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Abstract

In a recent meta study, Disdier and Head (2008) summarize 103 empirical studies that

find that the (absolute value of the) distance coefficient in a gravity estimation of bilateral

exports does not fall over time. Including zero-trade flows is suggested as a solution to this

“distance-puzzle” (Felbermayr and Kohler, 2006). However, as shown by Helpman, Melitz,

and Rubinstein (2008), HMR henceforth, for cross-section data, including zero-trade flows

will rather increase - and not decrease - estimated distance coefficients, due to omitted firm-

level heterogeneity. Using industry level data over 28 industries for a time span ranging

from 1978 to 2003, we first confirm earlier results that the distance coefficient increases over

time using OLS. We then show that the bias from not controlling for firm heterogeneity in

OLS rises over time, whereas the non-linear estimation of HMR leads to a declining distance

coefficient over time. Our estimates are also shown to capture reductions in trade costs

related to distance, since the estimated distance coefficients are strongly correlated with the

time pattern in freight costs reported by Hummels (2007).
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1. Introduction

“From the telegraph to the Internet, every new communications tech-

nology has promised to shrink the distance between people, to increase

access to information, and to bring us ever closer to the dream of a

perfectly efficient, frictionless global market.” (Thomas Friedman, The

World is Flat, 2005, p. 204)

The many facets of globalization like the increased trade in final goods, intermediate inputs

and services, or the increased international mobility of capital and labor, are perceived to bring

countries closer together, reducing the significance of distance. However, gravity estimations

regressing bilateral trade on distance, inter alia, tell us the opposite. Disdier and Head (2008)

undertake a meta analysis of the magnitude of the distance coefficient based on 103 empirical

studies and find (i) the mean effect of the distance coefficient is about -0.9 across studies, (ii) the

negative impact of distance on trade rose around the middle of the century and has remained

persistently high since then.1

The lack of econometric evidence of distance being less of an impediment for trade over

time is puzzling, given the reduction in the indices on transport costs for shipping and air travel

(World Trade Report, 2008), mirorring significant productivity increases in logistics over the

last decades. It is also puzzling given the large reductions of tariffs due to numerous free trade

agreements and trade liberalization rounds through the WTO (see, e.g., Anderson and van

Wincoop, 2004).

The main purpose of this paper is to solve this "distance puzzle". In doing so, we draw on

a recently developed gravity equation estimator from Helpman, Melitz and Rubinstein (2008),

HMR henceforth. They derive a gravity equation for aggregate bilateral trade from a hetero-

geneous firm model and show that OLS estimates suffer from two sources of bias. First, there

is a sample selection bias, because bilateral trade is measured as logarithm and zero values of

bilateral trade turn into missing values, yielding a sample selection. If there are unobservable

trade barriers, then they are more likely to cause further distant trading partners to have zero

trade flows and to drop out of the sample, leaving behind the observations with positive un-

observable trade barriers at large distances. As a result, the error term is positively correlated

with distance, causing an upward bias in the distance coefficient, which implies too small a

distance coefficient in absolute value. Second, there is an omitted variable bias from ignoring

that firms are heterogeneous in productivity. If the share of exporting firms is not included

as a control in the gravity estimation, then it appears in the regression error, causing a neg-

ative correlation between error and distance, because there are less exporters to more distant

destinations. Hence, the distance coefficient is downward biased through omitting a control on

the share of exporting firms, i.e. the value of the distance coefficient is too large in absolute

value. As these two biases work in opposite directions, the overall change of the bias from OLS

estimates is ambiguous.

1This paper provides also a good collection of references for the “distance puzzle”. Hence, we dispense here

with a discussion of all relevant papers and with providing all references. Rather, we selectively discuss only

papers, which are directly related to our paper in their methodology.
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Using bilateral country data for the year 1986, HMR find that their estimated distance

coefficient represents a drop of roughly by a third as compared to OLS, showing the bias from

omitted variables must dominate the sample selection bias. To explore the evolution over time,

we apply the HMR estimator on world trade in 28 different manufacturing industries over the

time period from 1978 until 2003, estimating a gravity equation for each industry and year

separately, running running more than 4000 regressions altogether.

We first find that the HMR-estimator on avarge over all industries does produce distance

coefficients which become smaller over time (in absolute value). These estimated coefficients

are also shown to capture reductions in trade costs related to distance, since they are strongly

correlated with the time pattern in freight costs reported by Hummels (2007) and Brun, Carrère,

Guillaumont and de Melo (2005). Applying a Gamma pseudo-maximum-likelihood (GPML)

estimator, which was recently suggested by Santos Silva and Tenreyro (2006), albeit augmented

by the correction factors of HMR, also gives a very similar time pattern of the estimated distance

coefficients, giving additional confidence in our estimates.

Having shown that the HMR estimator does produce distance coefficients which decrease

over time, we then compare the outcome with OLS. We first confirm the finding of HMR

that OLS produces larger distance coefficients (in absolute value). However, we also show the

distance coefficients increase over time. Hence, the distance puzzle arises due to the fact that

the bias of OLS increases over time.

To explain the increasing bias of OLS, we derive formally how the bias of the OLS distance

coefficient evolves over time if the true data generating process is the HMR model and true trade

cost related to distance decrease during globalization through, for instance, improved transport

and communication technologies or trade liberalization.

We show that the upward bias through sample selection bias decreases over time. Intuitively,

as trade cost decrease, ever less country pairs have zero trade flows and eventually all countries

trade with each other. But then the sample selection bias has disappeared. We also show

that the downward bias from omitting the number of exporting firms also becomes smaller

(in absolute value). Intuitively, at lower trade costs related to a given distance, most firms

will export producing a smaller downward bias. Since both biases decrease (in absolute value)

globalization has an ambiguous effect on the bias of OLS. However, since our estimates show the

bias of OLS increases over time, it must be that upward bias from sample selection decreases

less than the decrease of the upward bias from omitting the number of exporting firms. If the

HMR model is the data generating process, an implication is then that the distance puzzle

actually arises by firm heterogenity becoming relatively less important over time.

For future work, we also suggest a linearization of the HMR estimator, which is easy to

implement with standard econometric programs, and show that such a simplified estimator

performs just as well. We also show that a Heckman estimator, while deviating from the HMR

estimates, also produces a smaller distance coefficient and an increasing difference to the OLS

estimates over time. This arises since the Hekman estimator uses a correction factor that is

essentially a non-linear but monotonic function of the correction factors of the HMR estimator.

Alternative attempts to solve the distance puzzle stem from Felbermayr and Kohler (2006),
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using Tobit estimates to take zero trade flows into account.2 Other studies explain why the

substitution elasticity may have been rising over time (Glaeser and Kohlhase, 2004, Krautheim,

2008, Lawless and Whelan, 2007, Berthelon and Freund, 2008), possibly overcompensating the

fall in trade costs, which both determine the distance coefficient in theory. Duranton and

Storper (2008) provide an alternative model to rationalize rising overall trade costs besides

falling transport costs. They assume vertically linked industries in which the quality of inputs

is not contractible and where providing a given level of quality to suppliers becomes more costly

with distance. Their main finding is that lower transport costs imply that higher quality inputs

are traded in equilibrium, and the effect of this higher quality is that trade costs increase. None

of them discuss the role of the omitted variable problem of firm heterogeneity in creating an

increasing bias over time.

The remainder of the paper is organized as follows. Section 2 derives the gravity equation

controlling for zero trade flows and firm-level heterogeneity following HMR in subsection 2.1.,

whereas we calculate the biases of OLS estimates in subsection 2.2. Section 3 presents our

estimation equation in subsection 3.1., describes the data in subsection 3.2., and gives the

results in subsection 3.3. The last section concludes.

2. Theory

2.1. Deriving the gravity equation from Helpman, Melitz and Rubinstein (2008)

The HMR model is a multi-country monopolistic competition partial equilibrium model with

heterogeneous firms and identical consumers with CES “love-of-variety” utility functions à al

Dixit and Stiglitz (1977). Since we have bilateral industry rather than country data of trade,

we will add the assumption of multiple sectors in the world economy, each characterized by

monopolistic competition. There are  firms in a sector  of country  each producing a

differentiated variety . For ease of notation, we will drop the subscript  for sector whenever

obvious. With a substitution elasticity between any two varieties   1 the demand () for

a variety , consumed in country  and produced in country  is

() =
()

−

 1−

 (2.1)

where () is the associated price,  =
hR
B ()

1−
i 1
1−

is the price index on the set of B
symmetric domestic and imported differentiated goods consumed in country ,  is the income

2There is ample evidence from microdata for particular countries that the extensive margin matters. Bernard,

Jensen and Schott (2006) use firm-level data and the entry and exit of firms into and out of exporting (extensive

margin) from the export volumes of exporting firms (intensive margin). They find that reduction in trade costs

may increase industry productivity through changes on the extensive margin. Hummels and Klenow (2005)

use disaggregated product-level data to distinguish between the variety dimension (extensive margin) and the

quality as well as the quantity dimension (intensive margins). One of their main results is that adverse terms-of-

trade effects occur more frequently if growth takes place mainly at the extensive margin. Similarly, Baldwin and

Harrigan (2007) use product-level data on bilateral U.S. exports demonstrating that large part of potential export

flows are zero, and showing that the incidence of these zero export flows is strongly correlated with distance and

importing country size. Hilberry and Hummels (2008) analyze trade at the 5-digit zip codes and decompose the

extensive and intensive margins of shipments. Their main finding is that distance reduces aggregate trade values

primarily by reducing the number of commodities shipped and the number of establishments shipping. However,

the extensive margins are important over very short distances.

3



in country  and  is the share of income spent on this sector.

A firm  in country  produces one unit of output at cost , where  is the minimum cost

of a bundle of inputs which is country- and sector specific, and where () =  is a firm-specific

input coefficient, where 1 is the firm’s productivity. Shipping goods across borders involves

iceberg trade costs, which implies that    1 units of output needs to be shipped from country

 to country  6=  in order for one unit to arrive. Delivering to home country customers involves

no trade costs, i.e.   = 1. Exporting across borders are also associated with country- and

sector specific fixed export costs  , i.e.  = 0 and   0 for  6= .

The operating profit from producing a variety  in country  and selling it to country  is

then () = [()−  ()]()− . From (2.1), this implies a firm with productivity
1 producing in country  for exports to country  will charge the price:

∗() =
1


  , (2.2)

where 1

= 

−1 is the standard mark-up. It also follows that domestic consumers are priced at
∗() =

1

 .

The assumption of absence of fixed costs in home sales operations and fixed set-up costs

incurred in exporting operations, implies that only a fraction of country 0  firms will export

to country . To characterize exporters, define the reduced-form operating profit for country 

exporters as ∗() = ∗(
∗
()), or:

∗() = (1)
−1 (1− )

µ
 



¶1−
 −   (2.3)

Let firm-productivity 1 be characterized from the cumulative distribution () with density

() over the finite support  ∈ [  ]. The cut-off productivity for being an exporter to
country  based in country , 1 , is then determined from the zero-profit condition, 

∗
() =

0, or:

 =
h
(1− )




i 1
−1 

 
 (2.4)

In Figure 1(iii) we show operating profits for a country  firm as a function of the firm-specific

input-coefficient  in exporting ∗() and home sales 
∗
(). Operating profits decrease in ,

and hence increase in productivity 1, as shown in Figure 1(ii). Thus, firms in country  can

only recover export fixed costs and export to country  if their productivity is sufficiently high,

1  1 . Firms with productivity 1  1 will only sell on the domestic market.

Trade between country  and  can now be characterized as follows: From (2.1) and (2.2),

the export revenue for a country  firm is ∗()
∗
() = (1)−1

³
 


´1−
. As shown

in Figure 1(i), the number of firms endowed with a productivity 1 is (). Hence, the

aggregate imports of county  from country ,  , are:

 =

Z 



(1)−1
µ
 



¶1−
() (2.5)
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Define  as a term indicating firm-heterogeneity:

 =

( R 


1−() for 1 ≥ 1 
0 otherwise

(2.6)

Combining (2.5) and (2.6), imports from country  to country  can be written:

 =

µ
 



¶1−
  (2.7)

To obtain an estimation equation from (2.7), HMR proceed in several steps. First, they specify

trade cost to include an error component as follows:

 −1 = 

 exp

−  (2.8)

where  is the distance between source and destination country,  is the trade cost per

unit of distance, which may vary across industries, and  is a trade barrier unobservable to

econometricians but observable to the firms. The latter is assumed to be log normally distributed

such that  ∼ 
¡
0 2

¢
.3

Second, they assume a Pareto distribution () = ( − ), where   ( − 1) is the
shape parameter and show that  in (2.6) takes the form  =  , where:

 = max

(µ




¶−+1
− 1 0

)
(2.9)

and  =
−+1



(−+1)(

−


)
is a constant. Note that trade is observed whenever   0, that

is, if   , implying that the cut-off productivity is smaller than the productivity of the

most efficient firm in the industry, 1  1. From Figure 1(i), note that the number of

exporting firms
R 


() is increasing in  . Importantly, from (2.9) it then follows that

the number of country  exporters is increasing in , since is increasing in  .
4 Note also

that a reduction of trade cost  increases thus the number of exporting firms, since it lowers

the threshold productivity level 1 .

Inserting (2.8) and (2.9) into (2.7) and taking logs, HMR obtain the gravity estimation

equation in logs:

 = 0 +  +  −  +  +   (2.10)

where importer country-fixed effects  contain  = (− 1)+ln+ , and exporter country

fixed effects  contain  = −(− 1) ln  +  and the number of exporters are captured by

 = ln

"µ




¶−+1
− 1
#
 (2.11)

3Choosing −1 rather than   to be related to distance  will ensure that the distance coefficient will

exclusively measure trade costs rather than being a function of trade cost and the substitution elasticity of

demand.
4As illustrated in Figure 1, note that positive trade   0 requires   . But then  =

max





−+1
− 1 0


=




−+1
− 1. Thus, we have  ≡ ln = ln





−+1
− 1

.
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Note that the term  is the only one anew in the gravity equation compared to Anderson and

van Wincoop (2003).

Estimation of (2.10) is hampered by two problems. First, it is estimated only on data with

positive trade flows, since the dependent variable, the log of trade volume  , is not defined for

zero import values  = 0. Second, there is an omitted variable problem through  , which

captures the number of exporting firms in country  an information typically not available for

gravity estimations on a world trade dataset.5

HMR note that both problems are related to the extensive margin of trade. Rearranging

(2.4), they then define an auxiliary variable  :

µ




¶−1
=

(1− )
³
 


´1−



(2.12)

≡  

As illustrated in Figure 1(i), changes in  will indicate both, changes in the number of ex-

porting firms through the cut-off  , as well as zero trade links. From Figure 1(i), we note that

there will be no exports if   , which is equivalent to the condition   1. In contrast,

trade is observed when   , which implies   1

Now, we can express the omitted variable  by inserting equation (2.12) into (2.11)

 = ln

∙

˜

 − 1
¸
 (2.13)

where
˜

 = ( − + 1)  (− 1) and  = ln The estimation strategy of HMR in the following

steps is to obtain an estimate of the expected value of the omitted variable  by estimating

an expected value of the auxiliary variable  .

To obtain another estimation equation, another error term is introduced by decomposing

the fixed trade costs  as follows:

 = exp
(++−) (2.14)

where  ∼ 
¡
0 2

¢
and  is a measure of fixed export cost common across all export

destinations,  a fixed trade barrier imposed by the importing country on all exporters, and

 is an observed measure of any additional country-pair specific fixed trade costs.
6

Taking logs of  in (2.12) and using (2.8) and (2.14), HMR obtain an equation for a latent

variable  ≡ ln :

 = 0 +  +  −  −  +  (2.15)

= 
£

¯̄
   

¤
+  

5Flam and Nordström (2008) have recently included a proxy variable for  , which is available for Swedish

exports. However, they did not estimate the distance coefficient over time, which is the focus of this paper.
6 takes the role of an instrument in the empirical implementation and is assumed to be statistically inde-

pendent of distance and country dummies. This assumption is not innocuous. Dropping this assumption may

potentially cause additional bias of unknown direction, which is not taken into consideration in HMR.
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where  =  +    = (− 1)  +  + ln −  is an importer fixed effect,  =

− ln  +  is an exporter fixed effect and 2 is the variance of  . While the latent

variable  cannot be observed, one can observe if trade takes place. Thus, an indicator variable

 = 1[  0] can be defined from which one obtains an estimation equation for the probability

of strictly positive exports:

Pr
¡
 = 1

¯̄


∗
  

∗
  

¢
= Φ

¡
∗  0

¢
(2.16)

= Φ
¡
∗0 + ∗ + ∗ − ∗ − ∗  −

¢
= 

£
∗
¯̄


∗
  

∗
  

¤


where Φ () is the cumulative distribution function of the unit normal distribution and every

starred coefficient represents the original coefficient divided by .
7

One can now estimate in a first stage (2.16) by a probit estimation. Inverting the predicted

probability from (2.16) yields an estimate of the underlying latent variable ̂∗ 

Defining  = 
−+1
−1 , HMR then show that ˆ̄

∗
 ≡ ln

n
exp

h

³
̂∗ + ˆ̄

∗


´i
− 1
o
is a consis-

tent estimate for [ | ∗  0],8 where ˆ̄∗ = (̂∗)Φ(̂
∗
) is the inverse Mills ratio from

the first stage probit estimation, which itself is well-known to be a consistent estimate of

[ | ∗  0].9 Inserting these terms into (2.10) HMR show that consistent estimation of

the gravity model requires estimating the following specification:

 = 0 +  +  −  + ln
©
exp

£

¡
̂∗ + ˆ̄

∗


¢¤− 1ª+  ˆ̄
∗
 +   (2.17)

where  ≡ (  )() The term ln
n
exp

h

³
̂∗ + ˆ̄

∗


´i
− 1
o
corrects for the omit-

ted variable  in the presence of sample selection
10 and  ˆ̄

∗
 is the well-known correction

of the error term  in the presence of sample selection. As a result,  is an i.i.d. error

term satisfying [ |  = 1] = 0. Therefore, one can estimate (2.17) using NLS and obtain
a consistent estimate of the distance coefficient −, having the structural interpretation of a
trade cost per unit of distance.

2.2. The distance puzzle

The last decades of increased globalization have led to a more integrated world economy. World

Trade Report (2008) describes this process emerging from improved transport and better com-

munication technologies lowering trade costs between countries. When estimating gravity equa-

tions of trade, one would therefore expect that distance should become less of an obstacle to

7As in every discrete choice model, the level and scale can be arbitrarily chosen, i.e., the model has to

be properly normalized. We normalize by dividing through , following HMR. This leads the error term

∗ =  to be distributed unit normal.
8Santos Silva and Tenreyro (2008) note that this is not an unbiased estimate because of Jensen’s inequality.

However, it is a consistent estimate because of Slutsky’s Theorem. To see this note  lim ln {exp [ ]− 1} =
ln {exp [ lim  ]− 1} . But  lim  =  lim




∗
∗  ∗   + 


= 


∗
∗  ∗   +[ | ∗ 

0] A consistent estimate of the first term stems from (2.16), and a consistent estimate of the latter term

[ | ∗  0] = (̂∗)Φ(̂
∗
) as shown in Heckman (1979).

9This term is also known as Heckman’s lambda (see Heckman, 1979).
10 In the absence of sample selection bias but in the presence of the omitted variable bias, the correction term

would simplify to ln

exp


̂∗

− 1, since  lim ˆ̄∗ = [ | ∗  0] = 0 in this case.
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trade over time. Thus, globalization should decrease the absolute value of the distance coef-

ficient |−| in estimation equations like (2.10). As noted in the introduction, empirical work
based on OLS regressions rather find the opposite - the negative impact of distance on trade

seems to increase over time.

In this section, we use the HMR model to examine this “distance puzzle”. We first make

use of the result that estimating the specification (2.17) will estimate the distance coefficient

consistently. We then examine to what extent OLS estimation of (2.10) is biased and in what

direction this bias goes. Finally, we examine how the bias of OLS is affected by globalization,

which reduces trade costs associated with geographical distance. In Section 3 we take these

predictions to the data and examine if our estimates can explain the “distance puzzle”.

2.2.1. The Bias of OLS

Let us start to examine the properties of an OLS estimate of the distance coefficient, −̂
from estimating gravity equation (2.10) without sample selection correction and when ignoring

the omitted variable for firm heterogeneity  .

To gain an intuition on these two biases and their direction, we look at them first in turn

before considering them simultaneously, beginning with the sample selection bias. This can be

illustrated in Figure 2, which contains on the horizontal axis distance  and on the vertical

axis imports  in the top and the error term  in the bottom panel. We depict by circles

imports to country  from countries  = 1 2 3 4 5. The missing trade link selection equation

(2.16) reveals that missing observations are the more likely the larger is distance and the smaller

is the error term  . For this reason, we draw potential imports between countries i and j=4

and j=5 such that distance is large and the error terms 4 and 5 negative, causing these two

observations to drop out of the sample, which we indicate by hollow circles in the top panel.

Since the negative shocks 4 and 5 are not only contained in the selection equation but also

in the gravity equation (2.10), the imports that drop out occur not only at large distance but

also at unusually low values of imports.11 The non-missing imports at large distances, indicated

by filled circles, are those with positive values of  . But then the error term in the outcome

equation  and distance  are positively correlated, which is shown by the positive slope of

the [ | ] schedule in the bottom panel. Fitting OLS to the remaining three strictly positive
import data from j=1,2,3 causes a steeper line indicated as OLS in the top panel as compared

to the dashed line that fits OLS to the population including the data points j=4 and j=5. Such

a twist in the slope occurs whenever the error terms in outcome and selection equation are

positively correlated.

Turning next to the omitted variable bias, we need first understand how the omitted variable

 is correlated with distance  . This can easily be seen by inserting (2.15) into (2.13) and

taking the expected value conditional on distance  and the other control variables 0 ≡
11Note that we have drawn negative values of  . Of course, negative values of  can never exist, but are

generated by the gravity equation (2.10), since shocks are by assumption normally distributed on a range from

−∞ to +∞ However, whenever  is negative, it is not observed, which is the same as if it does not exist.
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0 +  +  −  to obtain

[ |  0 ] =
Z



¡

¢
ln
h
(−+) − 1

i
 ≡ Ω ( )  (2.18)

where 
¡

¢
is the marginal distribution function of   and we assumed that  is condi-

tionally independent of  and 0, which excludes by assumption the selection bias to separate

the omitted variable bias from the sample selection bias conceptually.12 Excluding conceptually

the selection bias implies also to assume that (−+)  1 to ensure that there are no

missing observations. Moreover, Ω ( ) is the non-linear conditional expectation function,

the shape of which is easy to analyse. Taking the derivative of (2.18) with respect to distance

 , we obtain

[ |  0 ]


= −
Z



¡

¢ (−+)

(−+) − 1
  0

Hence, there is a negative correlation between  and  , because the share of exporting firms

becomes smaller the larger is distance. The conditional expectation function is depicted in the

bottom panel of Figure 2. If  was known, the influence of  would be deducted from the

import values  , indicated by crosses (×) in the top panel, where the difference between 

and  −  can be read off from the bottom panel, an example of which is given for 1. An

OLS estimator controlling for  and does not suffer from sample selection indicated by "HMR"

fits thus the crosses (×) rather than the circles which yields a flatter line than the dashed line.
Overall, it is indeterminate whether the OLS line is flatter than the HMR line. In anticipation

of our empirical results, we have drawn it such that the OLS line is steeper than the HMR line,

which implies that the omitted variable bias dominates the sample selection bias in levels.

Now, we consider both biases simultaneously, taking additionally into account the interaction

of the two biases. To do this, we need to draw on an approximation of (2.13),

 ≈  

where  =  evaluated at the mean of  .

We then have the following proposition.

Proposition 1. (HMR) When assuming that the HMR model is the data generating process,

then the OLS estimate of − in (2.10) may be (asymptotically) up- or downward biased, de-
pending on whether the omitted variable bias from the share of exporting firms or the sample

selection bias due to omission of zero trade flows dominates, respectively.

12To see how one obtains this equation, note that by definition of a conditional expected value [ |  0 ] =


˜

 ( |  0 )  where
˜

 ( |  0 ) is the conditional distribution of  . According to Greene

(2009), (B-51), this can be written as [ |  0 ] =





 |  0


 with 


 |  0


the condi-

tional distribution of  . If we then assume that  is conditionally independent of  and 0, then we obtain

from (B-60) 

 |  0


= 




 where 




is the marginal probability density (see B-45). Inserting

this relation above, we obtain: [ |  0 ] =







 . Inserting into this relation (2.15) and

(2.13) yields (2.18).
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We derive in the Appendix the simultaneous bias term, which is approximately given by the

following simple expression:

(−̂) = − + £ + Ξ¤ ̄ T 0 (2.19)

where Ξ =
P



P
 

P


P
 ()

2.

Thus, the term −  0 in (2.19) represents a downward bias in OLS from not controlling

for the number of exporting firms, and the last two terms measure an upward bias from sample

selection in OLS when omitting zero trade flows, as , ̄ and Ξ are positive.

In any case, the HMR estimator inserts non-linear correction factors into the OLS estimator

to control simultaneously for the sample selection problem and the omitted variable bias as

shown in the previous section. However, what would be the bias of a Heckman estimator

designed to control for sample selection only if HMR is the true data generating process? The

somewhat surprising answer is given in Proposition 2.

Proposition 2. When assuming that the HMR model is the data generating process, then the

Heckman estimate of − in (2.10) is asymptotically unbiased.

Proof: See Appendix B.

To gain a simple intuition of this proposition, note that a two-stage Heckman estimator is

an OLS estimator using the inverse Mills ratio 
³
̂∗
´
Φ
³
̂∗
´
as an additional explanatory

variable, which is a monotonic transformation of ̂∗ .***footnote???*** The HMR estimator,

which is asymptotically unbiased, uses instead a correction factor that is also a monotonic

transformation of ̂∗ (****to be shown in two lines???****). As a result, the two different
correction factors are highly correlated in practice and pick up the same type of biases.

2.2.2. Globalization

How would the bias of OLS evolve over time when globalization reduces the impact of distance

from the development of new and better communication and transport technologies. Make the

following assumption:

Assumption Increased globalization implies 


 0

We then have the following proposition:

Proposition 3. When assuming that the HMR model is the data generating process, both the

upward bias from sample selection from omitting zero trade flows and the downward bias from

omitting the number of exporting decreases from globalization.

The change in the bias of distance coefficient
Bias(−̂)


can again be understood intu-

itively, looking at the two sources of bias separately. Beginning with the change of the sample

selection bias over time, we notice first that the bias depends on how the slope of [ | ]
changes when  changes over time. To understand this we need to first look at how the se-

lection process is influenced by a reduction in  An observation is missing whenever ∗  0
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according to (2.16). Obviously, a reduction in trade cost  increases ∗
³
∗  0

´
 where

some missing trade links turn positive. Importantly, a reduction in trade cost increases the

probability of missing observations from closer country-pairs to turn into positive trade links

more than from distant ones. Eventually, all missing trade links have turned into positive ones

at sufficiently low trade cost . We depict this in Figure 3, which isolates the sample selection

example from Figure 2, by turning the hollow circles before globalization into filled ones after-

wards. At the same time, a reduction of  increases  (  0), but more so for further

distant counry pairs
¡
2  0

¢
 This is indicated in the top panel by the arrows that

shift each observation  upward, but more so the more distant observations. Hence, the true

line fitting the data after globalization becomes flatter. But since there are no missing trade

links left, there is no gap anymore between the OLS estimator and the true one. Hence, the

bias from sample selection must have disappeared and the conditional expectation function of

the error   [ (
) | ], must have become horizontal after globalization, which indicates

that the sample selection bias has shrunk to zero over time.

Turning to the change of the omitted variable bias over time, we need to understand again

how the slope of the conditional expectation function [ | ] changes with a reduction of
trade cost . For this purpose it is sufficient to look at how  changes for each observation

when  falls. From (2.15) and (2.13) we obtain immediately




= −

˜



˜




˜

 − 1
 0 (2.20)

for all  nonmissing. Hence, the share of exporting firms of a country j exporting to country i

is increasing for each country pair when trade cost  fall. More importantly, this share increases

less for further distant trade partners:

2


= −

˜



˜




˜

 − 1
− 

˜



2

−
˜



µ
1− −

˜



¶−2
 0 (2.21)

for all  nonmissing. This shift of  is depicted in Figure 4. In the bottom panel, a reduction

of trade  increases the export share  of each observation from the black crosses before

globalization to the blue crosses after globalization. But then [ | ] must shift upward, too,
since it is the average over all  at each level of distance  . Because of (2.21), [ | ]
must become flatter after a reduction of trade cost, which implies that the bias becomes smaller.

This shift in the expected omitted variable can then be mapped into corresponding shifts of the

regression line of imports on distance in the top panel of Figure 4.

Summing up, we cannot tell whether the difference in slopes between the HMR-line and

the OLS-line will increase or decrease. Since we cannot tell how the bias of OLS will behave

under globalization, the OLS estimate of the distance coefficient may also increase or decrease

over time. This again depends on the relative change of the omitting variable bias from the

number of exporting firms and the sample selection bias due to omission of zero trade flows.

Both biases decrease over time with increased globalization, but the overall bias of OLS will

increase or decrease depending on which of the two biases decreases faster. If the selection bias
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due to omission of zero trade flows decreases faster than the omitting variable bias from the

number of exporting firms, the bias of OLS will increase over time, given that we observe a

downward bias of the OLS distance coefficient in the first place.

Note that the sample selection bias alone is not able to solve the distance puzzle, as stated

in Felbermayr and Kohler (2005). As the sample selection bias leads to an upward bias, the

importance of distance would be underestimated. Hence, the level can not be captured correctly

accounting for sample selection alone. However, to capture the change of the bias for the distance

coefficient, we need a larger decrease in the zero-trade flows bias as compared to the omitted

variable bias due to firm heterogeneity. A first glance at the data and anecdotal evidence copes

with these facts. Whereas zero-trade flows decreased dramatically over the last two decades,

firm sizes and productivities are still heavily dispersed.

3. Econometric analysis

3.1. Base-line estimation equation and alternative estimators

Our baseline estimation equation is the HMR gravity equation (2.17). Since our main interest

rests on the coefficient of the distance variable − and how it evolves over time, we will estimate
this equation by year and industry separately. We use the following augmented specification:

 = 0 −  + 1BORDER + 2RTA + 3REXCH + 4GDPPCDIF (3.1)

+ +  + ln
©
exp

£

¡
̂∗ + ˆ̄

∗


¢− 1¤ª+  ˆ̄
∗
 +  

where we explain additional variables below. Again, note that ln
n
exp

h

³
̂∗ + ˆ̄

∗


´
− 1
io

captures the omitted variable bias due to firm-level heterogeneity in the presence of sample

selection, whereas ˆ̄∗ captures the sample selection bias of the error term from estimating (3.1)
for non-zero trade. To estimate these correction terms, we add a first-stage equation in order

to estimate (2.16), where:

∗ = ∗0 + ∗1BORDER + ∗2RTA + ∗3REXCH + ∗4GDPPCDIF (3.2)

∗5_ + ∗6_ +

∗0 + ∗ + ∗ − ∗ + 

3.1.1. Other estimators

We have shown that the distance puzzle can be studied by systematically comparing the es-

timates from HMR with corresponding estimates obtained with OLS. The OLS estimator es-

timates equation (3.1) omitting the correction terms for firm-level heterogeneity and sample

selection, i.e., excluding ln
n
exp

h

³
̂∗ + ˆ̄

∗


´
− 1
io
and ˆ̄∗ . By comparing the HMR and OLS

estimators we can evaluate how the bias of OLS evolves over time as predicted by Propositions

1 and 3. We will also compare our estimates with HMR with a number of other estimators.
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Heckman The usual Heckman estimator estimates equation (3.1) omitting the correction

terms for firm-level heterogeneity but including the one for sample selection, i.e., excluding

ln
n
exp

h

³
̂∗ + ˆ̄

∗


´
− 1
io
but including ˆ̄∗ .

Linear approximation of HMR As  enters the estimation equation non-linearly, we first

estimate equation (3.1) via non-linear least squares, as proposed by HMR. However, as discussed

in Santos Silva and Tenreyro (2008), this derivative may be not entirely consistent with the

underlying model. However, for a wide range of ̂∗ + ˆ̄
∗
 the term ln

n
exp

h

³
̂∗ + ˆ̄

∗


´
− 1
io

may be well approximated by
_


³
̂∗ + ˆ̄

∗


´
for some appropriate parameter

_

 which can be

estimated by OLS (see our discussion in section 2.1). Hence, we also estimate the model via

OLS and include  =
_


³
̂∗ + ˆ̄

∗


´
instead of ln

n
exp

h

³
̂∗ + ˆ̄

∗


´
− 1
io
.

GPML In a final comparison, we will estimate (3.1) directly, that is we have a multiplicative

model, given by:

exp () = 
³
0 −  + 1BORDER + 2RTA + 3REXCH + 4GDPPCDIF

+ +  +  +  ˆ̄
∗
 + 

´
 (3.3)

where () is some distribution function belonging to the family of generalized linear models.13

As discussed in Santos Silva and Tenreyro (2006), the Poisson distribution is a prime candidate,

leading to the Poisson pseudo-maximum-likelihood () estimator. However, if the variance

is a function of higher powers of the mean, a more efficient estimator may be obtained by

downweighting observations with larger conditional mean. An example for such an estimator is

the Gamma pseudo-maximum-likelihood ().

3.2. Data

3.2.1. Dependent variable

The dependent variable  in (3.1) is the natural logarithm of bilateral imports of country 

from country  in a given industry  at a given year  measured in million US$ converted by the

Penn World Tables 2.0 purchasing power parity exchange rate (PPP) and deflated by the U.S.

consumer price index. Data on imports are taken from Nicita and Olarreaga (2001)14, who have

compiled an industry dataset corresponding to the 3-digit ISIC, revision 2, level and contains

28 manufacturing industries for up to 100 countries during 1976-2004. Because there is a large

number of missing values in the early years and we were lacking a control variable in the last

year, we have restricted the sample to 1978-2003. The dataset is available for download from

the World Bank (www.worldbank.org\trade). This dataset draws in turn its bilateral industry
import data from COMTRADE of the UN which is based on the Standard International Trade

Classification (SITC) and then transformed into ISIC. Production data are taken from UNIDO

(International Yearbook of Industrial Statistics).

13Generalized linear models (GLMs) are based on a distribution function of the linearized exponential family

which includes, for instance, the Gaussian, Poisson, negative binomial, or Gamma distributions.
14An update became available including data from the years 1974-2004 after we had accomplished our research.
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3.2.2. Explanatory variables

The trade dataset is merged into a balanced geography dataset covering 170 countries. These

geography variables appear in (3.1)-(3.3) as follows:  is the log of the distance in kilometers

between capitals of countries  and .  and  are a full set of exporter and importer dummy

variables, respectively, which control for, among others, the multilateral resistance terms pointed

out by Anderson and van Wincoop (2003). Additional variables used are BORDER which

is a dummy variable indicating a common border between  and , RTA indicates whether

there is a common trade agreement between exporter  and importer  (EU, MERCOSUR,

NAFTA, ASEAN, CARICOM, PATCRA, ANZD, CACM, SPARTECA, CEFTA, USIS), the

real exchange rate REXCH is measured as ratio of exporter to importer purchasing power

parity from the Penn World Tables 2.0 with a value larger 1 indicating a real overvaluation of

the exporter relative to the importer currency based on the prices of the Penn World Table

2.0 consumption baskets. To control for differences in trade structure, we include also a rough

measure of difference in development stage, GDPPCDIF , which measures the log difference in

per capita real GDP per worker of the exporter from the one of the importer country according

to the Penn World Tables 2.0.

3.2.3. Instruments

To estimate the probability to export, we use the same control variables as in (3.1) in addition

to two excluded selection variables following HMR. The first excluded variable is a measure to

what extent importer and exporter share a common religion in the population according to data

from the Christian Research Association for the year 2003. In particular, the measure takes

the sum over the set of all existing religions summing up a population’s share of the importer

country confessing a religion multiplied with the same share of the exporter country. This

measure is bounded between 0 and 1, with large numbers indicating a large degree of overlap

in the religious structure of importer and exporter country. The second excluded variable is an

indicator variable that indicates whether importer and exporter share a common language.

3.3. Results

To explore the distance puzzle we thus estimate (3.1) by industry and year. With data for

28 industries over 26 years, 1978-2003 and with five specifications, this amounts to estimating

28 × 26 = 728 first-stage regressions and 28 × 26 × 5 = 3640 second stage regressions. For

expositional reasons, we therefore show our results graphically. To avoid confusion over the

evolution of a negative distance coefficient, we multiply all estimated distance coefficients with

-1. This facilitates an easy discussion of whether distance coefficients grow or decrease over

time.

The top panel of Figure 5 depicts distance coefficients estimated with OLS and the non-

linear method from HMR. For each year the mean distance coefficient is calculated over all

28 industries, which is then plotted over the full time period 1978-2003. To indicate the time

pattern for each estimator, we have added a quadratic trend with an associated 95 percent

confidence interval. In the lower panel we also add the linear approximation of HMR which is

14



again compared to OLS. Several interesting features are present in Figure 5.

Note that the trend of the distance coefficient, when estimated by OLS, ̂ , is slightly

increasing over time. This confirms the puzzling result in previous studies that the negative

impact of distance of trade seems to increase and not decrease over time, which would be

expected from the globalization process. Turning to the HMR distance coefficient ̂, we

note that irrespective of whether estimated through the full non-linear terms or through the

linear approximation, the ̂ is indeed decreasing over time. Examining the bias of OLS,

̂ − ̂, we note that this is positive and it is increasing over time. From Propositions

1 and 3, this is consistent with the downward bias from omitting the number of exporters

dominating the selection bias from omitting zero trade flows. However, note that the bias grows

over time. From theory this suggests that globalization and reduced trade costs seem to decrease

the upward bias from selection bias more than it reduces the downward bias from the number

of exporters. Effectively, while the omitted variable bias seems to dominate the selection bias,

over time the selection bias becomes relatively more important over time.

In Figure 5(ii), we compare OLS with the linear approximation of HMR. We note that re-

sults are qualitatively the same as in Figure 5(i): the HMR distance coefficient is decreasing

over time, whereas the OLS coefficient increases with the associated bias of OLS increasing.

Figure 6 compares OLS with the GPML estimator using a gamma function as suggested by

Santos Silva and Tenreyro (2006, 2008). Comparing Figures 5 and 6 we note that the linear

approximation of HMR gives very similar results to the non-linear version of HMR and the

GPML estimate. That the linear approximation of the HMR works satisfactory is useful infor-

mation for future application of the HMR methodology, given the cumbersome estimation of

the non-linear version of HMR. Finally, we make a comparison with results obtained with the

usual Heckman procedure. Again, results are qualitatively similar.

3.3.1. Industry estimates

Figure 7 shows changes over time of level of distance coefficient for the average over all 28

industries from HMR and OLS. Most industries show a similar pattern, where the distance

coefficient with OLS is increasing over time, the HMR distance coefficient is decreasing over

time, producing an increasing bias. In particular, these patterns are present in industries that

are characterized by intra-industry trade, whereas patterns seem weaker in industries where

the pattern of trade is more explained by comparative advantage. This is also what should be

expected since trade in the HMR model generates intra-industry trade.

3.3.2. Globalization and transport costs

We have so far assumed that the data-generating process is the HMR-model and hence that

(3.1) will consistently estimate the distance coefficient. We can informally test this assumption

by relating the estimated distance coefficient −̂ to actual trade costs. This is done in

Figure 8, where Figure 8(i) shows that the estimated distance coefficients are strongly positively

correlated with shipping costs in data recently published by Hummels. Figure 8(ii) shows the

−̂ is also positively correlated with oil prices, which should be an important determinant of

transport costs. Finally, we note that the OLS estimate of the distance coefficient is negatively
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correlated with these data on transport costs. Again, this non-intuitive correlation can be

explained because OLS does neither control for the omitted variable of the number of exporters

nor for the omission of zero trade flows.

4. Conclusions

Globalization rapidly advanced during the last two decades: Many free trade and investment

agreements were concluded, tariffs were reduced heavily, goods and services trade as well as

international capital flows strongly grew. However, the influence of distance in empirical es-

timates of bilateral trade flows remained high and did not show a decreasing trend over time

(“distance puzzle”).

While there are many empirical and some theoretical attempts to solve these puzzles, we

show that employing the most recent developments in empirical trade flow estimations account-

ing for zero trade flows and firm heterogeneity based on the HMR framework, the puzzles can

be solved. We first show theoretically that the OLS estimate of the distance coefficient may

be up- or downward biased, depending on whether the omitted variable bias from the number

of exporting firms or the sample selection bias due to omission of zero trade flows dominates,

respectively. Further, relating globalization to a fall of the distance coefficient, both the upward

bias from sample selection from omitting zero trade flows and the downward bias from omitting

the number of exporting decreases from globalization in absolute value. As these two biases

work in opposite directions, the overall change of the bias from OLS estimates is ambiguous.

Hence, it is important to control for both, the extensive margin and the intensive margin, as well

as for firm level heterogeneity in order to understand the evolution of the distance coefficient

over time.

We use industry level data over 28 industries for a time span ranging from 1978 to 2003

and confirm earlier results that the level of the distance coefficient is larger using OLS and that

the distance coefficient is increasing over time using OLS. Hence, the bias from not controlling

for firm heterogeneity is larger than the sample selection bias from omitting zero trade flows.

However, the decrease of the bias over time is larger for the latter.

Employing the non-linear estimation of HMR leads indeed to a declining distance coefficient

over time as expected. This can also be related to trade costs, since the estimated distance

coefficients are strongly correlated with the time pattern in freight costs.
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5. Appendix

5.1. Proof of Proposition 1

Proof. Rewrite (2.10) as  = β0X + + and 
∗
 in (2.16) as 

∗
 = ϕ∗0X − + 

where β≡ (0   −)0, and ϕ∗=
¡
∗0 

∗
  

∗
 −∗

¢0
. Let, β̂


denote the OLS estimator of

β. We then obtain:

plim
³
β̂


´
= β +

£
X0X

¤−1
X0E

£
 + 

¯̄
∗  0

¤
 (5.1)

where we have exploited that the X variables contain only geography information and are

therefore deterministic.

To evaluate (5.1), examine the conditional expectations E
h


¯̄̄
∗  0

i
and E

h


¯̄̄
∗  0

i
.

Using formula (16.36) on p. 549 in Cameron and Trivedi (2005), we first obtain:


£

¯̄
∗  0

¤
= 

¡
  

∗


¢
E
£
∗ |∗  ϕ∗0X − ∗

¤
(5.2)

=  (   + )





¡
ϕ∗0X − ∗

¢
Φ
¡
ϕ∗0X − ∗

¢
≡ ̄  0

where  =  (   + ) and ̄ =
(∗0X−∗)
Φ(∗0X−∗)

. Further, we have assumed

that  and 
∗
 are bivariate normally distributed. Note that this implies that  = (  

∗
)

∗
2
+ , where  is independent of 

∗
. Hence, E

h


¯̄̄
∗  ϕ∗0X − ∗

i
= (  

∗
)

12E
h
∗
¯̄̄
∗  ϕ∗0X − ∗

i
and 

³
  

∗


´
=  (   + ).

To proceed, use a linear approximation of  in noting that  = ln

∙³
∗
´
− 1
¸
for

∗  0 We can then write  = ln

∙³
∗
´
− 1
¸
= ln

h
exp

³
∗

´
− 1
i
≈ ∗  0, where

 = 
−+1
−1 is defined as above. 15 We then obtain:

E
£

¯̄
∗  0

¤
 (5.3)

= E
£
∗

¯̄
∗  0

¤
= E

£{E £∗ |X

¤
+ ∗}

¯̄
∗  0

¤
= E

£
∗ |X

¤
+ E

£
∗
¯̄
∗  0

¤


= E
£
∗0 + ∗ + ∗ − ∗ − ∗ |X

¤
+ E

£
∗
¯̄
∗  0

¤


= 
£
∗0 + ∗ + ∗ − ∗ +

_

¤


= ϕ∗0X0 + ̄ 

where we used the assumption that  is independent of X in the second last row. Noting

that [X0X]−1X0Xϕ∗ = ϕ∗, we obtain:

plim
³
β̂


´
= β + γ + ̄ +

£
X0X

¤−1
X0̄ T 0 (5.4)

15 It can be shown that this approximation works very well in the range of  from [05∞] and estimated
values of  around 1.
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Since country dummies in X are not correlated by construction and distance is hardly

correlated with country dummies the matrix X0X can be viewed as diagonal. But then:

plim
¡−̂¢ = − −  +

"
 + 

P


P
 P



P
 ()

2

#
̄  (5.5)

and hence

Bias( − ̂) = − +
"
 + 

P


P
 P



P
 ()

2

#
̄ 

5.2. Proof of Proposition 2

Proof: Suppose the true data generating process is (HMR model)

 =  +  +   (5.6)

where  is a row vector that contains the regression constant, country exporter- and importer

dummies and d , and  is the corresponding coefficient vector (0 λ χ −)’. Suppose now
that these data are estimated with a Heckman 2-stage estimator, which estimates in the second

stage:

 = +
ˆ
 () +   (5.7)

for   0 where  is an error term not necessarily white noise, and

 () =  () Φ () = [ |   ∗  0] (5.8)

is the inverse Mills ratio obtained from a first stage probit estimation of  on   i.e.

 ( = 1|   ∗  0) = Φ
¡
∗  0

¢
(5.9)

with

∗ = γ∗ − ∗ +  +  (5.10)

and γ∗ is a vector (∗0 ς
∗ ξ∗ −∗)’, and a star is a convenient scaling of a coefficient. Recall

that  and  are correlated, causing sample selection. Note also that

 = ln
h


∗
 − 1

i
≈ ∗ = 

¡
γ∗ − ∗ +  + 

¢
(5.11)

Now, apply the Frisch-Waugh theorem to (5.7):

 − 0 = (− 1) +   (5.12)

where

0 =
¡
0
¢−1

0 (5.13)

1 =
¡
0
¢−1

0 (5.14)
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and analogously

 − 0 = (− 1) + ( − 2) +   (5.15)

where

2 =
¡
0
¢−1

0  (5.16)

Note that the OLS estimate b of (5.12) is given by

 =
£
(− 1)

0 (− 1)
¤−1

(− 1)
0 ( − 0)  (5.17)

which is the two-stage Heckman estimator. The asymptotic bias of the Heckman estimator is

thus for i and j with ∗  0

 lim  − 
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¤−1

[+ + ]

where we inserted (5.15) and (5.17) in line 2, and the approximation (5.11) in line 4. Note first

that



=  [(− 1)
0 ¡∗¢ |∗  0]
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where we use in line 2 a law of large numbers assuming the usual regularity conditions, in line

3 the fact that 1 = 
h
|

³
∗
´i
, i.e. it is the score of a regression of  on  according to

(5.14), line 4 uses the law of iterated expectations, in line 5 ∗ can be taken out of the inner
conditional expectation operator, since it is conditioned on ∗ , and line 6 uses the fact that


h

h
|

³
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i
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h

h
|∗

i
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i
= 

h
|∗

i
(e.g. Wooldrdige, 2002, p. 30, property

CE.4) together with the law of iterated expectations.
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The term B can be developed as follows for i and j with ∗  0 :
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where we inserted (5.14) and (5.16).

The term C captures the potential sample selection bias in presence of the correction term

for it given i and j with ∗  0:
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where we use in line 2 a law of large numbers assuming the usual regularity conditions, in

line 3 we apply the law of iterated expectations, in line 4 we insert (5.8), in line 5 we use

the fact that 1 = 
h
|

³
∗
´i

 in line 6 we apply the law of iterated expectations and

place 
³
∗
´
outside the inner conditional expectation, because ∗ is conditioned on, in line 8


h

h
|

³
∗
´i
|∗
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h
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h
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i
= 

h
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i
(e.g. Wooldrdige, 2002, p. 30, property

CE.4) together with the law of iterated expectations.

Summing up, we have for the asymptotic bias of the distance coefficient:

 lim− +  = 0

¥
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5.3. Proof of Proposition 3

Proof: From (2.19), we have Bias(−̂) = − + £ + Ξ¤ ̄ . Thus, it follows that
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. The change of the omitted variable bias over time is

simply given by:
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Note that
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The derivative of the mills ratio
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is negative. This can be shown by noting

that
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 (ϕ0X)
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=
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and using the result derived in Sampford (1953) and also given in Theorem 24.2 on page 866 in

Greene (2008), that for  ()  (1−Φ ()) the derivative with respect to  is given by

 ()

1−Φ ()
∙

 ()

1−Φ () − 

¸
 (5.20)

and bounded between zero and one. Using the equality given in equation (5.19), we may write

this as:
 (ϕ0X)
Φ (ϕ0X)

∙
 (ϕ0X)
Φ (ϕ0X)

+ϕ0X
¸
= ̄

£
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¤
 (5.21)

Hence, this expression differs from our derivative of ̄ only by the multiplication with −1.
Hence, the derivative of ̄ with respect to  is bounded between −1 and 0. But then

̄

=

 [ () Φ ()]   0 The change in the bias for OLS is therefore ambiguous, depending

on whether the change in the sample selection bias or the change in the omitted variable bias

is larger:

Bias(−̂)


= − ()


+
£
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T 0 (5.22)
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Figure 1: The HMR model
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Figure 5a: Industry estimates for HMR and OLS , 1978-2003.
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Figure 5b: Industry estimates for HMR and OLS, 1978-2003.
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Figure 5c: Industry estimates for HMR and OLS, 1978-2003.
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Figure 5d: Industry estimates for HMR 
and OLS, 1978-2003.
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