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1. Introduction 

Inspired by the new economic geography, concerns have been raised that economic integra-
tion at the regional or international level may further the polarization of economic activities, 
i.e., the spatial concentration of industries (henceforth [industrial] concentration for short) 
and/or the industrial specialization of regions ([regional] specialization). Innovative, dynamic 
industries may concentrate in the core regions, leaving the periphery with mature industries 
which face fierce competition from the world markets. As a consequence, peripheral regions 
may grow slower in terms of income and employment, and may be more vulnerable to 
adverse macroeconomic shocks.  

In search of stylized facts on economic polarization in Europe various studies have explored 
the evolution of regional specialization or industrial concentration using measures borrowed 
directly or indirectly from the income inequality literature.1 The results are remarkably incon-
clusive for several reasons (Combes and Overman 2004): First, many of the studies lack an 
unambiguous research focus and a clear test hypothesis. Second, the results are sensitive to 
the sectoral and spatial scales of the available data. With aggregate data available from public 
sources, the modifiable areal unit problem (MAUP)2 cannot be avoided or effectively solved. 
In addition, the sectoral and/or spatial aggregates are treated as “anonymous” units which 
gives rise to the checkerboard problem.3 And third, the choice of the measure has been largely 
ad hoc in most studies. The interdependencies between the research purpose (test hypothesis), 
the available data, and the statistical measures have largely been neglected, not least so 
because a taxonomy of measures which allows for systematically assessing the properties of 
the measures on the background of the available data and the research purpose has not been 
available. The sensitivity of results on the evolution of regional specialization to the choice of 
the measure is illustrated in Table 1: The specialization in terms of employment across 88 
manufacturing industries is found to have increased in almost all of the 18 Spanish NUTS2 
regions, or in hardly any region, depending on the measure employed. 

                                                 
1 Examples are the Theil index, the Gini index, the coefficient of variation, or the so-called Krugman index 

(relative mean deviation). See Bode et al. (2003), Combes and Overman (2004), and Nijkamp et al. (2003) 
for recent reviews.  

2 The modifiable areal unit problem (MAUP; see, Openshaw and Taylor 1979; Arbia 1989) arises from 
discretizing heterogeneous continuous variables. It comes under two guises: Discretizing space averages 
away heterogeneity, such that results are sensitive to the scale of aggregation (scale problem), and the 
boundaries between the discrete spatial units may be misplaced (arbitrary boundary problem). MAUP is 
actually a manifestation of the general aggregation problem inherent to any micro-founded macroeconomic 
analysis. It is, however, particularly relevant for aggregate studies focusing directly on the heterogeneity at a 
more disaggregate level.  

3 The checkerboard problem arises from neglecting relevant information on the locations of or distances 
between regions or industries (Arbia 2001). 
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Table 1 — Sensitivity of results to the choice of a measure: Counts of Spanish NUTS2 
regions for which measures of regional specialization indicate an increasing 
specialization during the period 1978–1992a 

 “absolute” “relative” 

measure no of 
regions % no of 

regions % 

Theil index 9 50.0 2 11.1 
Coefficient of variation 7 38.9 16 88.9 
Relative mean deviation (“Krugman 
index”) 

10 55.6 2 11.1 

Gini index 9 50.0 1 5.6 

a Dataset: Employment by 18 Spanish NUTS2 regions and 88 manufacturing industries. “Absolute” measures 
evaluate the deviation of the distribution of employment across industries from the uniform distribution; “rela-
tive” measures the deviation of the distribution of employment across industries from the corresponding distri-
bution at the national level. 

 

To solve the problem of ambiguous inferences, Combes and Overman (2004) set up a catalog 
of “baseline criteria” for a “perfect” measure. In a nutshell, the criteria request the measure to  

(i) be comparable across industrial and spatial units and scales, and unbiased by MAUP and 
the checkerboard problem in both the regional and the sectoral dimension;  

(ii) allow for specifying an unambiguous and meaningful null hypothesis of no concentration 
or specialization which may capture both systematic variation, suggested by economic 
theory, and random variation; and 

(iii) be suitable for statistical testing.  

Rather than trying to develop a perfect measure, the purpose of the present paper is to 
improve upon existing “inequality” measures (and their selection) by extending them to “dis-
proportionality” measures that better fit the baseline criteria. While “inequality” measures use 
as the reference the mean of the variable of main interest, “disproportionality” measures allow 
to choose the reference from a wide variety of possible distributions. This will allow a more 
rigorous exploratory analysis of industrial concentration and regional specialization processes. 
The paper, first, proposes a taxonomy for disproportionality measures which gives rise to a 
modular system of three characteristic features of any measure: the projection function, the 
reference distribution, and the weighting scheme. For a given, well-specified research pur-
pose, and for known characteristics of the available data, the taxonomy can be used for 
defining the appropriate disproportionality measure as a combination of the most appropriate 
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realization of each of the three characteristic features.4 For an vaguely specified research pur-
pose, and unknown characteristics of the available data, the taxonomy helps sharpen the focus 
and explore the data. In doing so, it helps specify the null hypothesis properly (baseline crite-
rion ii), identify the data requirements in terms of the preferred level of sectoral and/or spatial 
disaggregation and take into account the limitations of the available data as far as possible 
(baseline criterion i), and perform sensitivity tests (baseline criterion iii).5  

Second, the paper introduces measures of polarization of an economy ([economic] polariza-
tion) which assess industrial concentration and regional specialization simultaneously. These 
polarization measures are straightforward generalizations of the disproportionality measures 
discussed in the first part; they can be defined from a generalized modular system of charac-
teristic features, with a joint region/industry reference distribution and two sets of weighting 
schemes. These measures can be used for a nested comparison of industrial concentration and 
regional specialization patterns (baseline criterion i).  

And third, the paper introduces spatial concentration measures which take into account the 
spatial ordering of the basic units by allowing to consider the neighborhood structures of the 
regions as well as additional empirical or theoretical information about the unobserved intra-
regional distributions of the variable of interest. As generalizations of the concentration 
measures discussed in the first part, the spatial measures can be defined from a generalized 
modular system of characteristic features, with a spatial weights matrix as an additional fea-
ture. In dealing with the checkerboard problem and the MAUP (baseline criterion i), these 
measures are alternatives to the distance-based concentration statistics based on Ripley’s K 
functions proposed recently by Duranton and Overman (2005) and Marcon and Puech (2003; 
2005). The two generalizations benefit from the methodological discussion of segregation 
measures in the sociological literature.  

For expositional convenience, the discussion of the taxonomy is limited to a few selected 
measures: the Gini coefficient, and the relative mean deviation as examples of intuitive ad-
hoc measures, and the Generalized Entropy (GE) class of measures and its two most promi-
nent members, the Theil index and the GE(2), as examples of axiom-based measures (Cowell 

                                                 
4 The bulk of the literature so far has taken measures as a fixed combination of two of these features, the 

projection function and the reference distribution. An important step towards a more flexible combination of 
features is Brülhart and Träger (2005) that introduces different references for the same projection function. 
Varying the weighting scheme independently of the reference distribution has not been considered an option. 

5 A detailed discussion of the conceptual and technical issues of testing for the statistical significance of 
changes of a measure over time, or of the differences between regions or industries, is beyond the scope of 
the present paper. Among the few studies performing rigorous statistical tests are Brülhart and Träger (2005) 
and Mori et al. (2005). While the tests proposed by Mori et al. (2005) are specific to the Kullback-Leibler D 
statistic which is similar to a Theil index, the bootstrap tests proposed by Brülhart and Träger (2005) for the 
Theil index and the CV can, in principle, be applied to other disproportionality measures discussed in this 
paper. 
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1995). The taxonomy may be extended easily to other inequality measures. The taxonomy 
does not, however, cover measures which differ conceptually from these measures, such as 
the so-called “dartboard” measures (Ellison and Glaeser 1997; Maurel and Sédillot 1999) 
which are actually estimates of correlation coefficients, or the distance-based statistics based 
on Ripley’s K function. 

The plan of the paper is as follows: Section 2 introduces the taxonomy and illustrates how 
disproportionality measures can be defined using the modular system of characteristic fea-
tures. For expositional convenience, the chapter focuses on measures of industrial concentra-
tion as an example. The corresponding measures of regional specialization can easily be 
obtained by just switching indices. Chapter 3 extends the taxonomy to measures of polariza-
tion. Chapter 4 extends the taxonomy to spatial concentration measures. Chapter 5 concludes, 
and discusses issues of further research. An empirical illustration for selected measures is 
given in Bickenbach et al. (2006). A more detailed tabulation of the various measures dis-
cussed in the paper is available at http://www.uni-kiel.de/ifw/staff/bode/measures.htm. 

2. The taxonomy 

This chapter proposes a taxonomy of measures of concentration and specialization. Since the 
available data is discrete in most applications, the discussion is limited to discrete versions of 
the measures. All measures covered can be characterized as measures of “disproportionality” 
of the distribution of a population across a finite set of mutually exclusive characteristics and 
a pre-determined reference distribution. For expositional convenience, the following discus-
sion will exemplify measures of industrial concentration. Thus, population is workers within 
an industry, their characteristics are the regions of their workplaces.6  

Disproportionality measures of industrial concentration determine, for each region, a value for 
the “region-specific deviation” that is the ratio between the number of workers in the industry 
and a pre-determined reference. By applying an inequality measure to these region-specific 
deviations, they are aggregated over all regions to a scalar, the concentration measure. One 
important difference between the traditional inequality measures and the disproportionality 
measures is that the former implicitly use as the reference the mean of the variable of main 
interest7 while the latter allow to choose the reference from a wide variety of possible 

                                                 
6 For measures of regional specialization, the population is workers within a region and their characteristics 

are the industries. Specialization measures can thus be obtained from concentration measures by just 
switching the indices for regions and industries. For measures of polarization, the population is workers 
within an economy, made up by all industries and regions under investigation, and their characteristics are 
their region-industry affiliations. See Chapter 3 for the formal definitions of polarization measures.  

7 Comparing the values of the variable of main interest for the different regions to each other is equivalent to 
comparing each value to the population mean. 
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distributions. The mean of the variable of main interest is just a scaling factor. The possibility 
to choose a reference other than the population mean is important for the measurement of 
concentration because frequently the population mean is not the reference that best matches 
the specific research purpose at hand.8  

Formally, the disproportionality measures covered by the taxonomy can be characterized as a 
function: 

 ⎟
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. Technically, Mi is a function of wr and Xir/ iX  only, similar to 

inequality measures. A disproportionality measure describes the inequality across regions of 
the proportions of the variable of main interest and its reference. The measure assumes its 
minimum value, zero, if the proportions are the same in all regions, i.e., Lir/Πr = Lis/Πs 
∀ r, s = 1, …, R.  

The taxonomy builds on the three characteristic features of the measures in (1): (i) the region-
specific weights, W(r), (ii) the reference distribution, Π(r), and (iii) the projection function, 
fM.10 Together with the variable of main interest, Li(r), the three features unambiguously 
define a measure. In any meaningful empirical investigation, the specification of each char-
acteristic feature should follow directly from the research purpose or the test hypothesis at 
hand.  

                                                 
8 The definition and scale of the reference may differ from that of the variable of main interest, as long as both 

refer to the same region. 
9 Uppercase letters denote absolute numbers, lowercase letters shares. Bold characters denote vectors; their 

subscripts in parentheses indicate their elements and dimensions. The Appendix summarizes the notational 
details. 

10 For measures of regional specialization, the weights are industry-specific; for measures of polarization, the 
weights are industry- and region-specific.  



 6

(i) The region-specific weights, W(r), reflect the researcher’s choice of the basic units of the 
analysis (Brülhart and Träger 2005): For measures of concentration, the basic units are spatial 
units, such that the variable of main interest is defined as, say, the number of industry i work-
ers per basic spatial unit.11 Disproportionality measures allow for specifying a variety of 
different geographical basic units, provided the variable of main interest as well as the refer-
ence variable can be measured consistently in terms of the basic units. Only three types of 
basic units have, nonetheless, been used in the literature so far:  

– Choosing the regions themselves as basic units implies assigning all regions the same 
weight, W(r) = 1(r) = (1, …, 1),12 independent of their actual sizes or any other 
characteristics.  

– Choosing square kilometers (km²) as basic units implies weighting each region by its 
geographical size (Ar), W(r) = A(r) = (A1, …, AR).13  

– Choosing the average size of the area attributed to a worker of any industry in the region 
as basic units implies weighting each region by its total employment, 
W(r) = L(r) = (L•1, …, L•R). L•r [= ΣiLir] denotes the sum of workers over all industries in 
region r. Each worker in region r is taken to represent a share of 1/L•r of the region’s 
area.  

Measures using regions as basic units will be labeled “unweighted measures”; those using 
non-uniform region-specific weights “weighted measures”. Weighted measures are invariant 
to dividing a region into sub-regions, provided the weights represent the sizes of the regions, 
and the sub-regions exhibit, or are assumed to exhibit, identical concentration patterns.14  

(ii) The reference distribution, Π(r), reflects the researcher’s choice of the benchmark, resp. 
the null hypothesis of “no” or “no unusual concentration”. As Combes and Overman (2004) 
emphasize, economically meaningful inferences require any deviation of the observed from 
the reference distribution to be attributable to what the researcher is actually willing to label 
“concentration”. Similarly, anything the researcher wants to label “concentration” must show 
up as a deviation. The reference distribution should pick up any systematic components in the 

                                                 
11 For measures of specialization, the basic units are units of (sectoral) activities, such that the variable of main 

interest is defined as, say, the number of region r-workers per sectoral unit. 
12 After standardizing the sum of weights to one, each region is assigned the relative weight 

wr = Wr/ΣrWr = 1/R. 
13 As the spatial distribution of workers within the regions cannot be observed in most cases, all worker are 

assumed to occupy areas of the same size, and be distributed uniformly across space within the region. Each 
areas may be shared by workers from all industries. Although this simplifying assumption does not avoid the 
scale problem resulting from the unobserved intra-regional heterogeneity, preferring the smallest observable 
entities as basic units reduces the scale bias as far as possible (Brülhart and Träger 2005).  

14 Haaland et al. (1998) attribute this feature to relative measures. The taxonomy here makes clear that it is 
solely due to the choice of the weights.  
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observed sectoral employment patterns which the researcher is not willing to label “concen-
tration” for the research purpose at hand. Disproportionality measures allow for specifying a 
great variety of reference distributions, provided they are defined over the basic units. Only 
three types of references have, nonetheless, been used in the literature so far:  

– The uniform distribution is represented in (1) by Π(r) = 1(r): All regions are assumed to be 
of the same size under the H0.15  

– The topographical distribution is represented in (1) by Π(r) = A(r). The employment in the 
industry under investigation is assumed to be distributed evenly across space under the 
H0.  

– The distribution of employment observed at a higher-level sectoral aggregate such as 
total regional employment is represented in (1) by Π(r) = L(r) = (L•1, …, L•R). The spatial 
distribution of the industry under investigation is assumed to equal that of total employ-
ment across all industries under the H0.16  

Measures based on the uniform reference will henceforth be labeled “absolute measures”, 
those based on a non-uniform reference “relative measures”.17 The measures are actually 
rather sensitive to the choice of the reference. Changing the reference may easily reverse the 
inferences on the spatial concentration of an industry (see, e.g., Brülhart and Träger 2005, or 
several of the country studies in Traistaru et al. 2003). Simulations not reported in detail here 
indicate that the differences between the “absolute” and “relative” measures in Table 1 do in 
fact result mainly from the difference in the reference rather than the difference in the region-
specific weights. 

(iii) The projection function, fM, reflects the researcher’s relative emphasis on region-specific 
deviations of different magnitude. Some measures, such as the Theil index, emphasize varia-
tions in the range of lower values of the region-specific deviations (e.g., industry is strongly 
underrepresented in a region), others, such as the coefficient of variation, emphasize varia-
tions in the range of higher values of the region-specific deviations (e.g., industry is strongly 
overrepresented). Again others, such as the relative mean deviation, emphasize changes in the 

                                                 
15 The choice of the uniform reference may reflect the researcher’s emphasis on the qualitative characteristics 

of regions, or on administrative or political issues. Any systematic quantitative differences, including those 
resulting from the available regional classification schemes, are interpreted purposefully as concentration. 

16 Higher-level aggregates as a reference allow to control for systematic differences between the regions in their 
size or some external determinants such as their attractiveness for firms and workers, their regulatory 
frameworks and other institutional or political factors. They may, however, be endogenous: Bigger 
industries, or major industry-specific shocks may affect them significantly. They may, in addition, filter out 
aggregate determinants of industrial concentration the researcher actually would like to attribute to 
concentration.  

17 Brülhart and Träger (2005) introduce the term “topographic measures” for measures using the area as a 
reference. It should be noted that this reference is just one out of many possible non-uniform references.  
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balance between regions with over- and underrepresented industries and incidences of regions 
jumping across the reference.18 As a consequence, the results may easily differ even qualita-
tively if different projection functions are used to evaluate differences in industry concentra-
tion between regions or points in time, depending on the regions, e.g. over- or underrepre-
sented regions, where the differences are observed (see Table 1 for an illustration).  

In the literature, concentration and specialization measures have so far been classified by their 
projection function and their reference distributions (Haaland et al. 1998). The reference and 
the weights have always been assumed to be the same: “Absolute” measures have used the 
uniform distribution both as weights and reference; “relative” measures have used the distri-
bution of total regional employment, “topographic” measures the distribution of area. Varying 
the reference independent of the region-specific weights has not been considered an option.19 
The present paper argues, and illustrates below, that this is unnecessarily restrictive. By dis-
tinguishing carefully between the reference and the weights, the taxonomy adds one addi-
tional degree of freedom to the opportunities for choosing the measure which best fits the 
specific research purpose. 

Disentangling reference and weights is useful for two reasons: First, the research purpose or 
test hypothesis may request using a weighting scheme that differs from the reference: One 
example is studies of political decisions or other public administrative issues which requires 
choosing the spheres of influence of local governments or administrations like counties or 
states as the basic units while the aggregate regional employment or the employment in 
another industry may be the proper benchmark (reference). The proper region-specific 
weights will be W(r) = 1(r), the proper reference Π(r) = L(r). Or the research purpose may 
request to compare the spatial distribution of an industry to that of total employment while 
controlling for differences between regions in their geographical sizes. The proper basic units 
will be km² which gives rise to region-specific weights W(r) = A(r), the proper reference will 
be Π(r) = L(r) in this case.20 None of these applications have been considered an option so far. 
They are, however, possible and perfectly consistent with the taxonomy discussed here. The 
corresponding Theil measures will be given below. 

                                                 
18 In addition to theoretical aspects, the choice of the projection function may be subjected to practical 

considerations. A projection function which does not put too much emphasis on extreme (positive and/or 
negative) region-specific deviations may be preferred to reduce the effects of indivisibilities in firm sizes or 
“outliers” on the measure. Alternatively, or in addition, the sensitivity of the results can be assessed by 
comparing the results for different projection functions. 

19 This is true not only for the literature on regional specialization and industrial concentration but also for those 
on income inequality and segregation. 

20 As will be discussed in more detail below, the resulting measure requires the additional assumption that the 
fraction of industry-i workers in the total workforce does not vary across space within a region.  
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The second reason is that, by clarifying the distinct functionality of the weights and the refer-
ence, the taxonomy facilitates sensitivity tests. Changing selectively the region-specific 
weights or the reference will help assess the sensitivity of the preferred measure to a variation 
of the basic units or the null hypothesis.  

Using the taxonomy, four different measures can be defined for each projection function: An 
unweighted absolute, an unweighted relative, a weighted absolute, and a weighted relative 
measure. If defined along the lines discussed above, these measures share virtually all proper-
ties of their conventional counterparts. Table 2, which will be discussed below in more detail, 
gives an overview of the general principle of defining concentration measures for selected 
projection functions: the generalized entropy (GE) class of measures, the Theil index (T), the 
coefficient of variation (CV),21 the relative mean deviation (RMD), and the Gini coefficient 
(G).22 The first column of Table 2 gives, for each projection function, a general form that can 
be used to derive all related measures. Given region-industry employment, Li(r), a measure 
may be unambiguously defined by choosing a reference distribution, region-specific weights 
and a projection function. The remaining three columns of Table 2 give three examples of 
measures obtained for different combinations of weights and references: the unweighted 
absolute, an unweighted relative and a weighted relative measure.23 In order to compare the 
values of different measures directly, it may be useful to normalize the measures to the (0, 1) 
interval by dividing them by their upper bounds.24  

All three variants of measures exemplified in Table 2 have actually been employed in studies 
of industrial concentration or regional specialization, though not for all the projection func-
tions: Among the weighted relative measures are (i) the so-called “Krugman index” (weighted 
relative RMD) used, e.g., by Krugman (1991), Hallet (2002), Dohse et al. (2002), or Traistaru 
et al. (2003); (ii) the so-called “relative” Theil index (Brülhart and Träger 2005, Bode and 
Krieger-Boden 2005), (iii) the “relative” CV (Brülhart and Träger 2005), and (iv) the “loca-
tional” Gini coefficient, as used by Krugman (1991), Amiti (1998) or Brülhart (2001). An 
unweighted relative measure is the “locational” Gini coefficient, as used by Südekum (2006). 
And among the unweighted absolute measures are (i) the traditional Gini coefficient (e.g., 
Aiginger and Leitner 2002, Midelfart-Knarvik et al. 2002), as well as the (ii) Theil index as  
 

                                                 
21 The Theil index and (a transformed version of) the CV are actually members of the GE class of measures. 

Owing to their popularity in the literature, they are nonetheless depicted separately in Table 2.  
22 Table A1 gives the corresponding measures of regional specialization. Tables 2 and A1 can easily be 

extended to projection functions based on other inequality measures discussed in the literature (see, e.g., 
Cowell 1995; Silber 1999). 

23 To save space, weighted absolute measures are omitted, and the relative and the weighted measures are 
exemplified only for total regional employment as a reference or as weights.  

24 For details on the calculation of upper bounds see http://www.uni-kiel.de/ifw/staff/bode/measures.htm. 
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used by Aiginger and Davies (2004), and (iii) the CV in the version of Aiginger and Leitner 
(2002).25  

To illustrate the taxonomy, consider, first, the so-called “Krugman” index which, for the con-
centration of industry i, is defined as  

 ∑∑
= ••
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ir
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r
riri L
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L
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11

:λλ .  (2) 

Being calculated as the unweighted sum of the absolute region-specific differences in 
employment shares for industry i, λir, and the reference, λr, its interpretation is easy and intui-
tive: A value of, say, Ki = 0.5 indicates that a share of at least one fourth (1/2Ki) of the indus-
try’s total workforce has to move to another region in order to get an employment distribution 
that exactly corresponds to the reference distribution. The “Krugman” index has traditionally 
been classified as a “relative” measure. The taxonomy proposed in the present paper suggests 
looking at Ki in a slightly different way: By rearranging (2), the Krugman index can be shown 
to be a weighted relative relative mean deviation ( WR

iRMD ): 
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 (3) 

LCir = λir/λr is the location coefficient for region-industry (ir). By setting Π(r) = W(r) = L(r), (3) 
can alternatively be derived directly from the general definition of the RMD given in the first 
column of Table 2. 

The first line of (3) clarifies the constructive principle of all measures discussed in the present 
paper: The measure first evaluates, for each region, the region-specific deviation by compar-
ing the value for the region-industry, Lir, to the corresponding reference value, L•r. Second, 
the region-specific deviations are converted into the metric of the measure by the projection 
function. The projection function of the RMD stipulates to (i) scale this ratio by the weighted 
mean across all region-specific ratios, ΣrλrLir/L•r = Li•/L••; (ii) subtract 1 from the region-spe-
cific deviation; (iii) take the absolute value of the resulting difference; and (iv) take the 
weighted average over all regions. 

                                                 
25 Another intuitive measure, the Herfindahl index can be shown to be closely related to the unweighted 

absolute CV and GE(2) measures. The Herfindahl index, employed, among many others, in several of the 
contributions to Traistaru et al. (2003), is defined as the squared sum of region-industry employment shares.  
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Following the same general procedure, any of the three characteristic features of the speciali-
zation measure may be varied separately. Setting W(r) = 1(r). and Π(r) = L(r), an unweighted 
relative RMD is obtained from (4) as 

 ( ) ∑
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==
R

r irr

ir
rrriM

UR
i Rl

lfRMD
1

)()()(
1,, L1L , 

where lir = Lir/L•r. Setting Π(r) = W(r) = 1(r) gives the unweighted absolute RMD,  
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Comparing the Krugman index, or weighted relative RMD in (2) to the unweighted absolute 
RMD in (4) clarifies the usefulness of the taxonomy vis-à-vis the traditional distinction of 
absolute and relative measures: According to the traditional distinction the two measures dif-
fer in just one characteristic, namely the reference. The taxonomy makes clear that the two 
measures actually differ in two characteristics, the reference and the region-specific 
weights.26  

As for the RMD which is frequently characterized as an ad-hoc measure, the taxonomy does 
also work for measures such as the General Entropy (GE) class of measures which have sev-
eral useful properties defined by a set of axioms (see, e.g., Cowell 1995; Litchfield 1999). 
One useful property is decomposability, which means that for any set of subgroups of a 
population total inequality within the population can be decomposed into the inequality within 
the subgroups and that between the subgroups. Following Brülhart and Träger (2005), the 
decomposition is used to derive unweighted and weighted relative GE measures.  

The GE class of measures is generally defined as 
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for the vector of some characteristics Y(n) = (Y1, …, YN) of a population. The members of the 
population are the “basic units”, and nnN YY ∑= 1  is the mean across the basic units. The 

parameter α governs the sensitivity of the projection function to changes in the ranges of high 
and low values of the YYn /  ratios. With α < 2 the measure is more sensitive to (mean-

                                                 
26 For testing the sensitivity of, e.g., the weighted relative RMD in (3) to changes in the weighting scheme, it 

may in addition be informative to selectively change the weights of the region-specific deviations while 
keeping the scaling factor of the region-specific deviations unchanged, i.e., compare (3) to Σr|LCir–1|. 
Although the latter expression is not an RMD in terms of the present taxonomy the comparison may still 
yield valuable information on the sensitivity of the preferred RMD to the weighting scheme. 
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preserving) changes in observations with low values of YYn / ; with α > 2 it is more sensitive 
to (mean-preserving) changes in observations with high values of YYn /  (e.g., Cowell 2000). 

The most prominent GE measures are those given by α = 2 which is a simple monotonic 
transformation of the coefficient of variation, GE(2) = ½CV2; and by α → 1 which is the 
Theil index, i.e., GE(1) = T.  

GE(α) in (5) can be decomposed into a within-groups and a between-groups component such 
that GE(α) = GEw(α) + GEb(α). For H subgroups with Nh basic units in subgroup h 
(h = 1, …, H), the between group component is given by 
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where nh
N
nNh YY h

h 1
1

=∑=  is the unweighted mean of subgroup h, and [ ]nnNhN
N

h YYY h ∑=∑= 1  

the weighted average of all subgroup means. Xnh denotes the characteristic of the nth member 
of the hth subgroup.  

Traditionally, the [unweighted] absolute GE(α) measures of industrial concentration have 
been derived from (5), the [weighted] relative measures from the between-group component 
(6) of (5), assuming the unobservable within-group component to be zero (Brülhart and 
Träger 2005).27 The taxonomy suggests to rather use a general form of the between-group 
component (6) as the unique basis for all GE measures of regional concentration (see Table 2, 
first row for examples): 
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All these measures will have the usual properties of GE measures, provided the variables of 
main interest, weights and references are related to the basic units in a consistent way.  

For illustration, consider the two examples given above, and assume the Theil index, GE(1), 
to be the appropriate projection function. The study of political decisions or other public 
administrative issues which suggests choosing W(r) = 1(r) and Π(r) = L(r) should be based on 

                                                 
27 The [weighted] relative GE(α) measures are obtained from (6) by assuming (i) the basic units to be the area 

accounted for on average by one industry i-worker, (ii) re-defining the characteristics as some ratio so that, 
e.g., Yn = Lin/L•n, and decomposing it into within- and a between-region components. Assuming the 
unobservable within-region components to be zero, the between-regions component is left which is the 
relative measure (Brülhart and Träger 2005). Notice that the decomposition is formally equivalent to 
aggregating the unobservable basic units to observable industries, if the within component is zero. 
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the unweighted relative Theil index )ln(1 irir
R
r

UR
i RT λλ=∑= . And the study comparing the spa-

tial distribution of an industry to that of total employment for each km² (W(r) = A(r); 
Π(r) = L(r)) should be based on the weighted relative Theil index 
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ln . Notice that the decomposition of the corresponding GE 

measure or Theil index for the basic units requires assuming that the fraction of industry-i 
workers in the total workforce does not vary across space within a region, i.e., Lin/L•n = Lir/L•r 
∀ n = 1, …, Ar. Lin and L•n denote industry-i and total employment on the n-th km² in region r.  

A third and final group of measures to be exemplified here are measures based on the Gini 
projection function.28 The Gini coefficient is generally defined as two times the area between 
the Lorenz curve and the 45° line (shaded area in Figure 1) in a box plot of cumulated shares 
of individuals in the population on the horizontal axis and the cumulated shares of their char-
acteristics on the vertical axis. In terms of the taxonomy of the present paper, the population, 
depicted on the horizontal axis, is made up by the basic units, the shares of which are the 
(relative) region-specific weights, wr. The characteristics, depicted on the vertical axis, are the 

weighted region-specific deviations, the shares of which are ∑ ΠΠ r
r

ir
r

r

ir
r

LwLw . All observa-

tions are sorted in ascending order by the region-specific deviations (Lir/Πr,).29 This conven-
tion allows to classify the various Gini coefficients used in the literature, and facilitates com-
parisons to measures with different projection functions.  

The Gini coefficients for the various choices of basic units and references can be defined 
similar to the definitions of the RMD and GE measures above:30 With regions as basic units, 
the unweighted absolute Gini coefficient is defined by Π(r) = W(r) = 1(r); the unweighted rela-
tive Gini is defined by Π(r) = L(r) and W(r) = 1(r). In both cases, cumulated values of wr = 1/R 
are plotted on the horizontal axis. The vertical axis gives the cumulated employment shares of 
the region-industry, Σj≤kljr (unweighted absolute Gini; see, e.g., Midelfart-Knarvik et al. 
2002), or the cumulated normalized employment ratios between the region and the reference, 

( ) irrRijkjL
L

rRL
L

kj ll
r

ir

j

ij ∑∑=∑∑ ≤≤ ••

11 (unweighted relative Gini; Südekum 2006). Finally, when  

 

                                                 
28  As the relative mean deviation, the Gini coefficient is an intuitively appealing ad hoc measure. It meets the 

requirements of the axiomatic approach only under specific conditions. It is, e.g., additively decomposable 
into a within and a between component only under specific conditions. In contrast to the GE measures, the 
resulting between components are not necessarily weighted relative Gini coefficients (see, e.g., Yao 1999). 

29 k in Figure 1 and the subsequent formulae indexes the observation with the kth lowest region-specific 
deviation. 

30 See Table 2 for the details. There are various different ways of formally expressing the Gini coefficients. We 
prefer the one which does not require sorting observations by the ratio of the values depicted at the vertical 
and horizontal axes.  
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Figure 1 – Lorenz curve of industrial concentration 
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the basic units are areas attributed to individual workers, W(r) = L(r), and the reference is total 
regional employment, Π(r) = L(r), the horizontal axis depicts cumulated employment shares in 
the reference economy, Σj≤kλj, and the vertical axis cumulated region-industry employment 
shares, Σj≤kλij, giving the weighted relative Gini coefficient (e.g., Krugman 1991). 

The taxonomy introduced in the preceding chapter allows to define and classify a great vari-
ety of measures of industrial concentration, or, for that purpose, of regional specialization. 
The following chapters will introduce two generalizations of the taxonomy that will broaden 
the scope of proportionality measures, another step towards meeting the “baseline criteria” of 
Combes and Overman (2004).  

3. Generalization 1: Measures of polarization 

Polarization measures evaluate industrial concentration and regional specialization within an 
economy simultaneously. Formally, they are straightforward generalizations of the propor-
tionality measures discussed above. Rather than one row or column of the (IxR) matrix of 
region-industry employment, L(ir), the polarization measures evaluate all elements of the 
matrix. Proportionality measures for two-dimensional data have recently been discussed in the 
sociological segregation literature (Reardon and Firebaugh 2002). The following discussion 
adopts these segregation measures and generalizes them along the lines of the taxonomy. 

In terms of the taxonomy polarization measures require specifying an (Ix1) vector of industry-
specific weights (W(i)) in addition to the (Rx1) vector of region-specific weights (W(r)), and 
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re-defining the reference. Similar to the region-specific weights, the industry-specific weights 
reflect the choice of basic units in the sectoral dimension. The basic units may be whole 
industries (W(i) = 1(i)), or relate to the activities of individual workers (W(i) = L(i)). The refer-
ence is a bivariate distribution represented by an (IxR) matrix Π(ir). For absolute measures it 
becomes 1(ir). For relative measures it may take various values. If the references are total 
employment by industry and region, Π(ir) = L(i)L(r)

T, a matrix with element (i, r) equal to 
Li•L•r. If the references for industries are total employment by industry and those for regions 
are the area by region, Π(ir) = L(i)A(r)

T. If the reference is determined from some probabilistic 
model, Π(ir) = [E(Lir)] is the expected region-industry employment under the null hypothesis 
of no polarization. Notice that there is no necessity to specify the same kinds of references for 
all industries, or all regions. The references for some industries may, e.g., be related to the 
regions’ areas, while those for other industries is related to the regions’ total employment. 

Table 3 depicts the general forms of the measures for several projection functions, similar to 
the first column of Table 2. The various weighted and unweighted absolute and relative 
measures can be derived from these general forms in a way similar to that outlined in the pre-
ceding chapter. To give a few examples, a weighted relative GE measure of polarization for 
Π(ir) = L(i)L(r)

T, W(i) = L(i) and W(r) = L(r) can be derived from the general form of the GE 
polarization measure in Table 3 as 

 ( ) ( )∑∑
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an unweighted relative polarization GE for Π(ir) = L(i)L(r)
T, W(i) = 1(i) and W(r) = 1(r) as  
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For addressing the baseline criterion (i) in Combes and Overman (2004) which requests 
measures to be comparable across industries and regions, the decomposition of GE measures 
of polarization or other decomposable disproportionality measures is a particularly useful 
tool. The Theil index of polarization (see Table 3), for example, can be decomposed into a 
within- and a between-industry component such that the within-industry component is a 
weighted average of the Theil indices of industrial concentration for the individual industries 
(see Table 2), and the between-industry component the Theil index of specialization in the 
economy on average (see Table A1).31 A similar decomposition can be done in the other 

                                                 
31 With the Theil index of polarization given by ( )XXXXwwT irirriri /ln)/(,∑= , where Xir = Lir/Πir and 

irriri XwwX ,∑= , the decomposition yields biiii TTXXwT +∑= )/( , where irrri XwX ∑= , 

( )iiriirrri XXXXwT /ln)/(∑= , and ( )XXXXwT iiiib /ln/∑= . 
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dimension to obtain region-specific Theil indices of regional specialization. The between 
component is then the Theil index of average industrial concentration.  

For the case of weighted relative polarization measures which use industry and region totals 
as references and weights, i.e., Π(ir) = L(i)L(r)

T, W(i) = L(i), and W(r) = L(r), the polarization 
measures are simply the weighted averages of the corresponding concentration or specializa-
tion measures (Reardon and Firebaugh 2002). This is true not only for the GE measures but 
also for those measures that do not meet the general decomposability requirement. For the 
RMD, e.g., one gets 
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Table 3 — Polarization measures for selected projection functions: general formsa 
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a See the Appendix for notational details. The corresponding unweighted absolute, unweighted relative and 
weighted relative measures are obtained from the general forms in the same way as described in Chapter 2 
and Table 2. The lower bound of all measures is 0. For the upper bounds see http://www.uni-kiel.de/ifw/staff/ 
bode/measures.htm. 
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4. Generalization 2: Spatial measures of industrial concentration 

All disproportionality measures discussed so far are invariant to the spatial ordering of the 
regions under investigation. Ignoring the spatial ordering of the data gives rise to the checker-
board problem: The measures systematically understate the true degree of industrial concen-
tration if the industry is clustered at a spatial scale larger than the spatial units under investi-
gation. To avoid the checkerboard problem, measures need to take into account the spatial 
ordering of the observations. Arbia (2001) suggests combining inequality measures such as 
the Gini coefficient with statistics of spatial association such as Moran’s I and/or the Getis-
Ord statistic.32 While the inequality measure is informative as to the a-spatial concentration, 
the spatial statistics give an indication of the spatial clustering.  

Rather than combining a-spatial and spatial measures in an ad-hoc way, this paper suggests 
introducing the spatial dimension directly into the disproportionality measures. The resulting 
measures which may be labeled “spatial” concentration measures (spatial measures for short), 
are actually generalizations of the a-spatial concentration measures discussed in the preceding 
chapters (see Table 2). The basic idea is to complement the information on the industry in 
question from each region by the corresponding information on the industry from the regions 
close-by. Reardon and O’Sullivan (2004) suggest to do so in a way similar to a kernel density 
estimation, or a geographically weighted analysis.33 More specifically, they suggest defining 
a measure in terms of the geographically weighted averages of the variables of main interest 
(Lir in this paper) and the reference (Πr). This approach will help lessen, though not com-
pletely avoid, the MAUP and the checkerboards problem inherent to any analysis of concen-
tration based on regional aggregates. 

To extend the taxonomy introduced in Chapter 2 to spatial disproportionality measures, the Lir 
and Πr are to be re-defined as geographically weighted averages,  

 iq

R

q
qr

G
ir LL ∑

=

=
1

φ  and q

R

q
qr

G
r Π=Π ∑

=1

φ , 

where qr
R
qqrqr ΦΦ 1/: =∑=φ ,34 and the superscript G denotes geographically weighted averages. 

The non-negative geographical weights, or spatial discount factors, Φqr, reflect the strength of 
the influence of any region q on region r. The strength of the influences may generally depend 

                                                 
32 Lafourcade and Mion (2006) do essentially the same but test in addition for the effects of firm sizes by 

combining the dartboard measure and the Moran’s I statistic. 
33 Reardon and O’Sullivan (2004) discuss this approach in the context of spatial segregation measures, and for 

continuous space. As in the previous chapters, the following discussion will focus on disproportionality 
measures for regional aggregates. 

34 φrr = 1 and φqr = 0 for q ≠ r gives the corresponding a-spatial measures (Table 2).  
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on geographic distances, neighborhood structures, or accessibility more generally. To meet 
the usual regularity conditions, the weights are row-normalized such that the weights sum up 
to one for each region, i.e., ∑ =

=
R

q qr1
1φ . 

Extending the set of arguments of the concentration measures discussed above by an (RxR) 
row-normalized matrix of bilateral geographical weights, Φ(r),35 and substituting G

irL  and G
rΠ  

for Lir and Πr, all measures in Table 2 can be extended to spatial measures of industrial con-
centration. The general form of the spatial GE class of measures reads, e.g., 
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Due to the geographical weighting, the effect of region r on the measure is magnified if 
industry i is overrepresented (or underrepresented) in both the region itself and its neighbors 
who are assigned a comparatively high geographical weight. And it is reduced if industry i is 
over- (under-) represented in region r but under- (over-) represented in its neighbor regions. It 
should be noted that due to the interdependencies introduced by the geographical weights, 
decomposing the spatial GE measures in the usual way is not possible.36 A change of 
concentration between subregions of one region (e.g., country) may influence the concentra-
tion within another region by affecting its subregion-specific deviations non-uniformly.  

The spatial measures are capable of reducing biases resulting from the checkerboard problem 
and the MAUP: The checkerboard problem is reduced by taking into account the geographical 
ordering of the regions; the arbitrary boundary problem by geographical smoothing; and the 
scale problem by carefully specifying the intra- and interregional weights. If transport costs or 
other spatial transaction costs are considered the determinants of regional interdependencies, 
the geographical weights could be operationalized by some functions of the geographical or 
economic distance between any two regions, i.e., φqr = φ(Dqr) where Dqr denotes the distance 
between the regions q and r, and ∂φ/∂Dqr < 0.37 One possibility of specifying the unobserv-
able intra-regional distances is to assume all workers to be concentrated at a single regional 
center. In this case, Drr = 0 (but φrr > 0), and the inter-regional distances are just the distances 

                                                 
35 For notational convenience, Φ(r) denotes the matrix of row-normalized rather than absolute weights. The 

square matrix Φ(r) is actually a row-normalized spatial weights matrix with the intraregional weights on the 
main diagonal. All rows sum up to one. In matrix notation, )()()( rr

G
r LΦL =  and )()()( rr

G
r ΠΦΠ = . 

36 See Reardon and O’Sullivan (2004) for more specific ways of decomposing spatial disproportionality 
measures. 

37 For a discussion of alternative forms of geographical weights see, e.g., Anselin (1988). 
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between the regional centers. Other possibilities are to assume all workers and units to be dis-
tributed uniformly over space within each region, or to estimate the intra-regional distribu-
tions from a finer partition of regions available from, e.g., population or electoral statistics. 

For geo-referenced micro-data that provide information on the distances between any pairs of 
establishments, Duranton and Overman (2005) and Marcon and Puech (2003; 2005) have 
recently proposed to describe industrial concentration by functions based on the Ripley’s K 
function. The K-based functions, which assign each possible distance a frequency of observa-
tions,38 arguably provide the currently most sophisticated measures of industrial concentra-
tion because they avoid the checkerboard problem and the MAUP.39 The spatial 
disproportionality measures proposed in the present chapter are a promising alternative to the 
K-based functions. Both approaches may in principle be used for aggregate or disaggregate 
data. For a given level of regional aggregation, they are capable of dealing with the checker-
board problem and the MAUP to a similar extent. 

5. Conclusion 

On the background of the baseline criteria in Combes and Overman (2004), the paper aims at 
improving the methodological toolbox of disproportionality measures to allow a more rigor-
ous exploratory analysis of industrial concentration and regional specialization. The paper, 
first, proposes a taxonomy of disproportionality measures which distinguishes carefully the 
measures’ three characteristic features: the projection function, the reference distribution, and 
the weighting scheme. The taxonomy gives rise to a modular construction system for dispro-
portionality measures. By adjusting each characteristic feature, a researcher may define the 
measure that best fits the research purpose and the limitations of the available data. The 
modular system is also useful for evaluating systematically the robustness of the inferences 
against a variation of the individual features of the measure. Although the modular system of 
characteristic features does not substitute for an economic theory or sufficiently detailed data, 
a careful reflection of the individual features on the background of the research hypothesis 
and the specificities of the available data may help reduce the mismatch between research 
purpose, data and statistical measure, that has been one of the main obstacles to consistent and 
reliable inferences in the literature. 

                                                 
38 The K-based functions include an “L function” which is a standardized “Ripley’s K”, a “K density function” 

which is a marginal Ripley’s K smoothed by kernel density estimation, and an “M function” which is a 
weighted relative Ripley’s K. See Marcon and Puech (2005) for a comparative survey. 

39 The choice of a proper distance metric and reference in the spatial dimension, as well as the scale, arbitrary 
boundary and checkerboard problems in the sectoral dimension still remain an issue, however. 
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In two generalizations, the paper extends the specialization and concentration literature by 
introducing disproportionality measures of polarization, and spatial disproportionality meas-
ures. Measures of polarization may be used for evaluating regional specialization and indus-
trial concentration simultaneously, and render possible a nested analysis of polarization, spe-
cialization and/or concentration at different spatial and industrial scales. Spatial measures of 
concentration help address the checkerboard problem and the MAUP, thus representing a 
promising alternative to K-based statistics. Using geographically weighted averages of the 
relevant data as an input, the spatial measures allow to take into account the specific charac-
teristics of neighboring regions, and to account for possible intra-regional distributions of the 
variables of interest.  

We are confident that the taxonomy and the disproportionality measures proposed in this 
paper will prove useful for a wide range of empirical studies on industrial concentration, 
regional specialization and economic polarization. There are, of course, a number of issues 
which warrant additional methodological research. A first issue is to generalize the taxonomy 
to spatial polarization measures. A second issue is to further explore opportunities for an 
informative decomposition of the spatial GE measures (see Reardon and O’Sullivan 2004). A 
third issue is to explore ways of coping with the counterparts of scale, arbitrary boundary and 
checkerboard problems in the sectoral dimension. Unlike the spatial dimension where geo-
graphical distance or traveling time is widely accepted as a metric for relating the locations of 
individual units to each other, the sectoral dimension is still lacking a widely accepted metric. 
A metric for the distances between industries may be based on the coefficients of input-output 
tables, or on proxies of the similarity of the firms’ or industries’ in terms of their input mar-
kets, output markets, or technologies (see Conley and Dupor 2003; Bloom et al. 2005). Based 
on distances between basic units in both the spatial and the sectoral dimension, the spatial 
polarization measures may be extended to geographically and sectorally weighted polarization 
measures and/or K statistics which account for MAUP and the checkerboard problem in both 
dimensions. A fourth issue is to investigate in more detail into the comparative pros and cons 
of the spatial disproportionality measures and the K-based functions for both micro and macro 
data.  
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Appendix 
 
Notation: 
Lir variable of main interest: number of workers in industry i (i = 1, …, I) in region r 

(r = 1, …, R); 
Li• := ΣrLir, number of workers in industry i at a higher-level spatial aggregate (e.g., 

country, EU); 
L•r := ΣiLir, total employment in region r; 
L•• := ΣiΣrLir, total employment a higher-level spatial aggregate; 
lir := Lir/L•r, share of industry i in total employment of region r; 
li := Li•/L•• = Li•/ΣiLi•, share of industry i in total employment at the higher-level spatial 

aggregate; 
λir := Lir/Li•, share of region r in total industry-i employment at the higher-level spatial 

aggregate; 
λr := L•r/L•• = ΣiLir/ΣiLi•, share of region r in total employment at the higher-level spatial 

aggregate; 
LCir := lir/ li = λir/λr, location coefficient; 
Πz, z = (r, i, ir), absolute value of the reference; 
Wz z = (r, i), absolute region- or industry-specific weight; 
wz := Wz/ΣzWz, Σzwz = 1, z = (r, i), relative region- or industry-specific weight; 
ω :=(α²-α)-1; α: sensitivity parameter of the Generalized Entropy measures. 
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Table A1 — Specialization measures for selected projection functions: general formsa 
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a See above for notational details. The corresponding unweighted absolute, unweighted relative and weighted 
relative measures are obtained from the general forms in the same way as described in Chapter 3 and Table 2. 
The lower bound of all measures is 0. For the upper bounds see http://www.uni-kiel.de/ifw/staff/bode/ 
measures.htm.  

 

 




