPV

and PCV models. More recently, nonparametric tests have been developed that exploit the

fact that the APV and ACV models are not observationally equivalent if reserve prices are

binding or if the number of bidders varies across auctions.

In a sealed bid, second-price auction with a binding reserve price, the marginal partici-

pant�s valuation conditional on winning is

r = E[u(V; x)jX1 = x�; Y1 < x�]

but he bids

�(x�) = E[u(V; x)jX1 = x�; Y1 = x�]:

These two equations yield an interesting, and testable, prediction, �rst noted by Milgrom

and Weber (1982). The bid submitted by a bidder with signal equal to the screening level

x� is equal to the reserve price r if values are private, but �(x�) is strictly larger than r if

values are a¢ liated. In the latter case, the lower bound of the support of the distribution

of submitted bids in the second-price auction exceeds r. Moreover, the lower bound is

increasing in the number of bidders and in any variable that is a¢ liated with V . Similarly,

in an English auction with common values, the support of the distribution of prices should

exhibit a gap above the reserve price r. When only one bidder is active, the price is r.

When two or more bidders are willing to bid, the price is strictly above r:

Hendricks, Pinkse, and Porter (2003) show that an analogous result holds in �rst-price

auctions. In a private values model, the function � de�ned in Section 4.3 must satisfy the

boundary condition, limb#r �(b;G(b)) = r; which implies

lim
b#r

GMitjBit(bjb)
gMitjBit(bjb)

�! 0.

By contrast, in a common values environment, � is discontinuous at r, which implies that

lim
b#r

GMitjBit(bjb)
gMitjBit(bjb)

�! c > 0

for some constant c. Therefore, it is possible in principle to distinguish between the two

models by examining the behavior of GMitjBit near the reserve price. In practice, reserve
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prices are often set so that the number of bids near the reserve are too few to implement

the test with con�dence.

Haile, Hong, and Shum (2004) develop a test that exploits exogenous variation in the

number of bidders. Let bGn denote an estimate of GMijBi for auctions with n bidders and

de�ne bxit = �(bit; bGn(bit))
as the pseudo-value corresponding to bidder i�s bid in auction t. Under the hypothesis of

private values, this is an estimate of bidder i�s valuation of item t but, under the hypothesis

of common values, it is an estimate of the latent conditional expectation w(�(bit); �(bit)):

This expectation is decreasing in n if the common component is important, since winning

against more bidders is worse news. Let bFn denote the estimate of the empirical distribution
of pseudo-values in auctions with n bidders. Haile, Hong, and Shum propose testing whetherbFn is invariant to n; as implied by the private value hypothesis, against the alternative thatbFn is strictly increasing in n; as implied by the common values hypothesis. A similar test
can be applied to bids in SPSB auctions and to losing bids in English button auctions. Note

that a maintained hypothesis is that the variation in the number of bidders is exogenous,

and hence independent of the distribution of values. Haile, Hong and Shum propose an

instrumental variables procedure for cases where the number of bidders is endogenous.

Some early studies test private versus common values in a FPSB format by testing for

monotonicity of the bidding strategy � in the number of bidders n. In an independent

private values environment, � is strictly increasing in n, as competition causes bidders to

bid more aggressively. Recall that the optimal strategy in a FPSB auction with IPV and a

minimum bid r can be expressed as

�(x) = E[maxfr;X2:ngjX1:n = x]:

This expectation is increasing in n, as it is the expectation of a monotone function of the

highest order statistic from a sample of size n� 1. But what does theory predict about the
behavior of � with respect to n in a common value environment?

Wilson (1993) discusses several examples in which equilibrium bid strategies may be

decreasing or non-monotone in the number of potential bidders. Consider the pure common

value example in which FV and FXjV are lognormal distributions and the reserve price is

not binding. Wilson (1993) then shows that if FV , the prior distribution of the common
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value, is di¤use,

�(xi) = k(n)xi;

so that the equilibrium bid is proportional to the signal, where the factor of proportionality

depends on the number of bidders and the informativeness of their signals. Signals are more

informative the lower the variance of FXjV , and bidding is more aggressive the lower this

variance. Wilson provides some examples in which k(n) is increasing for small n, and then

decreasing after n = 2 or 4: When the number of bidders is small, increasing competition

leads to more aggressive bids. But this e¤ect diminishes as the number of bidders increases,

and eventually winner�s curse considerations dominate the competitive e¤ect. There are no

general results, however.

It is important not to focus on the winning bid in the above exercises, since the ex-

pected winning bid in a CV environment, E[�(X1:n)], is monotone increasing in n for

many examples. (There are exceptions, however. Bulow and Klemperer (2002) provide one

counter-example.) One should use the vector of all bids or a summary statistic, such as the

average bid. Several studies have examined the sale of oil and gas leases. The basic idea

of the test is to regress bids or average bid on the number of bids submitted n; and n2; or

some other function of n, and Z, a vector of observable characteristics (e.g., area and date

of sale, tract acreage, water depth, etc.). An IPV model often matches the data better than

CV, in the sense that � is increasing in n over the observed range of n (typically, from 1 to

18 bids).

Hong and Shum (2002) study the e¤ects of winner�s curse considerations on bidding in

procurement auctions for highway repair contracts and quantify its importance. They use

the Wilson (1998) log-additive model of preferences, which has the PV and PCV models as

special cases. Identi�cation is achieved by adopting parametric distributional assumptions.

Given the functional form assumptions, they follow La¤ont, Ossard, and Vuong (1995) and

use simulation methods to generate a bid distribution from the equilibrium relationship

between bids and signals. But, instead of trying to match the mean of the bid distribution,

Hong and Shum exploit the monotonicity of the bid function and focus on matching the

quantiles of the equilibrium bid distribution and the actual bid distribution. Simulating

the quantiles of the equilibrium bid distribution is substantially easier than simulating its

moments. They then show that procurement costs rise as competition intensi�es, consistent

with a CV model but not with private values.
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The main limitation of tests that exploit the variation in the number of bidders is that,

in most data sets, the number of bidders is endogenous. The problem is that the number of

bidders is often correlated with unobserved characteristics of the item. For example, in the

Hong and Shum study on highway contracts, the basic empirical regularity observed in the

data is that bids are higher on contracts with more bidders. If the contracts are identical,

then this fact can be attributed to the winner�s curse, which counsels less aggressive bidding

as the number of competitors increase. However, contracts are not identical, and the larger,

more valuable contracts are likely to attract more bidders. The absence of good covariates

like engineering estimates to control for contract heterogeneity means that their results may

be due to the fact that the number of bidders is an imperfect proxy for the contract size.

A similar problem arises with bidding for oil and gas auctions. Even if tract characteristics

include an ex post proxy for V , ex ante bidder errors in expectation will be positively

correlated with the number of bids submitted. If bidders are optimistic, more bid, and

they bid aggressively. One solution is to employ a proxy or instrument for the number of

potential bidders, but an instrumental variable may not be available. Many factors that

are correlated with the participation decisions of �rms will also be correlated with their

valuations, and hence their bid levels. In their study of timber auctions, Haile, Hong and

Shum adopt an instrumental variable strategy, exploiting variation in the number of nearby

mills.

A second problem is that the comparative statics is with respect to a known number

of potential bidders, not the number of submitted bids. If there is a binding reserve price,

or if the support of V falls below zero, not all of the potential bidders will necessarily bid,

and then there is a endogeneity problem. In the studies that test the monotonicity of the

bid function in the number of bidders, the bias is towards the private values model, to the

extent that the number of bids is positively correlated with bid levels. For example, in

the oil and gas auctions, a potential bidder is more likely to submit a bid if tract is more

likely to contain oil. Haile, Hong, and Shum propose a clever test that exploits the fact

that bidder�s probability of participation does not depend upon the number of bidders in

a private value environment but decreases with the number of rivals in a common value

environment.

There is also a serious issue in many applications about whether the number of potential

rivals is known by the bidders. In the OCS auctions, a bidder is classi�ed as a potential

bidder on a tract if it conducts detailed seismic studies. But bidders do not necessarily
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conduct such studies on every available tract. Furthermore, the decision to conduct a

detailed analysis is essentially private. Thus, a �rm may not know which tracts have been

searched by its rivals. In this case, if the probability of search is higher on tracts that

are perceived to be more likely to contain oil, the number of bids is likely to be positively

correlated with bid levels even after controlling for tract values. The reason is the same as

that given above.

Finally, the result that in a private values setting bids are increasing in the number of

bidders relies on the assumption that private values are independently distributed. Pinkse

and Tan (2005) show that if private valuations are instead a¢ liated, then equilibrium bids

in a �rst price sealed bid auction can be decreasing in the number of bidders. Hence, bidding

strategies that are decreasing in the number of bidders are not necessarily inconsistent with

private values.

6 Tests of the Theory

Structural models force a commitment to the theoretical model. Parametric methods entail

joint hypotheses regarding preferences, behavioral assumptions, and the functional form

of the value distribution. Nonparametric methods relax the last assumption, but retain

the preference and behavioral assumptions. The behavioral assumption of noncooperative

bidding is crucial. If some bidders are colluding, some bids may be phony. Also, the e¤ective

number of bidders may be more than actual number submitting bids, due to coalitions.

The existence of bidding coalitions may violate the symmetry assumption, since coalitions

may have di¤erent objectives induced by their formation (when individual rationality or

incentive compatibility constraints bind), or by the aggregation of their preferences or their

information.

The theory of equilibrium bidding under the assumption of a¢ liated signals does deliver

two tests that do not depend upon whether values are private or common. In �rst-price

auctions, monotonicity of the equilibrium bid function implies that

�(b; bG) = b+ bGMijBi(bjb)bgMijBi(bjb)

is increasing in b; and the boundary condition on the equilibrium bid function implies that

lim
b#r
�(b; bG) � r:
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These are consistency checks, akin to overidentifying restrictions. The monotonicity test

has low power, however, as it can be satis�ed by non-equilibrium strategies. For example,

in a private values model, consider the strategy of bidding one�s value, �(x) = x if x � r.
This strategy is monotone, and it satis�es the boundary condition �(r) = r. No such

test is available in second-price auctions, where bids are simply interpreted as conditional

expectations.

The second test is a variant of the test proposed by Haile, Hong, and Shum for distin-

guishing between private and common value models. In �rst price auctions, equilibrium

bidding implies that the empirical distribution of pseudo-values, bFn; is non-decreasing in n.
If this is not the case, then either the data are not consistent with equilibrium bidding or

valuations are not common. A similar test applies to bids in second-price auctions and to

losing bids in English auctions. Note that this test requires the number of bidders to be

exogenous.

The lack of ex post data on bidder values makes it di¢ cult to test the theory in private

value auctions using �eld data, absent some alternative hypothesis. Bajari and Hortacsu

(2005) use bid data from private value auction experiments to test the theory. Experimental

data has two advantages over �eld data. First, the variation in the number of bidders is

exogenous. Second, the realizations of the private values of the bidders, and the value

distribution itself, are known. The main disadvantages are that bidders may not have

su¢ cient experience, and the stakes are low. The authors evaluate the performance of

several models of bidding by comparing the estimated valuations under the various models

to the actual values. For example, in the case of risk neutral bidders with IPV, the estimated

values are generated according to bx = �(b; bG). They �nd that the model that performs best
is Bayesian Nash equilibrium with risk averse bidders.

6.1 Pure Common Value Auctions

The theory of bidding in pure common value auctions can be tested when data on ex post

values are available. Much of the early empirical interest in auctions with common values

focused on the possibility that bidders may bid naively and be a­ icted by the winner�s curse.

A (rather trivial) test of rationality, under which bidders anticipate the information revealed

by winning, looks at individual rationality constraints. In private value �rst price sealed

bid laboratory experiments, where valuations are observed by the researcher, individual
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rationality simply means not bidding more than the value. (Violations of this form of

rationality are especially distressing. If the stakes are low, subjects may place too much

value on winning for its own sake.) In �eld studies of common value auctions, the test often

reduces to checking whether realized pro�ts are positive.

Capen, Clapp and Campbell (1971) is perhaps most in�uential empirical auction paper

addressing this issue. The authors compute ex post returns on o¤shore oil and gas auctions

in the early years of these sales. They claim that bidders su¤ered from the winner�s curse

since, by their calculations, ex post returns were negative, i.e., the internal rate of return

was less than that of Treasury bills. Their �nding suggests that bidders violated the basic

tenets of rational bidding. However, there are several reasons to doubt this conclusion.

First, their measure of ex post returns is based on incomplete production histories. The

wells they study were productive for many more years. Mead and his coauthors (1980)

compute, based on longer well histories, real internal rates of return of approximately 7

percent. Hendricks, Porter and Boudreau (1987) also �nd positive returns for most �rms on

wildcat tracts. In addition, negative ex post returns in small samples are not necessarily

indicative of irrationality, if some unpredictable adverse common payo¤ shock occurred.

In a series of papers, we (with a number of di¤erent coauthors) have used data on

bids, drilling costs, and oil production from federal sales of oil and gas leases on the Outer

Continental Shelf (OCS) to study the impact of the winner�s curse on bidding behavior and

to re-examine the rationality issue. Oil and gas leases are classi�ed into two categories.

Wildcat tracts are located in previously unexplored areas. Prior to a wildcat auction, �rms

are allowed to conduct seismic studies, but they are not permitted to drill any exploratory

wells. The seismic studies provide noisy, but roughly equally informative signals about the

amount of oil and gas on a lease. We argue that wildcat auctions are likely to satisfy the

symmetry assumption on the signal distribution. Drainage leases are adjacent to wildcat

tracts where oil and gas deposits have been discovered previously. Firms that own adjacent

tracts possess drilling information that makes them better informed about the value of the

drainage tract than other �rms, who are likely to have access only to seismic information. We

argue that these auctions can be modeled by assuming one bidder has a private, informative

signal and all other bidders have no private information.

For auctions of both types of leases, we ask the following question: do bidders behave

as predicted by game theoretic models? In the case of drainage auctions, we study this

question by examining whether the predictions of the theory are consistent with the data.
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In auctions with asymmetric information, knowing which bidders have better information

allows us to generate testable predictions of equilibrium bidding based on bidders�identities.

In the case of wildcat auctions, we address this question by testing whether the �rst-order

conditions for optimality hold.

6.1.1 The Asymmetric Case

In the data set on drainage lease bidding, we can distinguish between �rms owning adjacent

wildcat leases (neighbors) and others (non-neighbors). This observable asymmetry between

potential bidders appears to matter. Compared to wildcat auctions, drainage auctions have

less entry (i.e., fewer bids submitted per tract), yet higher ex post returns. Drainage leases

are more likely to be explored, and much more likely to be productive if explored. Although

drainage tracts receive higher bids, their higher productivity translates into higher pro�ts.

Some numbers for the sample period 1954-79 are as follows (Porter, 1995):

Wildcat Drainage

Number of tracts 2,510 (2,255 sold) 295 (237 sold)

Number of bids 3.52 2.45

Mean high bid $5.5 million $7.4 million

Number of tracts drilled 1,757 (78%) 211 (89%)

Number of productive tracts 881 (50%) 147 (70%)

Discounted revenues if productive $19.5 million $17.3 million

What is the explanation for lower entry and higher average returns on drainage leases?

Two alternatives come to mind. One is asymmetries in information: neighbor �rms are

better informed about the value of the drainage tracts than non-neighbors. An alternative

explanation is asymmetries in payo¤s: neighbors have lower costs due to economies of scope.

Either alternative can explain why entry does not drive ex post returns down to wildcat

levels. Entry of non-neighbors might drive their own returns down to zero, but asymmetries

protect the rents of neighbors, especially if they coordinate their bids.

Consider an environment in which one bidder, which we will refer to as I for informed,

has a private, informative signal, X, concerning the unknown common value, V , and another

bidder, called U for uninformed; has access only to public information. We will refer to I

as the neighbor �rm (if there is more than one, we assume that they collude) and U as a

non-neighbor �rm. In the OCS drainage auctions, more than one non-neighbor �rm might
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potentially bid, but an important implication of equilibrium bidding is that the distributions

of the neighbor bid and the maximum of the non-neighbor bids do not depend upon the

number of uninformed bidders. (This result follows from the assumption that non-neighbor

�rms do not have any private information.) Hence we can assume without loss of generality

that there is only one non-neighbor �rm. Assume that r is the announced minimum bid, or

reserve price, and that E[V ] > r. If E[V ] < r, then non-neighbor �rms would never submit

a bid.

The non-neighbor �rm faces an acute case of the winner�s curse in trying to win the

tract from the better informed neighbor �rm at a pro�table price. Should it bid and, if so,

how should it bid? Engelbrecht-Wiggans, Milgrom, and Weber (1983) address this question.

They show that U has to participate in equilibrium. If U does not participate, then I would

bid the reserve price whenever E[V jX = x] exceeds r. But, in that case, U could bid slightly

more than r, win the auction for certain, and obtain a positive payo¤ of E[V ]� r: Second,
U has to bid randomly. If U used a pure strategy and bid b > r, then I�s best reply is

to bid slightly more than b if E[V jX = x] exceeds b. But then U would su¤er an extreme

form of the winner�s curse, as it would win only if E[V jX = x] is less than b, i.e., the more

informed bidder expects V to be less than U�s bid b. Finally, U earns zero expected pro�t

from its mixed strategy. In other words, there is a positive probability that U does not bid.

Consider next I�s behavior and let GU denote U�s mixed strategy. The payo¤ to I from

a bid of b � r is given by

�I(b; x) = (E[V jX = x]� b)GU (b):

This payo¤ depends on the private signal X only through the expectation of the value of the

tract. De�ne H = E[V jX] as the su¢ cient statistic for I�s information and let FH denote

its distribution. (Note that E[H] = E[V ], by the law of iterated expectations.) Then I�s

payo¤ can be written as

�I(b; h) = (h� b)GU (b);

and a pure bid strategy is a function �I(h): Let �I denote its inverse.

As far as U is concerned, �I(H) is a random variable, which depends on the realization

of the H, with distribution function GI(b) = FH(�I(b)). Consequently, U�s payo¤ from

bidding b � r is
�U (b) = E[H � bjH < �I(b)]FH(�I(b)):
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Since I has to bid in such a way that U earns zero pro�ts at any bid above r, its equilibrium

bid strategy is given by

�I(h) =

8>><>>:
0 if h < r

r if h 2 (r;bh)
E[HjH < h] = h�

R h FH(s)ds
FH(h)

if h > bh
where bh satis�es E[HjH < h] = r: Clearly � is monotone increasing in h for h � bh:
Therefore, GI(b) = FH(�I(b)) for bids above the reserve price. Furthermore, as h �! 1,
�(h) �! E[V ]: Therefore, the positive support of GI is (r; E[V ]): The remaining probability

is concentrated at 0 (no bid) and at the reserve price r. The probability mass at these two

bids are FH(r) and FH(bh)� FH(r), respectively.
We turn next to characterizing U�s mixed strategy. It has to bid so that I wants to bid

according to �. Since �(h) maximizes

�I(b; h) = (h� b)GU (b) s.t. b � r;

�(h) must solve

(h� b)gU (b)�GU (b) = 0 for all b > r:

Substituting �I(h) for b, this �rst order condition can be expressed as

gU (�I(h))�
0
I(h)dh

GU (�I(h))
=
fH(h)dh

FH(h)

Note that this equation holds for h � bh: Integrating both sides of this equation from bh to
h and applying the boundary condition �I(bh) = r; yields

GU (�I(h))

GU (r)
=
FH(h)

FH(bh) for any h � bh:
Since limh�!1GU (�(h)) = 1; it follows thatGU (r) = FH(bh) and hence GU (�I(h)) = FH(h):
Equivalently, GU (b) = FH(�I(b)) for b > r: Continuity of expected pro�ts implies that

both bidders cannot have a mass point at r. Hence, the remaining probability of GU is

concentrated at 0. If there are n uninformed bidders, then GU is the distribution of the

maximum uninformed bid.

The equilibrium generates a number of testable predictions for drainage auctions. First,

non-neighbor �rms should have a lower aggregate participation rate than the neighbor �rms.
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In the data, the participation rates for these two types of �rms are 57% and 87% respectively.

Second, neighbor �rms should have a higher win rate than non-neighbor �rms. In the data,

neighbor �rms account for 57% of the high bids. Third, non-neighbor �rms should earn

zero pro�ts on average. The data are consistent with this prediction, at least prior to

1973, assuming a 5% real discount rate. Fourth, non-neighbor �rms should earn negative

expected pro�ts on leases where neighbor �rm(s) did not bid, since no neighbor bid is bad

news. This pattern is found in the data, as the non-neighbor �rms incurred signi�cant (both

statistically and economically) losses when no neighbor �rm bid. Finally, the distribution

of neighbor bids should have a mass point at r and should coincide with the distribution

of the maximum non-neighbor bid above r. This last prediction is not consistent with the

data. The two distributions coincide at higher bid levels but non-neighbor �rms submitted

relatively few low bids. (There were few low non-neighbor bids of any sort, and not just

few low maximum non-neighbor bids.) Hendricks and Porter (1988) provide more detail.

We conclude that the simple theory of asymmetric information and common values

can account for several features of the data, but not all. The simple theory ignores one

important institutional feature, namely, that the government reserves the right to reject

the high bid. In 1959-79, the government rejected 58 of 295 high bids on drainage leases,

approximately 20%. Rejection usually occurred when only one bid was submitted and the

value of the bid was low.

We model the rejection policy as an unknown reserve price R with lower bound r, the

announced reserve price, and upper bound r: The high bid is rejected if b < R. The secret

reserve price complicates the analysis considerably. The payo¤ of I is

�I(b; x) = (E[V jX = x; b � R]� b) Prfb � RjX = xgGU (b):

In this case, H is no longer a su¢ cient statistic for optimal bidding behavior. The private

signal X may contain information that is relevant to the distributions of both V and R.

Hendricks, Porter and Wilson (1994) assume that (V;X;R) are a¢ liated. This assumption

implies that (i) E[V jX;R] is non-decreasing in X and R, and (ii) the distribution FRjX
satis�es the monotone likelihood ratio property with respect to realizations of X. These

two properties are used to establish that �I(X) is non-decreasing. This in turn implies that

(V;R; �I) are a¢ liated and permits a characterization of the equilibrium bid distributions.

The main e¤ects of the secret reserve price are captured in the special case where R is

independent of (V;X); in which case H is a su¢ cient statistic for X. Let GR denote the
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distribution of R. Then I�s payo¤ from a bid of b is now

�I(b; h) = (h� b)GU (b)GR(b):

De�ne

�0(h) = argmax(h� b)GR(b)

as the optimal strategy of I absent competition from uninformed bidders. The optimal bid

function with U present is maxf�0(h); �I(h)g. In some cases, �0(h) > �I(h) when h < eh for
some eh > r. Then more aggressive bidding by I on the interval [r;eh) means that �U (b) < 0
for b 2 (r;eb) where eb = �(eh):

The predictions for the bid distributions have to be modi�ed as follows: (i) GI does not

have a mass point if GR(r) is su¢ ciently close to 0; (ii) GU (b) � GI(b) with strict inequality
for b 2 (r; r) (stochastic dominance) and (iii) GU = GI for b > r. In the data, the bid

distributions essentially coincide above $4 million. The probability of rejection at this bid

level is very low. Stochastic dominance is evident, as depicted in Figure 1 of Hendricks,

Porter and Wilson (1994), and signi�cant. We conclude that the asymmetric information

common value model with a secret reserve price can account for the main features of the

data.

What about the assumption that there is only one neighbor? In the sample, the average

number of neighboring wildcat tracts is 3.78. Yet non-neighbor bidding is independent of

the number of neighbor �rms: If neighbor �rms are symmetrically informed, and if they

bid competitively, then non-neighbor �rms with no private information should not bid.

At a minimum, one would expect less aggressive non-neighbor bidding as the number of

neighbors increases, as the winner�s curse is more severe. One could view participation by

non-neighbor �rms as evidence of coordination on the part of neighbor �rms. Further, the

high neighbor bid is independent of number of neighbors, and on tracts where more than

one neighbor bids, neighbor pro�ts are much higher. This evidence suggests coordination by

the neighbor �rms, with occasional phony bids to guard against rejection. Alternatively, the

neighbor �rms may themselves be asymmetric in some way. Note that it is relatively easy

for neighbor �rms to coordinate, as they could allocate production as a means of making

side payments.

What about the alternative model in which there are cost asymmetries rather than

information asymmetries? Several facts argue against this model. First, to avoid common
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pool problems, production on adjacent tracts is often unitized, with revenues allocated in

proportion to area owned above the common pool. Second, non-neighbor �rm pro�ts are

approximately zero. On tracts won by non-neighbors when neighbors do not bid, pro�ts

are negative because tracts are less likely to contain oil or gas deposits. This is inconsistent

with unobserved cost di¤erences being the predominant source of asymmetry.

The tests described above are reduced form. There is a role for structural estimation

in this environment, in designing the optimal selling mechanism. But knowing only that

information is asymmetric, and who has superior information, can be su¢ cient for optimal

mechanism design. Hendricks, Porter and Tan (1993) discuss this issue.

6.1.2 The Symmetric Case

For wildcat tracts, Hendricks, Pinkse and Porter (2003) implement several tests of bidder

rationality by comparing bids with ex post outcomes. One basic test is that actual rents,

vt � wt; measured as the di¤erence between discounted net revenues and the winning bid,
should on average be positive. A second related test is that �rms should expect to earn

positive rents conditional on submitting the winning bid. To compute this expectation, we

estimate the function

�(b) = E[VtjBit = b;Mit < b];

and evaluate it at bit. The pro�t margin that �rm i expects to earn upon winning tract t

is �(bit)� bit. Averaging across �rms and tracts, this pro�t margin should be positive. We
�nd that actual rents and expected rents conditional on winning are signi�cantly positive,

and there is no evidence of adverse selection associated with winning. The magnitude of

the actual rents are approximately equal to total entry costs, so it appears that on average

�rms earn zero pro�ts.

Did bidders bid less than their expected tract value? To address this question, we

estimate the function

&(b) = E[VtjBit = b]

and test the restriction that &(b) > b at all bid levels. We also test the stronger restriction

that �rms should always bid less than the expected value of the tract conditional on winning,

�(b) > b: We �nd that both &(b)� b and �(b)� b are signi�cantly positive throughout the
relevant range of bids, and furthermore that &(b) is signi�cantly larger than �(b) at every
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bid level. The di¤erence between these two functions is a measure of the informativeness of

winning. This di¤erence is greater on tracts with more potential bidders.

Our �nal test is a test of equilibrium bidding. Recall that, in a symmetric equilibrium,

bids satisfy the �rst-order condition

E[V jXi = �(b); Yi = �(b)] = �(b;G):

We estimate the conditional expectation function,

�(b) = E[V jBi = b;Mi = b]:

Since � is monotone, � is monotone as well, and hence these two equations imply that

�(b) = �(b;G)

at any b > r. Equality of these two functions is an empirically testable implication of

equilibrium bidding in wildcat auctions. We �nd that Bayesian Nash equilibrium cannot be

rejected when competition is high (i.e., more than six potential bidders, by our measure),

but equilibrium behavior is rejected when competition is low (six bidders or less). In the

latter case, the data suggest that �rms may have overbid.

In summary, we conclude that the winner�s curse is evident in the data, but also that

bidders are aware of its presence and bid accordingly, for the most part.

7 Revenues and Auction Design

The early theoretical work on auctions by Vickrey (1962) and Ortega-Reichert (1968) studies

the four standard single object auction formats, namely, Dutch, English, FPSB, and SPSB,

under the assumption that bidders are risk neutral, their valuations are private, and their

signals are independent and identically distributed. The authors obtain a striking and

surprising result: the expected revenues from all four formats are identical. In each case, the

expected revenue to the seller in equilibrium is simply the expected value of maxfr;X2:ng,
where Xk:n denotes the kth highest order statistic among the random variables fX1; :::; Xng:
(The reserve price r can be interpreted as the bid of the seller, and as the second highest

estimate in the event that no rival submits a bid. The revenue comparison assumes that

r is constant across auction formats.) Myerson (1981) and Riley and Samuelson (1981)

subsequently demonstrated that the revenue equivalence result holds under bidder risk
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neutrality in any auction format in which the bidder with the highest valuation wins and

the bidder with the lowest possible valuation, x, has zero expected payo¤.

A number of empirical studies have examined the prediction of revenue equivalence.

The prediction has also received the attention of the experimental literature. One strand

of the empirical literature compares bid data from di¤erent auction formats. Although

there are not many instances where di¤erent auction formats are run in parallel for similar

auction environments, one example is U.S. Forest Service timber auctions (Hansen (1986)).

Hansen�s econometric approach to test revenue equivalence is to regress winning bid on sales

characteristics, Zt; and an indicator variable

Dt =

(
1 if auction t is FPSB

0 if auction t is English
:

Hansen �nds that the coe¢ cient on Dt is signi�cantly positive. Revenues in the FPSB

auctions are about 10% higher than in English auctions. But, as Hansen argues, the Forest

Service does not select auction type randomly. If one corrects for sample selection, where

the Forest Service region is employed as an instrument for auction format, the coe¢ cient

on Dt is approximately zero. Hansen concludes that one cannot reject revenue equivalence.

Athey, Levin and Seira (2004) �nd that, in more recent periods, revenues are higher in the

FPSB auctions, even correcting for sample selection.

There are other implications of equilibrium bidding that could be tested. Higher mo-

ments of the distribution of seller revenues are not the same across auction formats. In

particular, Matthews (1980) shows the FPSB winning bid distribution has lower variance

than revenue in the SPSB and English auctions. Therefore, one might examine higher order

moments of the distribution of prices, or properties of the entire distribution of prices. For

example, Haile�s (2001) method of moments estimator for the distribution of valuations in

an English auction (with an active resale market) employs information on both the �rst

and second moments of the bid distribution. But we know of no instance in which compar-

ative statics properties across auction formats concerning higher order moments have been

examined.

Rejection of revenue equivalence then leads one to ask why it occurs. What feature of

equilibrium bidding in the symmetric, risk neutral IPV model is being rejected? One pos-

sibility is risk aversion (Holt (1980)). Bidding one�s valuation remains a dominant strategy

in an English auction, but expected prices are higher in a FPSB, as risk averse bidders
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increase their bids to increase the probability of winning the auction. In a private values

environment, bidders know their valuation net of their bid in the event they win, but are

uncertain whether they will win the auction given their bid. Risk aversion therefore leads to

more aggressive bidding. (In contrast, risk aversion may lead to less aggressive bidding in

common value auctions, due to the winner�s curse.) Haile (2001) argues that the presence

of a resale market, and the consequent incentives to signal via bids in the original auction

to a¤ect subsequent resale negotiations, can account for FPSB revenue superiority.

Athey, Levin, and Seira relax the assumption of symmetric bidders. They assume that a

mill�s willingness to pay for cutting rights is stochastically greater than a logger�s willingness

to pay since the latter has to sell its logs to a mill. Under this assumption, revenue equiva-

lence does not hold and the auction format matters. In open, ascending price auctions, the

bidder with the highest valuation wins but, in �rst-price, sealed bid auctions, this need not

be the outcome. Mills shade their bids further below their valuations than do loggers in

a FPSB auction, because of their favorable distribution of values. As a result, loggers are

more likely to participate, and win, in a sealed bid auction than in an open auction, and

sealed bid auctions may yield greater revenue. The main di¢ culty the authors face in test-

ing these theoretical predictions is, again, that the choice of auction format is not random.

The authors deal with this problem by using a non-parametric matching estimator, and

assuming that the choice of auction format is a function of observable sale characteristics.

The latter assumption is plausible since the data provide a rich set of sale characteristics.

After controlling for sale characteristics, they �nd that the participation and win rates of

loggers are higher in sealed bid auctions than in open auctions. In addition, winning bids

in sealed bid auctions are signi�cantly higher in Montana and Idaho, but similar to winning

bids in open auctions in California.

Athey, Levin, and Seira also explore the possibility that the FPSB revenue superiority

in the Northern states may have been due to mills bidding less competitively in the open

auctions. As we argue below, collusion can be easier to maintain in an English auction.

To test this hypothesis, the authors use structural estimates of entry costs and the value

distributions of loggers and mills from sealed bid auctions to predict average sale prices

in the oral auctions under the assumption that mills behave competitively, and under the

assumption that they bid collusively. For each tract, the mean parameter of the Poisson

distribution determining the number of loggers is calibrated so that loggers are indi¤erent

between entering and staying out. Thus, in contrast to other analyses of collusion in auctions
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which treat the number of bidders as �xed, collusion by mills a¤ects the entry behavior of

loggers. As a result, the impact of collusion on sale prices is not as large as it might

have been had mills colluded in secret. Collusion is nevertheless pro�table because loggers�

valuations are stochastically lower than the mills�valuations. The main �nding is that the

average price in the Northern oral auctions lies below the average predicted price obtained

under competition, and above that obtained under collusion. In California, average prices

are not signi�cantly di¤erent from the average predicted price obtained under competition.

The Athey, Levin, and Seira paper illustrates the usefulness of structural estimation for

building counterfactuals. Shneyerov (2005) pursues a similar strategy in studying the e¤ects

of auction format on revenues in municipal bond auctions. The auctions are �rst-price sealed

bid, and Shneyerov wants to predict the revenue changes from switching from the FPSB

format to either second-price sealed bid or an English button auction. Milgrom and Weber

(1982) show that, in a¢ liated common value environments, the expected revenues of �rst-

price auctions are lower than the expected revenues of sealed bid, second-price auctions,

which in turn are lower than the expected revenues of English button auctions. The idea

is that the SPSB format reveals rival information by making the winner�s payment equal

the highest rival bid. In an English button auction, rival signals are revealed by their

exit decisions, further allaying the winner�s curse. Before constructing the counterfactual,

Shneyerov estimates the empirical distributions of the random variables, �(B; bGn); and
tests the null hypothesis of private values against the alternative of a¢ liated values using

one of the tests proposed by Haile, Hong, and Shum (2004). He rejects the null, so that

revenue gains are possible. The di¢ culty that he faces in constructing the counterfactual

is that, in auctions with common values, the distribution of latent bidder valuations is not

identi�ed. Shneyerov observes, however, that �(b; bGn) is an estimate of the latent conditional
expectation, w(�(b); �(b)); which is the amount that a bidder with signal x = �(b) would

bid in a second-price auction with n bidders. Hence, the pseudo-values generated by the

two-step approach of Elyakime, La¤ont, Loisel, and Vuong (1994) and Guerre, Perrigne,

and Vuong (2000) can be interpreted as counterfactual bids in a second-price auction, and

used to identify expected revenue from this auction format. Shneyerov �nds that expected

revenues from the second-price auction are approximately 20 percent higher than in the

�rst-price auctions.

The second main result of Myerson (1981) and Riley and Samuelson (1981) is that the

revenue maximizing mechanism in an IPV environment can be implemented by any of the
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standard auction formats with an appropriately speci�ed reserve price. As we discussed in

Section 3.1, the optimal reserve price for a seller who values the item at x0 is the solution

to:

r = x0 + [1� FX(r)]=fX(r):

The optimal reserve price in an IPV auction depends only on x0 and FX , and not the

number of bidders. Given an estimate of FX , the seller can choose r to satisfy the above

equation. Paarsch (1997) and Haile and Tamer (2003) estimate the optimal reserve price

in an IPV environment.

McAfee and Vincent (1992) and McAfee, Quan, and Vincent (2002) study the problem

of setting optimal reserve prices in common value auctions when the seller does not have an

estimate of F: This case is certainly relevant since, as noted earlier, F cannot be identi�ed in

these environments from bid data alone. McAfee and Vincent (1992) consider pure common

value, �rst-price auctions and develop a distribution-free test statistic that the seller can

compute from data on bids and ex post values to determine whether the reserve price is too

low or too high. The test statistic allows for endogenous entry and stochastic participation.

They apply the test to the data on federal o¤shore oil and gas auctions. They �nd that the

federal government�s revenue-maximizing reserve price was too low. In their 2002 paper, the

authors extend the test to common value environments and to a broader class of auctions,

including �rst price, second price and oral auctions. The extension does not require data

on ex post values. They apply the test to real estate auctions.

7.1 Multi-Unit Auctions

The revenue equivalence theorem has been tested in sequential auctions under the assump-

tion of unit demands. That is, each bidder�s valuation refers to their valuation of the �rst

unit they acquire, and the marginal value of any additional unit is assumed to be zero.

Suppose that only the winning bid is revealed after each round. Let wl denote the winning

bid in the lth auction. It can be shown that in an IPV environment with risk neutral and

symmetric bidders who have unit demands, the prices in a k-item, sequential �rst price auc-

tion should form a martingale, that is E[wljwl�1] = wl�1 for l = 2; :::; k; and furthermore,
that E[wl] = E[Xk+1:n] for all l. This claim is also true of a SPSB sequence. In an English

auction, the price sequence depends on what information is revealed to the bidders.

Ashenfelter (1989) tests this arbitrage condition for wine auctions. Identical cases of
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wine were sold sequentially via English auctions by an auction house. He �nds evidence

of a �declining price anomaly.�Prices systematically and signi�cantly decline over the sale

sequence, although the magnitude of the decline is not large, a few percent. This pattern

appears to violate the martingale prediction, as well as a more general notion of the im-

plications of no arbitrage opportunities. Other studies that have examined this prediction

include Ashenfelter and Genesove (1992) and Beggs and Graddy (1997), who respcetively

�nd that condominium and art prices also decline. In contrast, Donald, Paarsch and Robert

(2006) �nd evidence of rising prices in auctions of Siberian timber export permits. Ashen-

felter and Graddy (2003) provide a recent survey.

Is there a resolution to the anomaly? The martingale result relies on risk neutrality,

the IPV assumption and the assumption of unit demands. A number of papers have shown

that the conclusions are not robust. McAfee and Vincent (1993) study the e¤ects of risk

aversion. They show that in order to obtain declining prices, preferences must exhibit non-

decreasing absolute risk aversion, which is not thought to be plausible. Milgrom and Weber

(2000) show that a¢ liation implies that prices should (weakly) increase, as winner�s curse

concerns are mitigated as information is revealed. Finally, one might also question whether

buyers only want one unit, and if not whether their valuations are independent across units.

In some auctions with declining prices, initial winners have the option to buy more than

one unit at their bid price, and the price decline may re�ect the value of this option, as

noted by Black and de Meza (1992).

The literature on the declining price anomaly illustrates the interaction between theory

and empirical work in auctions. Here the theory generates a simple prediction, which is

rejected by the data, inducing further theoretical work on the robustness of the predictions.

It also illustrates an important theme of empirical work on auctions: tests of reduced form

predictions are most compelling when the predictions are robust to the various maintained

hypotheses.

Beggs and Graddy (1997) examine sequential sales of paintings, in part to see whether

the order within the sequence matters. They �nd that sale rates and sale prices relative to

pre-sale catalog estimates rise with bid order for the objects sold at the beginning of the

day. Thereafter, sale rates and prices relative to estimates fall, similar to the declining price

anomaly. Perhaps not surprisingly, there is a tendency to place higher value objects earlier

in the sale, although not right at the beginning. Note that there is an implicit assumption

in the econometric model that looking at prices relative to pre-sale estimates is su¢ cient to
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control for heterogeneity across dissimilar paintings. In sequential sales of identical objects,

the variance of prices will evolve over time. An open issue is whether higher order moments

also vary with the pre-sale estimate, i.e. whether there is heteroskedasticity, as might result

if the dispersion of valuations relative to the pre-sale estimate varies with the value of the

object.

The revenue equivalence result also extends to simultaneous auctions of multiple identi-

cal objects when bidders have unit demands. Milgrom and Weber (2000) prove the following

result in auctions where k units are auctioned simultaneously in an IPV environment with

risk neutral bidders. Suppose the auction rules and equilibrium are such that the k highest

types always win and that the lowest type has zero expected payo¤. Then the expected

payment of type x of bidder i at the Bayesian Nash equilibrium of the discriminatory auc-

tion (where the winning bidders pay their bid) is the same as in Vickrey�s auction, where

the winning bidders pay the highest rejected bid. The expected payment of that bidder is

the expected valuation of the marginal losing bidder (including the seller, as represented by

the reserve price), conditional on being among the set of winning bidders:

E[maxfXk+1:n; rgjx � maxfXk+1:n; rg]

The Vickrey auction is also known as a uniform price auction. Another uniform price

auction stipulates that the k highest bidders win and pay the lowest accepted bid, that is

the lowest bid submitted by one of the k winning bidders. Note that, in the symmetric

equilibria, the outcomes are the same and they are always e¢ cient, because the items are

allocated to the bidders who value them the most.

Treasury bills are an important example of a simultaneous item auction that has been

run under both discriminatory and uniform pricing rules in a number of countries, such

as the United States, Sweden, Switzerland, Mexico, Turkey and Korea. However, the unit

demand assumption in these auctions typically fails. Bidders submit bid schedules, listing

their willingness to pay for a varying number of items. Ausubel and Cramton (2002) provide

examples under which either the uniform or the discriminatory format may yield higher

revenues. Thus, the question as to which format yields more revenue is an empirical issue.

Bikhchandani and Huang (1993) survey empirical studies that have addressed this issue

using reduced form methods.

Several authors have recently employed structural estimation methods to recover the

bidders�willingness to pay schedules. Hortacsu (2002) examines bidding in Turkish treasury
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auctions when a discriminatory format was employed. He assumes that values are private,

and that buyers� private information is a real number (i.e., not multi-dimensional). An

increase in the private signal leads to a monotonic increase in the bidder�s marginal valuation

schedule. Bidder�s demand functions are assumed to be monotonic functions of their private

signals. Thus, if a bidder�s rivals adopt a given bid schedule, the bidder�s best response can

be computed for a given realization of his private information. As in the single unit case,

one can de�ne an inverse bid function, where now

vi('i(b; x); x) = b+
Gi(b; 'i(b; x))

@Gi(b; 'i(b; x))=@b
:

Here 'i(b; x) denotes the bid function specifying a quantity demanded by bidder i at price

b, given a private signal x, and vi(q; x) is the marginal valuation of acquiring q units given

the private signal. Gi(b; 'i(b; x)) denotes the probability that the lowest winning bid is less

than or equal to b, given that bidder i adopts the strategy 'i(b; x). This equation generalizes

the expression for the inverse bid function in a single unit private value auction. Hortacsu

proposes a method based on resampling to estimate Gi(b; 'i(b; x)) and its derivative for each

bidder, and thus recover a pseudo-sample of marginal valuations. Hortacsu shows that his

method yields consistent estimates. After recovering the distribution of bidder valuations,

he computes an upper bound on the counterfactual seller revenues that would be obtained

in a uniform price auction, under the assumption that bidders would not bid more than

their marginal values. This bound is less than the observed revenue in the discriminatory

auction, suggesting that a uniform price format would not result in higher revenues. Such

counterfactual comparisons are feasible only with structural estimates. Other structural

estimation papers include Castellanos and Oviedo (2004), who study Mexican treasury

auctions, and Fevrier, Preget, and Visser (2004), who study French treasury auctions.

Several empirical studies of treasury bill and electricity markets, in which bidders submit

bid schedules rather than bid prices, assume that the schedules are continuous functions.

In practice, bidders often submit step functions with only a few steps, in some instances

with many fewer steps than they would be permitted to use. Kastl (2005) argues that

in some contexts the restriction to continuous bid schedules can mask important strategic

issues, and that revenue comparisons based on continuous schedules may not be valid. In

particular, revenues in uniform price auctions can exceed the bound derived by Hortacsu.

His study of uniform price Czech treasury auctions indicates that the distinction between
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continuous and discrete schedules can matter empirically.

Kastl�s empirical work exploits the fact that, although bid functions are not continu-

ous, the price and quantity associated with any bid point are continuous variables. He

characterizes the necessary conditions the price and quantity choices must satisfy, and his

empirical work exploits the �rst order condition for quantities. Wolak (2003, 2005) proposes

an empirical method that accounts for both the price and quantity �rst order conditions

associated with each bid point, and he applies the method to determine the value of forward

contracts in the Australian national electricity market.

8 Collusion

There is evidence of collusion in many auction markets. Examples include highway con-

struction contracts, school milk delivery, timber sales, and spectrum auctions. Auction

markets may be especially vulnerable to collusion. An auction is an e¤ective price discov-

ery mechanism under competition, and so can be attractive to sellers who are uncertain

about the price they should receive. But the sellers may then be unable to determine when

they are the victim of a bid rigging scheme. Collusion among bidders, if successful, can

bene�t the participants at the expense of their suppliers. The social losses usually outweigh

the bene�ts. For example, if a bidding ring lowers the prices they o¤er to pay for products

or services, relative to competitive levels, then sellers su¤er a loss, and trade will be less

likely to occur. The outcome may also be ine¢ cient, if bidders outside the ring are more

likely to win. Further, potential sellers will be less inclined to o¤er their products or services

in the future. There will be social welfare losses to the extent that current and potential

future gains from trade are foregone.

In this section, we describe various collusive schemes, the factors that facilitate or inhibit

collusion among bidders in auction markets, as well as circumstances where detection is pos-

sible. Collusion in this instance means explicit, as opposed to tacit, cooperation, involving

direct communication and perhaps side payments. These actions are usually surreptitious,

either because they are illegal under antitrust laws, or because they are most e¤ective if they

are kept secret from the intended victims. We describe some results from the theoretical

literature, and discuss a number of recent empirical studies. Two surveys that touch on

some of the same issues, although not just for auction markets, are by Harrington (2005)

and Porter (2005).
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8.1 Collusive Mechanisms

Collusion can take many di¤erent forms in auctions. The form often depends on the auction

rules and characteristics of the environment (Hendricks and Porter, 1989). But all bidding

rings face a set of typical cartel problems: private information about the gains from trade,

con�icting objectives, internal enforcement, detection by authorities or seller, and entry.

An important feature of many collusive agreements, and a determinant of their success, is

the need to reconcile disparate interests. Interests may di¤er for a number of reasons. For

example, �rms may have adopted technologies of di¤ering vintages for historical reasons,

they may serve non-overlapping and heterogeneous customer bases, or their payo¤s may be

subject to imperfectly correlated shocks. Side payments can solve some internal problems,

but they may not be legal. Also, the contractual terms associated with side payments may

not be enforceable. An unhappy conspirator whose loyalty cannot be purchased is more

likely to report the collusion to antitrust authorities.

Theoretical studies have focussed primarily on private information as a source of dif-

�culties for a ring. In this literature, the ring�s objective in an auction is viewed as a

problem of mechanism design. The mechanism design approach is natural for legal cartels,

which can write binding contracts to enforce side payments or allocative agreements, and

to a lesser extent for illegal conspiracies where members communicate and may make side

payments. Since most illegal rings operate in many auctions over time, they may be able

to use repeated game strategies to enforce the mechanism played in an individual auction

(Athey and Bagwell (2001), Athey, Bagwell and Sanchirico (2004)). In a mechanism design

framework, allocations and transfers are determined by internal messages. The collective

goal is to win the auction when it is optimal to do so, and in those cases to allocate the

good and divide the spoils among the participants. The ring mechanism must be incentive

compatible and individually rational. That is, ring members must have an incentive to re-

veal their private information, and they must also participate voluntarily, so that there is no

incentive to defect. The speci�cation of these constraints, and the extent to which they are

binding, will depend upon the auction rules and on the characteristics of the environment.

8.1.1 Private Values

In a private values environment, the cartel has to overcome an adverse selection problem: the

participants do not know how much fellow ring members are willing to pay for the item being
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auctioned, and each member wants to exploit this private information to argue for a bigger

share of the spoils. Graham and Marshall (1987) and Mailath and Zemsky (1991) study

collusion in second-price, IPV auctions. They show that ex post e¢ cient collusion by any

subset of bidders is possible. In a symmetric environment, the ring can easily implement the

incentive compatible, ex post e¢ cient cartel mechanism with a pre-sale knockout auction.

In the knockout auction, the ring members bid for the right to be the ring�s representative

bidder in the seller�s auction. The conspirator who bids the highest amount wins this right,

and the winner pays an amount to the other ring members based on the bids submitted.

Since the knockout auction has a symmetric equilibrium with monotone strategies, the

winner is the member who has the highest valuation. The participation constraints are

evaluated at the interim stage, after the members have obtained their values but before

they have decided to participate in the ring. The payo¤ to a bidder who decides not to

participate in a ring of size m is given by her equilibrium payo¤ in the seller�s auction when

she bids against a ring of size m � 1 and n � m non-ring bidders. This payo¤ is easily

computed in a second-price, private value auction because participants have a dominant

strategy to bid their value. Hence, a noncolluding bidder faces the same high bid whether

her rivals form a ring (of any size) or not, assuming the ring selects the member with the

highest valuation. The knockout auction satis�es the interim participation constraints, so

bidders prefer the cartel mechanism to bidding non-cooperatively in the seller�s auction.

McAfee and McMillan (1992)) study collusion in �rst-price IPV auctions. They show

that ex post e¢ cient collusion is possible in these auctions if the ring includes all bid-

ders. The all-inclusive ring can implement the incentive compatible, ex post e¢ cient cartel

mechanism using a �rst-price knockout auction in which the winning bidder pays his bid

to the losing bidders, who share equally in this bid. Hendricks, Porter, and Tan (2006)

extend this result to a¢ liated private value environments. McAfee and McMillan assume

that the bidders have to make their participation decisions before they obtain their private

information so that the relevant participation constraints are ex ante. They show that the

bidders�expected cartel payo¤s exceed the equilibrium payo¤ they would receive if every-

one bid individually and noncooperatively in the �rst price auction, and so everyone will

want to join the ring. An alternative speci�cation of the participation constraint is the

equilibrium payo¤ in a �rst-price sealed bid auction in which one bidder bids against a ring

of size n� 1. These payo¤s are di¢ cult to compute since the auction involves asymmetric
bidders. McAfee and McMillan study a simple model in which each buyer�s private value
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is an independent Bernoulli random variable. They show that the noncolluding bidder is

better o¤ ex ante than ring members. Thus, the all-inclusive ring is not stable, which may

explain why most rings in �rst-price auctions are partial.

An alternative to a pre-sale knockout auction is a post-sale knockout, such as the one

used by a bidding ring involving rare book dealers in England in 1919. After one large estate

sale, the ring held a series of knockout auctions. Successively smaller subsets of the dealers

conspired to deprive the seller, and then their fellow conspirators, of some of the gains.

The book dealers di¤ered according to expertise and scale of operation, and the larger and

more experienced dealers stayed longer in the knockout process. The participants in the

various knockout auctions shared the increases in bids over prices in the previous round.

The original seller received less than 20 percent of the �nal settlement prices. (Note that

this �gure probably overstates the damage to the seller, as the ring settlement mechanism

could induce conspirators to bid more than their valuations in the knockout auction.) Why

did the larger ring members conspire with the smaller members? If they had not, the larger

dealers would have had to outbid the smaller dealers at the original auction, and it would

have been cheaper to share some of the collusive gains with them. But it is also in their

interest to share only enough to buy the loyalty of the smaller dealers, and not the full

di¤erence between the original purchase price and what the larger dealers were willing to

pay. A sequence of knockouts would limit the amount shared, assuming that smaller dealers

were not aware that they would be excluded from later knockouts. (Porter (1992) provides

a brief account.)

An imperfect solution that involves no side payments is the territorial division of bidding

privileges, by region, by point in time, by incumbency, or even by pure randomization (via

the submission of many identical bids). A scheme that assigns customers or territories to

the participants would grant individual �rms wide latitude within their own territories.

Comanor and Schankerman (1976) provide evidence that rotating bid arrangements can

be stable. Here �rms take turns submitting serious bids for the ring. The serious bid

may be optimized against the seller�s acceptance rule, or against other bidders who are

not coconspirators. Other ring members may submit complementary bids to create the

appearance of competition. McAfee and McMillan (1992) show that it may be optimal

for a weak all-inclusive cartel (that is, one that cannot make side payments) to submit

many identical bids at the reserve price, and so rely on the auctioneer to randomly select

among them. In the 1950s, General Electric and Westinghouse assigned low bid privileges
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for electrical equipment contracts based on a phases-of-the-moon system (Smith, 1961), a

practice that is unlikely to re�ect di¤erences in values.

Pesendorfer (2000) argues that a weak conspiracy that cannot make side payments

may be forced to maintain relatively constant market shares, despite some losses from not

allocating bidding rights to the low cost �rm, in order to maintain internal discipline. He

shows that, if there are many items being sold, the ring can achieve approximate internal

e¢ ciency via a ranking mechanism. That is, members rank items, and bidding privileges

for individual items are assigned based on the submitted rankings. The ring does not

achieve full internal e¢ ciency, as minimal market shares must be guaranteed to ensure that

participation constraints are satis�ed. He compares Florida and Texas bid rigging schemes

for providing school milk, and shows that market shares were less stable in Florida, where

dairies used side payments.

8.1.2 Common Values

In a pure common value auction environment, a ring�s internal allocation problem is simpler,

because all members value the item identically. As a result, cartels in these auctions can

adopt equal division rules, in which all members share equally in the spoils. Given this

sharing rule, cartel members have no incentive to misrepresent their information. They

share a common goal, which is to bid only when the expected value of the item conditional

on their pooled information exceeds the reserve price. The equal division sharing rule can be

implemented without transfer payments by having every member submit the same bid (e.g.,

the reserve price) and letting the seller randomly select the winner, or by rotating bidding

privileges over several auctions. However, participation constraints can be a problem.

Hendricks, Porter and Tan (2006) study all-inclusive cartel formation in a �rst-price auc-

tion with common values. The ring is assumed to form after the bidders have obtained their

private information so the relevant participation constraints are interim. In the standard

mechanism, bidders compare the equilibrium payo¤ (conditional on their private informa-

tion) they would receive if everyone bid individually and noncooperatively in the �rst price

auction to their expected cartel payo¤. We show that the equal division sharing rule does

not generally satisfy these participation constraints, nor does the knockout tournament.

Indeed, no incentive compatible, ex post e¢ cient cartel mechanism may satisfy the par-

ticipation constraints. The reason is that bidders have to bid cautiously in the �rst-price
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auction due to the winner�s curse. As a result, a bidder with favorable information when

commonly available signals are pessimistic is often able to earn a higher expected payo¤

from competitive bidding in the seller�s auction. He will have to pay a somewhat higher

price paid to the seller, but the surplus is not shared with other ring members, who are not

likely to pose a competitive threat.

We also consider a second model of the participation constraint. Cramton and Palfrey

(1995) have argued that the participation choices of bidders are informative about their

types. If one or more bidders chooses not to participate, bidders should revise their beliefs

accordingly before bidding in the �rst-price auction. The revision in beliefs will a¤ect bid-

ding behavior and hence payo¤s, and should be anticipated by the bidders when they make

their participation decisions. Cramton and Palfrey refer to this issue as the information

leakage problem. They formalize the problem by assuming that bidders �rst play a veto

game in which they simultaneously vote for or against the proposed cartel mechanism. If the

mechanism is unanimously rati�ed, then the all-inclusive ring forms and the mechanism is

implemented. If at least one bidder votes against the mechanism, then the all-inclusive ring

does not form, bidders revise their beliefs, and they bid individually and noncooperatively

in the �rst-price auction. The cartel mechanism is rati�able if it is not possible to construct

a veto set such that the cartel payo¤ of every type in the set is less than their equilibrium

payo¤ in the �rst-price sealed bid auction. The main di¢ culty with applying this solution

concept in our context is computing the equilibrium payo¤s to the veto set. If some bidders

vote for and others vote against the cartel, then the seller�s auction will involve asymmetric

bidders. We show, however, that in the case of pure common values, one does not need

to compute the equilibrium to prove that the cartel mechanism is rati�able. The intuition

behind this result is that the lowest type in the veto set makes zero pro�ts in the auction.

Since this type makes positive pro�ts in the cartel mechanism, it is not possible to construct

a veto set that makes everyone in the set better o¤. Hence, the all-inclusive cartel should

always form. This conclusion generalizes to other voting models of joint venture formation.

The motivating example for our study is joint bidding in U.S. federal auctions of wildcat

oil and gas leases in the Outer Continental Shelf o¤ the coasts of Louisiana and Texas during

the period 1954 to 1970. Joint bidding ventures for all �rms were legal during this period.

The potential gains from joint bidding appear to be substantial. The stakes are large, and

the risks signi�cant. By pooling geological data and expertise in interpreting the data, �rms

could reduce the risk of buying dry leases and, by pooling �nancial resources, they can bid
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for more leases and diversify away more of the tract-speci�c uncertainties. Despite these

gains, solo bidding was the dominant form of bidding for the most active participants. Joint

bids involving pairs of the most active �rms represented less than 15% of all their bids, even

though joint bidding agreements were legal. Furthermore, if these �rms bid jointly, they

almost always did so in pairs, and not in all-inclusive partnerships.

The standard model of participation constraints (i.e., passive beliefs) seems to be a better

approximation to the �rms�joint venture decisions in OCS auctions than the learning model.

The reason is that the joint venture cover blocks of tracts, typically 25 to 50 tracts, and not

individual tracts. If a bidder refuses to join the ring, then the other bidders may infer that

the non-participating bidder has obtained favorable information about one or more tracts in

the area, but they do not know which tracts and, since most are not worth bidding for, the

inference is likely to have little impact on beliefs about individual tracts. The learning model

of participation constraints suggests that the situation would have been quite di¤erent if

the joint bidding decisions were taken on a tract by tract basis. In that case, refusal to bid

jointly on a tract would cause beliefs about that tract, and therefore bidding behavior, to

change. Information leakage would have forced the �rms to participate. But, given passive

beliefs, our results provide an explanation for the surprising low incidence of joint bidding,

particularly on marginal tracts. Consistent with this explanation, we document a positive

correlation between the incidence of joint bidding and the value of tracts. This correlation

probably re�ects the incentive for �rms to �nd �nancial partners on tracts where the high

bid is likely to be large. However, it may also re�ect the fact that potential bidders are

more likely to know their competition (i.e., who intends to bid) on high value tracts.

Solo bidding does not imply the absence of collusion. In testimony before Congress in

the mid 1970s, Darius Gaskins of the Department of Interior argued that the collusive e¤ects

of joint ventures should not be measured solely in terms of tracts receiving joint bids. Joint

bidding negotiations could allow partners to coordinate their solo bids. We �nd evidence

of bid coordination by bidders who bid jointly in a sale. In particular, bidders are unlikely

to submit competing solo bids if they have submitted a joint bid in another region in the

same sale.

Finally, rings in common value environments may have to worry about a moral hazard

problem, since each member has an incentive to free ride on the costly information gathering

activities of other members. These di¢ culties may also explain the low incidence of joint

bidding in the OCS auctions.
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8.2 Enforcement

To succeed, a ring has to keep its members from deviating, by ensuring that it is in each of

the conspirator�s self-interest to adhere to the agreement. Robinson (1985) points out that

enforcement is easier in SPSB or English private values (PV) auctions. Suppose that the

ring is ex post e¢ cient, and therefore designates the member with the highest valuation to

be its representative in the seller�s auction. This agent�s dominant strategy is to bid his

valuation, independent of the competition he faces. Then the other ring members cannot

gain from deviating and outbidding the designated bidder. The success of the ring depends

only on how many potential bidders refrain from bidding, thereby lowering the expected

price paid by the serious bidder when he wins. Similarly, in an English auction, the serious

bidder only needs to outbid other submitted bids. There is an internal enforcement problem

only if the serious bidder does not have the highest valuation among the ring members.

In FPSB PV auctions, the ring bidder optimally bids below his valuation. His bid is

decreasing in the size of the ring, as more potential competition is eliminated. If the serious

bid is low enough, another ring member might pro�tably deviate because the serious bid is

below his valuation. A ring may then form only when the participants know that they will

be competing against each other in subsequent auctions. In that case, the ring can credibly

threaten to punish non-compliance in current play by expelling the deviator from the ring,

or by dissolving the ring.

Marshall and Marx (2004) argue that collusion might even be possible in a one-shot

FPSB auction, if side payments are feasible and if shill bids are employed to create the proper

incentives within the FPSB auction. Shill bids, which are also known as complementary or

phony bids, are submitted by ring members other than the designated bidder. By design, a

shill bid is less than the serious ring bid. The idea is that the designated ring representative

bids more than would be optimal against outsiders, to ensure that other ring members do

not defect. The purpose of a shill bid, just below the high ring bid, is to dissuade the

designated bidder from bidding lower. Thus complementary bids may be employed by a

ring to enforce internal discipline, and not just to create the appearance of competition.

In a multiple-unit simultaneous ascending bid format, such as the mechanism employed

by the US Federal Communications Commission (FCC) to sell spectrum for PCS (personal

communications services), punishments can be wide-ranging. Defections in the bidding for

one object can induce responses elsewhere. In the FCC DEF block spectrum auction, a
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territorial division was achieved within the bidding process itself (Cramton and Schwartz,

2000). The FCC employed a simultaneous ascending bid procedure, in which bidding was

kept open on all licenses throughout the auction, and �rms with enough eligibility could

switch between licenses. Some bidders used trailing digits on their bids to communicate

their future intentions. For example, one response to a new bidder in one�s territory was

to outbid that bidder on at least one other license where it held the standing high bid.

The response bid�s last three digits would be the identifying code of the original market,

and the intended message was the o¤er to not compete on this license if the rival stays out

of your territory. No overt communication is involved, unless the parties need to resolve

how to interpret bid signals, and a territorial allocation can be achieved at relatively low

bid prices. Gertner (1995) describes how these bidding strategies can be self-enforcing, and

result in low prices. The auction rules could be amended to prevent this sort of signaling,

for example by requiring new bids to be a �xed amount or fraction higher than the current

high bid. There could also be a �xed ending time to the auction, in which case it would

not be possible to retaliate after that time.

In a multi-unit uniform price auction, price is determined by a market clearing condition,

where available supply equals demand. A version of this mechanism was employed by the

England and Wales electricity auction market. (Wolfram (1998, 1999) provides an account.)

Bidders can implicitly make it costly for rivals to steal market share by bidding low prices

for infra-marginal supplies. A generating unit is infra-marginal if it is likely to be called on

to supply power, but unlikely to be decisive in determining the market price. In multi-unit

uniform price auctions, the gains from deviation can be limited by pricing infra-marginal

units low, via �hockey stick�bidding, with low infra-marginal bids and high marginal bids.

An auction designer can combat this sort of bidding coordination by employing a dif-

ferent rationing rule (Kremer and Nyborg (2004)) or a downward sloping demand curve

(LiCalzi and Pavan (2005), McAdams (2005)). In this instance, a discriminatory auction,

in which each supplying unit is paid the amount of its bid, might also induce more compet-

itive bidding.

The ring also has to be able to control entry to prevent outsiders from capturing the

bene�ts of collusion. Asymmetries in information or payo¤s can act as a barrier to entry.

For example, in auctions of drainage leases, neighbors with informational advantages over

non-neighbors have obvious gains from coordination, and they would not have to worry that

entry of non-neighbors would dissipate all of the gains. In general, �rms with a favorable
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distribution of values, or those with better information, have an incentive to collude, and

they will not want to share the gains with disadvantaged �rms that do not pose a signi�cant

competitive threat.

8.3 Detection

Collusive schemes are often illegal, and a problem faced by antitrust authorities (such as the

U.S. Department of Justice) is to detect their presence. Most cartels encounter operational

problems. It is the manner in which a conspiracy deals with these problems that often

facilitates the detection of the scheme. In some instances, one can do more than just look

for direct evidence of the exertion of market power, such as high and persistent pro�ts.

In this subsection, we describe several papers that propose a variety of methods that are

designed to distinguish between collusive and competitive bidding.

While statistical evidence that bidders seem to be colluding is not su¢ cient to establish

guilt in a criminal price �xing case, such evidence can be used to guide an investigation.

For example, suppose that examination of the data suggests the presence of a bid rigging

scheme. The �rms might be alerted that they are suspected of colluding, and informed that

corporate leniency programs o¤er much reduced sentences and �nes to those who confess

�rst, thereby creating incentives for a �race to the courthouse.�Econometric evidence may

also be decisive in civil cases, where the burden of proof is less onerous.

Alternatively, antitrust authorities may pursue policies that inhibit successful collusion,

by altering characteristics of the economic environment, such as pursuing an active merger

policy. Further, the potential suppliers of the ring can alter the rules of the auctions they

employ in response to the presence of collusion. For example, the seller can raise the

minimum bid, adopt a secret reserve price, or not publicize bids to make it harder for the

ring to detect cheating and maintain discipline.

Absent the direct evidence of a conspirator, a conspiracy may be di¢ cult to detect. The

constancy of market shares or geographical specialization, while consistent with a collusive

assignment, are not in and of themselves evidence of collusion. There is a tendency to view

bid rotation or incumbency bidding advantages as evidence of presence of collusion. How-

ever, these bidding patterns can be consistent with non-cooperative bidding. For example,

bid rotation can be a competitive outcome in auctions of highway construction contracts

where bidders�cost functions exhibit decreasing returns to scale. Firms with idle capacity

69



are more likely to win the contract, but having won the contract, are less likely to bid or

less likely to win another until some existing contracts are completed (Porter and Zona,

1993).

Similarly, incumbency patterns can re�ect unobserved asymmetries among bidders.

Those who won in the past may have done so because of location or other advantages that

persist through time. Incumbents may have lower costs due to experience, or they may

have an advantage with buyers who are reluctant to switch suppliers (Porter and Zona,

1999). An empirical challenge is to develop tests that can discriminate between collusive

and non-cooperative explanations for rotation or incumbency patterns.

Most early empirical studies identi�ed behavior that is di¢ cult to reconcile with a

non-cooperative bidding. An extreme example involves the submission of several identical

bids. Mund (1960) and Comanor and Schankerman (1976) describe several instances of

identical bids �independently�submitted in government procurement auctions. In 1955, �ve

companies submitted identical sealed bids of $108,222.58 for an order of 5,640 one hundred

capsule bottles of antibiotic tetracycline (Scherer and Ross, 1990, p. 267). The submission

of identical bids is virtually a zero probability event in a Bayesian Nash equilibrium if there

is any dispersion in information or valuations across bidders.

Baldwin, Marshall and Richard (1997) study US timber English auctions to see whether

bidding was competitive or collusive, using structural methods. In an English auction,

collusion can reduce the bid necessary to win. Under competition, the winning bid in

a button IPV auction equals the second highest valuation. If the ring members are a

subset of the potential bidders, the winning bid is a¤ected only if the two highest valuation

bidders are conspirators. Then the winning bid is no longer the second order statistic of the

valuations. If the highest non-ring valuation is the kth highest valuation overall, the winning

bid will be the kth highest order statistic for k > 1, as the serious ring bidder outbids the

highest non-conspirator. If the highest valuation bidder is not a ring member, k = 1, and

the winning bid is the second highest valuation. Note that there is an implicit assumption

of e¢ cient collusion, where the cartel designates the member with highest value.

Baldwin, Marshall and Richard do not have �rm speci�c information, and they assume

that the valuation distribution is symmetric. Functional form then plays an important role

in distinguishing between competition and collusion. In the former case, the winning bid

is the second order statistic from the valuation distribution, whereas in the latter case it

is a mixture of the second and higher order statistics. One cannot distinguish between
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competition and collusion without some assumption concerning the functional form of the

distribution of values. However, their method could be useful when there are observable

bidder asymmetries.

The extension of the method to �rst price sealed bid auctions would be complicated, as

bidding value is no longer a dominant strategy.

If the seller knows that a knockout auction has preceded the sale, it should set a higher

reserve price. If the ring is not all-inclusive, it may also want to keep its presence unknown

to other bidders, say because new potential bidders may enter the market in response

to pro�table opportunities. Therefore, it is in the interest of the ring to keep its meeting

secret. Ring members may create the appearance of competition in order to avoid detection.

Bidding rings may submit phony, or complementary, bids that are designed merely to be

lower than the serious bid submitted by the ring. Then only the highest bid from the

ring is serious. According to Preston McAfee, one conspiracy was investigated by the U.S.

Department of Justice after a bidder submitted an envelope containing his own bid plus

his notes from a pre-auction meeting. But phony bids, unlike serious bids, may not be

related to the likely pro�ts of the bidder in the event that it wins. Porter and Zona (1993)

describe a bidding ring involving highway-paving jobs on Long Island in New York. A subset

of the �rms participated in pre-auction meetings in order to assign low bidding privileges

for speci�c procurement contracts. The conspirators often submitted complementary bids

above the low bid. How does this behavior manifest itself? The fact that the ring was not

all-inclusive, plus the presence of phony bids, aids detection.

Porter and Zona split data in two dimensions, distinguishing cartel from non-cartel

bidders (those absent from meetings), and the low bid from a given set of bidders from

higher bids from that set. Serious bids should depend on the costs of doing the job. Porter

and Zona do not have good contract-speci�c information, and so they look at the rank

distribution of bids within the two groups of �rms, as opposed to bid levels. They test

whether the identity of the low bidder is determined by same process as the ranking of

higher bids. Bids by non-cartel members pass this test, whereas those from the ring do not.

The order of the bids submitted by non-conspirators was related to observable cost

measures, such as �rm capacity and the utilization rate of that capacity. The lowest non-

conspirator bid was most likely to be submitted by the �rm with the lowest cost. The lowest

conspirator bid was determined by a similar process. In contrast, the order of the higher

bids submitted by ring members was not correlated with the same cost measures.
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Note that a ring could pass this test, were members aware that the ranking of bids might

be examined. For example, suppose the ring is e¢ cient and assigns low bidding rights to the

low cost �rm in the pre-auction meeting. If the serious bidder intends to bid some multiple

of its costs in the auction, then the other conspirators could submit phony bids that were

the same multiple of their costs.

Note also that the bid rank test exploits information concerning �rms�participation in

pre-auction meetings. However, it is not necessary to have this information. The rank test

could be performed for any partition of the �rms. Bajari and Ye (2003) conduct a similar

exercise for several combinations of the larger bidders in Minnesota highway construction

auctions, in order to determine who might be colluding.

In addition to creating the appearance of competition, complementary bids may also be

intended to manipulate the expectations of the buyer. Feinstein, Block and Nold (1985)

note that many agencies estimate the cost of projects on the basis of bidding on similar past

projects. Multiple phony bids close to a relatively high bid may lead an unaware buyer to

think that costs are higher than they are, and therefore not suspect collusion. Their analysis

of data from North Carolina highway construction auctions suggests that contractors were

indeed manipulating the information received by the buying agency.

If there is entry, and the entrants are not party to the collusive agreement, then the non-

inclusive nature of the cartel may lead to evidence of its existence. As noted above, Porter

and Zona distinguish complementary bids by a ring from non-winning bids submitted by a

competitive fringe. Hendricks and Porter (1988) describe another example in our study of

drainage auctions. Recall that an oil or gas lease is said to be a drainage lease if there has

been prior exploration in the area. In that instance, the �rms with prior drilling experience

will have an informational advantage over �rms that have access only to seismic data. In

the o¤shore oil and gas drainage auctions, the identities of the �rms owning the mineral

rights on neighboring tracts (�neighbors�) are known, and their numbers limited by the

number of tracts previously sold and explored. Neighbors can gain from coordination, and

they do not have to worry that the entry of non-neighbors will dissipate all of the gains.

We �nd that neighbors earn high pro�ts, whereas non-neighbors approximately break even.

Despite relatively high overall returns, there is less entry (i.e., fewer bids are submitted per

tract) than on wildcat leases, where bidders share similar information sources. The lower

entry rates on drainage leases are consistent with asymmetries of information acting as an

entry barrier.
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If neighbors bid non-cooperatively in the drainage auctions, then there should not be

entry by non-neighboring �rms, if the latter do not have access to private drilling informa-

tion. Yet there is entry by non-neighbors. Further, non-neighbors�bids are independent

of the number of neighboring �rms, rather than a decreasing function as winner�s curse

considerations would dictate. In addition, there are often multiple bids from the neighbors

on a single drainage tract, yet their returns are an increasing function of the number of

their bids submitted. Finally, the highest neighbor bid is independent of the number of

neighbors, and their average bid level is a decreasing function of this number. This latter

fact is consistent with the neighbors submitting only one serious bid, and the probability of

submitting complementary bids being an increasing function of the number of neighboring

leases in order to create the appearance of competition.

Porter and Zona (1999) provide evidence that the bidding behavior of some Ohio dairies

for school milk contracts in the 1980s was more consistent with collusion than with com-

petition. Bidder payo¤ asymmetries, based on plant locations, matter, as processed milk

is costly to ship. Milk�s value is low relative to its weight, and therefore competition is

localized. Many dairies nevertheless bid for both local school district contracts and more

distant school districts. That is, they submit bids relatively near their plants and they

also submit bids well beyond their local territories. Porter and Zona�s analysis of bidding

levels shows that the more distant bids of the three Cincinnati dairies tended to be lower

than their local bids, even after controlling for various covariates. In contrast, other dairies�

bids are an increasing function of the distance from the school district to the �rm�s nearest

plant. These features of bidding are consistent with a territorial allocation of nearby school

districts by dairies with plants in the Cincinnati area to restrict competition, and relatively

competitive bidding at more distant locations, which were perhaps outside the area of terri-

torial allocation. If bidding for local districts had been competitive, local bids should have

been lower than distant bids, because shipping costs were lower and because the Cincinnati

area has many potential local suppliers. The e¤ect of collusion is to relax the constraint

on bids by removing marginal rivals. The e¤ect is an �inverted price umbrella,�consistent

with a local monopoly constrained only by more distant rivals.
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8.4 Collusion By Sellers

We have discussed collusion among bidders in auctions. There are three other forms of

auction market manipulation that may also blunt the incentives to engage in trade, and

hence compromise the social value of auctions as a market institution. First, the recent

investigation of Sotheby�s and Christie�s indicates that collusion among bidders is not the

only potential antitrust concern in auction markets. To the extent that the market for

providing auction services is concentrated, there may be collusion among auctioneers to

raise service fees to potential sellers or buyers.

Second, recent events indicate that eBay auction rules can be manipulated by sellers who

unilaterally submit phony or shill bids on their own items, in an attempt to obtain higher

prices. Also, groups of sellers can in�ate their eBay seller rankings by giving each other

glowing reviews for service and product quality. These activities might best be characterized

as fraudulent, rather than raising antitrust concerns. But they also reduce faith in the

institution.

A third form of manipulation is the corruption of the seller by one or more bidders,

or corruption of the auctioneer if he is an agent for the seller. For example, in a sealed

bid auction a bidder could bribe the auctioneer to reveal the other bids. Armed with this

knowledge, the bidder would not have to bid more than necessary to win. Burguet and Perry

(2002) provide an analysis of this situation. Concerns about potential corruption of the

bidding process are an important component of auction design, such as public procurement

rules that limit the discretion of the auctioneer.

9 Further Research Issues

In this section, we conclude with a brief discussion of some outstanding issues.

9.1 Scoring Rules

One extension of the standard static model of single-unit auctions considers auctions with

scoring rules. In some cases, the seller (or the buyer in procurement auctions) is interested

in soliciting and evaluating bids on more than one dimension. For example, the state of

Louisiana sells its onshore oil and gas leases using an auction in which bidders submit a pair

of numbers, a bonus and a royalty rate. The state�s scoring rule is secret, but presumably
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it will select a bid with a high bonus bid if it believes that the likelihood of �nding oil is

low, and a bid with a high royalty rate if it believes that the likelihood of �nding oil is

high. In motivating their theoretical study of scoring auctions, Asker and Cantillon (2004)

observe that 38 states in the United States evaluate bids for highway construction contracts

on the basis of their costs as well as time to completion, weighted by a road user cost. In

this case, the procurement authorities announce and commit to a speci�c scoring rule. The

multi-dimensionality of the bid space is often associated with multi-dimensionality of the

bidder type space, which greatly complicates the theoretical and empirical analysis.

Athey and Levin (2001) study scale auctions of timber, which employ scoring rules.

In these auctions, a bidder submits a price for each species of tree, and her total bid

is computed by multiplying these unit prices by the quantities announced by the Forest

Service (FS). The tract is awarded to the bidder who is willing to pay the highest total

bid, but her payment is based on the realized volumes of each species. Therefore, if she

believes that actual relative volumes will di¤er from those announced by the FS, she has

an incentive to skew her bid, allocating more of her total bid to species that she thinks

the FS has overestimated. A risk neutral bidder would allocate all of her total bid to

overestimated species, unless severely skewed bids are likely to be rejected. The decision is

non-trivial if the bidder is risk averse, which seems relevant since the motivation for using

scale auctions is to reduce the risk borne by the winners. Athey and Levin characterize

equilibrium bidding when a tract has two species. The restriction to two species implies

that a bidder�s information can be summarized by her estimate of the proportion of one of

the two species (ignoring uncertainty about the total volume of wood), so bidder types are

one-dimensional. Given certain regularity conditions, the authors show that the skew (i.e.,

the di¤erence in unit prices of the two species) and the total bid are increasing functions

of the bidder�s estimate. This theoretical result forms the basis of several predictions that

are testable given the availability of the actual species volumes cut. The empirical results

con�rm the importance of equilibrium analysis.

9.2 Entry and Dynamics

To date, researchers have used auctions to study the strategic e¤ects of private information

and the relevance of Bayesian Nash equilibrium. We believe that auctions can provide an

important testing ground for studying two other important issues in industrial organiza-
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tion: entry and dynamics. Auctions are held repeatedly, and �rms have to make frequent

entry decisions. Auctions also provide a rich variety of settings (e.g., sealed bid versus

oral, private versus common values) for studying entry decisions and outcomes. Recently,

Bajari, Benkard, and Levin (2005), Pakes, Ostrovsky, and Berry (2005), Pesendorfer and

Schmidt-Dengler (2004), and Aguirregabiria and Mira (2004) have developed estimators for

dynamic games based on the approach taken by Hotz and Miller (1993). These papers make

estimation of dynamic oligopoly models much more feasible, although the assumptions un-

der which the estimators are valid can be quite restrictive. In particular, the dynamic game

should consist of repeated stage games played in a stationary environment in which the

unobservable shocks are independent across players and time. Private value auctions such

as highway procurement auctions can come close to satisfying these assumptions.

Most of the empirical literature on auctions assumes that bidders treat auctions as

static games, choosing their bids in each auction to maximize pro�ts in that auction. This

assumption is plausible in environments where there is no learning, and the time interval

between auctions is su¢ ciently long that the outcome in the current auction is unlikely to

in�uence the state of play in subsequent auctions. The state of play in an auction consists of

the set of bidders and their value distributions. However, in some auctions, such as highway

procurement contracts, the time between auctions can be quite short, often measured in

weeks or even days. In these cases, the presence of capacity constraints or decreasing returns

to scale introduces a dynamic element to the game. The bidder who wins the current auction

may not have su¢ cient capacity to bid in the next auction, or it will have costs that are

stochastically higher. As a result, the losers in the current auction are more likely to win

the next auction. Bidders should anticipate the impact of the current auction outcome on

the state of competition in future auctions and bid accordingly. The equilibrium mapping

of valuations into bids in the dynamic game is not the same as in the static game, and

estimating the distribution of costs under the assumption that bidders behave myopically

may yield incorrect results. In particular, bidders may bid less aggressively if they anticipate

that winning the current auction will put them at a competitive disadvantage in future

auctions.

Jofre-Bonet and Pesendorfer (2003) estimate such a dynamic model using data from

highway procurement auctions in California. The average duration between auctions was

about 3 days. The state variables for each bidder are its backlog, measured as the dollar

amount of work remaining from previous contract awards, the �rm�s size, measured by the
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number of plants in the region, and distance from the nearest plant to the project. Bidders�

costs and contract characteristics are assumed to be independently distributed conditional

on the state variables. In any given auction, bidders who are larger, those with closer plants,

and those with less backlog have stochastically lower costs. The state of play changes with

bidding outcomes and the location of contracts. Bidders who have an advantage in one

auction may be at a disadvantage in another auction. The bidders are restricted to play

symmetric Markovian strategies. Symmetry implies that the equilibrium is invariant to

permutations of the bidder identities across states of play. The primitives of the model are

the conditional cost distributions and the discount rate. Extending the �rst order approach

of La¤ont and Vuong, the authors show that the inverse bid function in the dynamic game

is equal to the bid plus a markdown factor that consists of two terms. The �rst is the usual

term that accounts for the level of competition in the current auction. The second term

accounts for the incremental impact of the outcome of the current auction on future payo¤s.

The latter term is weighted by the discount rate. Hence, forward looking bidders in the

dynamic game bid less aggressively than myopic bidders.

One problem associated with estimating the dynamic auction model is that the prim-

itives of model are not nonparametrically identi�ed. Jofre-Bonet and Pesendorfer �x the

discount rate in order to identify the conditional distribution of costs. This is an important

issue, since rational behavior has to be assumed and cannot be tested. In particular, the

data cannot distinguish between myopic bidders and forward-looking bidders, although the

inferred costs and conditional distribution of costs will depend upon the assumed value

of the discount rate. A potential source of identi�cation is variation in the time between

auctions. For example, in some inclement regions, highway procurement contracts are auc-

tioned prior to the construction season, and have to be completed before the onset of winter.

Hence, bidders in the last auction of the bidding season e¤ectively can bid myopically, and

ignore the impact of that auction outcome on future play.

Much of the empirical literature studies auctions under the assumption that the number

of bidders is �xed. However, the number of bidders may be determined as part of the

equilibrium to the auction game. In practice, participating in an auction can be costly.

For example, bidders in timber auctions may have to cruise the stand to determine the

type and volumes of available timber; bidders in oil and gas auctions have to conduct and

analyze geological surveys, and bidders in highway procurement auctions have to develop

cost estimates. When these costs are nontrivial and sunk at the bidding stage, the auction
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has to provide bidders with the prospect of su¢ cient rents that they will be able cover their

entry costs, at least in expectation. The question then arises: does the auction attract too

many or too few bidders? This issue is especially important when bidders are asymmetric

since, in this case, the Revenue Equivalence Theorem does not hold and auction design

matters. For example, the Athey, Levin and Seira (2004) study of oral and sealed bid

timber auctions distinguishes between two kinds of bidders, loggers and mills. They argue

that a mill�s willingness to pay for cutting rights is stochastically greater than that of

loggers, since the latter has to sell its logs to a mill. In open, ascending price auctions, the

bidder with the highest valuation wins but, in �rst-price, sealed bid auctions, this need not

be the outcome. As a result, loggers are more likely to participate, and win, in a sealed bid

auction than in an open auction.

Standard market models use entry decisions by �rms to draw inferences about post-entry

behavior. In auctions, post-entry behavior is observable and can help identify entry costs

and behavior. For example, Athey, Levin, and Seira examine the e¤ect of potential collusion

by mills on entry rates of loggers; Athey and Levin (2005) and Krasnokutskaya and Seim

(2005) examine the e¤ects on entry of policies that exclude or subsidize certain classes of

bidders. A fundamental problem that arises in estimating entry models is the multiplicity

of equilibria. If entry is modeled as a simultaneous move, complete information game, then

the entry game typically has many asymmetric pure strategy equilibria in which some �rms

are certain to enter and others stay out. There are also mixed strategy equilibria in which

participation is random. The multiplicity of equilibria implies that the mapping from the

unobservables to outcomes is not unique, and so the likelihood function is not well-de�ned.

The literature o¤ers a number of ways of modifying the model to generates a well-de�ned

likelihood function for the data: Bresnahan and Reiss (1990, 1991) and Berry (1992) restrict

the payo¤s of the players so that the number of entrants in the set of pure strategy equilibria

is unique, and de�ne the likelihood function in terms of this event; Seim (2005) �puri�es�

the mixed strategy equilibrium as an (often unique) Bayesian Nash equilibrium by assuming

that players have di¤erent and private entry costs; Bajari, Hong, and Ryan (2004) append a

set of equilibrium selection rules to the model and estimate the joint probability distribution

over outcomes and selection rules.4 But, in auctions, the speci�c rules governing entry and

4Ciliberto and Tamer (2004) develop an estimation approach that allows for multiple equilibria but may

sacri�ce point identi�cation. They use the theoretical entry model to de�ne upper and lower bounds on the

probabilities of the outcomes, and then estimate the parameters of the model by minimizing the distance
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bidding decisions in auctions may operate as a selection rule. Bidders may �nd it easier to

coordinate on an asymmetric equilibrium in oral auctions where the bidders have to register

and show up to bid than in sealed bid auctions, where the bidders mail or phone in their

bids. In the latter case, the mixed strategy equilibrium may be a better description of entry

behavior. For example, Athey, Levin, and Seira assume that loggers play a mixed entry

strategy, since the data are more consistent with an equilibrium in which too many or too

few bidders enter ex post. Similarly, Li (2005) considers structural estimation of an IPV

model with a binding reserve price, and entry determined by a symmetric mixed strategy

equilibrium.

The structure of eBay auctions, and the availability of data from these auctions, gives

researchers an opportunity to study participation and bidding decisions in a dynamic con-

text. Sellers in an eBay auction choose the duration of the auction, but their choices are

restricted to 1, 3, 5, 7, or 10 days. The discreteness of the duration menu, combined with

the random arrival of sellers, means that the auctions for a product like TI-83 calculators

or the Compaq Ipaq H3850 personal digital assistant can be ordered sequentially by their

closing times. In fact, eBay often uses this ordering in presenting the choice set of auctions

to potential bidders. A number of studies (e.g., Roth and Ockenfels (2002), Bajari and

Hortacsu (2003)) have shown that most bidders �snipe,�that is, they wait until the closing

time of an auction to bid. The winning bidders usually then exit, since most bidders have

unit demands. Losing bidders either exit (e.g., buy the item at the posted price in a buy-

it-now auction or at a retail store) or bid again in a subsequent auction. If they bid again,

and depending to some extent on the length of the time interval between closing times,

losing bidders sometimes choose to participate in the same auction but more frequently

participate in di¤erent auctions. In other words, most losing bidders do not participate in

the next-to-close auction. The randomness in the participation decisions may be due in

part to unobserved product heterogeneity, but more likely it re�ects randomness in partic-

ipation costs. A losing bidder has to wait until the next closing time to submit a bid, and

the opportunity cost of participating in an auction will vary over time. The bidder may

decide that he is better o¤ coming back later in the day to submit a bid. Thus, to a �rst

approximation, eBay auctions for a given product are a sequence of second-price, sealed bid

auctions in which bidders arrive randomly and participate randomly.

between the empirical frequencies and these bounds.
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As in the case of the static models, the �rst step of the research program consists of

characterizing the Markov perfect equilibrium (or equilibria) to the dynamic game. This

task is di¢ cult since, in contrast to the highway auctions, the items in eBay auctions are

close substitutes. If the intervals between auction closing times is short, losing bidders

can learn about their rivals�valuations from their bids. The possibility for learning gives

bidders a strategic incentive to bid in ways that make it di¢ cult for rivals to draw inferences.

The second step is to estimate the primitives of the model (the bidders�arrival and exit

rates, the distribution of valuations, and the distribution of participation costs) treating

the participation and bid data as the outcome of equilibrium play. The problems inherent

in extending the structural program to dynamic auctions like eBay may prove intractable.

However, the normative and positive goals of the research program are worthy of the e¤ort.

We end this survey by noting that the theoretical and empirical literature surveyed in

this chapter has emphasized the role of private information as the main source of rents in

auctions, and the key determinant of strategic play. However, in many auctions, bidder

asymmetries may be a more important source of market power. For example, Moshkin,

Porter and Zona (2005) argue that dairies�bids to supply milk products to school districts

in the Cincinnati area are largely determined by the distances between the diaries�plants

and the schools, as well as other factors that are known by their rivals. They model

the auction as a Bertrand pricing game in which costs are common knowledge and, in

equilibrium, the lowest cost supplier wins the market by bidding the cost of the marginal

rival. Collusion among bidders will a¤ect the identity of the marginal rival. (They also

consider a more general setting where �xed entry costs are private information, and where

there may be some uncertainty about who will be awarded the contract.) Cost di¤erences

among suppliers is the traditional explanation for market power. Since bidder asymmetries

in private value auctions can be accommodated using the �rst-order approach developed by

La¤ont and Vuong, it is possible to examine the relative importance of private information

and bidder asymmetries as sources of rent.
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