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Abstract

We analyse the efficiency effects of the initial permit allocation given to firms with

market power in both permit and output market. We examine two models: a long-run

model with endogenous technology and capacity choice, and a short-run model with

fixed technology and capacity. In the long run, quantity pre-commitment with Bertrand

competition can yield Cournot outcomes also under emissions trading. In the short run,

Bertrand output competition reproduces the effects derived under Cournot competition,

but displays higher pass-through profits. In a second-best setting of overallocation, a

tighter emissions target tends to improve permit-market efficiency in the short run.
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1 Introduction

Prices reflect scarcity in well-functioning markets. In its first trading phase 2005-2007, the

European Union Emissions Trading Scheme (EU ETS) seemed to struggle with this principle.

Following the information release that the market was long, the price of EU Allowances

(EUA) after a first sharp fall began to rise again, and stayed in a range of e 15–18 for a

period of 6 months (Alberola et al. 2008).1 During this period, it was disconnected from

almost all market fundamentals. Studies, implicitly assuming that all of the 11,000 covered

installations were actively trading, did not find evidence of market power (e.g., Convery and

Redmond 2007, Trotignon and Delbosc 2008).2 But only a few companies and sectors (mainly

electric utilities, banks, and some hedge funds) were active in the market in the early years.

With regard to the initial allocation only the power sector was short in the first trading

period (Ellerman and Buchner 2008). In addition, this sector can pass-through the costs to

consumers generating so-called wind-fall profits.3

We seek to explain a positive allowance price, starting from the possibility of an overall

excess permit allocation received for free in a situation where two or more firms have market

power in both permit and product market and trade permits. We examine two kinds of

models with permit/product market interaction. In our long-run models, the choices of

production technology and production capacity are endogenous, technology choice determines

the marginal cost of output production and the level of emissions per unit of production. In

the short-run model, technology and capacity are exogenous and thus fixed.

Our modeling is inspired by Kreps and Scheinkman (1983). We modify their framework

in two ways. For the long-run analysis, we introduce, following von der Fehr (1993), an ad-

ditional initial stage of technology choice and a stage of permit choice. Hence, if the permit

market is interpreted as an input market, our analysis can be considered as a particular case

1The EUA spot price, from a high of almost e 30 in late April 2006, plummeted 54% in only four days
before unexpectedly rebounding and holding in the mentioned range from April-October 2006. Then it
declined reaching some cents in 2007.

2They determine the market concentration (Herfindahl-Hirschman Index) for companies and single sectors,
comparing the initial allowance allocation to the total number of permits initially allocated.

3Windfall profits accrue to a firm, when it receives inputs (such as permits) for free but incorporates their
opportunity cost in its pricing decisions. Sijm et al. (2006) estimate for Germany and the Netherlands in
2005 a pass-through rate of 60-100% with windfall profits of about e 6 Bn.
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of market-making oligopoly, in the sense of Loertscher (2008).4 In the short-run analysis, we

fix technology and capacity choices, and focus on the case of price competition in the prod-

uct market. We thus complement the typical analysis in the literature on market power in

emissions markets and related product markets by consideration of the case of Bertrand out-

put oligopoly. Given that in many non-competitive product markets firms compete in prices

rather than quantities (e.g., Loertscher 2008), and that, in particular, for electricity markets

Cournot competition is typically found to deliver too few competitive results, the almost

exclusive focus on Cournot output competition in this literature seems rather surprising.5

The distinction between long run and short run is motivated from the different degrees of

flexibility in technology and capacity choice between a mature and a newly established ETS.

In a new ETS, the technology and capacity determined in the pre-ETS environment may not

be optimal.6 Moreover, while in the long run policy makers will have better information how

the allocation of permits relates to each firms emissions level, in the short run policy makers

have only limited ex-ante knowledge of how firms will react to an ETS. As a consequence,

we expect in the long run no firm with market power is allocated more permits than it needs

to meet its regulatory obligations. In the short run the policy makers’ choice of the initial

permits allocation to a firm with market power is unrestrained (other than to be positive).

For the long run, we show that the key result by Kreps and Scheinkman (1983) – that

quantity pre-commitment with Bertrand competition leads to Cournot results – still holds

under existence of an emissions trading scheme (ETS) with permit/product market interac-

tion. In equilibrium, firms will hold permits such as to exactly cover their emissions. Total

industry emissions and the permit price are positively related to the size of the free initial

permits allocation to a firm of that sector.

4While our long-run analysis was developed directly based on Kreps and Scheinkman (1983), we extend
Loertscher’s analysis, for the duopoly case, by allowing for an initial endowment of the input good and
analysing initial allocation effects. Moreover, we demonstrate that, under a costly capacity constraint, also
Cournot-Bertrand (input-output) competition yields Cournot outcomes while Loertscher sticks to the cases
of Cournot-Cournot and Bertrand-Bertrand competition.

5See Montero (2009) for an overview over this literature. Two exceptions, considering Bertrand compe-
tition, constitute Requate (1993) and Montero (2002a). Requate states, in a setting with only a two-firm
industry, that the number of permits issued may act as a capacity constraint, leading to a Kreps-and-
Scheinkman style result. Montero compares R&D incentives from environmental-policy instruments under
perfect and imperfect output and permit markets in Cournot and Bertrand output duopoly. He sticks to
overall permit scarcity and does not treat initial allocation effects.

6For emissions-intensive industries, technology will tend to be too dirty and capacity too high.
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In the short run, we study how a marginal change in the initial permit allocation to a firm

impacts on its equilibrium permit holdings, the permit price, and product market outcomes

under Bertrand competition. We consider both elastic and inelastic product demand. In

extension to the previous literature, we distinguish an interior and a boundary solution

depending on whether, in equilibrium, at least one firm holds excess permits or all firms are

constrained in their emissions. In the interior solution, we identify two kinds of distortionary

effects: the Hahn (monopsony/monopoly) effects (after Hahn 1984), and the pass-through

profit effect. Previously, they have implicitly been distinguished, e.g., by DiSegni Eshel

(2005) in a dominant-firm setting, but not considered for Bertrand competition. Pass-through

profits, the pass-through profit effect, and thus the effect on the permit price are greater under

Bertrand than under Cournot competition, and increase with demand inelasticity. On the

boundary, a change in the initial allocation leaves permit holdings, permit price, and product

price unaffected.

A positive allowance price in the face of an overall excess permit allocation, as it occurred

in the first EU-ETS phase, can, hence, also be explained if a permit-and-product-market

oligopolist (whose initial permit allocation differs from its final permit holdings) competes in

the product market in prices. As associated with an interior solution, this price development is

particularly likely to occur under an overall excess allocation of permits and when permits are

initially given for free. Conversely, in the short run, a boundary solution and thus increased

permit-market efficiency are the more likely the stricter the emissions target. We do not

explicitly investigate an alternative permit allocation mechanism or the implementation of

the social optimum. From our study nevertheless a case for auctioning of the initial permit

allocation derives, as it will help reduce pass-through profits and thus the distortionary effects

of an ETS in both the short and the long run.

Section 2 introduces the model framework we use. Section 3 develops the short-run

analysis. Section 4 treats the long-run analysis. We discuss our results in section 5. Section

6 concludes.
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2 The Model

Consider a one-period model with four stages of an economy with polluting production and

an emissions trading system in which initial permits are allocated for free. Two competing

firms, i = a, b, with market power on both output and permit markets maximise profits

Πi = pi ⋅ qi − qi ⋅ ci(qi, �i)− (xi − x0
i ) ⋅ �(X)− fi(Ki, �i) , such that qi ≤ Ki , (1)

where pi is the price charged by firm i, qi is the production quantity of firm i, ci is the

marginal output production cost of firm i, �i ∈ [0, 1] is firm i’s technology parameter, xi

and x0
i are the final and initial holdings of permits for firm i, �(.) is the market clearing

permit price, X = xi + xj is the combined permit holding of firms i and j, fi is the capacity

installation cost of firm i and Ki is firm i’s capital.7 Emissions are by-produced according to

the function

ei(qi, �i) = qi ⋅ (1− �i) . (2)

In the permit market there is, moreover, a competitive fringe of polluting firms whose product

is no substitute for the output of the firms of the first two types. The competitive fringe

in the permit market ensures that the permit supply (price) function, �, is increasing with

respect to the permit holdings of the market power firms.8 Throughout we assume a fixed

overall level of permits, which may exceed the total amount of emissions from the entire

economy.

We consider three formulations of this model. In the long-run models the choices of

production technology and production capacity are endogenous, technology choice determines

both marginal output production cost and the level of emissions per unit of production. In

the short-run technology and capacity are considered to be exogenous factors.

Model 1 Long-run Bertrand model

1. Firms install a production technology.

7We adopt the convention that the subscript j indicates ∕ i. Our assumptions on the characteristics of the
functions used are set out below.

8To motivate this interpretation of � consider the structure of the permit market: at any given permit
price, the competitive fringe will demand some proportion of the fixed level of permits, with the level of
demand decreasing with permit price (von der Fehr 1993).
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2. Firms install a costly production capacity.

3. Firms purchase emissions permits.

4. Firms compete over prices in the product market.

The profit function as given generally in (1) for firm i in the long-run Bertrand model (hence-

forth: the Bertrand model) depends on the price it sets, its output, its technology parameter,

its permit holdings and its capital, so that ΠB
i (pi, qi, �i, xi, Ki).

Model 2 Long-run Cournot model

1. Firms install a production technology.

2. Firms compete over quantities in the product market.

3. Firms purchase emissions permits.

The profit function in (1) for a typical firm in the long-run Cournot model (henceforth:

the Cournot model) depends on its quantity produced, its technology parameter, its permit

holdings and its capital, so that ΠC
i (qi, �i, xi, Ki). Note that in the Cournot model pi in (1) is

to be replaced by the market clearing price P which depends on the sum of outputs produced

by the two firms.

Model 3 Short-run model

1. Firms purchase emissions permits.

2. Firms compete over prices in the product market.

As technology and capacity are exogenous, in the short-term model the last term of the profit

function (1) and the capital restriction vanish and marginal output production costs will only

depend on the amount of output produced, so that Πi(pi, xi) in the short run.

For the subsequent analysis we invoke the following assumptions:9

Assumption 1 The cost function c(q, �): ℝ+
0 × [0, 1] → ℝ+

0 is twice continuously differen-

tiable, strictly convex, and satisfies c(0) = 0, ∂c
∂q
≥ 0 for all q ∈ ℝ+

0 and ∂c
∂�

< 0 for all

� ∈ [0, 1].

9The treatment of the technology parameter � is drawn from von der Fehr (1993).

6



Assumption 2 The permit price function �(X): ℝ+
0 → ℝ+

0 is non-decreasing, twice contin-

uously differentiable, convex, and satisfies �(0) ≥ 0.

Following Kreps and Scheinkman (1983: 328), we further require:

Assumption 3 The output price function P (q) is strictly positive on some finite interval

(0, Q), on which it is twice-continuously differentiable, strictly decreasing, and concave. For

q ≥ Q, P (q) = 0.

Assumption 4 The installation cost function f(q, �): ℝ+
0 ×[0, 1]→ ℝ+

0 is twice continuously

differentiable, convex, and satisfies f(0, �) = 0, ∂f
∂q

> 0 and ∂f
∂�

> 0 for all q ∈ ℝ+
0 and

� ∈ [0, 1].

Throughout we focus on the situation where both firms produce a positive amount in

equilibrium, and the equilibrium price is strictly positive. That is, we focus only on non-

trivial solutions.

Finally, the structures of the games need some discussion. We start with the short-

run model. Seeing the permit market as an input market and the product market as a

spot market, the given structure may seem natural: having received the initial allocation

of permits at the beginning of an ETS firms first seek to cover their permit demand before

engaging in the product market. The structure fits equally well if the permit market is

interpreted as a forward market. For the case of electricity markets, the structure would

rather be the reverse: most electricity is traded forward determining at the same time the

permit amount needed to comply with the ETS. We stick to the former structure because it

produces the more interesting results.10 That is, having the permit choice occurring before

product market competition allows for cost raising strategies to be profitable and allows for

the investigation of interior solutions in the short run model.

We adopt the same structure in the long-run Bertrand model. For the Cournot model

the production decision is made before the permit holding is determined, so as to ensure our

10Our structure is also considered in von der Fehr (1993: subsection 3.1) for Cournot output competition
and, similarly, in Loertscher’s basic model. DiSegni Eshel (2005), von der Fehr (1993: subsection 3.3) consider
simultaneous (spot) market competition for product and permits. Allaz and Vila (1993) study the forward
market interpretation for a Cournot spot market, Mahenc and Salanié (2004) for a Bertrand spot market
(Liski and Montero (2006) analyse the repeated context), but without focus on initial allocation effects.
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main result Kreps and Scheinkman holds. The interpretation of the long run results may be

applied to both the Cournot and Bertrand models. Note that the Kreps and Scheinkman

result of the long-run analysis in section 4 is robust against a simultaneous inversion of stages

2 and 3 in both the Cournot and Bertrand models.11

3 Short-Run Analysis

We solve the short-run model for sub-game perfect Nash equilibria using backwards induction

beginning with the second stage. We also consider alternative assumptions that give rise to

a case of inelastic product demand.12

In the short-run we consider there to be two types of identical firms, rather than two

individual firms. Entry and exit is not explicitly considered; we assume that the number of

firms is fixed but that there is enough firms to meet demand. This ensures that the capacity

constraint does not directly influence the results in the short-run - as the short-run model

represents the initial stages of an ETS, during which overall production levels are likely to

fall relative to business as usual baselines, it is reasonable that production constraints are

not binding.

Firms of type a have lower marginal production costs but a higher emission intensity than

firms of type b:13

ca(qa) + da ⋅ �(X) < cb(qb) + db ⋅ �(X) with da > db , (3)

where di is the emission intensity per unit of production (i = a, b). The requirement that

type-a firms have lower carbon-inclusive marginal costs will be relaxed in subsection 3.1.

In the short run, a firm faces a fixed emissions intensity. The only abatement opportunity

11The results are unlikely to be robust with respect to simultaneous permit and product market decisions
as the result of Lemma 5 will no longer hold.

12The case of inelastic product demand provides the motivation for choosing Bertrand competition for the
short run model. With inelastic demand the Cournot first-order conditions do not exist.

13For example, type a could be coal-fired power plants, type b as gas-fired power plants or renewable
generators with high fixed costs. The specification rules out the case where one plant is both cheaper to run
and less emissions intensive. This case is not very interesting: the result is, intuitively, that the low-cost,
low-emission firms should satisfy as much of the demand as possible at any carbon price, therefore industry
emissions are independent of permit prices and initial allocations.
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available to a firm is thus to reduce production. We require compliance with the ETS 14 such

that

xi ≥ diqi (i = a, b) . (4)

Moreover, there are at least two identical firms of each type, preventing monopolistic style

behaviour to occur in the inelastic case when the difference in the cost structures between

types is large.

For the inelastic case we replace Assumptions 1 and 3, respectively, with the following:

Assumption 5 The marginal cost function c(q): ℝ+
0 → ℝ+

0 is constant and finite for the

closed interval [0, qi] and not defined for q > qi, so that firms have a capacity constraint at

qi. The capacities, qi, are such that
∑

i∈A qi < Q and
∑

i∈A,B qi > Q.

Assumption 6 Demand is perfectly inelastic and fixed at some quantity Q > 0.

Assumptions 5 and 6 and Assumptions 1 and 3 are alternative; Assumption 2 applies in

both cases. While Assumption 6 denotes the case of perfectly inelastic demand, Assumption

3 is the standard assumption of downward sloping, hence elastic, demand. In the short run,

demand will typically be relatively inelastic (i.e., ∂q
∂p

p
q

is small). Situations where demand

may be considered perfectly inelastic in the short run include staple foods and electricity.

Assumptions 1 and 2 impose the usual convexity conditions. For the inelastic case marginal

costs are constant and each firm has an exogenous capacity constraint. Whilst the Assump-

tions 5 and 6 for inelastic demand are restrictive, they are only necessary to ensure that

the prices in the inelastic demand scenario are the same as prices in the elastic demand sce-

nario. Corresponding results for the inelastic demand scenario could be reproduced with less

restrictive assumptions.

Lemma 1 In the second-stage pricing game there is a continuum of Nash equilibria. In

all equilibria each producing firm charges the same price. The continuum of Nash equilibria

includes one where each firm charges a price equal to the marginal cost (including carbon

costs) of the least cost effective unit: p∗ = cb(qb) + db ⋅ �(X) for all firms.

14This assumption is standard in the literature as most ETS impose large penalties for non-compliance.
For example, in the first EU-ETS phase the non-compliance penalty was e 40 per missing permit (in phase
two e 100) plus a ‘make-good provision’ requiring an extra permit surrendered the next year.
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The proof is given in Appendix A.1. As there are multiple equilibria for the elastic case

pricing game, we require a decision rule to select a single equilibrium. We assume all firms

to price so that the least cost effective producing firm receives zero profits.

In the first stage of the game, firms seek to maximise their profits (1) adapted for the

short-run case over their permit holdings given the optimal choice of the output price in the

second stage and the compliance condition (4). We have to distinguish the cases of (a) an

interior solution, where at least one firm holds more permits than required, x∗i > diq
∗
i , and

(b) a boundary solution, where all permits are utilised to cover actual emissions, x∗i = diq
∗
i

for all firms (see Figure 1 for an illustration).

Figure 1: Distinction of (a) interior and (b) boundary solution in permit-choice game.

In an interior solution, in equilibrium, we require the following first- and second-order

conditions to hold for all firms of type i, i = a, b:15

∂Πi

∂xi
=

∂p

∂xi
qi +

∂qi
∂xi

p− ∂qi
∂xi

ci − �(X)− (xi − x0
i )
∂�

∂xi
= 0 (5a)

∂2Πi

∂x2
i

< 0 . (5b)

Remark 1 Condition (5b) is necessary to ensure the solutions to conditions (5a) charac-

terise a maximum. Sufficient, but not necessary, for condition (5b) to hold is that �(X) is

linear.

The proof is given in Appendix A.2. In a boundary solution, the optimal permit holding

constrains production, so that x∗i = diq
∗
i .

15For brevity, ∂p
∂xa
≡ ∂p

∂�
∂�
∂xa

, ∂p
∂xb
≡ ∂p

∂�
∂�
∂xb

, ∂qa
∂xa
≡ ∂qa

∂p
∂p
∂�

∂�
∂xa

, and ∂qb
∂xb
≡ ∂qb

∂p
∂p
∂�

∂�
∂xb

.
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Proposition 1 summarises the effects of an increase in the initial permit allocation to a

firm on its optimal permit holdings, the permit price, and the product price.

Proposition 1 Given an increase in the initial allocation of permits to a firm does not

induce a change of the marginal unit of production in the first-stage permit-choice problem,

it will,

a) in an interior solution, increase

� the number of permits the firm holds in equilibrium,

� the permit price, and

� the product price ( i.e., increase pass-through profits),

b) in a boundary solution, have no effect on

� the number of permits the firm holds in equilibrium,

� the permit price, or

� the product price ( i.e., there is no additional pass-through profit).

These results hold irrespective of whether demand is perfectly inelastic or elastic.

Proof. a) Let x∗i be the solution to problem (5a), ∂Πi

∂xi
= 0. The second derivatives ∂2Πi

∂xi∂x0i
=

∂�
∂xi

> 0 and ∂2Πi

∂x2i
< 0 (see also the proof of Remark 1) together imply both

∂x∗i
∂x0i

> 0 and

∂�
∂x0i

> 0 (Figure 2). Lemma 1 implies that the product price also increases.

b) By definition, a boundary solution indicates that compliance condition (4) holds with

equality. The solution to the problem is, hence, x∗i = diqi (i = a, b). As it is independent of

x0
i , the initial permit allocation has no bearing on the solution. □

We fix the marginal unit of production in Proposition 1 for clarity of results. As applied

to power markets, for example, this assumption means that the merit order does not change.

Figure 2 illustrates the proof of Proposition 1.a. As x0
i increases the optimal permit holding

moves from x∗ to x∗∗. As ∂2Πi

∂xi∂x0i
> 0, an increase in x0

i will increase the first derivative ∂Πi

∂xi
at

all points along the profit curve. Thus, at the point where ∂Πi

∂xi
= 0 for the original allocation

11



Figure 2: Illustration to the proof of Proposition 1.a.

of x0
i ,

∂Πi

∂xi
> 0 for the new allocation of x0

i . As ∂2Πi

∂x2i
< 0, there must be a value of x greater

than the original x∗ that will cause ∂2Πi

∂x2i
= 0. The increase in the initial permit allocation

shifts the profit function up and to the right.

The likelihood of a boundary solution depends on the strength of the overall, economy

wide, emissions target.

Corollary 1 A tightening of the emissions target reduces the optimal holding of permits

for each firm, and increases the range of production technologies that produce a boundary

solution.

The proof is given in Appendix A.3.

Permit-market efficiency requires all firms, in all industries, have the same marginal abate-

ment costs in equilibrium. In our model all other industries are price takers in the permit

market, and will, with Montgomery (1972), hold the efficient permit amount. To analyse

permit-market efficiency we can thus focus on the firms with market power.

Case 1 Interior solution (x∗i > diq
∗
i for at least one firm )

It may aid intuition to rewrite the first-order conditions (5a) in the form where marginal

benefits equate marginal costs. Equation (6) is for inelastic, (7) for elastic demand:

∂p

∂xi
qi = �(X) + (xi − x0

i )
∂�

∂xi
(6)

∂p

∂xi
qi −

∂qi
∂xi

ci = �(X) + (xi − x0
i )
∂�

∂xi
− ∂qi
∂xi

p (7)
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In the inelastic case, receiving an extra permit for free reduces a firm’s marginal cost

of purchasing another permit but leaves its marginal benefit unchanged. Thus, the firm

seeks to purchase additional permits, which raises the permit price. In the elastic case,

the marginal benefit from permit holding includes an additional term, capturing the cost

reduction associated with the decreased production due to the increased permit holding;

moreover, an additional cost term captures the revenue loss associated with the decreased

production. As the price will exceed a firm’s costs, marginal costs of an additional permit

increase more than its marginal benefits. As purchasing an additional permit increases the

product market price (reducing the quantity sold), the permit holding for each firm will be

lower under elastic demand than under inelastic.

Equations (6) and (7) show two distortionary effects which arise in relation to the

oligopolists’ market power in permit and product market. As qualitatively the same for

elastic and inelastic demand, we only discuss the inelastic case. Note, first, that the marginal

costs of an additional permit held in equilibrium are not equal to the permit price, �(X).

They also comprise a term for the extra amount to be paid for all other permits purchased,

(xi − x0
i )

∂�
∂xi

. It decreases in the initial allocation, increases with the permits held, and

vanishes if the initial allocation exactly equals the firm’s permit holdings in equilibrium. It is

positive if and only if the firm is a net seller (xi−x0
i > 0), causing lower permit holdings than

under perfect competition (as discussed in detail in Hahn 1984). We call this effect the Hahn

monopsony effect. For a net buyer (xi−x0
i < 0), it is negative, causing higher permit holdings

than in the perfectly competitive case – the Hahn monopoly effect. Second, purchasing an

extra permit implies a benefit due to the increase in revenue, ∂p
∂xi
qi. Compared to a situation

without pass-through profits, profits and permit holdings are increased. We refer to this as

the pass-through profit effect. Note that in the inelastic case, marginal changes in the initial

permit allocation have no effect on production: in an internal solution the output is already

at a maximum and is not affected by permit holdings.

Given the emissions target is set such that marginal social benefits of pollution reduction

are equal to its marginal social costs, the permit market cannot be operating efficiently

if a firm’s permit holdings exceed its emissions in equilibrium; non-utilised permits imply
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emissions below their socially efficient level.16 The two kinds of initial allocation effects

described have opposing impacts on market efficiency. When firms are net permit buyers,

market efficiency is improved by the Hahn monopsony effect, but declines by the pass-through

profit effect, as the initial allocation increases. When firms are net permit sellers, market

efficiency declines due to both Hahn monopoly and pass-through profit effect, as the initial

allocation increases. Thus, we would expect the efficient initial allocation here to be smaller

than in the efficient case discussed by Hahn (1984).

If the permit market were perfectly competitive, then Hahn’s results for efficiency hold

irrespective of the choice of Bertrand or Cournot competition. Using Bertrand competition

here allows us to model pass-through profits in a more intuitive manner: changes in permit

allocation directly affect prices in a Bertrand framework, rather than as a secondary flow

on effect from quantity choices under Cournot competition. The Hahn effects will exist in a

formulation with Cournot output competition, too, as will the pass-through profit effect. The

size of the pass-through profit effect, however, is smaller with Cournot than with Bertrand.

The purchase of an additional permit by any firm will raise the permit price, raising the

carbon-inclusive marginal costs of the least cost-effective firm. The extent of the pass-through

profit effect is determined by the rate of transmission of this increase in marginal costs to the

product market price. In our Bertrand formulation, where we have chosen to focus on the

unique equilibrium where the price equals the marginal cost of the least cost-effective firm,

this transmission rate is 100 per cent; under Cournot competition it will be less than 100 per

cent. Pass-through profits cause, hence, greater distortions under Bertrand competition.

Case 2 Boundary solution (x∗i = diq
∗
i for all firms )

In a boundary solution to the first-stage permit-choice problem, the results are independent

of whether demand is inelastic or elastic. In both cases a small change in the initial permit

allocation will not affect the solution to that problem; it will still lie on the boundary. The

proof of Proposition 1 implies that with an increase in the initial allocation of permits the

profit function shifts up and to the right.17 Hence, a marginal increase in the initial allocation

16In a similar vein Smith and Yates (2003) show that non-emitting members of the economy purchasing
and retiring permits (e.g., environmental groups) is a signal of an inefficient market, although in their model
the inefficiency stems from uncertainty over the optimal size of the emissions target.

17The stationary point of the profit function occurs at a higher level of permit holdings, and the initial
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here simply raises the firm’s profits. Thus, the pass-through profit effect still exists in the

sense that the existence of a positive permit price implies that the product market price is

higher than it would be if the price of permits was 0. But the initial permit allocation to

a firm no longer affects the pass-through profit effect. As on the boundary the equilibrium

permit holdings do not change, marginal changes in the initial permit allocation have no

effect on production; permits are expensive enough that firms simply wish to minimise their

holdings for a given quantity of production. All permits are utilised to cover actual emissions.

For a boundary solution, the initial allocation of permits has no impact on efficiency because

the solution is independent of the initial allocation of permits. In a more long-run view,

however, the initial allocation of permits may affect the entry/exit decision of firms as a high

initial allocation creates higher profits. Thus, at least one initial allocation of permits will

lead to efficiency of the permit trading scheme. In practice, it would be extremely difficult to

give the correct initial allocation to all firms, implying that least-cost emissions reductions

are unlikely to be achieved.

Hence, in the short run, when capacity and technology choice is fixed, the efficiency of an

ETS depends much on whether firms with market power are constrained by the requirement

to hold permits. (It is clear that when the potential for pass-through profits exists, the pattern

of the initial allocation of permits may affect both the final distribution of permits amongst

firms and the permit price, through the pass-through profit effect and Hahn effects.) If firms

are constrained by the requirement to hold permits the initial allocation of permits affects

firms’ profits, but not their optimal permit holdings. In no circumstances does a marginal

change in the initial allocation of permits affect the level of production in the short run

when demand is perfectly inelastic. In the case of elastic demand (where the comparison is

possible), the effect of permit allocations on permit prices is greater in Bertrand competition

than Cournot competition.

3.1 Technology Switching

In this subsection we extend the analysis to consider the potential for technology switching.

As each firm has a fixed production technology, technology switching may only be observed

wealth of the firm has increased (Figure 2).
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at the industry level. We relax the assumption of equation (3), to allow type-b firms to

have lower marginal costs for some values of �(X). As ca < cb and da > db, type-a firms

will be cheaper at low values of � (and type-b firms cheaper at high values). We define the

technology-switching carbon price, �, as the value of � such that

ca(qa) + da ⋅ �(X) = cb(qb) + db ⋅ �(X) . (8)

The impact of � will depend on the elasticity of the function �(X).

The inclusion of a switching price introduces a discontinuity in equation (5a). The as-

sumption that firms price such that the least cost effective firm receives zero profits implies

that the discontinuity is a downward (upward) shift in profit for type-a (b) firms as a marginal

change in permit holdings induces a shift in �(X) from � − � to � + � for small �. There-

fore, a type-a firm would prefer the carbon price to be slightly below (rather than slightly

above) the switching price. At an industry level, overall production from type-a firms would

be larger when the carbon price is slightly below the switching price (as type-a firms are

relatively cheaper). This relatively higher production from type-a firms may be viewed as

industry-level technology switching.

As in order to produce a firm must hold a positive quantity of permits, the ability for

type-a firms to place downward pressure on � is constrained, whereas the ability for type-b

firms to place upward pressure on � is not. Thus when �(X) is relatively elastic, type-b

firms will purchase sufficient permits such that �(X) > �. When �(X) is relatively inelastic,

purchasing sufficient permits such that �(X) > � may be prohibitively expensive for type-b

firms, and the carbon price may be below the switching point. Hence, the carbon price is

more likely to be below (above) the switching price when type-a (b) firms have greater market

power.18 In particular, if type-a firms have more market power than type-b firms, and �(X)

is relatively inelastic, then the switching price may act as an artificial ceiling for the carbon

price.

18Factors that determine market power include: market share on the output market, the initial allocation
of permits and the comparative costs of production.
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4 Long-Run Analysis

We now turn to the long-run models, 1 and 2, of section 2. We solve the long-run models

by first exogenously fixing technology choice and demonstrating the Kreps and Scheinkman

result. To do this, we solve the Cournot sub-game for sub-game perfect Nash equilibria

(SPNE) using backward induction. We show that the solution for the Cournot game is

identical to the equivalent Bertrand formulation. We then endogenise technology choice and

conduct comparative statics on the initial permit allocation. Again, we require full compliance

with the emissions trading scheme, so that x∗i ≥ e∗i ∀i.

4.1 Cournot Game

We solve the Cournot game, as presented in Model 2, beginning with the third stage, where

each firm simultaneously maximises its profit (1) (with P (qi + qj) substituted for pi) such

that the full-compliance requirement holds (x∗i ≥ e∗i ).

Lemma 2 For an initial permit allocation x0
i ≤ ei, the solution of the second-stage game is

x∗i = e∗i = q∗i (1− �i) for i = a, b.

Proof. For all xi ≥ x0
i ,

∂Πi

∂xi
= −(xi − x0

i )
∂�
∂xi
− �(X) < 0. The solution follows. □

Thus, firms will only hold permits to cover their emissions exactly. The assumption that

x0
i ≤ ei is sufficient but not necessary; the solution given in Lemma 2 above will still hold

as long as the excess allocation of permits is not too large (∂Πi

∂xi
still negative). The intuition

is: the model requires that a firm cannot hold less permits than it produces emissions. This

can, for example, be ensured by high non-compliance penalties. Also, it is not profitable for

a firm to hold more permits than is necessary. Doing so involves an additional cost for no

additional benefits as production and revenues have already been realised in the second stage

of the game.19

19Note that this is different from our short-run model, where it may be profitable to hold excess permits
to raise a rival’s costs, or to manipulate the market.
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By substituting x∗i = e∗i = q∗i (1− �i) into equation (1), the first-stage quantity maximisa-

tion problem of firm i, i = a, b, may be written as

max
qi

ΠC
i = qi ⋅ P (qi + qj)− qi ⋅ ci(�i)− [qi(1− �i)− x0

i ] ⋅ �[·]− fi(qi, �i) , (9)

where �[·] = �[qi(1− �i) + qj(1− �j)].

Lemma 3 The SPNE for the two-stage game where firms compete under Cournot competi-

tion and then purchase emissions permits can be found by solving problem (9) simultaneously

for all firms.

Proof. Existence and uniqueness of the solution to problem (9) follow from Tirole

(1988: 225n). □

4.2 Bertrand Game with Cournot Outcomes

Now turn to a Bertrand version of the game, with quantity precommitment, as given by

Model 1. Again we solve for sub-game perfect Nash equilibria. We first analyse the stage-

4 pricing game, for given technologies (stage 1) capacity constraints (stage 2) and permit

holdings (stage 3). Kreps and Scheinkman (1983: 335) summarize the required results for

the stage-4 pricing subgame in the following proposition which we reproduce adapted to our

notation and setting for convenience. Let qi denote the installed capacity of firm i, q∗i the

solution to problem (9), and qi(qj) the optimal solution to problem (9) for a firm, when its

competing firm installs capacity qj.
20

Proposition 2 (adapted from Kreps and Scheinkman (1983)).

1. If qi ≤ q∗i for the two firms, i = a, b, both firms name price pa = pb = p = P (qa + qb),

where qa, qb are the capacity constraints installed in stage 1. Thus each firm has revenue

qiP (qa + qb).

20Note that the proof in Kreps and Scheinkman (1983) is for the case when marginal costs are 0. Here we
have positive marginal costs. But this does not change the nature of the results for situations where both
firms produce positive quantities (ibid.: 337).
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2. If qa ≥ qb and qa > q∗a, firm a has expected revenue qa(qb)P (qa(qb)+qb) whilst firm b has a

uniquely determined expected revenue between qb
qa
qa(qb)P (qa(qb+qb) and qa(qb)P (qa(qb)+

qb).

3. If qb ≥ qa and qb > q∗b , firm b has expected revenue qb(qa)P (qb(qa)+qa) whilst firm a has a

uniquely determined expected revenue between qa
qb
qb(qa)P (qb(qa)+qa) and qb(qa)P (qb(qa)+

qa).

We now determine the optimal permit holdings in the stage-3 game, noting that the permit

choice does not directly affect the results of Proposition 2. The only impact permit holdings

have on a firm’s pricing decision is that they may act as an artificial capacity constraint, if

xi < qi(1− �i). When xi ≥ qi(1− �i), there is no impact on the pricing game as the cost of

purchasing permits is, by assumption, a sunk cost during the pricing game.

Lemma 4 Let qi be firm i’s installed capacity, i = a, b. Then, its optimal permit holding is

x∗i = ei = qi(1− �i).

The proof is given in Appendix A.4. The intuition is probably more instructive. A firm has

no incentive to purchase more than ei permits. For, to do so would incur a cost that cannot

be recovered, and has no strategic advantage – the rival firm will still be able to purchase

the full amount of permits required, and regard this cost as sunk in the pricing game (stage

3). A firm also will never purchase less than ei in a consistent equilibrium. To do so would

imply there was an over-investment in capacity. Clearly, then, a firm must purchase x∗i = ei

emissions permits.

As might be expected in a game with perfect information, the firms’ choice of xi, and the

associated unit costs, can be calculated following the firm’s capacity choice. Thus, the permit

costs may be incorporated into installation costs at the stage-2 decision. As they are sunk

during the stage-4 pricing game, permit costs are then indistinguishable from installation

costs, which obviously are also considered as sunk. To state the next lemma we introduce

the following function F , it may be considered a ‘sunk cost function.’

F (qi, �i, qj, �j) ≡ fi(qi, �i) + [qi(1− �i)− x0
i ] ⋅ �[qi(1− �i) + qj(1− �j)] . (10)
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Lemma 5 Assume 0 ≤ x0
i ≤ qi(1 − �i).21 The cost function F (qi, �i, qj, �j): ℝ+

0 × [0, 1] ×

ℝ+
0 × [0, 1] → ℝ+

0 is twice continuously differentiable, and satisfies F (0, �i, qj, �j) = 0,

∂F (qi,�i,qj ,�j)

∂qi
∣qi=0 > 0 and

∂2F (qi,�i,qj ,�j)

∂q2i
> 0 for all qi, qj ∈ ℝ+

0 and �i, �j ∈ [0, 1].

The proof is given in Appendix A.5.

Stages 2 and 3 of model 1 may be interpreted as a single-stage capacity installation

process, where firm i’s profit, i = a, b, can be written as

ΠB
i = qi ⋅ P (qi + qj)− qi ⋅ ci(�i)− Fi(qi, �i, qj, �j) . (11)

Thus, our game has the same form as the game presented in Kreps and Scheinkman

(1983), with the exception that our installation cost function depends on the capacity of

the rival firm. Lemma 4 demonstrates, however, that the choice of permit holdings is not

affected by the rival firm’s choice of capacity. Hence, our model presented in equation (11)

is equivalent to the model presented in Kreps and Scheinkman (1983).

Kreps and Scheinkman (1983) show that both firms will select quantities such that

qi = q∗i , and, hence, such that the equilibrium price is determined by the first condition in

Proposition 2.22 We may therefore use the rewritten equation (11) to state:

max
qi

ΠB
i = qi ⋅ P (qi + qj)− qi ⋅ ci(�i)− [qi(1− �i)− x0

i ] ⋅ �[·]− fi(qi, �i) , i = a, b , (12)

where �[·] = �[qi(1−�i)+qj(1−�j)]. Problem (12) is identical to problem (9), the equivalent

problem for the Cournot case. We conclude:

Proposition 3 The two-stage game where firms compete under Cournot competition and

then purchase emissions permits yields the same results as the three-stage game where each

firm installs costly production capacity, purchases emissions permits and then competes under

Bertrand competition. The equilibrium of both games can be found by solving problem (12)

simultaneously for all firms.

21This assumption is again not strictly necessary. The permit allocation must not be ‘too’ high, however.
22Much of Kreps and Scheinkman (1983) is in fact dedicated to dismiss conditions two and three in

Proposition 2 as off-equilibrium paths: when firms install excess capacity they intensify the price competition
in the third stage of the game and reduce their profits.
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The Kreps-and-Scheinkman framework has received much attention over the past two

decades. For our application of Kreps and Scheinkman the structure of the game is important.

The key parameter is the timing of the permit-choice and quantity-competition stages (the

capacity-installation stage in the Bertrand formulation). If capacity installation occured

after the purchase of permits, our function F would not exhibit the correct shape to allow

the Kreps-and-Scheinkman result to hold. Note the symmetry between the Cournot and

Bertrand formulations. In both formulations the quantity competition stage occurs before

the purchase of permits. Changing the order of events in only one of the games invalidates

the results. A similar Kreps-and-Scheinkman result could, however, be generated, if the first

stage of both games was the purchase of permits.23

4.3 Effects of the Initial Permit Allocation on Permit-Market Ef-

ficiency

We now consider the technology choice stage of games 2 and 1. Both of these models are

equivalent to the two-stage game where firms maximise the profit function as (identically)

contained in problems (9) and (12) by first making a choice of technology, �i, and then choos-

ing a quantity of production. We use the two-stage formulation of the game for analytical

ease and focus on the choice of technology.

The optimal strategy for a firm in the first stage is to choose � such that the following

conditions of, respectively, first and second order hold:

dΠi

d�i
=

∂Πi

∂�i
+
∂Πi

∂qi

dqi
d�i

+
∂Πi

∂�j

d�j
d�i

+
∂Πi

∂qj

dqj
d�i

= 0 (13a)

d2Πi

d�2
i

< 0 . (13b)

Optimality of the second-stage production decision implies ∂Πi

∂qi
= 0, and the simultaneity of

23That varied situation may generate different results in the following subsection 4.3. We do not consider
the case further as there is no clear economic intuition to support a firm purchasing emissions permits before
it installs production capacity.
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the permit choice that
d�j
d�i

= 0. So equation (13a) can be rewritten as

dΠi =
∂Πi

∂�i
d�i +

∂Πi

∂qj
dqj = 0 . (14)

Remark 2 Condition (13b) is required to ensure that the value of �i, found by solving either

condition (13a) or condition (14), is a maximum.

For the rest of this section, we assume that condition (13b) holds.

Again, we study how a marginal change in the initial permit allocation to a firm affects

the equilibrium. Unfortunately, its effect on technology and production choices of each firm

is ambiguous. For, an increase in the initial permit allocation may lead to the installation

of either cleaner or dirtier technology, and may either increase or decrease a firm’s total cost

function, depending on the relative slopes of the product demand, permit price and cost

functions.24 Moreover, the long-run model, unlike the short-run model, does not explicitly

include a variable for permit holdings – they are uniquely determined by technology installed

and quantity produced. Therefore, Hahn or pass-through profit effects cannot be isolated.

Proposition 4 summarises these effects. The results hold for all initial allocations of

permits, and in particular irrespective of the sign of (x∗ − x0).25

Proposition 4 An increase in the initial allocation of permits to a firm with market power

in the permit and product market will:

� increase total industry emissions,

� increase the price of permits.

The proof is given in Appendix A.6.

24Consider, for example, the case where an increase in the initial allocation promotes the installation of
cleaner technology, which increases the firms’ total cost of production. (As cleaner technology has lower
installation costs, but higher marginal costs, it may either increase or decrease total costs.) Becoming
less competitive the firm reduces production, causing a loss in profits from production. The reduction in
production and the cleaner technology make it require fewer emissions permits (it is less polluting), causing
a rise in profits from permit sale. The competing firm will, however, increase production levels, because it
faces weaker competition. The competitor may also install dirtier technology, increasing its permit holdings
and emissions levels. The net effect of the increase in the initial permit allocation will be an increase in total
industry emissions.

25The results are, of course, subject to Assumptions 3 and 4 and the structure of the games.
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Again, the result is quite pessimistic when considering the ability of an ETS to provide

least-cost emissions reductions. For least-cost abatement, all firms must have an equal MAC

in equilibrium. The fact that emissions depend on the initial allocation implies that efficiency

in the permit market can only occur if and only if regulators choose the ‘correct’ initial

allocation of permits. Specifically, as the emissions, and therefore the MAC, of both firms

depend on the free allocation of permits to both firms, the ‘correct’ initial allocations ensuring

MAC is equalised across both firms is likely to be impossible to determine in a realistic

situation.

Note, moreover, that permit-market efficiency does not imply an optimal level of invest-

ment in technology; it only implies that the MAC is equal for all firms, for a given level

of technology. Optimal technology investment would imply a given level of production is

produced at least total cost, which comprise both monetary and environmental cost. Permit-

market efficiency is a necessary condition for optimal investment: without it a firm will not

internalise the environmental externalities associated with their technology choice. Without

defining specific technologies we cannot speculate on how the initial allocation of permits

might be used to promote social efficiency.

In the long run, it cannot be profitable for a firm to hold more permits than required

for compliance. This makes intuitive sense, as any commitment to holding excess permits

would not be expected to be sustainable in the long term. As a consequence, permit-market

efficiency is more likely in the long than the short run.

5 Discussion

We discuss the argumentative application of our analysis to the EU ETS and the power sector

in subsection 5.1. Subsection 5.2 considers our contribution to the literature on permit-

market efficiency, the literature with a (more) long-run view in environmental economics,

and to general industrial organisation. Subsection 5.3 contains policy implications.
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5.1 Argumentative Application to EU ETS and Power Sector

As set out in the introduction, our analysis has a particular argumentative application to

the EU ETS and the price anomaly which occurred in its first trading phase 2005-2007. Our

short-run analysis suggests that it may well have been possible for some firms to hold more

permits than they had emissions. For example, if electricity generators (who face inelastic

demand in the short run) were allocated permits such that their optimal permit choice is an

interior solution to problem (5), then their actions would have directly contributed to the

high permit prices. The possibility of individual excess permit holdings in equilibrium in the

situation of an overall permit over-allocation with positive permit price has been treated in

the literature, but only for the case of perfect or Cournot competition and elastic demand

in the product market (e.g., Maeda 2003, DiSegni Eshel 2005). We show that the Hahn

monopsony and monopoly effects and a pass-through profit effect also occur under Bertrand

competition and elastic or inelastic product demand (Proposition 1). In particular, in the

interior solution, the pass-through profit effect becomes the bigger the more inelastic product

demand, reaching 100 per cent for inelastic demand; it is always bigger than under Cournot.

Such very high pass-through rates of (opportunity) costs to consumers – hence, windfall

profits – are in line with empirical evidence for the power sector (Sijm et al. 2006). This

makes a case for the realism of considering Bertrand output competition in this setting.

Our analysis in section 3 approximates the conditions in the short run or beginning of

an ETS, where decisions regarding technology and plant size have been made beforehand

and product demand is relatively inelastic. In particular, the analysis in section 3.1 provides

a potential explanation of the price movements in the EU ETS from April - October 2006.

Sijm et al. (2006) estimate the carbon switching price (from coal to gas generation) as being

approximately e 18.5. Given that the carbon price is likely to have been relatively inelastic

with respect to an individual firms’ permit holdings, and that coal generators were awarded

a large quantity of grandfathered permits (engendering them with potential market power),

the observed prices during this period are consistent with the switching price acting as a

price ceiling.

The long-run analysis in section 4 rather looks at the case where sufficient time has elapsed
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for firms to update and reinstall their production technology, as it may be expected in an

established ETS. The extended Kreps-and-Scheinkman model then predicts that an increase

in the free permit allocation to a sector with market power in permit and product market –

such as conceivably the electricity industry – will increase the permit price. In the long run,

firms do not have an incentive to hold excess permits anymore because they can adjust their

technology. This long-run effect will, however, hardly have played a role for the price decline

later in the first EU-ETS phase. The allowances rather lost their value because they could

not be banked for the second phase.

That our long-run results are independent of whether oligopolistic competition in the

product market is modelled in quantities or prices depends on two assumptions: efficient

demand rationing, and the relative structure of the Cournot and Bertrand formulations of

the games. We discuss the first assumption more generally in the next subsection. Here, we

want to note its possible immediate validity in the case of power markets: having received

the utilities’ price bids, there is, in fact, typically a centralised market authority which may

clear the electricity market in intervals of several minutes according to the efficient rationing

rule.26 On the other hand, to cover their emissions, firms may purchase pollution permits

before, during, or after production (as long as they acquire them before the compliance

deadline). Evidence from Europe suggests that the internal risk management procedures of

electricity generators require them to purchase their emissions permits before they produce

the associated emissions. In a simplified model of electricity markets, the natural order of

actions is thus: install capacity; purchase permits; compete over prices. We adopt this order

in both models.

Whether the predictions of our short-run analyses apply in the case of the first EU-

ETS phase, i.e., whether certain companies did exercise permit market power, hinges on the

availability of firm-level data, especially of permit holdings and permit-market transactions.

This data is currently still confidential. Observations relating to our long-run analysis still

only have to occur in the course of a high-volume permit market, such as the EU ETS.

26Moreover, as mentioned below, the Kreps-and-Scheinkman result is particularly likely to hold even inde-
pendent from the rationing rule used if capacity cost is high (Davidson and Deneckere 1986).
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5.2 Bertrand versus Cournot and Long-Run Considerations in the

Literature

Studies on permit-market efficiency have been following two modelling strategies. Either

they have focused on the permit market, assuming there is no feedback from the output

market structure; or, if they include the product market, competition on it has typically

been modelled in quantities.27 Clearly, from a technical viewpoint, it is much easier to work

with Cournot rather than Bertrand competition. Bertrand, however, is more general in that

it can also treat inelastic product demand. Moreover, for the short-run case, it may provide

results that are, e.g., with respect to pass-through profit rates, closer to empirical findings

than under Cournot competition. Whilst it is intuitively more natural for many markets to

use Bertrand competition under an ETS, the fact that, under certain conditions, equivalence

between the Bertrand and Cournot versions of the game can be established also under an

ETS (Proposition 3), implies that we may use a Cournot game to approximate these cases.28

The long-run aspect with endogenous technology and capacity choice (as developed in

section 4) has in the literature on permit-market efficiency thus far only been considered by

von der Fehr (1993: subsection 3.3), but not with Bertrand competition or a focus of initial

allocation effects. It adds in particular to contributions which compare R&D incentives from

different environmental-policy instruments under different degrees of perfection of output and

permit markets and, hence, also go beyond the question of static short-run efficiency (e.g.,

Montero 2002b,a, Bruneau 2004). They show that under market power, contrary to perfect

competition, command-and-control instruments may generate stronger incentives to innovate

27Studies of the first type include, e.g., Hahn (1984), Westskog (1996), Maeda (2003), Malueg and Yates
(2009), Lange (2008), Wirl (2009); of the second type Misiolek and Elder (1989), von der Fehr (1993), Requate
(1993), Sartzetakis (1997, 2004), Montero (2002a,b), DiSegni Eshel (2005). (Exceptions with respect to
Cournot output competition include Requate (1993) and Montero (2002a), cf. footnote 5.) As a firm’s main
concern is to ensure it has enough permits to cover its emissions, market power in the permit market has
typically been modelled with competition in quantities (only Lange 2008, Malueg and Yates 2009 and Wirl
2009 have recently also considered supply function equilibria).

28It is interesting to note that also the literature on power market regulation has been concentrating on
Cournot competition and supply function equilibria (e.g., Borenstein et al. 2000, Joskow and Tirole 2000,
Gilbert et al. 2004, Willems et al. 2009) – although Wolfram (1999), for example, shows that both models
predict markedly excessive mark-ups for British electricity spot prices in the 1990s. Also Bushnell et al.
(2008) can approximate actual spot prices in several US states in their static Cournot framework only by
taking into account (the frequently used) long-term contracts between utilities and retailers. Whether this
softening effect of forward commitments on competition also holds in a dynamic setting is, however, doubted
in the theoretical literature (Liski and Montero 2006).
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than market-based instruments. Moreover, their results for Cournot and Bertrand output

competition do not in general coincide. This underlines the importance of both market-power

issues and the distinct analysis of different forms of imperfect competition also in the more

long-run view.29

Our long-run analysis was developed directly based on Kreps and Scheinkman (1983),

who focus only on a single output market. Loertscher (2008) has recently summarized and

extended the literature dealing with their framework to cover the situation where firms com-

pete, as market-making oligopolists, on both input and output markets. Interpreting the

permit market as the input market, our model may be considered a variation of Loertscher’s

model. We extend his analysis, for the duopoly case, by allowing for an initial endowment of

the input good and analysing initial allocation effects. While we interpret this endowment

as an initial allocation of emissions permits, it could also be seen as an initial inventory of

stock. A second extension concerns the combination of forms of competition in input and out-

put market. While Loertscher treats the cases of Cournot-Cournot and Bertrand-Bertrand

(input-output) competition, we demonstrate that, under a costly capacity constraint, also

Cournot-Bertrand competition yields Cournot outcomes.

Our analysis, like Loertscher, uses efficient demand rationing and does not consider un-

certainty. According to the efficient rationing rule, customers with the highest reservation

prices are serviced by the firm with the lowest prices – a situation which cannot be expected

generally in real-world markets. The use of alternative rationing rules can lead to differ-

ent results (including mixed strategy equilibria) in the Kreps-and-Scheinkman second-stage

pricing game over some range of the parameter (capacity) space (Davidson and Deneckere

1986). Efficient and proportional rationing lead to the benchmark results between which

equilibrium behaviour is likely to be more aggressive than under Cournot competition, but

less competitive than in the Bertrand case (Loertscher 2008). Moreover, the Kreps-and-

Scheinkman result has been shown to be robust even under proportional rationing if capacity

cost is sufficiently high (Davidson and Deneckere 1986) and independently of the prevailing

rationing rule if all costs are sunk at the first stage and demand is uniformly elastic (Madden

29Interesting is also the idea to compare the option values of permits purchase and abatement measures in
view of their (ir-)reversibility (e.g., Chao and Wilson 1993).
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1998). Reynolds and Wilson (2000) find that, under uncertain demand at capacity instal-

lation, in many cases a symmetric equilibrium does not exist, even for identical firms. Our

framework does not focus on symmetric firms, so we do not expect symmetric solutions. The

introduction of uncertainty may be an interesting extension to our analysis (e.g., Baldursson

and von der Fehr 2004).

5.3 Policy Implications

The ETS design implications in the face of firms with market power in permit and product

market one may derive from our analysis are independent of the kind of output competition,

but differ to some extent for short and long run. In both cases, the substitution of auctioning

for free allocation of the initial permit allocation will eliminate pass-through profits, and is

likely to lead to further efficiency increases. In the short run, in an interior solution, it is,

however, not clear whether full permit auctioning decreases the impact of the Hahn effects.

For, permits are normally auctioned in conjunction to a secondary permit market. A firm

with market power may purchase some permits at auction and some in the secondary market,

leading to less efficiency gains than possible if it got all of its permits from the auction. (We

assume an efficient auction.) A particular contribution of this paper is to explicitly treat

the boundary solutions in the short-run analysis, where permit holdings, permit price and

product price in equilibrium are independent from the initial permit allocation given to the

firms. We show that a boundary solution is the more likely the more stringent the emissions

target (Corollary 1).30 Again, also with a sufficiently stringent target permit-market efficiency

is more easily achieved with auctioning of the initial permits than if they are given for free.

In the long run, in our case without banking of permits, holding more permits than re-

quired for compliance cannot be profitable for a firm. For equalisation of the firms’ MAC

under the ETS, and hence least-cost abatement, auctioning of initial permits remains advan-

tageous over free allocation. Indeed, due to the unsustainability of holding excess permits in

the long term, permit-market efficiency is more likely in the long than the short run. However,

the stringency of the emissions target does not impact on the likelihood of permit-market

30In line with this conclusion, in relation to the earlier US SO2 markets (with wide free allocation but
stringent targets) market power did not occur as an issue (Joskow et al. 1998, Stavins 1998).
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efficiency in the long run.

6 Conclusion

We study how the initial allocation of permits given to companies at the beginning of an

emissions trading phase impacts on their behaviour and market outcomes, when firms have

market power in permit and product market. We develop a long-run model with endogenous

technology and capacity choice, and a short-run model with fixed technology and capacity.

The latter extends the standard models of market power in ETS (e.g., Hahn 1984, von der

Fehr 1993, Westskog 1996) by consideration of the output market with Bertrand competition.

The long-run analysis introduces permit trading in capacity-choice models, such as that of

Kreps and Scheinkman (1983). We show that, in the short run, initial allocation effects

derived with Cournot competition carry over to Bertrand output competition, with two

extensions. The Bertrand case is more general in that it can also treat inelastic product

demand; and it generates higher pass-through profit rates (similar to those which could be

observed for the electricity industry under the EU ETS). In the long run, under endogenous

technology and capacity choice, Bertrand competition yields Cournot outcomes also under an

ETS, if corresponding structures of the two versions of the game are chosen. Qualifications in

the literature with respect to the demand rationing rule apply. A crucial assumption in this

paper is that the initial permit allocation is given to the firms for free. We show that in the

short run (also under free allocation), permit-market efficiency is likely to increase with the

strength of the emissions target. Further efficiency increases could be achieved by auctioning

the permits.

Our analysis is based on static games under certainty. Whether the results are robust in

a dynamic setting, as may be more realistic especially in an established ETS, and how they

may change if uncertainty is taken into account constitute interesting extensions for future

research.
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Appendix

A.1 Proof of Lemma 1

(�) It will clearly be profitable for type-a firms to produce to their capacities, and to charge

the highest price possible. Type-b firms compete over the residual demand under Bertrand

competition with constant marginal costs. As is well known, the solution for this problem is

for type-b firms to charge price equal to marginal cost. Type-a firms want to price as high

as possible: given efficient rationing, they can charge equal to the marginal cost of type-b

firms and still sell their full capacity. Thus the solution is for all firms to charge equal to the

marginal cost of type-b firms.

(�) The case of elastic demand is covered in Dastidar (1995), see in particular Lemma 9

and Proposition 2. □

A.2 Proof of Remark 1

∂2Πi

∂x2i
= ∂2p

∂x2i
⋅ qi − qi ∂

2ci
∂x2i
− 2 ∂�

∂xi
− (xi − x0

i )
∂2�
∂x2i

< 0 if ∂2ci
∂x2i

, ∂�
∂xi
, (xi − x0

i )
∂2�
∂x2i
≥ 0 and ∂2p

∂x2i
≤ 0.

∂2ci
∂x2i

, ∂�
∂xi
, ∂

2�
∂x2i
≥ 0 hold from Assumptions 5 and 2.

�(X) linear implies that ∂2�
∂x2i

= 0. For firms of type a, �(X) linear also implies that

∂2p
∂x2i

= 0, and we are done. For firms of type b, some more work is needed.

∂2Πb

∂x2
b

=
(∂2p

∂�2

∂�

∂xb
+
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∂�

∂2�

∂x2
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+
∂2p

∂c2
b

∂cb
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+
∂p

∂cb

∂2cb
∂x2

b

)
⋅ qb − qb

∂2cb
∂x2

b

− 2
∂�
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− (xb − x0

b)
∂2�

∂x2
b

=
(
db ⋅

∂2�

∂x2
b

+ 1 ⋅ ∂
2ci
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)
⋅ qb − qb

∂2cb
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− 2
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− (xb − x0
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from Lemma 1. So,

∂2Πb

∂x2
b

= db ⋅
∂2�

∂x2
b

− 2
∂�

∂xb
− (xi − x0

i )
∂2�

∂x2
b

,

which is negative when �(X) is linear. □
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A.3 Proof of Corollary 1

A tightening of the emissions target can be introduced to the model as an exogenous increase

in the permit price function, �. An increase in � decreases ∂Πi

∂xi
and, by the same logic

as presented in the proof of Proposition 1.a, reduces the equilibrium value of x∗i for any

given production technology (as represented by the continuous variable � in the long-run

models, but exogenous and hidden in the short run model). All production technologies that

previously produced a boundary solution will still produce a boundary solution. Also, there

will be at least 1 new production technology that will produce a boundary solution (e.g. the

production technology that previously gave the solution x∗i = diq
∗
i + � for small �). □

A.4 Proof of Lemma 4

Let Π(xi, qi) denote the profit of firm i as in equation (1) when it installs capacity qi, purchases

permits xi and prices are determined as in Proposition 2, for a given choice of permits by

the opposing firm. We begin by using forwards induction to eliminate xi < x∗i . We denote

the capacity constraint implied by the permit holding xi < x∗i by q̂i = xi/(1 − �i). Now,

Π(xi, q̂i) > Π(xi, qi). This implies that the firm has ‘over-installed’ capacity in the first stage

of the game, and we reject this situation as an equilibrium using the concept of forward

equilibrium. For xi > x∗i the capacity constraint is qi. Now, Π(x∗i , qi) > Π(xi, qi). Hence, a

firm will not install permits such that xi > x∗i . Therefore, firms will install permits such that

xi = x∗i for i = a, b. □

A.5 Proof of Lemma 5

The double continuous differentiability follows from Assumption 4. At qi = 0, ∂F
∂qi

= ∂fi
∂qi

+

(1− �i)�[qi(1− �i) + qj(1− �j)] + [qi(1− �i)− x0
i ]

∂�
∂qi

> 0. For all qi holds:

∂2F
∂q2i

= ∂2fi
∂q2i

+ 2(1− �i) ∂�∂qi + [qi(1− �i)− x0
i ]

∂2�
∂q2i

> 0. □

A.6 Proof of Proposition 4

Be E ≡ qi(1 − �i) + qj(1 − �j) the total emissions of the industry and note that d2Πi

d�idx0i
=

∂�
∂�i

+ ∂�
∂qi

dqi
d�i

+ ∂�
∂�j

d�j
d�i

+ ∂�
∂qj

dqj
d�i

= d�
d�i

. For d�
d�i

> 0, d2Πi

d�idx0i
> 0, and, by condition (13b), d�i

dx0i
> 0,
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such that d�
dx0i

> 0. For d�
d�i

< 0, d2Πi

d�idx0i
< 0, and, by condition (13b), d�i

dx0i
< 0, such that

d�
dx0i

> 0. Then, with Assumption 2 and Lemma 2, dE
dx0i

> 0. □
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