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Abstract: 

The analysis of climate change is confronted with large uncertainties that need to be taken into 

account to arrive at meaningful policy recommendations. The main contribution of economics to 

this interdisciplinary task is to provide formal frameworks and techniques for analyzing climate 

policy in the context of uncertainty. This paper will give an overview of existing approaches and 

findings to provide a broad picture of what economics can contribute to the debate.  

 

Keywords: Climate change, uncertainty, survey, modeling 

JEL classification: Q54, C60, D81, D83  

 

Address :  

Sonja Peterson 

Kiel Institute for World Economics 

24100 Kiel, Germany 

Telephone: +49-431-8814-406 

Fax: +49-431-8814-502 

E-mail: speterson@ifw-kiel.de 

 

 



 

 
1 Introduction 

There is a general agreement that (a) climate change is one of the most serious environmental 

problems, that (b) the analysis of climate change is confronted with a large degree of uncertainty 

and (c) that these uncertainties need to be taken into account to arrive at meaningful policy 

recommendations. Yet, many economic, environmental and integrated assessment (IA) models 

are deterministic and there is no clear concept of the implications of the uncertainties for 

practical policy making.  

Climate change and uncertainty is clearly an issue for interdisciplinary research. The main 

contribution of economics is to provide formal frameworks and techniques for analyzing climate 

policy in the context of uncertainty [1]. The aim of this article is to give a comprehensive 

overview of these frameworks and techniques. This is not a trivial task, not only since there is a 

long tradition of economics in analyzing decision making under uncertainty, but also because 

there are quite different strands of literature dealing with climate change and uncertainty. This 

paper thus tries to extract and structure the most important approaches and their findings. As 

most models are constructed to analyze very specific situations, the aim is to give a broad 

picture of what economics has contributed and can contribute to the debate and to discuss the 

policy relevance of the findings, rather than to describe any theoretical approaches and models 

in detail.  

The next section starts with a taxonomy of the uncertainties associated with the analysis of 

climate change in order to derive the potential role of economics. Section 3 then discusses 

different issues and approaches that are associated with optimal policymaking under uncertainty 

and that are discussed in the economic literature. Section 4 tries to summarize the findings 

relevant for policy purposes. Section 5 concludes.  



2 Taxonomy of uncertainties 

There are two broad dimensions of the uncertainty problem: Parametric uncertainty, which 

arises due to imperfect knowledge and stochasticity, which is due to natural variability in certain 

processes. A third, additional category of uncertainty, is the uncertainty about values such as 

e.g. the discount rate [3, 4]. 

Parametric uncertainty includes uncertainty about relevant model parameters but also about the 

general model structure. Thus, it includes uncertainty about what are relevant parameters and 

relevant linkages and what are appropriate functional forms (e.g. of a damage function of climate 

related damages). Parametric uncertainty is not constant over time and can be expected to 

diminish with further research.  

Stochasticity results from phenomena that cannot be described as deterministic interactions 

between the different components of the climate-economy system. Phenomena that influence 

for example the mean global temperature are volcanic eruptions, sunspots and the El Nino effect 

(see e.g. [5]). Often these phenomena exhibit properties that are characteristic of stochastic 

processes which can then be included in models [3, 5]. Stochastic effects can have a cumulative 

effect on the overall model uncertainty and may contribute to a larger part of outcome 

uncertainty [5].  

A different taxonomy of uncertainties stems from the 3-stage process that is at the heart of an 

economic analysis of climate change and associated with the following questions [2]: 

(1) What will the climate be? 

(2) What does any given climate change mean in economic terms?  

(3) What is the optimal policy to choose to control emissions over the coming decades? 

The first question is concerned with the future emission path and its impact on the climate 

parameters such as temperature, precipitation or the sea level. The second question implies a 



translation of climate changes into climate damages. The third question is about the costs of 

CO2 reductions and the effectiveness of instruments. This 3-stage process leads to four 

categories of uncertainties, which can be broadly defined as:  

(1) Uncertainties about the emissions path. 

(2) Uncertainties about what the climate will be. 

(3) Uncertainties about the impacts of climate change. 

(4) Uncertainties about optimal policies. 

Different authors denote these categories differently or further disaggregate some of them. As 

regards the uncertainties about what the climate will be (sometimes also denoted as ecological 

or scientific uncertainties) the IPCC [6, chap. 2], for example, distinguishes between responses 

of the carbon cycle, the sensitivity of the climate to changes in the carbon cycle and regional 

implications of a global climate scenario. The German National Committee on Global Change 

Research distinguishes between calculating the concentration of GHG in the atmosphere, 

determining the climate sensitivity and simulating future climate. Gjerde et al. [7] disaggregate 

the uncertainties about optimal policies into uncertainties about the costs of emissions 

reductions and uncertainties about the effectiveness of different policy instruments. Many 

authors talk about costs and benefits of emission reductions. The costs are part of optimal policy 

strategies, while the benefits are determined by the avoided damage resp. impacts of climate 

change. Table 1 summarizes some of the different classifications. In general, uncertainties rise 

when moving through these stages. 

[Table 1] 

Turning to the question of the potential contribution of economics, economics cannot contribute 

to solving the problem of ecological uncertainties. In the cascade of uncertainties economics can 

contribute to the quantification, assessment and resolution of uncertainties concerning 



1 emission scenarios as they depend to a large degree on economic development 

2 the economic impacts of climate change 

3 the costs of slowing climate change  

Besides quantifying and resolving the existing uncertainties the main contribution of economics 

is to analyze the distributional and allocative impacts of given climate polices and to determine 

optimal reduction strategies in the presence of uncertainty. In this context, there are also a 

number of other relevant issues that are discussed in the next section.  

3 Optimal climate policies in the presence of uncertainties – questions and approaches 

The ultimate goal of an analysis of climate change and uncertainty is how to formulate optimal 

climate policies under uncertainty. Following Kann and Weyant [4] an ideal uncertainty analysis 

includes: 

(A1) Probability weighted values of the output variables 

(A2) Optimal decisions in the light of imperfect knowledge 

(A3) A measure of risk or dispersion about the outcome, and 

(A4) The value of information for key variables. 

A2, the question of optimal policy decisions, can then be broken down further [10, 11]: 

(A2-1) How much to reduce? (abatement level) 

(A2-2) When to reduce? (timing) 

(A2-3) How to reduce? (measures/ policies) 

(A2-4) Who should reduce resp. where to reduce? (distribution among countries/sectors) 

(A2-5) Who should pay for the reductions? 



Economic analysis and theory has contributed to different aspects of the first four questions. The 

last question is primarily an ethical question. The largest contribution of economics to the issue 

of climate change and uncertainty has come through the use of theoretical as well as applied, 

numerical economic or economic-environmental models of climate change and climate 

policy. In addition, there are other areas of economics such as decision theory and analysis, 

game theory or portfolio analysis that have been applied to analyze climate policy under 

uncertainty.  

3.1 Uncertainty in economic models of climate change 

To incorporate uncertainties into economic models of climate change or to use these models for 

uncertainty analysis there are three broad approaches [4].  

The most simple approach, which is not a real uncertainty analysis but can be used as a tool to 

identify which model parameters should be treated stochastically, is a sensitivity analysis. It 

answers the question of how sensitive model outputs are to changes in model inputs and 

involves varying input parameters that are not known with certainty. In a simple single-value 

deterministic sensitivity analysis only one parameter is varied keeping the other parameters at 

their base values. When there are dependencies between variables, varying several 

parameters jointly can produce more accurate measures of output sensitivity.  

More demanding, but still relatively simple, is what is termed uncertainty propagation. In this 

case, there are uncertain parameters in the model, but the agents in the model do not account 

for them. This implies that there is no learning. The simplest implementation of uncertainty 

propagation involves specifying a joint distribution on selected input parameters and then 

propagating this uncertainty through to the model output. Finally, one can for instance take 

expectations of the output. A more complex implementation involves modeling certain variables 

as stochastic processes. Uncertainty propagation can generally not be used to determine 

optimal decisions under uncertainty. This is only the case if certainty equivalence holds, which 



means that the optimal action under uncertainty (for example maximizing expected utility) is 

equivalent to the expected value of the actions under each realization of the uncertain 

parameters with certainty [3]. Whether this is the case depends on the non-linearities in climate 

and economic model feedbacks and on the distribution of the parameters. Furthermore, 

uncertainty propagation offers no model of learning. Nevertheless, this approach provides the 

decision maker with a sense of the risk associated with the outcome and with a distribution of 

output variables. It is thus associated with probability-weighted values of the output variables 

(question A1) and measures of risk or dispersion about the outcome (question A3). In addition, 

it can be used to obtain measures for the relative importance of different input variables on the 

outcome (question A4). For computational purposes propagation of uncertainty usually involves 

sampling from a joint distribution using mostly the Monte Carlo method or, if this is still 

computationally to expensive, reduced Monte Carlo simulations based for example on Latin 

Hypercube sampling (see e.g. [12]).  

The most demanding approach accounts for learning and can be termed sequential decision-

making under uncertainty. This implies that models determine optimal policies at more than 

one point in time, taking into account the available information in each period. Models in this 

category range from simple two-period decision analysis to an infinite-horizon stochastic 

optimization. There are three main types of learning: active learning whereby the effect of 

policy choices on certain key variables (e.g. the effects of emissions on the economy and the 

climate system) is observed for the purpose of obtaining information about uncertain 

parameters, purchased learning e.g. from R&D and autonomous learning where the 

passage of time reduces uncertainty [3]. The first two types of learning imply endogenous 

technological change, which is also an important issue in the context of climate change (see 

e.g. [11]). Most existing models though, use autonomous learning and not more than two 

decision periods. Models of sequential decision-making under uncertainty are used to 



determine optimal policies under different aspects of uncertainty and learning. This is discussed 

below in section 3.2.  

Altogether, uncertainty analysis is very complex and computationally intensive. Most existing 

models are deterministic and, if at all, most modelers have only performed very basic types of 

uncertainty analysis. Table 2 summarizes the three approaches. Some of the outcomes are 

discussed in the next subsection. For detailed information on different implementation 

techniques see [4].  

3.2 Irreversibilities, catastrophes and the value of information 

Large parts of the literature focus on four features of the natural and economic environments 

that influence optimal policy decisions under uncertainty. These are [13, 2] 

(1) A non-degradable or irreversible stock of greenhouse gases 

(2) Sunk, irreversible abatement capital 

(3) Potentially catastrophic damages and 

(4) Future learning about the nature of damages 

The first two features are two different types of irreversibilities that are relevant in the context 

of optimal climate policies. These are on one hand irreversible changes in the climate system 

and in the natural environment driven by climate change that generally depends on the stock of 

greenhouse gases in the atmosphere. Following Kolstad [14] such irreversibilities are also 

denoted stock effects and are modeled as non-degradability of the stock of greenhouse gases 

[13]. The rational behind this is that climatologists claim that some part of the stock of GHG 

cannot be reduced through abatement and does not decay naturally so that the atmospheric 

concentration of carbon is not expected to return to its pre-industrial level but to reach a new 

equilibrium. On the other hand, there is also irreversible abatement capital that is sunk in the 

sense that it cannot be converted to other forms of capital or to be used for consumption.  



[Table 2]  

The next question is then how uncertain damages, and the (low) endogenous or exogenous 

probability of an extreme, catastrophic event influences optimal policy choices. Finally, there is 

the question of how uncertainty is resolved over time. The potential of future learning together 

with the irreversibilities has lead to the concept of an (quasi) option value. Independently of 

each other, Arrow and Fisher [15] and Henry [16] demonstrated that there is a premium on 

policies that maintain flexibility. Originally, the work focused on irreversible environmental effects 

that imply a precautionary principle, as there is a real value associated with preserving the 

present climate regime. Sunk abatement capital on the other hand has the opposite effect and 

suggests that it is optimal to avoid costly abatement measures requiring irreversible investments 

until we are sure that they are needed. Different authors have emphasized one or the other or 

both of these effects (see [13] for a summary).  

Altogether, this strand of literature thus focuses on the question of how to reduce (A2-3) and the 

optimal timing of policies, which implies a consistency between short run and long run policy 

strategies. Such a strategy that balances the risk of waiting with those of premature action is 

also called optimal hedging strategy. The models used for these kinds of analysis are simple 

growth models or models of optimal investment that differ with respect to the included 

irreversibilities, the distribution of damages and the endogeneity of risk.  

Another approach related to the issue of learning is to evaluate the value of “early knowledge” 

i.e. the economic value of resolving uncertainties about climate change sooner rather than later. 

As Nordhaus and Popp [17] formulate it: “If natural and social scientists succeed in improving 

their understanding, what will be the payoff in terms of improved economic performance?” What 

is generally done to determine the value of information is to compare an “act then learn” strategy 

with a “learn than act” strategy that differs in the time at which the information about uncertain 

variables (such as damages) become known.  



To illustrate the basic idea assume here a simple two period model where decisions about 

emission abatement are taken in two points of time t=1,2. The objective is to minimize total 

climate costs TC(s,x1,x2) that comprise abatement costs and damages and that depend on the 

uncertain state of the world s and the chosen emission level x1 and x2 in both time periods. There 

are now three possibilities for resolving uncertainties about the state of the world. In the first 

case, the uncertainties are not resolved at all (no learning NL). In the second case, the 

uncertainties are resolved before the second period so that the decision on the emission level in 

t=2 can be made under certainty. This framework is denoted act then learn (ATL). Finally, the 

uncertainties can be resolved upfront. We then have a “learn then act” (LTA) framework. The 

decision sequence and the resulting objective function are illustrated in Figure 1. 

[ Figure 1]  

This framework can now be used to derive the value of information comparing the expected 

costs of policy choices in different situations. Manne and Richels [18] for example compare the 

expected costs under ATL and LTA in a two period model and denote the difference as 

expected value of perfect information (EVPI). Peck et al. [19, 20] define the EVPI in a single 

period decision-making model as the difference between NL and LTA. Ha-Duong [21] defines for 

given first period policies the expected value of future information EVFI as the difference 

between NL and ATL. Nordhaus and Popp [17] compare the expected costs for LTA and ATL 

where the uncertainty is resolved in different years.  

In addition, the example can be used to demonstrate the concept of option values. Assume that 

there are two different policy strategies in period 1: H (high abatement) and L (low abatement). 

The following table 3 is an extended version of the table in [21] and shows the expected costs 

when choosing over all policy strategies as in figure 1 and also for given policy choices in period 

1.  

[Table 3] 



The last row compares the expected costs of policies H and L. If the opportunity cost of H is 

positive it is optimal to chose L and vice versa. Comparing the opportunity costs (OC) in the 

scenario without learning (one-shot decision) and the scenario with learning in the second period 

(sequential decision) reveals the effects of irreversibilities. Assume without loss of generality that 

OCL(NL) > 0 so that under a decision that does not account for potential learning it is optimal to 

chose policy H. If OCL(ATL) > OCL(NL) the effects of irreversibility support the one-shot decision. 

In other words, conventional cost-benefit analysis even underestimates the opportunity costs of 

L. If H is “high early abatement“, this would suggest that the environmental irreversibilities 

dominate. If OCL (ATL) = OCL (NL) there is no irreversibility effect and the results of a one-shot 

analysis and a sequential decision are the same. If finally OCL(ATL) < OCL(NL) the irreversibility 

effects decrease the advantages of H in the one-shot analysis. If OCL(ATL) > 0 these effects do 

not change the optimal decision. If OCL(ATL) < 0 the irreversibility effect now leads to an optimal 

decision of L. In this case the sunk costs dominate. Against this background the option value of 

L is defined as OV(L) = OCL(ATL) - OCL(NL). If OV(L) is positive, this implies that the 

irreversibility effects that are relevant in the case of learning are in favor of H. If the irreversibility 

effects support the one-shot decision or revise it completely, a positive option value of a policy 

strategy indicates that this is the optimal strategy. In the case where the irreversibility effects 

work in a different direction than the one shot decision but do not revise it (e.g. if 0 > OCL(ATL) < 

OCL(NL) > 0) the option value of a strategy may be positive even though even under sequential 

decision making this strategy is not optimal. The increased costs of the strategy only decrease 

under sequential decision-making relative to one-shot decision-making. 

Another question that is linked to the value of information are the payoffs in different areas or in 

other words the relative importance of different uncertainties. In the simple model described 

above it is assumed that when uncertainty is resolved the state of the world is completely known. 

As there are many uncertainties associated with climate change, it is also possible that only 

some uncertainties in some parameters are resolved at some point in time. Comparing the 



expected costs (or welfare) under no learning and partial learning at some point in time gives the 

expected value of information for a specific variable. Comparing these values for different 

uncertain variables provides information on the relative importance of different uncertainties.  

From a conceptual point of view, most authors use relatively simple two period decision models 

in which the objective is to maximize utility or to minimize the sum of damages and abatement 

costs (= total climate costs) by choosing optimal emission levels. Costs and damages are 

usually uncertain and can often be only in two different states. In some models, the probability of 

high damages (or catastrophes) is endogenous and depends on the stock of greenhouse gases. 

In others, it is exogenous. An important determinant of the outcome is also the choice of the 

utility function and whether agents are risk averse.  

Most of the analysis ignore that there is more than one decision maker in the context of climate 

policy. In particular, there are different nations with different emission paths and damages. 

Game theoretic approaches take into account the strategic interaction between different 

actors. Most models including such game theoretic approaches are deterministic, but there are 

some models that account for different aspects of uncertainties. Ulph and Ulph [22] and Barker 

[23] look at the impact of learning, irreversibilities and uncertain damages in a two period model 

with two players choosing emissions to maximize their utility taken the emissions of the other 

player as given. 

Finally, the analysis of option values is closely related to Portfolio analysis which is concerned 

with creating an optimal composition of assets characterized by different returns and different 

levels of risk under a given budget constraint [24]. The design of GHG abatement policy has 

similarities to a portfolio selection problem. In both cases, the decision maker faces a number of 

investment projects with an incomplete known payoff, in a generalized sense [8]. So far, the 

applications to climate change have been limited. One example is [8]. 

3.3 Further issues & approaches  



An approach that is different from calculating optimal decisions in a more or less sophisticated 

model is to support decision makers in making good abatement and investment decisions under 

uncertainty with the help of decision analytic tools. Decision analysis in general can be defined 

as a formal quantitative technique for identifying “best” choices from a range of alternatives [24]. 

In particular, this strand of literature tries to extract optimal decisions starting from a set of given 

(or to be constructed) alternatives that are characterized by one or more properties called 

attributes that can have different (uncertain) values. As some of the general assumptions that 

underlie an decision analysis (for example single decision makers, complete and consistent 

utility valuation of decision outcomes) are hardly met for climate change the IPCC report from 

1995 [25, p. 57] concludes that decision analysis can not serve as the primary basis for 

international climate change decision making. Nevertheless, elements of the technique are seen 

to have considerable value in framing the decision problem and identifying its critical features.  

One study in this area is the study by Willows and Connell [26] that wants to help decision 

makers including governments, regulatory bodies, executives in national and international 

corporations and individual citizens to identify good adaptation options. This means to account 

for the risk and uncertainty associated with climate variability and future climate change and to 

identify and appraise measures to mitigate the impact or exploit the opportunities presented by 

future climate. At the core of the study is a general 8-stage decision process as it has been 

developed in the field of decision analysis. These steps are then one by one discussed in the 

context of climate adaptation discussing key issues, questions and tools and techniques.  

Decision analytic elements can also be combined with other types of analysis. Loulou and 

Kanudia [27, 28] for example not only integrated sequential decision-making under uncertainty 

by means of stochastic programming into the bottom-up energy systems model MARKAL, but 

also implement a strategy that minimizes the maximal “regret”  of a policy (minimax-regret 

strategy). Lange [29] combines expected utility and the maximin criterion for decision under 

uncertainty (maximize the minimal worst case outcome) in a two period model of optimal 



emissions. In the ICAM model of Dowlatabadi et al. [30, 31] it is possible to choose between 

different decision rules that also include expected costs and the maximin criterion. Cohan et al. 

[32] couple their deterministic model with a decision tree system that organizes relevant 

information about the decisions and uncertainties stemming from different assumptions in the 

deterministic model. In addition, the framework of learn then act versus act then learn and the 

decision trees described in the last section stem from formal decision analysis.  

There are also a few further issues and approaches in the context of climate policy and 

uncertainty. One question concerns the advantages and disadvantages of different policy 

instruments in the presence of uncertainties. The starting point of the few existing analyses is 

the 1974 article by Weitzman [33]. He showed that that if the damage function of environmental 

damages is relatively more uncertain than the abatement cost function, taxes are preferable to 

quotas to reach a certain environmental goal and vice versa. Pizer [34] and Nordhaus [12] using 

IAMs have come to the result, that in the case of climate change, damages are indeed more 

uncertain and that thus taxes are more efficient under uncertainty than rate controls. Taxes also 

dominate quotas in a model where damage and cost uncertainties are multiplicative [35]. 

Lecocq and Crassous [36] ask a different question and look at whether quota allocation rules are 

robust to uncertainty. They use a partial equilibrium model of the international GHG market to 

determine the consequences of existing Post-Kyoto allocation rules and whether these 

consequences are sensitive to uncertainties in population, emission and economic growth. While 

allowance prices and abatement costs are sensitive to uncertainties, the least-cost rules turn out 

to be relatively robust.  

Another question is behavior on the international carbon market. Haurie and Viguier [37] use a 

two-player stochastic equilibrium model to look at the possible competition of China and Russia 

on the global emission market if the entry of the developing countries represented by China is 

uncertain.  



An approach taken by Hawallek [38] is called Meta analysis. The idea here is to take the results 

from different models to obtain information about the uncertainty of the outcome.  

3.4 Quantifying uncertainties 

All reviewed approaches work with uncertain parameters or events. Quantifying the uncertainties 

surrounding the issue of climate change and climate policies is one of the most demanding 

tasks. To enhance the development of a consistent but unrestrictive style of describing the 

source and character of uncertainties is one of the goals for the fourth assessment report of the 

IPCC. Wherever possible, uncertainties should be quantified but it is also recognized that there 

is the need to obtain semi-quantitative, verbal assessments of uncertainties. One approach is for 

example to use terms like very high (95% or greater), high (67-95%), medium (33-67%), low (5-

33%) and very low (5% or less). For more information on this extensive discussion, see [39].  

For many numerical approaches a verbal assessment of uncertainty is not sufficient and it is 

necessary to assign probability distributions to the uncertain parameters and events. In most 

studies these distributions are constructed by a mixture of guessing, literature review and 

estimation – thus they can be termed “guestimates”. In many cases, there are only low, medium 

and high values that are assigned probabilities (3 point distributions). In other cases, 5-point 

distributions are used. Sometimes the probabilities and values are derived from literature, 

sometimes they are rather chosen for illustrative purposes. Other authors choose specific 

probability distributions or stochastic processes and specify the necessary parameters by 

guestimates. The most sophisticated studies are [12, 32, 40, 41]. Pizer [34] uses US Post war 

data to estimate a joint distribution of six parameters. Normally the different uncertain 

parameters are assumed independent of each other. Only few studies look at correlations and 

joint distributions. Examples are [13, 41]. Altogether, it is hard to evaluate the methods used in 

the different papers. Some studies seem to apply sophisticated estimation procedures based on 



real data, but when describing how the probabilities are derived most papers refer to earlier, 

more detailed publications, which are hard to obtain.  

4 Main findings 

Some findings were already included in the last section. In addition, the tables in the appendix 

summarize the main findings of economic models. Though only covering a (subjective) choice of 

all existing models, they should give a good overview of the covered topics and main findings. 

As most models are build for very specific situations and assumptions, it is not easy to derive the 

main results. This section turns back to the four parts of an uncertainty analysis and tries to 

summarize the main results of the approaches outlined in the last section. 

4.1 Optimal decisions in the light of uncertainty 

From the four questions that were mentioned in the last section (How much to reduce? When to 

reduce? How to reduce? and Who should reduce resp. where to reduce?) research accounting 

for uncertainty so far has mainly focused on the first two questions.  

How much to reduce? 

Even though there are exceptions where uncertainties do not markedly affect optimal abatement 

levels [42] or even lead to lower abatement [43], most modeling results show (as can be 

expected) that there is optimally more emission abatement if uncertainties in parameters or 

the possibility of catastrophic events are considered [12, 17, 32, 44, 45, 46]. Pizer [34] for 

example finds that while the optimal rate of CO2 reduction accounting for uncertainty is only 

slightly higher than the rate obtained when ignoring uncertainty and taking best guess values in 

the beginning, it grows over time. By the end of the next century, the rate is almost doubled. 

According to Nordhaus [12] roughly speaking, the optimal carbon tax doubles when uncertainty 

is taken into account, and the optimal control rate increases by slightly less than half.  

When to reduce? 



Concerning the timing of the abatement, the results are less clear. There is some agreement 

that (under certain, not unrealistic conditions) the possibility of learning about uncertain values in 

the future has some effect on the timing of emission abatements. A relative large number of 

studies shows that the probability of irreversible environmental damages leads to higher early 

abatement [7, 21, 44, 47]. Nevertheless, there is also the sunk cost effect and studies that 

consider both kinds of irreversibilities find that it is optimal to emit more in the short run if 

learning about uncertainties is possible [10, 13, 14, 48]. Other studies find some evidence that it 

is optimal to chose an intermediate level of emission reductions, until uncertainty is resolved [27, 

28]. One policy recommendation that can be drawn is that in any case it makes sense to invest 

in flexible abatement measures that do not imply a large amount of sunk and irreversible 

investment.  

How to reduce?  

Concerning the third question there has been some research on the advantages and 

disadvantages of policy instruments, comparing in particular carbon taxes and permit trading. 

Most authors conclude that in the light of climate damages that are much more uncertain than 

abatement costs, taxes are preferable to quotas resp. emissions trading [12, 34]. In the study of 

Pizer [34], the welfare gain of using a tax compared to a rate instrument is 13$ per person. One 

study looking at investment incentives for firms though finds that those are larger under emission 

trading than under emission taxes [49].  

Kanudia and Loulou [27] look at the technology mix in a bottom-up energy systems model for 

Québec that includes stochastic programming. They classify the role of different technology 

options in an optimal hedging strategy under maximization of expected utility vs. deterministic 

scenarios, prior to the resolution of mitigation uncertainty. Mostly, prior to the resolution of 

mitigation uncertainty, the different technologies have a hedging trajectory lying in between 

those obtained under the perfect foresight strategies. There are a few exceptions though. 

Electric cars show a larger early penetration when maximizing expected utility than in any 



perfect foresight scenario. Electricity and gas based technologies in the commercial sector follow 

in the first years the trajectory of a severe mitigation scenario even though the GHG mitigation 

uncertainty is not yet resolved.  

Where to reduce? 

Even fewer studies have looked at regional distribution of abatement and emission under 

uncertainty. There are some results on the optimal policy from the view of a single nation 

assuming non-cooperative behavior [22, 23]. In such a setting, the results of an analysis with a 

single decision maker may be revised if countries differ, especially in climate damages. If e.g. 

damages are negatively correlated the more we expect to learn, the lower emission should be 

[23]. If countries differ in the variance of their damages, countries with high variance respond to 

learning by raising their current period emissions so that countries with a low variance have to 

cut their current emissions. The latter are thus worse off as a result of learning, while the former 

are better off [22]. Thus, while a single decision maker is always better of under learning, 

countries can be worse off.  

 

4.2 Uncertainty of model outcomes and relative importance of uncertain input 

parameters 

The first and the third issue of an uncertainty analysis as outlined in section 3 (the probability 

weighted values of the output variables and a measure of risk or dispersion about the outcome) 

are both concerned with the uncertainty of the model outcomes. This issue has been mainly 

analyzed using numerical climate-economy models with uncertainty propagation. An early work 

on uncertainty and climate change is the study by Nordhaus & Yohe [40] who systematically 

examined the influence of key economic, demographic, and technological parameters on CO2 

emissions. This was followed by an extended analysis of Reilly et al. [50] including nearly 80 

uncertain parameters. Newer studies include [12, 17, 51, 52, 53, 54].  



All studies evaluate the variability of certain target model outcomes (or combinations of target 

outcomes) as a result of uncertain input parameters. Typical target variables are emissions, 

costs of emission reductions and damages. Other studies also look at the uncertainty range of 

other variables such as atmospheric carbon concentrations, temperature, output or optimal 

carbon reductions (see Table 4). The studies then try to assess which of the uncertain input 

parameters contributes most to the output uncertainty or which uncertain input parameters have 

the highest value of information.  

[Table 4] 

The different studies are difficult to compare, as the input parameters that are treated as 

uncertain depend on the modeling approach and vary across model. Parameters that are 

included in one model do not exist in another and the same parameter may be an input in one 

model and a target in another. Table 4 tries to summarize the main findings of the most known 

studies. Among the most important uncertainties are uncertainties in climate damages, in labor 

productivity and in some kind of change in energy efficiency.  

In addition, Nordhaus & Popp [17] find that the value of anticipating knowledge by 50 years, 

range from $45 to $108 billion. Manne and Richels [18] find that the payoff to reducing climate 

related uncertainties could be more than $100 billion for the US alone. 

5 Conclusions 

As this paper has shown, there have been quite some contributions of economics to the 

question of climate change and uncertainty. Large parts of the literature though are conceptual 

rather than policy orientated using stylized models and focusing on theoretical issues rather than 

on realistic numerical simulations. As a result, there is now some agreement on the role of 

learning, irreversibilities and the impacts of extreme low probability events. Simulations with a 

few numerical climate-economy models provide a first feeling about the relevance of different 

uncertain input parameters and the resulting variation in emissions, mitigation costs and 



damages. There are also a growing number of attempts to include uncertainty in all kinds of 

analyses on climate policy, such as game theoretic approaches for coalition forming or the 

advantages and disadvantages of different policy instruments under an uncertain setting. Yet, 

the research so far only provide small pieces of a broad picture and it is not always clear how 

these different pieces fit together. Especially, there is a lack of practical policy implications of the 

research on uncertainty. Only few large economy-climate models include uncertainty analysis 

and if this is the case, the distributions are chosen rather ad hoc ignoring correlations between 

different parameters. In future, it is necessary, to become more policy orientated and to improve 

the existing models to include more sophisticated treatment of uncertainties. This includes the 

specification of realistic joint distribution functions as well as a broader inclusion of uncertainty in 

the numerous existing economy-climate models, which will enable a comparison of different 

models.  

 

 

References 

[1] A.H. Samstad and L.A. Greening, Economic models for climate policy analysis, 

Environmental Modeling and Assessment 3 (1998) 3-18. 

[2] G. Heal and B. Kriström, Uncertainty and climate change. Environmental and Resource 

Economics 22 (2002) 3-39.  

[3] D.L. Kelly and C.D. Kolstad, Integrated assessment models for climate change control, in: 

International yearbook of environmental and resource economics 1999/2000: A survey of 

current issues, eds. H. Folmer and T. Tietenberg, Edward Elgar, Cheltham, UK, 1999, pp. 

171-197.  

[4] A. Kann and J.P. Weyant, Approaches for performing uncertainty analysis in large-scale 

energy/economic policy models, Environmental Modeling and Assessment 5 (2000) 29-44.  



[5] R. Zapert, P.S. Gaertner and J.A. Filar, Uncertainty propagation within an integrated model of 

climate change, Energy Economics 20 (1998) 571-598. 

[6] IPCC, Climate Change 2001. Impacts, Adaptation and Vulnerability, Cambridge University 

Press, New York, USA, 2001. 

[7] J. Gjerde, S. Grepperud and S. Kverndokk, Optimal climate policy in the possibility of a 

catastrophe, Resource and Energy Economics 21 (1999) 289-317. 

[8] P. Molander, Optimal greenhouse gas abatement under uncertainty, Research Papers in 

Economics, University of Stockholm, Stockholm, Sweden, 1994. 

[9] R. Sausen, Kette von Unsicherheiten” in: Protokoll des 2. Nationales IPCC-Arbeitsgespräch: 

"Klimaänderungen: Bewertung von Unsicherheiten als Grundlage für rationales Handeln", 

Köln-Porz, Germany, 23. September 2003 

[10] A. Baranzini, A, M. Chesney and J. Morisset, The impact of possible climate catastrophes 

on global warming policies. Energy Policy 31 (2003) 691-701. 

[11] C. Carraro and J.C. Hourcade, Climate modelling and policy strategies. The role of technical 

change and uncertainty. Energy Economics 20 (1998). 463-471.  

[12] W. Nordhaus, Managing the global commons, MIT Press, Cambridge, 1994.  

[13] A.C. Fisher and U. Narain, Global Warming, Endogenous Risk, and Irreversibility, 

Environmental and Resource Economics 25 (2003) 395-416.  

[14] C. D. Kolstad, Learning and stock effects in environmental regulation: The case of 

greenhouse gas emissions. Journal of Environmental Economics and Management 31 

(1996).1-18. 

[15] K. Arrow and A. Fisher, Environmental preservation, uncertainty and irreversibility, 

Quarterly Journal of Economics 88 (1974) 312-319.  

[16] C. Henry, Investment decisions under uncertainty: the irreversibility effect, American 

Economic Review 64 (1974) 1006-1012. 



[17] W. Nordhaus and D. Popp, What is the value of scientific knowledge? An application to 

global warming using the PRICE model, Energy Journal 18 (1997) 1-46.  

[18] A.S. Manne and R.G. Richels, Buying greenhouse insurance: the economic costs of carbon 

dioxide emission limits. MIT Press, Cambridge, Massachusetts, USA, 1992.  

[19] S.C. Peck and T. J. Teisberg, Global warming uncertainties and the value of information: an 

analysis using CETA, Resource and Energy Economics 15 (1993) 71-97. 

[20] S.C. Peck and Y.S. Wan, Analytic solutions of simple optimal greenhouse gas emission 

models, in Economics of atmospheric pollution, eds. E.C. van Ierland and K. Gorka, Springer 

Verlag, Berlin, Germany, 1996, pp. 113-121. 

[21] M. Ha-Duong, Quasi-option value and climate policy choices, Energy Economics 20 (1998) 

599-620. 

[22] A. Ulph, A. and D. Ulph, Who gains from learning about global warming? in: Economics of 

atmospheric pollution, eds. E.C. van Ierland and K. Gorka, Springer Verlag, Berlin, Germany, 

1996, pp.31-67. 

[23] E. Baker, Uncertainty and learning in a strategic environment: Global climate change, 

Paper, University of Massachusetts, Amherst, USA, 2003. 

[24] F.L. Toth, Decision making frameworks, in: IPCC. Third Assessment Report: Climatic 

Change 2001: Mitigation, Cambridge University Press, New York, USA, 2001, Chapter 10.  

[25] IPCC, Climate Change 1995. Economic and Social Dimension of Climate Change, 

Cambridge University Press, New York, USA, 1996. 

[26] R. I. Willows, R.I and Connell, R.K. (Eds.), Climate adaptation: risk uncertainty and decision-

making, Technical Report. UKCIP, Oxford, UK, 2003. 

[27] A. Kanudia and R. Loulou, Robust responses to climate change via stochastic MARKAL: the 

case of Québec, European Journal of Operational Research 106 (1998), 15-30. 



[28] R. Loulou and A. Kanudia, Minimax regret strategies for greenhouse gas abatement: 

methodology and application, Operations research Letters 25 (1999), 219-230. 

[29] A. Lange, Climate change and the irreversibility effect – Combining expected utility and 

maximin, Environmental and Resource Economics 25 (2003) 417-434.  

[30] H. Dowlatabadi and M.G. Morgan, A model framework for integrated assessment of the 

climate problem, Energy Policy 21 (1993) 209-211.  

[31] H. Dowlatabadi, Sensitivity to climate change mitigation estimate to assumptions about 

technical change, Energy Economics 20 (1998) 473-493. 

[32] D. Cohan, R. Stafford, R. Scheraga and S. Herrod, The global climate policy framework, in: 

Proceedings of the 1994 A & WMA Global Climate change Conference: Phoenix April 5-8, Air 

& Waste Management Association, Pittsburgh, USA 1994.  

[33] M.L. Weitzman, Prices vs. Quantities, Review of Economic Studies 41 (1974) 477-491. 

[34] W.A. Pizer, The optimal choice of climate change policy in the presence of uncertainty, 

Resource and Energy Economics 21 (1999) 255-287.  

[35] M. Hoel and L. Karp, Taxes and quotas for a stock pollutant with multiplicative uncertainty, 

Journal of Public Economics 82 (2001) 91-114. 

[36] F. Lecocq and R. Crassous, International climate regime beyond 2012. Are quota allocation 

rules robust to uncertainty?, Policy Research Working Paper, World Bank, Washington D.C., 

USA, 2003. 

[37] A. Haurie and L. Viguier, A stochastic game of carbon emissions trading, Environmental 

Modeling and Assessment 8 (2003) 239-248. 

[38] J. Hawellek, Uncertainties of the cost of the Kyoto Protocol, Working Paper, University of 

Oldenburg, Oldenburg, Germany, 2003.  

[39] M. Manning and M. Petit, A concept paper for the AR4 cross cutting theme: uncertainty and 

risk, http://www.ipcc.ch/activity/cct1.pdf, [accessed may 28, 2004], 2003.  



[40] W. Nordhaus and G. Yohe, Future carbon dioxide emissions from fossil fuels, in Changing 

climate, eds. J.H. Ausubel and Nordhaus, National Academy Press, Washington, D.C., USA, 

1983, pp. 87-153.  

[41] J.A. Edmonds, J.M. Reilly, R.H. Gardner and A. Brenkert, Uncertainty in Future Global 

Energy Use and Fossil Fuel CO2 Emission 1975 to 2075, Report TR036, DO3/NBB-0081 

Dist. Category UC-11, National Technical Information Service, U.S. Department of 

Commerce, Washington D.C., USA, 1986.  

[42] A. Manne and R. Richels, The greenhouse debate – Economic efficiency, burden sharing 

and hedging strategies, Energy Journal 16 (1995) 1-37.  

[43] R. Pindyck, Irreversibility and the timing of environmental policy, Resource and Energy 

Economics 22 (2000) 233-259. 

[44] E. Bosello and M. Moretto, Dynamic uncertainty and global warming risk, Nota di Lavoro 

80.99, FEEM, Venice, Italy, 1999. 

[45] E. Castelnuovo, M. Moretto and S. Vergalli, Global warming, uncertainty and endogenous 

technical change, Environmental Modeling and Assessment 8 (2003). 291-301. 

[46] R. Tol, Safe policies in an uncertain climate: an application of FUND, Global Environmental 

Change 9 (1999) 221-232. 

[47] G. Heal, Interactions between economy and climate. A framework for policy design under 

uncertainty, Applied Micro-Economics, 3 (1984) 151-168.  

[48] A. Ulph and D. Ulph, Global warming, irreversibility and learning, The Economic Journal 107 

(1997) 636-650. 

[49] J. Zhao, Irreversible abatement under cost uncertainties: tradable emission permit and 

emission charges, Journal of Public Economics 87 (2003) 2765-2789. 

[50] J.M. Reilly, J.A. Edmonds, R.H. Gardner and L.A. Brenker, Uncertainty analysis of the 

IEA/ORAU CO2 emissions model, The Energy Journal 8 (1987) 1-29.  



[51] C. Hope, J. Anderson and P. Wenman, Policy analysis of the greenhouse effect. An 

application of the PAGE model, Energy Policy 21 (1993) 327-338. 

[52] E. Plambeck and C. Hope, PAGE95 An updated valuation of the impacts of global warming, 

Energy Policy 14 (1996) 783-793. 

[53] M.J. Scott, R.D. Sands, J. Edmonds, A.M. Liebetrau and D.W. Engel, Uncertainty in 

integrated assessment models: modelling with MiniCAM 1.0, Energy Policy 27 (1999) 855-

879. 

[54] G. Yohe and R. Wallace, Near term mitigation policy for global change under uncertainty: 

Minimizing the expected costs of meeting unknown concentration thresholds, Environmental 

Modeling and Assessment 1 (1996) 47-57.  

[55] C. Gollier, B. Jullien and N. Treich, Scientific progress and irreversibility: an economic 

interpretation of the ‘Precautionary Principle’, Journal of Public Economics 75  (2000) 229-

253. 

[56] M. Grubb, Technologies, energy systems and the timing of CO2 emissions abatement, 

Energy Policy 25 (1997) 159-172 

[57] M. Webster, The curious role of “learning” in climate policy: Should we wait for more data?, 

Energy Journal 23 (2002) 97-119. 

Appendix 
 
[Tables A-1a and A1-b]



Table 1: Cascade of Uncertainties 

 IPCC [6, chap. 2] Heal and 
Kriström [2] Molander [8] Sausen [9] 

1 
Emission scenarios 
(anthropogenic 
GHG emissions) 

Emission 
scenarios 

Choice of the 
emission scenario 

Responses of the 
carbon cycle 

Calculating the 
concentration of 
GHG 

Sensitivity of the 
climate to changes 
in the carbon cycle 

Determining the 
climate sensitivity  

Regional 
Implications of a 
global climate 
scenario 

 

 

 

 

 

Simulating future 
climate 

3 
Possible range of 
impacts on human 
societies 

Impacts 

What does given 
climate change 
mean in economic 
terms? 

Effects of a potential 
climate change on 
ecosystems 

Interpreting the 
results 

4  Policies  

Uncertainties that 
affect policy 
measures 

Costs & benefits of 
slowing climate 
change 

Perception of results 



 

Table 2: Uncertainty in economic models 

 Sensitivity  
analysis 

Propagation  
of uncertainties 

Sequential decision making under uncertainty 

Descriptio
n 

Varying uncertain 
input parameters to 
determine the 
sensitivity of the 
output reaction 

Specify a joint 
distribution/stochastic 
processes on selected 
input parameters and 
then propagate this 
uncertainty through to the 
model output 

Determine optimal policies at more than one point in time taking 
into account learning 

Practice 

Very simple  

Can be carried out 
with every model 

Some models 
directly offer the 
user the possibility 
to evaluate different 
future scenarios 

Still relatively simple 

Monte-Carlo Method or 
Latin Hypercube sampling

Often used in large 
numerical/applied models 

Most demanding 

Existing models mostly involve autonomous learning and two 
decision periods. 

Used in rather small, simple, aggregated (growth) models, and 
rather in theoretical than applied models  

Outcome 

Determine which 
parameters should 
be treated 
stochastically 

Give a first feeling 
for the uncertainty of 
the model output 

Gives a sense of the risk 
associated with the 
outcome resp. a 
distribution of output 
variables 

Measures for the relative 
importance of different 
input parameters on the 
outcome 

Optimal decisions under uncertainty 

Optimal hedging strategies 

Role of irreversibilities 

Determine expected value of information 

 

Short-
comings/ 

Not possible to 
model stochastic 

Difficult to specify joint 
distributions due to 

Difficult for optimizing models 

Can only be performed for a very limited set of uncertainties in 



Problems  variability 

Does not measure 
or detect 
specification errors 

significant correlations 
between parameters. 

Impractical for 
computationally intensive 
models 

Different results for 
optimization models 
(learn now then act) vs. 
policy evaluation models 
(act then learn). 

Parameters can 
contribute to uncertainty 
but be irrelevant for 
decisions. 

optimizing models due to computational complexity 

Infinite stochastic optimization causes many problems 

 



 

Table 3: Option value and expected value of information 

Expected 
Costs  NL ATL LTA Value of information 

Total  
CT(NL)= 
Min{x1,x2} 
E[TC(s,x1,x2)] 

CT(ATL)= 
Min{x1}E[Min{x2} 
TC(s*,x1,x2)] 

CT(LTA)= 
E[Min{x1,x2} 
TC(s*,x1,x2)] 

Exp. value of perfect 
info. 

EVPI = CT(ATL) resp. 
CT(NL) - CT(LTA) 

Policy H: 
x1

* 
CH(NL)= Min{x2} 
E[TC(s,x1

*,x2)] 
CH(ATL)= E[Min{x2} 
TC(s*,x1

*,x2)] 
 

Exp. value of future info.  

EVFI(H) = CH(NL) - 
CH(ATL) 

Policy L: 
x1 

CL(NL)= Min{x2} 
E[TC(s,x1,x2)] 

CL(ATL)= E[Min{x2} 
TC(s*,x1,x2)] 

 
Exp. value of future info. 

EVFI(L) = CL(NL) - 
CL(ATL) 

Opportun
ity cost 
OC 

OCL(NL) =  

CL(NL)–CH(NL)  

OCL(ATL) =  

CL(ATL)–CH(ATL)  
 

Option value OV(L)  
= EVFI(L) – EVFI(H) 

= OCL(NL) – OCH(ATL) 

Note: In this context certainty equivalence means that the expected costs under NL and LTA are the same thus that Min{x1,x2} 

E[TC(s,x1,x2)] = E[Min{x1,x2} TC(s*,x1,x2)].  



 
Table 4: Relative importance of different input uncertainties in selected studies 

Study  Uncertain 
inputs  Target variable(s)  Most relevant input 

uncertainties 

[40] 
Nordhaus & 
Yohe (1983) 

  Carbon emissions 

Price induced substitution 
between fossil & non-fossil 
fuels 
Labor productivity 
Labor-energy trade offs 

[50] 
Reilly et al. 
(1987)  

79 uncertain 
parameters; 
mainly resource, 
cost & 
population 
parameters 

Carbon emissions 

Labor productivity 
Exogenous energy efficiency 
Income elasticity of demand in 
developing countries 

[30] 
Dowlatabadi 
& Morgan 
(1993)  

Over 120 
uncertain 
parameters 

Cost of climate 
policies as loss in 
GDP 

The significance of the 
uncertain parameters 
varies by policy and region; 

Uncertainties in abatement cost 
play minor role, uncertainties in 
market damages play major 
role for outcome uncertainties. 

[51, 52]  
Hope et al. 
(1993) 
Plambeck & 
Hope (1996)  
PAGE model 

84 uncertain 
parameters 
including 
scientific, cost of 
control, cost of 
adaptation and 
damage 
parameters.  
3-point 
probability 

Mitigation cost 
Climate damage  

For damages: 
Global temperature sensitivity 
to doubling of CO2 
Global warming response to 
change in forcing 
Weight of impacts in 
agriculture, service & 
manufacturing sector. 



distributions 

[12] 
Nordhaus 
(1994) 
DICE model 

Sensitivity 
analysis of 24 
parameters to 
chose the most 
important 8 
parameters (see 
last column) 
5-point 
probability 
distributions  

Per capita 
consumption 
Output 
Optimal emission 
reduction  
Atmospheric carbon 
concentration 
Temperature 
Optimal carbon tax 
Index of overall 
uncertainty as 
weighted average 

Index of overall output 
uncertainty:  
Population growth 
Productivity growth 
Pure rate of time preference 
Decline inoutput-CO2 ratio 
Climate Damages 
Climate-GHG sensitivity 
Mitigation cost 
Atmospheric retention of CO2 

[54] 
Yohe & 
Wallace 
(1996)  
Connecticut 
Model 

9 parameters 
3-point 
distributions 

Carbon emissions 

Population 
Technological change in 
energy supply 
Depletion factor in fossil fuel 
price 
Interfuel substitution 

Table 4 continued 

Study  Uncertain 
inputs  Target variable(s)  Most relevant input 

uncertainties 

[17] 
Nordhaus & 
Popp (1997)  
DICE Model 

8 parameters 
from Nordhaus 
(1994) 

Temperature 
Optimal carbon tax 

Highest value of information: 
Climate damages 
Mitigation cost  
(Climate feedback) 
(Population growth)  

[53] 
Scott et al. 

74 uncertain 
parameters 
including climate 

Carbon emissions 
Atmospheric carbon 

Source of overall uncertainty: 
Future demand for energy in 



(1999)  
MiniCAM 1.0 

and economic 
variables 
(Subjective 
probability 
distribution?) 

concentration 
Temperature 
Damages  

the developing world 
Labor productivity 
Technological change in 
energy production 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A-1a: Models with sequential decision making & learning that analyze the stringency of optimal policies under uncertainty 

Author & 
Model 

Underlying 
Model Type 

Special features 
& issues  

Type of uncertainties & 
derivation of distribution 

Key Results 

[10] 
Baranzini et 

al. (2003) 

Cost Benefit 
Model 

Costs & benefits 
are stochastic 
processes 

Cost benefit ratio as stochastic 
process with guestimated 
parameters  

Uncertainty modifies the policy recommendations from 
classical CB analysis. Since waiting processes are now 
valuable, policies that were optimal under traditional CB 
should now be delayed. 
The possibility of catastrophic events increases the 
probability of implementing abatement strategies. 

[23] 
Baker (2003) 

2-period 2-
region game-
theoretic model 
of optimal 
abatement 

Strategic 
interaction 
between two 
decision 
makers 

Damages 
Stochastic shift parameter of 
deterministic damage function; 
no numerical parameterization 

Optimal policy depends on the correlation of damages 
across countries. If damages are negatively correlated, 
the policy is reversed for the single decision maker: the 
more we expect to learn the lower emissions should be.  

[44] 
Bosello & 

Moretti 
(1999) 

RICE, CETA, 
MERGE 

IAM 
Growth Models 
Optimization 

Hazard rate 
function; 
effects of 
catastrophes 

Exogenous & 
endogenous 
uncertainty 

Probability of catastrophic 
events depends on 
temperature change 

Utility change after catastrophe 
Hazard rate function; calibrated 
to results of expert panel 

Probability of high-consequence irreversible outcomes 
leads to lower optimal emissions 

Models react differently: CETA and MERGE depict 
sudden emission decrease below the no-uncertainty 
case, RICE shows less prudent behavior in the short 
run.  

[45] 
Castelnuovo 

et al. 
(2003) 

RICE-ET 

Growth Model 
Optimization 

Hazard rate 
function; 
effects of 
catastrophes 

Role of technology

Same as [44] 

When environmental uncertainty is modeled, the 
behavior of the agents is more cautious. 

If R&D is not environmental-friendly, R&D is optimally 
reduced. With environmental-friendly R&D uncertainty 
stimulates to undertake more R&D in order to reduce 



the emissions-output ratio. 

[31] 
Dowlatabadi 

(1998) 
ICAM 

IAM 
Simulation 

model 

Various decision 
rules  

Up to 25 parameters  
Decision rules & metrics 
Model structure 

Optimal decision depends on the decision rule. None of 
the policies are stochastically dominant.  

[13] 
Fisher & 

Narain 
(2003) 

2-period optimal 
investment 
model 

Irreversibilities: 
sunk 
abatement 
costs and 
GHG stock 
effects 

 

Endogenous risk of catastrophe 
/ distribution of damages 
Expert panel to specify risk 
function 
 

Under specific assumptions on risk aversion and 
intertemporal substitution 1st period investment is 
negatively related to degree of sunkness of capital.  
The lower the degradability of the stock of GHG in the 
numerical model, the greater 1st period investment. 
The investment irreversibility effect is substantially 
larger than the climate irreversibility effect. 

[55] 
Gollier et al. 

(2000) 

2-period optimal 
consumptio
n model 

Bayesian 
framework 

Only theoretical 
model 

Damage 
Only small numerical example 

Learning only induces earlier prevention effort, if 
prudence is twice as large as absolute risk 
aversion 

Discussion of conditions guaranteeing that more future 
uncertainty leads to more conservative action 
today. 

[56] 
Grubb (1997) 

DIAM 
Optimization  

Stochastic stabilization limit 
Guestimated distribution  

Possibility of low levels of stabilization limits has large 
influence on optimal path. Even though this occurs 
with low probability, the large cost assigned to the 
constraint drives the outcome. 

Consideration of impact costs leads to different time 
profiles than optimization under a stabilization 
constraint (fixed or stochastic) 

[21] 
Ha-Duong 

(1998) 

2-period optimal 
investment 
model 

Irreversibilities: 
sunk 
abatement 
costs and 
GHG stock 
effects 

Only high damages with 
probability of 0.1 and low with 
probability 0.9; calibrated to 
EMF guidelines and expert 
panel  

Option value of early abatement is positive for most 
values 

Option value is about 50% of the cost.  



[47] 
Heal (1984) 

Growth model 
Optimal 
depletion model 

 

Level of GHG stock at which 
there will be a discrete 
irreversible change in the 
productivity of the capital stock 

Optimal rate of fossil fuel declines more rapidly relative 
to the situation with no climate change. 

Index of risk aversion is important for results.  

[27, 28]  
Kanudia & 

Loulou 
(1998, 
1999) 

MARKAL 

Linear 
programmin
g, bottom-
up energy 
systems 
model  

Stochastic 
programming 
(max expected 
utility) 
Minimax regret 
strategy (MMR) 

High/low mitigation and 
high/low growth [27].  
5 reduction targets [28] . 
Ad-hoc probabilities 
For MMR no probabilities 
needed 

Mostly, optimal decision under uncertainty are markedly 
differ from deterministic scenarios. They are not 
even always at an intermediate level between the 
extremes of the deterministic scenarios.  

MMR is a better approach than maximizing expected 
utility in the examples and regarded as a very attractive 
approach. 

[14] 
Kolstadt 

(1996) 
 

Finite horizon 
discrete 
Ramsey 
type growth 
model 

Optimization 

Continuous, 
exogenous 
learning  

Irreversibilities: 
sunk abat. costs & 
GHG stock effects

Climate damage 
 

The irreversibility of investment capital has a stronger 
effect than irreversibilities in climate change. Thus 
uncertainty and learning tend to bias emission 
control downward relative to the case of 
uncertainty but no learning. 

[29] 
Lange (2003) 

2-period optimal 
stock-
pollutant 
model 

Combining 
expected 
utility and 
maximin 

Climate damage 
Larger weight on worst case may increase emissions.  
The effect of learning is not clear in general, there is the 
possibility of a negative value of learning.  

[42] 
Manne & 

Richels 
(1995) 

MERGE 2.0 

Growth model 
Optimization 

 
High damage with probability of 

0.5 and low damage 
scenario 

With small chance of high damages, hedging strategy 
departs only slightly from low damage case 

Hedging strategy is sensitive to when uncertainty is 
resolved.  

[12] 
Nordhaus 

(1994) 
DICE 

Optimization 
Growth model 

Sensitivity analy-
sis to find 
most relevant 
uncertainties 

Monte Carlo 
Analysis 
(using 

Productivity growth 
Population growth 
Discount rate 
GHG-output ratio 
Damage function  

Optimal control rates do not differ markedly from best-
guess models. 

The optimal carbon tax is much higher than in the best-
guess analysis, but the major reason is the 
introduction of uncertainty itself rather than the 
timing of the resolution of uncertainties.  



representative 
scenarios);  

Choice of 
instruments 

Climate-GHG sensitivity 
Mitigation cost funct. intercept 
Atmospheric detention rate 
Distributions guestimated from 
results in the literature; 5 point 
estimates for quintiles 

Carbon tax might be a more efficient instrument in the 
light of enormous uncertainties. Carbon tax is more 
invariant across resolution of uncertainties than 
optimal GHG control rate.  

[17] 
Nordhaus & 

Popp 
(1997) 
PRICE 

 

Optimization 
Growth model 

Value of 
Information 
about 
uncertain 
parameters  

Value of Early 
Information 

8 uncertain parameters (same 
as DICE); 

Monte Carlo + Latin Hypercube 
sampling to arrive at 5 states of 
the world  

Optimal policy under uncertainty tends to raise control 
rates  

Climate impacts and costs of reducing GHG emissions 
are most important. Resolving their uncertainty 
would contribute 75% of the value of improved 
knowledge.  

Considerable value of information 
Efficient carbon taxes under perfect knowledge vary by 
a factor of 1000. 

 
[19] 
Peck & 
Teisberg 
(1993) 
CETA 

Growth model 
Optimization 

Decision making 
under uncertainty 
with discrete 
possible outcomes 
Value of 
information 

Warming per CO2 doubling 
Damage function 
3-point estimates for 5, 50 & 95 
percentils  
2 point estimates for 
uncertainty in 2 parameters 
simultaneously  

If an optimal policy is used, the benefits of resolving 
uncertainty is high, but resolving uncertainty now 
vs. in 20 years is not worth much. If an arbitrary 
political policy is used, and if resolving uncertainty 
now would imply that an optimal policy would be 
used then there is a high premium on resolving 
uncertainty now vs. later. 

[53] 
Scott et al. 

(1999)  
MiniCAM 1.0 

IAM 
 

Monte Carlo + 
Latin 
Hypercube 
sampling 

Act then learn 
then act then … 
scenario 
Value of 
information 

Several uncertain model 
parameters  

Subjective probability 
distributions which are not 
described 

Most important uncertainties are future demand for 
energy in the developing world, labor productivity 
and technological change in energy production.  

Act then learn more cost effective then any other tested 
policy response 



[48] 
Ulph & Ulph 

(1997) 

Theoretical 2-
period utility 
maximizing 
model and 
numerical 
model  

GHG stock 
irreversibilities 
only 

Conditions for 
existence of 
irreversibility 
effect 

High, low, medium climate 
damage;  

High damage with prob. ph = 
0.1 and 0.6. Probability low 
= 0.25*(1-ph); prob. 
Medium = 0.75*(1-ph) 

Irreversibility effect cannot be assumed to apply as a 
matter of principle  

Empirical evidence find little support for irreversibility 
effect. 
Optimal current emission abatement is lower if we learn 
about future damages in the future.  

[22] 
Ulph & Ulph 

(1996) 

2-period 2 
country 
game-
theoretic 
model of 
optimal 
abatement 

Strategic 
interaction 
between two 
decision 
makers 

Utilities and damages (high and 
low) 

In situations where a single decision-maker would delay 
cutting emissions under learning, strategic 
interactions can cause countries to accelerate the 
cutting of emissions. 

While a single decision maker is always better of when 
there is the possibility of learning, countries can be 
worse off.  
One source for this are asymmetries between countries 

[54] 
Yohe & 

Wallacce 
(1996) 

Growth model 
Optimization 

Monte Carlo 
simulations with 9 
uncertain 
variables to 
determine most 
relevant 
uncertainties (see 
next column) and 
representative 
scenarios 

Population growth 
Technological change in 
energy supply 
Depletion factor in fossil fuel 
price 
Interfuel elasticity of 
substitution 
Others that play less significant 
roles in the distribution of 
emissions 
Always high, medium and low 

value with prob. 0.25, 0.5, 
0.25.  

Little or no emissions reduction is warranted over the 
near term even as a hedge against the possibility 
of having to met severely binding concentration 
levels in the not too distant future. 

Modest emissions reduction can be supported when 
hedging against high consequences/low probability 
events across a wide range of emissions futures. 
Hedging to achieve “tolerable windows” proposed by 
the German advisory Board on Climate Change would 
require significant, costly near term emissions 
reductions.  

[57] 
Webster 

(2002) 

2-period model 
with 
objective of 
minimizing 
total climate 

 

Climate costs (= abatement 
costs + damage costs) 

High, medium and low values; 
distributions calibrated to 

Whether there is a learning effect on the fist period 
decision depends on the existence of an interaction 
between periods. For most parameter distributions 
the optimal emission control today is independent 
of whether or not learning will occur.  



Figure 1: Policy choice as two-period decision with and without learning 

* Part of the table is taken from the table in the appendix of [4].  

costs. expert panel 



 

Table A-1b: Stochastic simulation models using uncertainty propagation  

Author & 
Model 

Underlying 
Model Type 

Special features & 
issues  

Type of uncertainties & 
derivation of distribution 

Key Results 

[30] 
Dowlatabadi 

& 
Morgan 
(1993) 

ICAM-1 

IAM 
 

Different decision 
rules Over 100 uncertain variables  

Choice of the decision rule plays a key role in the 
selection of mitigation policies 

The significance of the uncertain parameters varies 
by policy and region; 

Uncertainties in abatement cost play minor role, 
uncertainties in market damages ply major role for 
outcome uncertainties.  
 

[7] 
Gjerde et al. 

(1999) 

IAM 
Dynamic 
Optimization 

Hazard rate 
function; effects 
of catastrophes 

Importance of time 
preference 

Probability of catastrophic event 
depends on temperature 
change 

Utility change after catastrophe 
Hazard rate function; calibrated 
to results of expert panel 
 

Probability of catastrophe leads to higher early 
emission abatement. 

Optimal abatement is sensitive to probability of 
catastrophe and pure rate of time preference.  

[51, 52] 
Hope et al. 

(1993) 
Plambeck & 

Hope 
(1996)  

PAGE 

Policy evaluation  

Partial Rank 
Coefficients 
between inputs 
and outputs 

80 uncertain parameters 
♦1 Scientific 
♦2 Costs of control 
♦3 Costs of adaptation 
♦4 Valuation of impacts 
 
Triangular guestimated 
probability distributions 

Important factors come from all four groups of inputs 
to the model. Most important parameters are 
preventive costs of CO2 and temperature 
sensitivity. 

[36] 
Lecocq & 

Crousso

Partial 
equilibrium 
model of the 

Are Post Kyoto 
quota allocation 
rules robust to 

Population 
Emissions  

Allowance prices and abatement costs are sensitive 
to uncertainties. 



s (2003) international 
GHG 
market 

uncertainty? Economic growth The least-cost rules are relatively robust 

[34] 
Pizer (1999) 
(version of 
DICE) 

Stochastic 
growth 
model  

Optimization 

Choice of 
instruments 

Monte Carlo 
analysis 

Endogenous labor productivity & 
population growth are 
random walks 

Utility, cost & technology 
parameters, parameters 
describing the development of 
CO2 in the atmosphere (19 
uncertain parameters) 
Estimated joint distributions for 5 
parameters; 
distributions taken from 
Nordhaus (1994) 

Productivity slowdown encourages stricter optimal 
regulation 

Short run responses are rather similar whether or not 
uncertainty is introduced. 
Taxes are preferable to emissions trading 
Preferences are most important source of uncertainty 

[43] 
Pindyck 

(2000) 

Cost-benefit 
analysis 

Monte-Carlo 
analysis 

Future costs and benefits are 
modeled as stochastic 
processes with guestimated 
parameters. 

 

Less abatement with increasing uncertainty 

[50] 
Reilly et al. 

(1995) 
IEA/ORAU 

Economy-
energy 
model 

(Monte Carlo + Latin 
Hypercube 
sampling 

Assessment of 
relative importance 
of different uncertain 
parameters 

79 uncertain model parameters 
5 point guestimates with 
continuous contributions between 
values 

Overall uncertainty in the emission rate is 
considerable. To bracket 90% of 400 random 
scenarios +3 to –1.4% change per year. 

Most important determinants of the variation are 
labor productivity, energy efficiency growth and 
income elasticity of demand for energy in the 
developing world.  

[46] 
Tol (1999).  
FUND  

Optimization/sim
ulations 

Monte Carlo 
analysis 

 

Selected parameters including  
♦5 Socio-economic drivers 
♦6 Carbon cycle/climate 
♦7 Climate change impacts 
♦8 Emission reduction 

The baseline scenario leads to an unbounded loss 
when uncertainty is included (though the 
divergence is slow). This does no occur with the 
emission reduction scenarios. 

Optimal emissions reduction is more strict under 
uncertainty than under certainty. 



Distributions, means and spread 
taken from literature 
 

[5] 
Zapert et al. 

(1998)  
IMAGE 

IAM 
Policy 

Evaluation 
 

Initial state and/or stochastic 
noise are modeled for 155 
uncertain parameters 
(mostly physical climate 
descriptors) 

Even conservative uncertainty estimates result in 
scenario overlap of several decades during 
which the consequences of any actions affecting 
the environment could be difficult to identify with 
sufficient level of confidence. 

In general, the stochastic fluctuation contribute more 
to the uncertainty than the initial state 
measurements. 

[49] 
Zhao (2003) 

Rational 
expectation
s general 
equilibrium 
model of 
permit 
market 

Optimizing 

Tradable permits vs. 
taxes 

Investment 
incentives for firms 

Abatement cots 
Firm’s investment incentives decreases in cost 

uncertainties, but more so under emission 
charges than under tradable permits  

* Part of the table is taken from the table in the appendix of [4] 


