
Petersen, Mitchell A.

Working Paper

Estimating standard errors in finance panel data sets:
Comparing approaches

CSIO Working Paper, No. 0055

Provided in Cooperation with:
Department of Economics - Center for the Study of Industrial Organization (CSIO), Northwestern
University

Suggested Citation: Petersen, Mitchell A. (2004) : Estimating standard errors in finance panel data
sets: Comparing approaches, CSIO Working Paper, No. 0055, Northwestern University, Center for
the Study of Industrial Organization (CSIO), Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/38640

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/38640
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Visit the CSIO website at: www.csio.econ.northwestern.edu. 
E-mail us at: csio@northwestern.edu. 

THE CENTER FOR THE STUDY  
OF INDUSTRIAL ORGANIZATION 

AT NORTHWESTERN UNIVERSITY 
 
 
 

Working Paper #0055 
 
 
 
 

 
Estimating Standard Errors in Finance Panel 

Data Sets: Comparing Approaches 

 
 

By 
 

Mitchell A. Petersen* 
Kellogg School of Management,  

Northwestern University and NBER 
 
 

November, 2004 
 

                                                      
* I thanks the Financial Institutions and Markets Research Center at Northwestern University’s Kellogg 
School for support. In writing this paper, I have benefitted greatly from discussions with Doug Staiger, 
Paola Sapienza, and Kent Daniel as well as the comments of seminar participants at Northwestern 
University and the Universities of Chicago and Iowa. The research assistance of Sungjoon Park is greatly 
appreciated. 
 



 
 
 
 

Abstract 
 
 
 
In both corporate finance and asset pricing empirical work, researchers are often confronted with 
panel data. In these data sets the residuals may be correlated across firms and across time, and 
OLS standard errors can be biased. Historically, the two literatures have used different solutions 
to this problem. Corporate finance has relied on Rogers standard errors, while asset pricing has 
used the Fama-MacBeth procedure to estimate standard errors. This paper will examine the 
different methods used in the literature and explain when the different methods yield the same 
(and correct) standard errors and when they diverge. The intent is to provide intuition as to why 
the different approaches sometimes give different answers and thus give researchers guidance for 
their use. 
 



1 I searched papers published in the Journal of Finance, the Journal of Financial Economics, and the Review
of Financial Studies in the years 2001 to 2004 for a description of how the regression coefficients and standard errors
were estimated in a panel data set. Panel data sets are data sets where observations can be grouped into clusters (e.g.
multiple observations per firm, per year, or per country). I included only papers which reported at least five observations
in each dimension (e.g. firms, years, or countries). Papers which did to report the method for estimating the standard
errors, or reported correcting the standard errors only for heteroscedasticity (i.e. White standard errors), were coded as
not having correcting the standard errors for within cluster dependence.
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I) Introduction

It is well known that OLS standard errors are correct when the residuals are independent and

identically distributed. When the residuals are correlated across observations, OLS standard errors

can be biased and either over or under estimate the true variability of the coefficient estimates.

Although the use of panel data sets (e.g. data sets that contain observations on the same firm from

multiple years) is common, the way that researchers have addressed possible biases in the standard

errors varies widely. In recently published papers which include a regression on panel data, forty-

five percent of the papers did not report adjusting the standard errors for possible dependence in the

residuals.1 Among the remaining papers, approaches for estimating the coefficients and standard

errors in the presence of within cluster correlation varied. 31 percent of the papers included dummy

variables for each cluster (e.g. for each firm). 34 percent of the papers estimated both the coefficients

and the standard errors using the Fama-MacBeth procedure (Fama-MacBeth, 1973). The remaining

two methods used OLS (or an analogous method) to estimate the coefficients but reported standard

errors adjusted for correlation within a cluster. 7 percent of the papers adjusted the standard errors

using the Newey-West procedure (Newey and West, 1987) modified for use in a panel data set,

while 22 percent of the papers reported Rogers standard errors (Rogers, 1993, Williams, 2000,

Moulton, 1990) which are White standard errors adjusted to account for possible correlation within

a cluster. These are also called clustered standard errors.
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Although the literature has used a diversity of methods to estimate standard errors in panel

data sets, it has provided little guidance to researchers as to when a given method is appropriate.

Since the methods can sometimes produce different estimates it is important to understand how the

methods compare, when they will produce different estimates of the standard errors, and when they

differ how to choose among the estimates. This is the objective of the paper. 

There are two general forms of dependence which are most common in finance applications.

They will serve as the basis for the analysis. The residuals of a regression can be cross sectionally

correlated (e.g. the observations of a firm in different years are correlated). I will call this a firm

effect. Alternatively, the residuals of a given year may be correlated across firms. I will call this a

time effect. I will simulate panel data set with both forms of dependence, first individually and then

jointly. With the simulated data, I can estimate the coefficients and standard errors using each of the

methods and compare their performance. Section II contains the standard error estimates in the

presence of a fixed firm effect. Both the OLS and the Fama-MacBeth standard errors are biased

downward and the magnitude of this bias is increasing in the magnitude of the firm effect. The

Rogers standard errors are unbiased as they account for the dependence created by the firm effect.

The Newey-West standard errors, as modified for panel data, are also biased but their bias is small.

In section III, the same analysis is conducted with a time effect instead of a firm effect. Since

Fama-MacBeth procedure is designed to address a time effect, not a firm effect, the Fama-MacBeth

standard errors are unbiased and the coefficient estimates are more efficient than the OLS  estimates.

The intuition of these first two sections carries over to Section IV, were data with both a firm and

a time effect is included. Thus far, the firm effect has been specified as a fixed effect (e.g. does not

decay over time). In practice, the firm effect in the residual may decay over time such that the
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correlation between residuals declines as the time between them grows. In Section V, I simulate data

with a more general correlation structure. This not only allows me to compare OLS, clustered, and

Fama-MacBeth standard errors in a more general setting, it also allows me to access the relative

benefit of using fixed effects (firm dummies) to estimate the coefficients and whether this changes

the way we should estimate standard errors. 

II) Estimating Standard Errors in the Presence of a Fixed Firm Effect.

A) Robust Standard Error Estimates.

To provide intuition on why the standard errors produced by OLS are incorrect and how

Rogers robust estimates correct this problem, it is helpful to review the expression for the variance

of the estimated coefficients. To simplify the formulas, I will assumed that all variables have been

de-meaned. Thus, the intercepts can be ignored, and the variances can be directly calculated as sums

of squares of a variable. The standard regression for a panel data set is: 

where we have observations on firms (i) across years (t). The estimated coefficient is: 

and thus the estimated variance of the coefficient is:



2 The Rogers standard errors are robust to heteroscedasticity residuals. However, since this is not my focus,
I will assume that the errors are homoscedastic in the equations and simulations.
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εit ' γi % ηit (4)

Xit ' µi % νit (5)

This is the standard OLS formula and is based on the assumption that the errors are independent and

identically distributed. The independence assumption is used to move from the first to the second

line (the covariance between residuals is zero). The assumption of an identical distribution (e.g.

homoscedastic errors) is used to move from the second to the third line.2 It is the independence

assumption which is often violated in panel data and which is the focus of the following section. 

In relaxing the assumption of independent errors, I will initially assume the data has a fixed

firm effect. Thus the residuals consist of a firm specific component as well as a component which

is unique to each observation. The residuals can be specified as:

Assume that the independent variable X also has a firm specific component. 

Each of the components of X (µ and ν) and ε (γ and η) are independent of each other. This is



3 Thus I am assuming that the model is correctly specified. I do this to focus on estimating the standard errors.
Panel data sets often include a time effect as well as a firm effect. For the moment, I assume there is no time effect and
return to the implications of a time effect in Section III.

4 When calculating the square of the sum of X ε there are (NT)2 terms (see Figure 1). There are NT variance
terms [σ2(X) σ2(e)]. These are the only ones included in the OLS standard errors. There are NT(T-1) non-zero off
diagonal terms [(T(T-1) for each of N firms]. These are non-zero when there is a firm effect. The remaining NT2(N–1)
diagonal terms are assumed to be zero. If there is a time effect, then NT(N–1) of these would be non-zero as well [N(N-
1) for each of T years].
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corr ( Xit , Xjs ) ' ρX ' σ2
µ / σ2

X for i' j and all t … s
' 1 for i' j and t ' s
' 0 for all i… j

corr ( εit , εjs ) ' ρε ' σ2
γ / σ2

ε for i' j and all t … s
' 1 for i' j and t ' s
' 0 for all i… j

(6)

necessary for the coefficient estimates to be consistent.3 This is a typical panel data structure and

implies a specific correlation among the observations of a given firm. Both the independent variable

and the residual are correlated across two observations of the same firm, but are assumed to be

independent across firms.

Given this data structure, I can calculate the true standard error of the OLS coefficient based

on the data structure in equations (1), (4), and (5). Since the independent variable and residual are

no longer independent within cluster, the square of the summed residuals is no longer equal to the

sum of the residuals squared. The co-variances must be included as well.4 The variance of the OLS

coefficient estimate is now:



5 If the firm effect is not fixed, the correlation of εt and εs will not be the same. In this case, the equation will
be a sum of all the covariances between εt and εs times the covariance between Xt and Xs. We will return to this issue
in Section V when we examine non-fixed firm effects. If the panel is unbalanced, the true standard error and the bias
in the OLS standard errors will be even larger (Moulton, 1986). 
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I used the assumption that residuals are independent across firms [e.g.  i … j, see equation (6)]

in deriving the second line. The true standard errors will thus be greater than those reported by OLS

if and only if both ρX or ρε are non-zero.5 The magnitude of the error is also increasing in the number

of years in the data set (see Bertrand, Duflo, and Mullainathan, 2004). To understand this intuition,

consider the extreme case where the independent variables and residuals are perfectly correlated

across time (i.e. ρX =1 and ρε =1). In this case, each additional year provides no additional

information and will have no effect on the true standard error. However, the OLS standard errors

will assume each additional year provides N additional observations and the estimated standard error

will shrink accordingly and incorrectly.

Given our assumed data structure, the within cluster correlations of both X and ε are positive

and are equal to the fraction of the variance which is attributable to the fixed firm effect. Thus when

the data has a fixed firm effect, the OLS standard errors will always understate the true standard
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6 The exact formula for the Rogers standard error is:

7 Each simulated data set contains 10 yearly observations on 500 firms, for a data set of 5,000 observations.
The components of the independent variable and the residual are assumed to be normally distributed with zero means.
For each data set, I estimated the coefficients and standard errors using each method described below. The reported
means and standard deviations reported in the tables are based on the 5,000 simulations.
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error. In other contexts, it is possible for the true standard errors to be greater or less than the

reported (OLS) standard errors depending upon the sign of ρXρε.

The correlation of the residuals within cluster is the problem the Rogers standard errors

(White standard errors adjusted for clustering) are designed to correct.6 By squaring the sum of Xitεit

within each cluster, the covariance between residuals within cluster is estimated (see Figure 1). This

correlation can be of any form, no parametric structure is assumed. However, the squared sum of

Xitεit is assumed to have the same distribution across the clusters. Thus these standard errors are

consistent as the number of clusters grows. We return to this issue in Section III.

B) Testing the Standard Error Estimates by Simulation.

To demonstrate the relative accuracy of the different standard error estimates and confirm

our intuition, I simulated a panel data set and then estimated the slope coefficient and its standard

error. By doing this multiple times we can observe the true standard error as well as the average

estimated standard errors.7 In the first version of the simulation, I included a fixed firm effect but

no time effect in both the independent variable as well as in the residual. Thus the data was

simulated as described in equations (4) and (5). Across simulations I assumed that the standard
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deviation of the independent variable and the residual were both constant at one and two

respectively. This will produce an R2 of 20 percent which is not unusual for empirical finance

regressions. Across different simulations, I altered the fraction of the variance in the independent

variable which is due to the firm effect. This fraction ranged from zero to seventy-five percent in

twenty-five percent increments (see Table 1). I did the same for the residual. This allows me to

demonstrate how the magnitude of the bias in the OLS standard errors varies with the strength of

the firm effect in both the independent variable and the residual.

The results of the simulations are reported in Table 1. The first two entries in each cell are

the average value of the slope coefficient and the standard deviation of the coefficient estimate. The

standard deviation is the true standard error of the coefficient and ideally the estimated standard

error will be close to this number. The standard error estimated by OLS is the third entry in each cell

and is the same as the true standard error in the first row of the table. When there is no firm effect

in the residual (i.e. the residuals are independent across observations), the standard error estimated

by OLS is correct (see Table 1, row 1). When there is no firm effect in the independent variable (i.e.

the independent variable is independent across observations), the standard errors estimated by OLS

are also correct on average, even if the residuals are correlated (see Table 1, column 1). This follows

from the intuition in equation (7). The bias in the OLS standard errors is a product of the dependence

in the independent variable (ρX) and the residual (ρε). When either of them is zero, OLS standard

errors are unbiased.

When there is a firm effect in both the independent variable and the residual, then the OLS

standard errors under estimate the true standard errors, and the magnitude of the under estimation

can be large. For example, when fifty percent of the variability in both the residual and the



8 In addition to a slope coefficient, all of the regressions also contained a constant whose true value is zero.
The results for the slope coefficient carry over to the intercept estimation as well. For example when ρX = ρε = 0.50, the
estimated slope coefficient averages -0.0003 with a standard deviation of 0.0669. The OLS standard errors are biased
down (0.0283) and the Rogers standard errors are correct on average (0.0663). 

9 The variability of the standard errors is small relative to their mean. For example, when ρX =ρε =0.50, the
mean OLS standard error is 0.283 with a standard deviation of 0.001 and the mean clustered standard error is 0.0508
with a standard deviation of 0.003. Instead of reporting average standard errors, I could also report the number of
significant t-statistics. Using the OLS standard error, 15.3 percent of the t-statistics are statistically significant at the one
percent level (i.e. the 99 percentile confidence interval contains the true coefficient 84.7 percent of the time). Using the
clustered standard errors, 0.8 percent of the t-statistics are statistically significant at the one percent level. Since the
standard deviation of the standard error is usually small and the distribution symmetric, t-statistics and standard errors
give the same intuition. I will thus report only standard errors except where the intuition can be misleading.

9

independent variable is due to the fixed firm effect (ρX = ρε = 0.50), the OLS estimated standard

error is one half of the true standard error (0.557 = 0.0283/0.0508).8 The standard errors estimated

by OLS do not change as I increase the firm effect across either the columns (i.e. in the independent

variable) or across the rows (i.e. in the residual). The true standard error does rise. 

When I estimate the standard error of the coefficient using Rogers (clustered) standard errors,

the estimates are very close to the true standard error. These estimates rise along with the true

standard error as the fraction of variability arising from the firm effect increases. Thus as expected,

the robust standard errors correctly account for the dependence in the data common in a panel data

set (Rogers, 1993, Williams, 2000).9

The bias in OLS standard errors is highly sensitive to the number of time periods (years)

used in the estimation as well. As the number of years periods doubles, OLS attributes a doubling

in the number of observations. However if the independent variable and the residual are correlated

within the cluster, the amount of information (independent variation) increases by less than a factor

of two. The bias rises from about 30 percent when there are five years of data per firm to 73 percent

when there are 50 years (when ρX=ρε=0.50, see Figure 2). The robust standard errors are consistently

close to the true standard errors independent of the number of time periods (see Figure 2). 



10 There are other differences between OLS estimates from pooled cross-sectional time-series and Fama-
MacBeth regressions. Fama-MacBeth traditionally weights each year of data equally even if there is a different number
of observations per year. Thus in an unbalanced panel data set, Fama-MacBeth and OLS coefficient estimates can differ
due to a different weighting of observations (Cohen, Gompers, and Vuolteenaho, 2002, Vuolteenaho, 2002). In addition,
since Fama-MacBeth runs cross sectional regressions, any variable which does not vary across firms within a year (e.g.
the stock market return, or the growth of GDP) can not be estimated by the Fama-MacBeth method (Vuolteenaho, 2002,
Cochrane, 2001). Since these have been dealt with elsewhere, I will not discuss them here.
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C) Fama-MacBeth Standard Errors: The Equations

An alternative way to estimate the regression coefficients and standard errors which has been

used in the literature, and one often suggested when the residuals are not independent, is the Fama-

MacBeth approach (Fama and MacBeth, 1973).10 In this approach, the researcher runs T cross

sectional regressions. The average of the T estimates is the coefficient estimate

and the estimated variance of the Fama-MacBeth estimate is calculated as: 

The variance formula, however, assumes that the yearly estimates of the coefficient (βt) are

independent of each other. As we can see from equation (8), this is only true if Xit εit is uncorrelated

with Xis εis for t … s. As I discussed above, this is not true when there is a firm effect in the data (i.e.

ρX  ρε … 0). Thus, Fama-MacBeth variance estimate will be too small in the presence of a firm effect
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(Cochrane, 2001). In the presence of a firm effect, the true variance of the Fama-MacBeth estimate

is:

Given our specification of the data structure (equations 4 and 5), the covariance between the

coefficient estimates of different years is independent of t-s (which justifies the simplification in the

last line of equation (10)) and can be calculated as follows if t … s: 

Combining equations (10) and (11) gives us an expression for the true variance of the Fama-

MacBeth coefficient estimates.
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This is same as our expression for the variance of the OLS coefficient (see equation 7). Thus

the Fama-MacBeth estimated standard error will be too small in exactly the same cases as the OLS

estimated standard error. In both cases, the magnitude of the under estimation will be a function of

the correlation of both the independent variable and the residual within a cluster and  the number

of time periods per firm. 

D) Simulating Fama-MacBeth Standard Error Estimates. 

To document the bias of the Fama-MacBeth standard error estimates, I calculated the Fama-

MacBeth estimate of the slope coefficient and the standard error in each of the 5,000 simulated data

sets which were used above. The results are reported in Table 2. The Fama-MacBeth estimates are

consistent and as efficient as OLS (the correlation between the two is consistently above 0.99). The

standard errors of the two estimates is the same estimates (compare the second entry in each cell of

Table 1 and 2). Like the OLS standard error estimates, the Fama-MacBeth standard error estimates

are biased downward (see Table 2).

The magnitude of the bias, however, is larger than implied by equation (12) and larger than

the OLS bias. Moving down the diagonal of Table 2 from top left to bottom right, the true standard

error increases but the standard error estimated by Fama-MacBeth falls. The standard error estimated

by OLS equals 0.283 in all four cells. When both ρX and ρε  are equal to 75 percent, the OLS
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standard error has a bias of 60%  (0.595 = 1 - 0.0283/0.0698, see Table I) and the Fama-MacBeth

standard error has a bias of 74 percent [ 0.738 = 1 - 0.0699/0.0183, see Table II ]. As the firm effect

becomes larger (ρX ρε increases), the bias in the OLS standard error will grow, but the bias in the

Fama-MacBeth standard error will grow even faster (see Figure 2). The incremental bias of the

Fama-MacBeth standard errors is due to the way in which the estimated variance is calculated. To

see this we need to expand the expression of the estimated variance (equation 10). 

The true variance of the Fama-MacBeth coefficients is a measure of how far each yearly coefficient

estimate deviates from the true coefficient (one in our simulations). The estimated variance,

however, measures how far each yearly estimate deviates from the sample average. Since the firm

effect affects both the yearly coefficients, and the average of the yearly coefficients, it does not

appear in the estimated variance. Thus increases in the firm effect (increases in ρXρε) will actually

reduce the estimated Fama-MacBeth standard error at the same time it increases the true standard

error of the estimated coefficients. To make this concrete, take the extreme example where ρXρε is

equal to one. OLS will under estimate the standard errors by a factor of sqrt(T) (the standard error

estimated by OLS is sqrt[σε/NTσX] while the true standard error is sqrt[σε/NσX]). The estimated

Fama-MacBeth standard error will be zero. This additional source of bias will shrink as the number



11 In the standard application of Newey-West, a lag length of M implies that the correlation between εt and εt-k
are included for k running from -M to M (excluding 0). When Newey-West has been applied to panel data sets,
correlations between lagged and leaded values are only included when they are drawn from the same cluster. Thus a
cluster which contains T years of data per firm and thus uses a maximum lag length (M) of T-1, would include t-1 lags
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of years increases since the estimate slope coefficient will converge to the true coefficient (see

Figure 2).

The firm effect may be less important in regressions where the dependent variable is returns

(and excess returns are serially uncorrelated) than in corporate finance applications where

unobserved firm effects can be very important. The biases which I have highlighted will be less

important in those applications. This isn’t surprising since the Fama-MacBeth technique was

developed to account for correlation between observations on different firms in the same year, not

to account for correlation between observations on the same firm in different years. In fact, Fama

and MacBeth (1973) examine the serial correlation of the residuals in their results and find that it

is close to zero. Its application in the literature, however, has not always been consistent with it

roots. Given the Fama-MacBeth approach was designed to deal with time effects in a panel data set,

not firm effects, I turn to this data structure in the next section. 

E) Newey-West Standard Errors.

An alternative approach for addressing the correlation of errors across observation is the

Newey-West procedure (Newey and West, 1987). This procedure is traditionally used to account

for serial correlation of unknown form in the residuals of a single time series. It can be modified for

use in a panel data set by estimating only correlations between lagged residuals in the same cluster

(see  Bertrand, Duflo, and Mullainathan, 2004, Doidge, 2004, MacKay, 2003, Brockman and Chung,

2001). This also simplifies the problem of choosing a lag length since the maximum lag length is

one less than the maximum number of years per firm.11 To examine the relative performance of the



and T-t leads for the tth observation where t runs from 1 to T. Thus for the 4th year of data (t=4), we would include 3 lags
and 6 leads [ρ( εt εt-3 ) to ρ( εt εt-6)].
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Newey-West and the robust/clustering approach to estimating standard errors. I simulated 5,000 data

sets with 5,000 observations each. Each data set includes 500 firms and ten years of data per firm.

The fixed firm effect was assumed to comprise twenty-five percent of the variability of both the

independent variable and the residual.

The standard error estimated by the Newey-West will be an increasing function of the lag

length in this simulation. When the lag length is set to zero, the estimated standard error is

numerically identical to the White standard error which is only robust to heteroscedasticity. This is

the same as the OLS standard error in my simulation, since I have assumed the errors are

homoscedastic. Not surprisingly, this estimate significantly under estimates the true standard error

(see Figure 3). As the lag length is increased from 0 to 9, the standard error estimated by the Newey-

West rises from the OLS/White estimate of 0.0283 to  0.0328 when the lag length is 9 (see Figure

3). In the presence of a fixed firm effect, an observation of a given firm is correlated with all other

observations for the same firm no matter how far apart in time the observations are spaced. Thus

having a lag length of less than the maximum (T-1), will cause the Newey-West standard errors to

underestimate the true standard error when the firm effect is fixed (we return to non-permanent firm

effects in Section V). However, even with the maximum lag length of 9, the Newey-West  estimates

have a small bias – underestimating the true standard error by 8% [0.084 = 1-0.0328/0.0358]. The

robust standard errors under estimate the true standard error by less than 2%.

As the simulation demonstrates, the Newey-West approach to estimating standard errors, as

applied to panel data, does not yield the same estimates as the Rogers standard errors. The difference

between the two estimates is due to the weighting function used by Newey West. When estimating
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the standard errors, Newey-West multiplies the covariance term of lag j (e.g. εt εt-j ) by the weight

[1-j/(M+1)], where M is the specified maximum lag. If I set the maximum lag equal to T-1, then the

central matrix in the variance equation of Newey-West (when there is only one independent

variable) is:

This is identical to the term in the Rogers standard error formula (see equation 7) except for the

weighting function [w(j)]. The Rogers standard errors use a weighting function of one for all

covariances. The Newey-West procedure was originally designed for a single time-series and the

weighting function was necessary to make the estimate of this matrix positive semi-definite. For

fixed j the weight w(j) approaches 1 as the maximum lag length (M) grows. Newey and West show

that if M is allowed to grow with the sample size (T), then their estimate is consistent. However, in

the panel data setting, the number of time periods is usually small. The consistency of the Rogers

standard error is based on the number of clusters (N) being large, opposed to the number of time

periods (T). Thus the Newey-West weighting function is unnecessary and leads to standard error

estimates which are slightly smaller than the truth in a panel data setting.

III) Estimating Standard Errors in the Presence of a Time Effect.

To demonstrate how the two techniques work in the presence of a time effect I will generate

data sets which contain only a time effect (observations on different firms with in the same year are



17

εit ' δt % ηit
Xit ' ζt % νit

(16)

correlated). This is the data structure which the Fama-MacBeth approach was designed to address

(see Fama-MacBeth, 1973). If I assume that the panel data structure contains only a time effect, the

equations I derived above are essentially unchanged. The expressions for the standard errors in the

presence of only a time effect are correct once I have exchanged N and T.

A) Robust Standard Error Estimates.

Simulating the data with only a time effect means the dependent variable will still be

specified by equation (1), but now the error term and independent variable are specified as:

As before, I simulated 5,000 data sets of 5,000 observations each. I allowed the fraction of

variability in both the residual and the independent variable which is due to the time affect to range

from zero to seventy-five percent in twenty-five percent increments. The OLS coefficient and the

true standard error as well as the OLS and robust standard error estimates are reported in Table 3.

There are several interesting findings to note. First, as with the firm effect results, the OLS standard

errors are correct when there is either no time effect in either the independent variable (σ(ζ)=0) or

the residual (σ(δ)=0). As the time effect in the independent variable and the residual rise, so does

the amount by which the OLS standard errors underestimate the true standard errors. When half of

the variability in both comes from the time effect, the OLS standard errors underestimate the true

standard errors by 91 percent [0.909 = 1 - 0.0282/0.3105, see Table 3].

The robust standard errors are much more accurate, but unlike our results with the firm

effects, they also underestimate the true standard error. The magnitude of the underestimate is

smaller, ranging from 13 percent [1-0.1297/0.1490] when the time effect comprises 25 percent of
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the variability to 19 percent [1-0.3986/0.4927] when the time effect comprises 75 percent of the

variability. The problem arises due to the limited number of clusters (e.g. years). When I estimated

the standard errors in the presence of the firm effects, I had 500 firms (clusters) and ten years of data

per cluster. When I estimated the standard errors in the presence of a time effect, I have only 10

years (clusters) and 500 firms per year. Since the robust standard errors method places no restriction

on the correlation structure of the residuals with in a cluster, its consistency depends upon having

a sufficient number of clusters to estimate these standard errors. Based on these results, 10 clusters

is too small and 500 in sufficient (see Kezdi, 2002, and Bertrand, Duflo, and Mullainathan, 2004 for

similar results).

To explore this issue further, I simulated data sets of 5,000 observations but with the number

of years (or clusters) ranging from 10 to 100. In all of the simulations, 25 percent of the variability

in both the independent variable and the residual are due to the time effect [i.e. σ2(δ)/σ2(ε) =

σ2(ζ)/σ2(X) = 0.25]. The bias in the robust standard error estimates declines with the number of

clusters, dropping from 13 percent when there are 10 years (or clusters) to 4 percent when there are

40 years to under 1 percent when there are 100 years (see Figure 4). Thus the bias in the robust

standard errors estimates is a product of the small number of clusters. However, since panel data sets

of 10 or 20 years are not uncommon in finance, this could be a problem in practice.

B) Fama-MacBeth Estimates

When there is only a time effect, the correlation of the estimated slope coefficients across

the years will be zero and the standard errors estimated by Fama-MacBeth will thus be correct (see

equation 9).  This is exactly what we find in the simulation (see Table 4). The estimated standard

errors are extremely close to the true standard errors and thus the confidence intervals will be the



12 The robust (White or Rogers) approach to estimating standard errors  changes only the estimated standard
errors. The coefficient estimates are numerically identical to OLS and thus have the same efficiency and variance as
OLS. 
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correct size. In addition to producing unbiased standard error estimates, Fama-MacBeth also

produces more efficient estimates than OLS.12 For example, when 25 percent of the variability of

both the independent variable and the residual is due to the time effect, the standard error of the

Fama-MacBeth estimate is 81 percent [1-0.0284/0.1490] smaller than the standard error of the OLS

estimate (compare Table 3 and 4). The improvement in efficiency arises from the way in which

Fama-MacBeth accounts for the time effect. By running cross sectional regressions for each year,

the intercept absorbs and is an estimate of the time effect. Since the variability due to the time effect

is no longer in the residual, the residual variability in the Fama-MacBeth regressions is significant

smaller than in the OLS regression. The lower residual variance leads to less variable coefficient

estimates and greater efficiency. I will revisit this issue in the next section when I consider the

presence of both a firm and a time effect. 

According to the simulation results thus far, the best method for estimating the coefficient

and standard errors in a panel data set depends upon the source of the dependence in the data. If the

panel data only contains a firm effect, the robust standard errors are superior as they produce

standard errors which are correct on average. If the data has only a time effect, the Fama-MacBeth

estimates perform better than Rogers standard errors when there are few clusters (years). When the

number of years is large, both the Rogers and Fama-MacBeth standard errors are correct. The Fama-

MacBeth estimates are more efficient than the OLS coefficients, although as we will see below this

advantage disappears if time dummies are included.

IV) Estimating Standard Errors in the Presence of a Fixed Firm Effect and Time Effect.



13 Since we know that both OLS and Fama-MacBeth do well when the firm and time effect is zero in either
the independent variable or the residual, I will not examine these cases. 

14 It is possible to estimate robust standard errors accounting for clustering in multiple dimensions, but only
if there are a sufficient number of observations within each cluster. For example, if a researcher has observations on
firms in industries across multiple years, they could cluster by industry and year (i.e. each cluster would be a specific
year and industry). In this case, since there are multiple firms in a given industry in each year, clustering would be
possible. If clustering was done by firm and year, since there is only one observation within each cluster, this is
numerically identical to OLS.
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Although the above results are instructive, they are unlikely to be completely descriptive of

actual data confronted by empirical financial researchers. Most panel data sets will likely include

both a firm effect and a time effect. Thus to provide guidance on which method to use I need to

assess their relative performance when both effects are present. In this section, I will simulate a data

set where both the independent variable and the residual have both a firm and a time effect.13

The conceptual problem with using these techniques (Rogers or Fama-MacBeth standard

errors) is neither is designed to deal with correlation in two dimensions (e.g. across firms and across

time).14 The robust standard error approach allows us to be agnostic about the form of the correlation

with in a cluster. However, the price of this is the residuals must be uncorrelated across clusters.

Thus if we cluster by firm, we must assume there is no correlation between residuals of different

firms in the same year. In practice, empirical researchers account for one dimension of the cross

observation correlation by including dummy variables and account for the other dimension by

clustering on that dimension. Since most panel data sets have more firms than years, the most

common approach is to include dummy variables for each year (to absorb the time effect) and then

cluster by firm (Anderson and Reeb, 2004, Gross and Souleles, 2004, Petersen and Faulkendar,

2004, Sapienza, 2004, and Lamont and Polk, 2001).  I will use this approach in our simulations. 

A) Rogers Standard Error Estimates.

To test the relative performance of the two methods, 5,000 data sets were simulated with
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both a firm and a time effect. Across the simulations, the fixed firm effect comprises either 25 or 50

percent of the variability. The fraction of the variability due to the time effect is also assumed to be

25 or 50 percent of the total variability. This gives us three possible scenarios for the independent

variable [(25,25),(25,50), and (50,25)]. The scenario where fifty percent of the variability is due to

the firm effect and fifty percent is due to the time effect is excluded, as this would allow no

remaining variability in the firm-year specific component. The same three scenarios were used for

simulating the residual which generated nine different simulations (see Table 5).

The results in the presence of both a firm and time effect (Table 5) are qualitatively similar

to what we found in the presence of only a fixed firm effect (Table 1). The OLS standard errors

under estimate the true standard errors whereas the Rogers (clustered by firm) standard errors are

consistently accurate independent of how I specify the firm and time effects. As we saw above, the

bias in the OLS standard errors increases as the firm effect becomes larger. The magnitude of the

time effect does, however, appear to effect the magnitude of the bias in the OLS estimates, but this

effect is subtle. To see this intuition, it is useful to examine a couple of examples. In Table 1, when

the firm effect comprises 25 percent of the variability of both the independent variable and the

residual, OLS under estimated the standard error by 20 percent [1-0.0283/0.0353, see Table 1]. In

Table 5, there are two scenarios where the fixed firm effect is 25 percent for both the independent

variable and the residual. When the magnitude of the time effect rises to 25 percent, the bias in OLS

rises to 31 percent [1-0.0283/0.0407, see Table 5], and when the  magnitude of the time effect rises

to50 percent, the bias in the OLS standard error is 45 percent [1-0.0283/0.0515, see Table 5]. The

dummy variables, by absorbing variability from the residual and the independent variable which is

due to the time effect, raise the fraction of the remaining variability which is due to the firm effect



15 The standard errors reported in Table 5 are very close to what is implied by the equations in Section II. Once
I adjust the definition of  ρX and ρε to equal the fraction of variability due to the firm effect after removing the time
effect, the OLS standard errors are very close to those produced by equation (3) and the Rogers standard errors are very
close to those produced by equation (7).

22

(i.e  ρX or ρε rise). This increases the bias in the OLS standard errors.15 

B) Fama-MacBeth Estimates

The statistical properties of the OLS and Fama-MacBeth coefficient estimates are quite

similar. The means and the standard deviations of the estimates are almost identical (see Table 5 and

Table 6), and the correlation between the two estimates is never less than 0.999 in any of the

simulations. Once I include a set of time dummies in the OLS regression, which are effectively

included in the Fama-MacBeth estimates, the difference in efficiency I found in Tables 3 and 4

disappears. The OLS estimates are now as efficient as the Fama-MacBeth, even in the presence of

a time effect. However, the standard errors estimated by Fama-MacBeth are again too small, as we

found in the absence of a time effect (Table 2). As an example, when 25 percent of the variability

in both the independent variable and the residual comes from the firm effect and 25 percent comes

from a time effect, the Fama-MacBeth standard errors under estimate the true standard errors by 37

percent [1-0.0258/0.0407]. 

Thus most of the intuition from the earlier tables carry over. In the presence of a fixed firm

effect both OLS and Fama-MacBeth standard error estimates are biased down significantly. Rogers

standard errors which account for clustering by firm produce estimates which are correct on average.

The presence of a time effect, if it is controlled for with dummy variables, does not alter these

results, except for accentuating the magnitude of the firm effect and thus making the bias in the OLS

and Fama-MacBeth standard errors larger.

V) Estimating Standard Errors in the Presence of a non-Fixed Firm Effect



Var( ηit ) ' σ2
ς if t ' 1

' φ2 σ2
ς % (1 & φ2) σ2

ς ' σ
2
ς if t > 1

(18)

16  I multiply the ς term by %&1&- &φ&2   to make the residuals homoscedastic. From equation (16),

where the last step is by recursion (if it is true for t=k, it is true for t=k+1). Assuming homoscedastic residuals is not
necessary since the Rogers standard errors are robust to heteroscedasticity. However, assuming homoscedasticity makes
the interpretation of the results simpler. If I assume the residuals are homoscedastic, then any difference in the standard
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ηit ' ςit if t ' 1

' φ ηit&1 % 1 & φ2 ςit if t > 1
(17)

The analysis thus far has assumed that the firm effect is fixed. Although this is common in

the literature, it may not always be accurate. The dependence between residuals may decay as the

time between them increases (i.e. ρ(εt , εt-k) may decline with k). In a panel with a short time series,

distinguishing between a permanent and a temporary firm effect may be impossible. However, as

the number of years in the panel increases it may be feasible to empirically identify the permanence

of the firm effect. In addition, if the performance of the different standard error estimators depends

upon the permanence of the fixed effect, researchers need to know this.

A) Non-Fixed Firm Effects: Specifying the Data Structure.

To explore the performance of the different standard error estimates in a more general

context, I simulated a data structure which includes both a permanent component (a fixed firm

effect) and a temporary component which I assumed was a first order auto regressive process. This

allows the firm effect to die away at a rate between a first order auto-regressive decay and zero. To

construct the data, I assumed that non-firm effect portion of the residual (ηi t from equation 4)

follows a first order auto regressive process: 

Thus φ is the first order auto correlation between ηit and ηit-1, and the correlation between ηi t and ηi,t-k

is φk.16 Combining this term with the fixed firm effect (γi in equation 4), means the serial correlation



errors I find is due to the dependence of observations within a cluster opposed to the presence and magnitude of the
heteroscedasticity.
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Corr (εi,t , εi,t&k ) '
Cov( γi % ηi,t ,γi % ηi,t&k )

Var ( γi % ηi,t ) Var ( γi % ηi,t&k )

'
σ2
γ % φk σ2

η

σ2
γ % σ2

η

' ρε % (1 & ρε ) φ
k

(18)

of the residuals dies off over time, but more slowly than implied by a first order auto-regressive and

asymptotes to ρε (from equation 6). By choosing the relative magnitude of the fixed firm effect (ρε)

and the first order auto correlation (φ), I can alter the pattern of auto correlations in the residual. An

analogous data structure is specified for the independent variable. The correlation of lag length k is:

The correlations for lags one through nine for the four data specifications I will examine are graphed

in Figure 5. They range from the standard fixed firm effect (ρ=0.25 and φ=0.00) to a standard AR1

process (ρ=0.00 and φ=0.75). I have assumed the same process for both the independent variable

and the residual, since as we know from Section II, if there is no within cluster dependence in the

independent variables, OLS standard errors are correct.

B) Fixed Effects – Firm Dummies.

The one remaining approach used in the literature for addressing within cluster dependence

in the residuals, but which I have not yet considered, is the use of fixed effects or firm dummies.

A significant minority of the papers used fixed effects to control for dependence within a cluster.

Using the simulations, I can compare the relative performance of OLS and Rogers standard errors

both with and without firm dummies. The results are reported in Table 7, Panel A, column I. 

The fixed effect estimates are more efficient than in this case (0.0299 versus 0.0355). This
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is not always true. The relative efficiency of the fixed effect estimates depends upon two offsetting

effects. Including the firm dummies uses up N–1 additional degrees of freedom and this raises the

standard deviation of the estimates. However, the firm dummies also eliminate the within cluster

dependence of the independent variable and the residual (if the firm effect is fixed) which reduces

the standard deviation of the estimate. In this example, the second effect dominates and thus the

fixed effect estimates are more efficient.

Once we have included the firm effects, the OLS standard error are now correct and robust

standard errors, such as the Roger’s, are not necessary (see Table 7 - Panel A, column I). The Rogers

standard errors are correct when we do not include the fixed effects and are slightly too large (5%)

when we include the fixed effects (see Kezdi (2002) for similar results). This conclusion, however,

is sensitive to the firm effect being fixed. If the firm effect decays over time, the firm dummies no

longer completely capture the within cluster dependence. To show this, I ran three additional

simulations (see Table 7 - Panel A, columns II-IV). In these simulations, the firm effect does decay

over time (in column II, 92 percent of the firm effect dissipates after 9 years). Once the firm effect

is not permanent, the OLS standard errors again under estimate the true standard errors, even when

firm dummies are included in the regression. The magnitude of the under estimation depends upon

the magnitude of the temporary component of the firm effect (i.e. φ). The bias rises from about 17%

when φ is 50 percent (column IV) to about 33 percent when φ is 75% (columns II and III). The

Rogers standard errors are much closer to the truth, but consistently over estimate the true standard

error by about 5 percent across the simulations. 

C) Adjusted Fama-MacBeth Standard Errors.

As noted above, the presence of a firm effect cause the Fama-MacBeth yearly coefficient



Variance correction ' 1 % 2 j
10&1

k'1
( 10 & k ) θk (19)

17 Thus, instead of multiplying the variance by the infinite period adjustment [(1+θ)/(1-θ)], I multiplied it by
the 10 period adjustment 

26

estimates to be correlated and this causes the Fama-MacBeth standard error to be biased downward.

Several authors who have used the Fama-MacBeth approach have acknowledged the downward bias

and have suggested adjusting the standard errors for the estimated first order auto-correlation of the

estimated slope coefficients (Chen, Hong, and Stein, 2001; Cochrane, 2001;  Lakonishok, and Lee,

2001; Fama and French, 2002; Bakshi, Kapadia, and Madan, 2003; Chakravarty, Gulen, and

Mayhew, 2004). The proposed adjustment is to estimate the correlation between the yearly

coefficient estimates (i.e. Corr[βt , βt-1 ] = θ), and then multiply the estimated variance by (1+ θ)/(1-θ)

to account for serial correlation of the βs (see Chakravarty, Gulen, Mayhew, 2004 and Fama and

French, 2002, especially footnote 1). This makes intuitive sense since the presence of a firm effect

will cause the yearly coefficient estimates to be serially correlated.

To test the merits of this idea, I simulated data sets where the fixed firm effect comprised 25

percent of the variance. For each simulated data set, ten slope coefficients were estimated, and the

auto correlation of the slope coefficients was calculated. I then calculated the original and adjusted

Fama-MacBeth standard errors, assuming both an infinite and a finite lag of T-1 periods (see

Lakonishok and Lee, 2001).17 The estimated autocorrelation is imprecisely estimated as predicted

by Fama and French (2002). The 90th percentile confidence interval ranges from -0.602 to 0.413, but

the mean is -0.1134 (see Table 7 - Panel B). Since the average first-order auto-correlation is

negative, the adjusted Fama-MacBeth standard errors are even smaller and more biased than the



18  In the simulation the correlation between βt and βs ranged from 0.0430 to 0.0916 and did not decline as the
difference between t and s increased, because the firm effect is fixed. The theoretical value of the correlation between
βt and βs should be 0.0625 (according to equation 11) and would imply a true standard error of the Fama-MacBeth
estimate of 0.0354 (according to equation 12). This is what we found in Table II.
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Cov( βt ,βt&1 ) ' E[ (βt & βTrue ) (βt&1 & βTrue ) ] (19)

unadjusted standard errors.

The intuition for why the proposed adjustment does not work is subtle. The problem is the

correlation which is being estimated (the within sample serial correlation of the yearly coefficient

estimates) is not the same as the one which is causing the bias in the standard errors (the correlation

of betas across data sets). The co-variance which biases the standard errors and which I estimate

across the 5,000 simulations is

To see how the presence of a fixed firm effect influences this covariance, consider the case where

the realization for firm i is a positive value of µiγi (i.e. the realized firm effect in both the

independent variable and the residual). This positive realization will result in an above average

estimate of the slope coefficient in year t, and because the firm effect is fixed it will also result in

an above average estimate of the slope coefficient in year t-1 (see equation 9). The realized value

of the firm effect (µi and γi) in a given simulation does not change the average β across samples. The

average β across samples is the true β or one in the simulations. Thus when I estimate the correlation

between βt and βt-1, the firm effect causes this correlation to be positive and the Fama-MacBeth

standard errors to be biased downward.18

Researchers are given only one data set. Thus they must calculate the serial correlation of

the βs within the sample they are given. This co-variance is calculated as:



19 The within sample serial correlation we estimate is actually less than zero, but this is due to a small sample
bias. With only ten years of data per firm, I have only nine observations to estimate the serial correlation. To verify that
this is correct, I re-ran the simulation using 20 years of data per firm and the average estimated serial correlation is closer
to zero, rising from -0.1134 to -0.0556.
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Cov( βt ,βt&1 ) ' E[ (βt & β̄Within sample ) (βt&1 & β̄Within sample ) ] (20)

The within sample serial correlation measures the tendency of βt to be above its within sample mean

when βt-1 is above its within sample mean. To see how the presence of a fixed firm effect affects this

covariance, consider the same case as above. A positive realization of µiγi will raise the estimate of

β1 through βT, as well as the average of the βs (the Fama-MacBeth coefficient estimate) by the same

amount. Thus a fixed firm effect will no influence the deviation of any βt from the average β. Since

this deviation is the source of the estimated within sample serial correlation, we should expect that

the serial correlation calculated in sample would be zero on average.19 Since the within sample

correlation is asymptotically zero, adjusting the standard errors based on this estimated serial

correlation will still lead to biased standard error estimates.

The adjusted Fama-MacBeth standard errors do better when there is an auto-regressive

component in the residuals (i.e. φ > 0). In the three remaining simulations in Table 7 – Panel B, the

estimated within sample auto correlation is positive in all cases, but the adjusted Fama-MacBeth

standard errors are still biased downward. Adjusting the standard error estimates moves them closer

to the the truth when the firm effect is not fixed (ρ=0). In this case, the standard errors based on the

infinite period adjustment under estimate the true standard error by 23 percent (1-0.0374/0.0484).

As the magnitude of the firm effect increases (compare columns II to III and IV), the bias in the

estimated standard errors increases. Thus the Fama-MacBeth standard errors adjusted for serial

correlation do better than the unadjusted standard errors when the firm effect decays over time, but
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they still significantly under estimate the true standard errors when a portion of the firm effect is

permanent (i.e. ρ>0). 

VI) Conclusions. 

It is well known from first year econometrics classes that OLS standard errors are biased

when the residuals are not independent. How financial researchers should estimate standard errors

when using panel data sets has been less clear. The empirical literature has proposed and used a

variety of methods for estimating standard errors when the residuals are correlated across firms or

years in the data. In this paper, I find that the performance of the different methods varies and their

relative accuracy depends upon the nature of the dependence in the data. 

Since Fama-MacBeth estimation was designed for a setting where residuals were correlated

within a year, but not across firms, it does well in this context. It produces estimates which are more

efficient than OLS estimates, and standard errors which are as good as Rogers standard errors when

the number of clusters is large, and better when the number of clusters is small.

The Rogers standard errors produce more accurate standard errors in the presence of a firm

effect. In addition these estimates are very robust to different specifications of the dependence. The

Rogers estimates produce correct standard errors and correctly sized confidence intervals in the

presence of time effects (if time dummies are included) and in the presence of a firm effect which

is not constant. It is in the later case, that the Rogers standard errors are superior to a fixed effect

model. Since the precise form of the dependence in the residual and the independent variables is

often not known, an estimate which is robust to different specifications is an advantage. 
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Table 1: Estimating Standard Errors with a Firm Effect 
OLS and Rogers Standard Errors 

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0286
0.0283
0.0283

1.0006
0.0288
0.0283
0.0282

1.0002
0.0279
0.0283
0.0282

1.0001
0.0283
0.0283
0.0282

25% 1.0004
0.0287
0.0283
0.0283

0.9997
0.0353
0.0283
0.0353

0.9999
0.0403
0.0283
0.0411

0.9997
0.0468
0.0283
0.0463

50% 1.0001
0.0289
0.0283
0.0282

1.0002
0.0414
0.0283
0.0411

1.0007
0.0508
0.0283
0.0508

0.9993
0.0577
0.0283
0.0590

75% 1.0000
0.0285
0.0283
0.0282

1.0004
0.0459
0.0283
0.0462

0.9995
0.0594
0.0283
0.0589

1.0016
0.0698
0.0283
0.0693

Notes: 
The table contains estimates of the coefficient and standard errors based on 5000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a firm specific component is varied across the rows
of the table and varies from 0% (no firm effect) to 75%. The fraction of the independent variable’s
variance which is due to a firm specific component also varies across the columns of the table and
varies from 0% (no firm effect) to 75%. Each cell contains the average slope coefficient estimated
by OLS and the standard deviation of this estimate. This is the true standard error of the estimated
coefficient. The third entry is the OLS estimated standard error of the coefficient. The fourth entry
is Rogers’ (clustered) standard error which accounts for possible clustering at the firm level (i.e.
accounts for the possible correlation between observations of the same firm in different years).
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Table 2: Estimating Standard Errors with a Firm Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0287
0.0276

1.0006
0.0288
0.0276

1.0002
0.0280
0.0277

1.0001
0.0283
0.0275

25% 1.0004
0.0288
0.0275

0.9997
0.0354
0.0268

0.9998
0.0403
0.0259

0.9997
0.0469
0.0250

50% 1.0000
0.0289
0.0276

1.0002
0.0415
0.0259

1.0007
0.0509
0.0238

0.9993
0.0578
0.0219

75% 1.0000
0.0286
0.0277

1.0004
0.0460
0.0248

0.9995
0.0595
0.0218

1.0016
0.0699
0.0183

Notes: 
The table contains estimates of the coefficient and standard errors based on 5000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a firm specific component is varied across the rows
of the table and varies from 0% (no firm effect) to 75%. The fraction of the independent variable’s
variance which is due to a firm specific component is varied across the columns of the table and
varies from 0% (no firm effect) to 75%. The first entry is the average estimated slope coefficient
based on a Fama-MacBeth estimation (e.g. we ran the regression for each of the 10 years and took
the average). The second entry is the standard deviation of the coefficient estimated by Fama-
MacBeth. This is the true standard error of the Fama-MacBeth coefficient. The third entry is the
standard error estimated by the Fama-MacBeth procedure.
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Table 3: Estimating Standard Errors with a Time Effect 
OLS and Rogers Standard Errors 

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0286
0.0283
0.0277

1.0002
0.0291
0.0288
0.0276

1.0006
0.0293
0.0295
0.0275

0.9994
0.0314
0.0306
0.0270

25% 1.0006
0.0284
0.0279
0.0268

1.0043
0.1490
0.0284
0.1297

0.9962
0.2148
0.0289
0.1812

0.9996
0.2874
0.0300
0.2305

50% 0.9996
0.0276
0.0274
0.0258

0.9997
0.2138
0.0278
0.1812

0.9919
0.3015
0.0282
0.2546

1.0079
0.3986
0.0292
0.3248

75% 1.0002
0.0273
0.0267
0.0244

0.9963
0.2620
0.0271
0.2215

0.9970
0.3816
0.0276
0.3141

0.9908
0.4927
0.0284
0.3986

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a year specific component varies across the rows
of the table from 0 percent (no time effect) to 75 percent. The fraction of the independent variable’s
variance which is due to a year specific component varies across the columns of the table from 0
percent (no time effect) to 75 percent. Each cell contains the average estimated slope coefficient
from OLS and the standard deviation of this estimate. This is the true standard error of the estimated
coefficient. The third entry is the standard error estimated by OLS. The fourth entry is Rogers’
(clustered) standard error which accounts for possible clustering by year (i.e. accounts for the
possible correlation between observations on different firms in the same year).
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Table 4: Estimating Standard Errors with a Time Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Source of Independent Variable Volatility

0% 25% 50% 75%

So
ur

ce
 o

f R
es

id
ua

l V
ol

at
ili

ty

0% 1.0004
0.0287
0.0278

1.0004
0.0331
0.0318

1.0007
0.0396
0.0390

0.9991
0.0573
0.0553

25% 1.0005
0.0252
0.0239

1.0003
0.0284
0.0276

1.0006
0.0343
0.0338

0.9999
0.0496
0.0480

50% 1.0000
0.0200
0.0195

1.0002
0.0231
0.0227

1.0006
0.0280
0.0276

1.0007
0.0394
0.0387

75% 1.0001
0.0142
0.0138

0.9996
0.0161
0.0159

1.0000
0.0200
0.0196

0.9999
0.0285
0.0276

Notes
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set (10 years per firm and 500 firms). The true slope coefficient is 1, the standard
deviation of the independent variable is 1 and the standard deviation of the error term is 2. The
fraction of the residual variance which is due to a year specific component varies across the rows
of the table from 0 percent (no time effect) to 75 percent. The fraction of the independent variable’s
variance which is due to a year specific component varies across the columns of the table from 0
percent (no time effect) to 75 percent. The first entry is the average estimated slope coefficient based
on a Fama-MacBeth estimation (e.g. the regression is run for each of the 10 years and the estimate
is the average of the 10 estimated slope coefficients). The second entry is the standard deviation of
the coefficient estimated by Fama-MacBeth. This is the true standard error of the Fama-MacBeth
coefficient. The third entry is the standard error estimated by the Fama-MacBeth procedure (e.g.
equation 10).
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Table 5: Estimating Standard Errors with a Firm and Time Effect 
OLS and Rogers Standard Errors 

Avg( βOLS )
Std( βOLS )

Avg( SEOLS )
Avg( SER )

Independent Variable Volatility from Firm Effect

25% 25% 50%

Independent Variable Volatility from Time Effect

25% 50% 25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 F

irm
 E

ff
ec

t

25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 T

im
e 

Ef
fe

ct 25%
0.9997
0.0407
0.0283
0.0400

1.0004
0.0547
0.0347
0.0548

1.0004
0.0489
0.0283
0.0489

25% 50%
1.0005
0.0362
0.0231
0.0364

1.0015
0.0515
0.0283
0.0508

0.9993
0.0468
0.0231
0.0461

50% 25%
1.0002
0.0493
0.0283
0.0490

1.0008
0.0690
0.0347
0.0692

0.9994
0.0631
0.0283
0.0630

Notes: 
The table contains estimates of the coefficient and standard errors based on 1,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2. In these simulations, the proportion of the variance of the independent variable
and the residual which is due to the firm effect is either 25 or 50 percent. The proportion which is
due to the time effect is also 25 or 50%. For example, in the bottom left cell 25 percent of the
variability in the independent variable is from the firm effect and 25 percent is from the time effect.
50 percent of the variability of the residual is from the firm effect and 25 percent is from the time
effect. Each cell contains the average estimated slope coefficient from OLS and the standard
deviation of this estimate. This is the true standard error of the estimated coefficient. The third entry
is the standard error estimated from OLS. The fourth entry is Rogers’ (clustered) standard error
which accounts for possible clustering at the firm level (i.e. accounts for the possible correlation
between observations of the same firm in different years). Each regression includes nine year
dummies.
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Table 6: Estimating Standard Errors with a Firm and Time Effect 
Fama-MacBeth Standard Errors

Avg( βFM )
Std( βFM )

Avg( SEFM )

Independent Variable Volatility from Firm Effect

25% 25% 50%

Independent Variable Volatility from Time Effect

25% 50% 25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 F

irm
 E

ff
ec

t

25%

R
es

id
ua

l V
ol

at
ili

ty
 fr

om
 T

im
e 

Ef
fe

ct 25%
0.9997
0.0407
0.0258

1.0004
0.0547
0.0309

1.0004
0.0489
0.0243

25% 50%
1.0005
0.0362
0.0206

1.0015
0.0515
0.0239

0.9993
0.0469
0.0185

50% 25%
1.0002
0.0493
0.0244

1.0008
0.0691
0.0275

0.9994
0.0632
0.0206

Notes: 
The table contains estimates of the coefficient and standard errors based on 5,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2.  In these simulations, the proportion of the variance of the independent
variable and the residual which is due to the firm effect is either 25 or 50 percent. The proportion
which is due to the time effect is also 25 or 50%. For example, in the bottom left cell 25 percent of
the variability in the independent variable is from the firm effect and 25 percent is from the time
effect. 50 percent of the variability of the residual is from the firm effect and 25 percent is from the
time effect. The first entry in each cell is the average estimated slope coefficient based on a Fama-
MacBeth estimation (e.g. I ran the regression for each of the 10 years and took the average). The
second entry is the standard deviation of this coefficient. This is the true standard error of the Fama-
MacBeth coefficient. The third entry is the standard error estimated by the Fama-MacBeth procedure
(e.g. equation 10).
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Table 7: Estimated Standard Errors with a Non-Fixed Firm Effect
Panel A: OLS and Rogers Standard Errors

Avg(βOLS)
Std(βOLS)

Avg(SEOLS)
Avg(SER)

I II III IV

ρX / ρε  0.25 / 0.25 0.00 / 0.00 0.25 / 0.25 0.50 / 0.50

φX / φε  0.00 / 0.00 0.75 / 0.75 0.75 / 0.75 0.50 / 0.50

OLS 1.0001
0.0355
0.0283
0.0352

1.0001
0.0483
0.0283
0.0488

1.0009
0.0566
0.0283
0.0569

1.0007
0.0587
0.0283
0.0578

OLS with
firm dummies

1.0007
0.0299
0.0298
0.0314

1.0008
0.0443
0.0298
0.0466

1.0013
0.0442
0.0298
0.0465

1.0000
0.0357
0.0298
0.0377

Panel B: Fama-MacBeth Standard Errors

Avg(βFM)
Std(βFM)

Avg(SEFM)
Avg(SEFM-AR1)

I II III IV

ρX / ρε  0.25 / 0.25 0.00 / 0.00 0.25 / 0.25 0.50 / 0.50

φX / φε  0.00 / 0.00 0.75 / 0.75 0.75 / 0.75 0.50 / 0.50

Fama-MacBeth 1.0001
0.0357
0.0267
0.0250
0.0250

1.0001
0.0484
0.0240
0.0374
0.0344

1.0008
0.0567
0.0221
0.0376
0.0336

1.0007
0.0588
0.0220
0.0296
0.0281

Avg(1st order 
auto-correlation)

-0.1134 0.2793 0.3250 0.1759
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εit ' µit % ηit ' µit % ςit if t ' 1

' µit % ηit ' µit % φε ηit&1 % 1 & φ2 ςit if t > 1
(1)

Notes:
The table contains estimates of the coefficient and standard errors based on 1,000 simulation

of a panel data set with 5,000 observations (10 years per firm and 500 firms). The true slope
coefficient is 1, the standard deviation of the independent variable is 1 and the standard deviation
of the error term is 2. Across the columns the magnitude of the fixed firm effect (ρ) and the first
order auto correlation (φ) is changed. ρX (ρε) is the fraction of the independent variable’s (residual’s)
variance which is due to the fixed firm effect (see equation 6). φx (φε) is the first order auto
correlation of the non-fixed portion of the firm effect of the independent variable (the residual).
Combining equations (6) with equations (15?) and (16), the residual is specified as: 

The independent variable is specified in a similar manner. 
Panel A contains coefficients estimated by OLS. In the first row only the independent

variable (X) was included; in the second row 499 firm dummies (for 500 firms) were also included
in the regression. The first two entries in each cell contain the average slope estimated by OLS and
the standard deviation of the coefficient (i.e. the true standard error). The third entry is the standard
error estimated from OLS. The fourth entry is Rogers’ (clustered) standard error which accounts for
possible clustering at the firm level (i.e. accounts for the possible correlation between observations
of the same firm in different years).

Panel B contains coefficients and standard errors estimated by Fama-MacBeth. The first two
entries in each cell contain the average slope estimated by Fama-MacBeth and the standard deviation
of the coefficient (i.e. the true standard error). The third entry in these cells is the standard error
estimated by the Fama-MacBeth procedure, assuming the yearly estimates are independent. The last
two entries are the Fama-MacBeth standard error estimate corrected for first order auto-correlation.
The fourth entry assumes an infinite lag (i.e. multiplied by the square root of (1+φ)/(1-φ)), and the
fifth entry assumes a finite lag of 9 periods (i.e. multiply by the square root of sum from k=1 to T
of (T-k) φ^k). The bottom row contains the average across the 5,000 simulation of the first order
autocorrelation of βt and βt-1 estimated within each of the 5,000 samples.
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Figure 1: Residual Cross Product Matrix
Assumptions About Zero Co-variances

Firm 1 Firm 2 Firm 3
Fi

rm
 1

ε11
2 ε11 ε12 ε11 ε13 0 0 0 0 0 0

ε12 ε11 ε12
2 ε12 ε13 0 0 0 0 0 0

ε13 ε11 ε13 ε12 ε13
2 0 0 0 0 0 0

Fi
rm

 2

0 0 0 ε21
2 ε21 ε22 ε21 ε23 0 0 0

0 0 0 ε22 ε21 ε22
2 ε22 ε23 0 0 0

0 0 0 ε23 ε21 ε23 ε22 ε23
2 0 0 0

Fi
rm

 3

0 0 0 0 0 0 ε31
2 ε31 ε32 ε31 ε33

0 0 0 0 0 0 ε32 ε31 ε32
2 ε32 ε33

0 0 0 0 0 0 ε33 ε31 ε33 ε32 ε33
2

Notes:
This figure shows a sample covariance matrix of the residuals. Assumptions about elements

of this matrix and which are zero is the source of difference in the various standard error estimates.
The covariance of the matrix of the residuals has (NT)2 elements where N is the number of firms and
T is the number of years. Both are three in this illustration. The standard OLS assumption is only
the NT diagonal terms are non-zero. The cluster assumption assumes that the correlation of the
residuals within the cluster may be non-zero (these elements are shaded). Thus there are T2 unique
variances and co-variances to estimate and N observations of each variance or covariance.  The
cluster assumption assumes that residuals across clusters are uncorrelated. These are recorded as
zero in the above matrix.
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Figure 2: Bias in Estimated Standard Errors
As a function of observations per cluster

Notes:
The figure graphs the percentage by which the three methods under estimate the true

standard error in the presence of a firm effect. The results are based on 5,000 simulations of a data
set with 5,000 observations. The number of years per firm ranges from five to fifty. The firm effect
was assumed to comprise fifty percent of the variability in both the independent variable and the
residual. The under estimates are calculated as one minus the average standard error estimated by
the method divided by the true standard deviation of the coefficient estimate. For example, the
standard deviation of the coefficient estimate was 0.0406 in the simulation with five years of data
(T=5). The average of the OLS estimated standard errors is 0.0283. Thus the OLS under estimated
the true standard error by 30% (1 - 0.0283/0.0406). The under estimates are graphed as squares for
the Rogers’ (clustered by firm) standard errors, triangles for the OLS standard errors, and diamonds
for the Fama-MacBeth standard errors.
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Figure 3: Relative Performance of OLS, Rogers, and Newey-West Standard Errors 
 

Notes:
The figure contains OLS, Rogers (clustered by firm), and Newey-West standard error

estimates. The estimates are based on 5,000 simulated data sets. Each data set contains 5,000
observations (500 firms and 10 years for each firm).  In each simulation, twenty-five percent of the
variability in both the independent variable and the residual is due to a firm effect [i.e. σ2(γ)/σ2(ε)
= σ2(µ)/σ2(X) = 0.25]. The true standard error (filled in squares), the OLS standard error (empty
diamonds), and the Rogers’ standard error (empty squares) are plotted as straight lines since they
do not depend upon the assumed lag length. The Newey-West standard errors, which rise with the
assumed lag length, are plotted as triangles.
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Figure 4: True Standard Errors and Robust Estimates
as a function of cluster size (T)

Notes:
The true standard errors (squares) and the Roger’s (clustered by year) standard errors

(triangles) are graphed against the number of years (clusters) used in each simulation. The standard
errors are the average across 5,000 simulations. Each simulated data set has 5,000 observations. In
each simulation, twenty-five percent of the variability in both the independent variable and the
residual is due to the time effect [i.e. σ2(δ)/σ2(ε) = σ2(ζ)/σ2(X) = 0.25]. The robust estimates under
estimate the true standard errors, but this under estimate declines with the number of years (clusters).
In these simulations, the underestimation ranges from 15 percent when there were 10 years in the
simulated data set to 1 percent when there were 100 years in the simulated data set.

0.0400

0.0800

0.1200

0.1600

0 20 40 60 80 100

Number of Clusters (Years)

True Standard Error Rogers' Standard Error (clustered by year)



44

Figure 5: Auto Correlation Patterns of Non-Fixed Firm Effects

Notes:
This figure contains the auto-correlations of the residuals and the independent variable for

lags one through nine for the data structures used in Table 7. The specifications contain a fixed and
a temporary firm component. φ is the fraction of the variance which is due to the fixed firm effect
and φ is the first order auto-correlation of the non-fixed firm effect. 
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