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Abstra
tThe paper analyzes the role of governmental debt in an overlapping generationse
onomy with sto
hasti
 produ
tion and 
apital a

umulation. In the absen
e oftaxation, equilibria with positive debt generi
ally 
onverge to debtless equilibriawith probability one whi
h are dynami
ally ineÆ
ient. It is shown that this maybe over
ome by a tax on labor in
ome whi
h minimizes stabilization e�orts bystabilizing the level of debt along a stable set of the underlying dynami
al system.A long-run welfare 
riterion is formulated whi
h measures 
onsumer welfare at thestabilized equilibrium. Based on this 
riterion, the welfare e�e
ts of di�erent levelsof debt and di�erent interest poli
ies are investigated with the help of numeri
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Introdu
tionMost industrialized 
ountries have large governmental debt. In the U.S., total outstand-ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about66% in 2007. Largely due to the giganti
 �s
al stimuli in response to the re
ent e
onomi

risis, the past two years have seen a dramati
 in
rease of this ratio to more than 85%as of 2009. Similar �gures apply for other 
ountries suggesting that the sustainabilityof governmental debt is - or should be - a highly relevant issue for poli
y making.From a theoreti
al perspe
tive, it is well-known that an in
rease in governmental debtmay stimulate aggregate demand in the short run but 
rowds out 
apital investment inthe long run, 
f. Elmendorf & Mankiw (1999). The latter e�e
t is parti
ularly importantin overlapping generations (OLG) e
onomies where the �rst welfare theorem need nothold and 
ompetitive equilibria may be ineÆ
ient due to an overa

umulation of 
ap-ital. In su
h a situation, as �rst shown by Diamond (1965), introdu
ing governmentaldebt leads to a welfare improvement by implementing a dynami
ally eÆ
ient allo
ation.Subsequent studies to investigate the role of governmental debt in deterministi
 OLGe
onomies may be found, e.g., in de la Croix & Mi
hel (2002, Ch.4), Farmer (1986),Rankin & RoÆa (1999) and in Bullard & Russell (1999) for 
onsumers with multiperiodlives.There is a 
lose relationship between the sustainability of governmental debt and theemergen
e of a bubble. The latter 
orresponds to an intrinsi
ally worthless asset thatis traded at a positive pri
e su
h as �at money or a private asset that does not paydividends. The di�eren
es between debt and a bubble are thoroughly exhibited in dela Croix & Mi
hel (2002, p.212). Starting with the work by Tirole (1985), a large bodyof the literature dis
usses the emergen
e of bubbles in deterministi
 OLG models. Ex-amples may be found, e.g., in Berto

hi & Wang (1994), Kunieda (2008), or Mi
hel &Wigniolle (2003). Due to the stru
tural similarities between debt and a bubble, theresults by Tirole (1985) are dire
tly appli
able to 
hara
terize sustainable levels of gov-ernmental debt in deterministi
 OLG models, 
f. de la Croix & Mi
hel (2002, Ch.4). Itis shown there that steady states with positive debt are saddle-path stable whi
h impliesthat sustainable levels of debt are required to lie on a lower-dimensional subset (the so-
alled stable manifold) of the state spa
e. This determines a unique debt-to GDP ratiounder whi
h the e
onomy 
onverges to the golden-rule steady state with positive debt.Debt smaller than the 
riti
al level leads to an asymptoti
ally debtless (and ineÆ
ient)situation while larger values imply an unsustainable situation with explosive debt.Starting with the work of Wang (1993), the literature has in
reasingly fo
used on OLGe
onomies with aggregate risk due to random produ
tion sho
ks. It is not yet known,however, how the previous �ndings 
arry over to a sto
hasti
 setting and under what
onditions equilibria with positive debt exist. A �rst approa
h in this dire
tion is putforward in Berto

hi (1994), who analyzes possible equilibrium s
enarios in a sto
hasti
OLG model with riskless debt. The present paper provides a re�nement of her results.If there is aggregate risk, another fun
tion of governmental debt is to provide a possi-bility of risk-sharing between generations. If interest payments on outstanding debt are1



�nan
ed by issuing new debt to the next generation, the implied risk sharing is essen-tially determined by the interest on debt. This motivates the question of how di�erentinterest poli
ies on debt a�e
t intergenerational risk-sharing and 
onsumer welfare.The present paper extends the model of Wang (1993) to study the role of governmentaldebt in a sto
hasti
 OLG framework whi
h has not been done in the literature. Follow-ing above's motivation, two issues are at the 
enter of interest: 1.Whi
h levels of debtare sustainable in the presen
e of random sho
ks? 2.Whi
h interest poli
y is favorableand indu
es optimal risk sharing between generations? To quantify the welfare e�e
tsof di�erent debt poli
ies, the paper develops a long-run welfare 
on
ept on the basis ofwhi
h the optimum quantity of debt and an optimal interest poli
y 
an be determined.The paper is organized as follows. Se
tion 1 introdu
es the model. Se
tion 2 analyzesequilibria with 
apital-equivalent debt where the return on debt 
oin
ides with the 
ap-ital return. This stru
ture is generalized in Se
tion 3 whi
h allows for general interestpoli
ies in
luding riskless debt. Se
tion 4 demonstrates how the level of debt 
an bestabilized against unfavorable sho
ks through a labor in
ome tax. The welfare proper-ties of stabilized equilibria under di�erent debt poli
ies are investigated in Se
tion 5.Se
tion 6 
on
ludes, all proofs are pla
ed in the Mathemati
al Appendix.1 The ModelThe framework to be introdu
ed in this se
tion generalizes the sto
hasti
 overlappinggenerations model in Wang (1993) to in
lude governmental debt and a tax system.Population. The 
onsumption se
tor 
onsists of overlapping generations of homogeneous
onsumers who live for two periods. The index j 2 fy; og identi�es the young and oldgeneration in ea
h period. Ea
h young 
onsumer is endowed with one unit of labor timesupplied inelasti
ally to the market. Old 
onsumers are retired and do not supply labor.Abstra
ting from population growth, ea
h generation 
onsists of N > 0 
onsumers su
hthat LSt � N denotes aggregate labor supply at time t � 0. Old 
onsumers in period town the existing sto
k of 
apital Kt whi
h they supply to the produ
tion pro
ess.Produ
tion. Labor and 
apital are employed by a single �rm whi
h produ
es Yt unitsof a 
onsumption good using labor Lt and 
apital Kt as inputs in period t. In addition,the produ
tion pro
ess in period t is subje
ted to random sho
ks 
orresponding to therandom variable "t. The te
hnology is represented by the linear homogeneous produ
tionfun
tion F (�; "t) : R2+ �! R+ produ
ing gross output (in
luding depre
iated 
apital) asYt = F (Kt; Lt; "t): (1)The noise pro
ess f"tgt�0 
onsists of independent, identi
ally distributed random vari-ables de�ned on a 
ommon probability spa
e (
;F ;P). Ea
h "t is distributed a

ordingto the probability measure � supported on E � ["min; "max℄ � R++ . The pro
ess isadapted to a suitable �ltration fFtgt�0 of in
reasing sub �-algebras of F su
h that ea
h"t : 
 �! E is Borel-measurable with respe
t to Ft.1 Let E t [�℄ := E [�jFt ℄ denote the1 The underlying probability spa
e may be 
onstru
ted by de�ning 
 := EN0 whi
h may be endowedwith the produ
t topology to be
ome a topologi
al spa
e on whi
h the Borel-�-algebra F := B(
)2



expe
tations operator 
onditional on the information represented by Ft. Throughout,the notion of an adapted sto
hasti
 pro
ess f�tgt�0 taking values in some set � � RMrefers to the probability spa
e and the �ltration de�ned. It implies that ea
h randomvariable �t : 
 �! � is Borel- measurable with respe
t to Ft and hen
e observable inperiod t. All equalities or inequalities involving random variables are assumed to holdP-almost surely without further noti
e.De�ne yt := YtN and kt := KtN as output respe
tively 
apital per labor for
e. By the linearhomogeneity of F (�; "t), the te
hnology (1) may be written in intensive form asyt = f(kt; "t) := F (kt; 1; "t): (2)The fun
tion f is 
ontinuous and twi
e di�erentiable with respe
t to its �rst argumentwith 
ontinuous derivatives satisfying fkk(k; ") < 0 < fk(k; ") for all k > 0 and " 2 Eas well as the Inada 
onditions limk!0 fk(k; ") = 1 and limk!1 fk(k; ") < 1. Pro�tmaximization and linear homogeneity of the te
hnology (1) imply that market 
learingpri
es for labor and 
apital in period t � 0 are given by their marginal produ
ts, i.e.,wgt = W(kt; "t) := f(kt; "t)� ktfk(kt; "t) (3)rt = R(kt; "t) := fk(kt; "t): (4)Government. The in�nitely-lived government taxes 
onsumers and issues debt to �nan
eits de�
it. For the purpose of this paper, debt may be thought of as a one-period livedbond whi
h pays a (possibly random) return r?t+1 > 0 per unit invested at time t � 0.Negative debt will not be 
onsidered in this paper. Let bt � 0 be the number of bonds peryoung 
onsumer issued at time t and � yt an � ot be the taxes levied on a young 
onsumer'slabor in
ome and old 
onsumer's 
apital in
ome, respe
tively. Negative taxes 
orrespondto subsidies on the in
ome of the respe
tive group. It follows that debt evolves asbt = r?t bt�1 � � yt � � ot ; t � 0: (5)Consumers. At time t � 0 a young 
onsumer earns net labor in
ome wt := wgt � � yt > 0that 
an be 
onsumed and invested in bonds and 
apital. Let st and bt be the investmentsin 
apital and bonds at time t � 0. These 
hoi
es de�ne 
urrent 
onsumption as
yt = wt � bt � st (6)while next period's 
onsumption is given by the random variable
ot+1 = bt r?t+1 + st rt+1 � � ot+1: (7)Here the randomness enters through the un
ertain returns on both investments andun
ertain tax payments whi
h are treated as given random variables in the de
ision.Young 
onsumers evaluate the expe
ted utility of di�erent 
onsumption plans (
yt ; 
ot+1)de�ned by (6) and (7) a

ording to the von-Neumann Morgenstern utility fun
tionU(
y; 
o) := u(
y) + v(
o): (8)may be de�ned. The measure P 
orresponds to the produ
t measure P := 
t�0� while the sub-�-algebra Ft is generated by the 
lass of measurable re
tangular sets A =Q1n=0An where ea
h An isa Borel-measurable subset of E and An = E for n > t.3



Both fun
tions u and v are C2 with derivatives z00(
) < 0 < z0(
) for 
 > 0 and satisfylim
!0 z0(
) =1 for z 2 fu; vg: (9)Ea
h young 
onsumer 
hooses investment to maximize her expe
ted utility of lifetime
onsumption. The de
ision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s� � ot+1���� s � 0; b+ s � wt � � yt o: (10)Note that no short-selling 
onstraints on b are imposed at the individual level. Theinvestment in 
apital st determines next period's per-
apita 
apital sto
k askt+1 = st: (11)Old 
onsumers in period t � 0 
onsume the pro
eeds on their investments in bonds and
apital during the previous period - net of taxes - as de�ned by (7).Equilibrium. Combining the assumptions of market 
learing, individual optimality andrational expe
tations the following de�nition of an equilibrium is straightforward.De�nition 1.1Given initial values b0 � 0, k0 > 0, and "0 2 E , an equilibrium is an adapted sto
hasti
pro
ess �wgt ; rt; r?t ; � yt ; � ot ; bt; st; 
yt ; 
ot ; kt+1	t�0 whi
h satis�es the following for ea
h t � 0:(i) Wages wgt > 0 and returns rt > 0 are determined by (3) and (4) and the returnson debt satisfy r?t > 0.(ii) Taxes satisfy � yt < wgt and � ot < btr?t + ktrt while debt bt � 0 evolves as in (5).(iii) The pair (bt; st) solves the de
ision problem (10) at the given wage, returns, andtaxes while 
yt , 
ot , and kt+1 are determined by (6), (7), and (11).Indetermina
y of �s
al poli
y. The following result shows that without further restri
-tions on taxes f� yt ; � ot gt�0, any debt pro
ess is 
onsistent with equilibrium. This is astraightforward generalization of the deterministi
 
ase in de la Croix & Mi
hel (2002).Lemma 1.1Given k0 > 0, let an interior allo
ation fst; 
yt ; 
ot ; kt+1	t�0, and pri
es fwgt ; rt; r?t gt�0satisfy (3), (4), and (11), the feasibility 
ondition 
yt + 
ot + kt+1 = f(kt; "t) for all "t 2 Eand the intertemporal eÆ
ien
y 
onditions u0(
yt ) = E t [rt+1v0(
ot+1)℄ = E t [r?t+1v0(
ot+1)℄for all t � 0. Then, for any non-negative debt pro
ess fbtgt�0 there is a feasible taxpro
ess f� yt ; � ot gt�0 su
h that �wgt ; rt; r?t ; � yt ; � ot ; bt; st; 
yt ; 
ot ; kt+1	t�0 is an equilibrium.In light of the last result, investigating the sustainability of governmental debt requiresfurther restri
tions on tax poli
ies. As in Diamond (1965), the subsequent analysistherefore assumes that there is no taxation of 
apital in
ome su
h that � ot � 0 for allt � 0. Sin
e the ultimate goal is to analyze the long-run welfare e�e
ts of debt poli
ies,this restri
tion is also in line with the �ndings of Chari & Kehoe (1999), who showthat optimal poli
ies in OLG models are 
hara
terized by zero 
apital taxation in thelong-run. 4



2 Equilibria with Capital-Equivalent DebtThe next two se
tions study dynami
 equilibria in the absen
e of taxation (� yt � 0) underdi�erent assumptions on the return on debt, i.e., on the pro
ess fr?t gt�0 . In the sequelwe denote by Eh(x) := xh0(x)h(x) the elasti
ity of a di�erentiable fun
tion h : R++ �! R++ .The following additional restri
tions on f in (2) and v in (8) will be used frequently:(P1) Ev0(
) � �1 8
 > 0 (P2) lim
!1 
 v0(
) =1 (P3) Efk(k; ") � �1 8k > 0; " 2 E :While (P1) and (P3) are standard, (
f. de la Croix & Mi
hel (2002) and Wang (1993)),(P2) is more restri
tive as it ex
ludes several popular parameterizations su
h as logutility. Examples satisfying (P1) and (P2) are power utility v(
) = ��1
�, 0 < � < 1, orCES utility v(
) = [1� � + �
�℄ 1� , 0 < � < 1, � > 0.As a �rst s
enario, suppose the government 
ommits itself to paying the 
apital returnon debt su
h that r?t � rt for ea
h t � 0. This 
ase will be 
alled 
apital-equivalent (CE)debt and the remainder of this se
tion will study the existen
e and properties of equilibriaunder this assumption. To unveil the re
ursive stru
ture of equilibria for the e
onomy,
onsider an arbitrary period t. Let 
urrent 
apital kt > 0 and the sho
k "t 2 E begiven whi
h determine the wage wt = wgt > 0 and the return rt > 0 on 
apital and debta

ording to (3) and (4). Then, 
urrent debt bt � 0 
orresponding to the supply of bondsfollows from its previous value bt�1 and (5). Assume that wt > bt. Sin
e investment indebt and 
apital are perfe
t substitutes and the number of bonds traded is determinedby the supply side, the equilibrium problem is to determine next period's 
apital sto
k0 < kt+1 < wt � bt in a way 
onsistent with an optimal savings de
ision derived from(10) and rational, self-
on�rming expe
tations. Let E � [�℄ denote the expe
ted value withrespe
t to the distribution � of next period's produ
tion sho
k. Using (4), (11), and the�rst order 
onditions of (10), de�ne the map H(�;w; b) : ℄ 0; w � b [�! R,H(k;w; b) := u0(w � b� k)� E � �R(k; �)v0�R(k; �)(b+ k)��: (12)Then, given wt > bt � 0, the expe
tations-
onsistent solution kt+1 is determined byH(kt+1;wt; bt) = 0. Existen
e and uniqueness of su
h a zero are established next.Lemma 2.1Let v satisfy (P1). Then for ea
h w > 0 there exists an upper bound 0 < bmax(w) � wsu
h that H(�;w; b) has a zero (whi
h is unique) in ℄0; w� b[ if and only if b < bmax(w).If, in addition, (P2) holds, then bmax(w) = w.In the sequel we assume that the hypotheses of Lemma 2.1 are satis�ed permitting us tode�ne the set V := f(w; b) 2 R2+ jw > 0; b < bmax(w)g and the mapping K : V �! R++whi
h determines the unique zero of H(�;w; b). Invoking the Impli
it Fun
tion Theorem(IFT), this map is 
ontinuously di�erentiable with derivatives satisfying the following.Lemma 2.2Let v satisfy (P1). Then, at ea
h point (w; b) 2 V (
f. Remark A.1) the partialderivatives of the map K are 
ontinuous and satisfy�bK(w; b) < 0 and 0 < �wK(w; b) < j�bK(w; b)j � 1:5



Combining equations (3) to (5), and (11) de�nes a C1 map � = (�w;�b) : V�E �! R2+whi
h determines the evolution of wages and debt under the exogenous noise pro
ess aswt+1 = �w(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (13a)bt+1 = �b(wt; bt; "t+1) := R(K(wt; bt); "t+1)bt: (13b)Given initial values (w0; b0) 2 V, the equilibrium pro
ess fwt; btgt�0 is therefore gen-erated by randomly mixing the family of mappings f�(�; ")g"2E , i.e., the realization ofnext period's sho
k sele
ts a map that determines the next state from the 
urrent one.Stru
turally, this 
orresponds to a two-dimensional version of the one-dimensional dy-nami
s in Wang (1993). The endogenous state variables fwt; btgt�0 together with theexogenous noise pro
ess f"tgt�0 
ompletely determine the other equilibrium variables ofthe model. Therefore, existen
e of a dynami
 equilibrium is equivalent to determining(w0; b0) 2 V su
h that the pro
ess generated by (13a), (13b) satis�es (wt; bt) 2 V for allt � 0 under P-almost all paths of the noise pro
esses. Sin
e b0 = 0 implies bt = 0 for allt > 0, it is 
lear that a trivial equilibrium with no debt exists for all w0 > 0. In this 
ase,the dynami
s redu
e to the evolution of wages de�ned by the map �0 : R++�E �! R++wt+1 = �0(wt; "t+1) :=W(K(wt; 0); "t+1): (14)The next assumption ensures existen
e and rules out multipli
ity of steady states of �0.Assumption 2.1For ea
h " 2 E , the map �0(�; ") possesses a unique �xed point �w0" > 0 whi
h is stable.In the sequel, let V+ := V\R 2++ and �t(�; ") := �(�; ")Æ: : :Æ�(�; ") the t-fold 
ompositionof the map �(�; ") for t > 0. From above's stru
ture, it is 
lear that the existen
e andproperties of equilibrium depend 
ru
ially on the dynami
 properties of the mappings(�(�; "))"2E and whether these exhibit 
ontra
tive or expansive behavior. We thereforebegin by �xing a value " 2 E to study the dynami
 properties of the map �(�; "). Thenext result shows that the return R(K( �w0" ; 0); ") at the trivial steady state ( �w0" ; 0) fromAssumption 2.1 determines whether �(�; ") displays stable - along a 
ertain dire
tion - orexplosive behavior. In anti
ipation of this result, let Es := f" 2 E jR(K( �w0" ; 0); ") < 1gand Ex := f" 2 E jR(K( �w0"; 0); ") > 1g.2 Sin
e the 
ase R(K( �w0" ; 0); ") = 1 is non-generi
, E0 := En(Es [ Ex) is assumed to have measure zero, i.e., �(E0) = 0.Lemma 2.3Let (P1) and Assumption 2.1 be satis�ed. Then, the following holds true:(i) For " 2 Es the map �(�; ") possesses a unique non-trivial �xed point ( �w";�b") 2 V+ .This �xed point is saddle-path stable, i.e., the Eigenvalues of the Ja
obian matrixD�( �w";�b"; ") are real and satisfy 0 < j�1j < 1 < j�2j.(ii) For " 2 Ex the map �(�; ") is explosive, i.e., for ea
h (w; b) 2 V+ there exists at0 2 N su
h that (wt0 ; bt0) := �t0(w; b; ") =2 V, that is, wt0 � bt0 .2 If E is in�nite, 
ontinuity of " 7�! R(K( �w0" ; 0); ") ensures (Borel-) measurability of Es, Ex, and E0.6



Result (i) implies that for " 2 Es the dynami
s generated by �(�; ") 
onverge to a non-trivial steady state for 
ertain initial values. These are de�ned by the stable manifoldM" := n(w; b) 2 V j�n(w; b; ") 2 V 8n � 1 ^ limn!1�n(w; b; ") = ( �w";�b")o; " 2 Es: (15)The setM" will play a key-role throughout this paper. Note thatM" is self-supportingunder �(�; "), i.e., �(M"; ") � M". For ea
h " 2 Es, Theorem A.1 in the appendixestablishes existen
e of a map  " : R++ �! R++ whi
h is stri
tly in
reasing su
h thatM" = graph( "). Based on this representation, the next result shows thatM" separatesinitial points whi
h diverge from those whi
h 
onverge to the trivial steady state.Lemma 2.4Let (P1) and Assumption 2.1 be satis�ed and w > 0 be arbitrary. Then, for ea
h " 2 Es:(i) b <  "(w) ) �t(w; b; ") 2 V+ 8t > 0 ^ limt!1 �t(w; b; ") = ( �w0" ; 0):(ii) b >  "(w) ) 9t0 > 0 su
h that �t0(w; b; ") =2 V:Geometri
ally, Lemma 2.4 implies that if (w; b) is below the 
urveM", then the sequen
e�t(w; b; ") stays below M" for all t � 0 and 
onverges to the trivial steady state withzero debt. Conversely, any state above M" stays above and leaves V in �nite time.Based on the properties of the mappings �(�; ") " 2 E , we are now in a position to state
onditions for the existen
e of equilibrium with positive debt. Let w0 :=W(k0; "0) > 0be given. First observe that if �(Ex) > 0, any initial value in V+ will leave this setin �nite time with positive probability. Hen
e, �(Ex) = 0 is a ne
essary 
ondition fornon-trivial equilibria to exist. For w > 0, let  min(w) := min"2Esf "(w)g whi
h is well-de�ned, if either Es is �nite or 
ompa
t and " 7�!  "(w) 
ontinuous. By Lemma 2.4,b0 �  min(w0) is ne
essary for an equilibrium to exist. SuÆ
ien
y requires the followingassumption that initial states below graph( min) stay below this 
urve under all sho
ks.Assumption 2.2For all w > 0 one has b �  min(w) ) �b(w; b; ") �  min(�w(w; b; ")) 8" 2 Es.Combining the results from Lemma 2.3 and 2.4 leads to the following theorem whi
hextends and, if the noise is degenerate re
over the �ndings of Tirole (1985).Theorem 2.1Under (P1) and Assumptions 2.1 and 2.2, suppose �(Ex) = 0. Then, any b0 2℄0;  min(w0)℄de�nes an equilibrium with positive debt bt > 0 8t > 0.While equilibria exist under the hypotheses of Theorem 2.1 for any initial value b0suÆ
iently small, typi
ally the level of debt 
onverges to zero with probability one. Thisis illustrated in Figure 1 for the 
ase with only two sho
ks where E = f"; "0g. The dottedarrow represents the 
ase ex
luded by Assumption 2.2. For any b0 � �b0 :=  min(w0) thestate remains in V and below the M"-
urve but bt 
onverges to zero P-almost surely.Conversely, for any b0 > �b0 the state leaves V in �nite time with positive probabilityimplying no-existen
e of equilibrium in this 
ase.The following example, however, shows that equilibria with persistent debt may exist.7
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Figure 1: State dynami
s under di�erent initial values and noise paths.Let U(
y; 
o) = ln 
y+

o, 
 > 0 and f(k; ") = "k�, 0 < � < 1. The bound from Lemma2.1 
omputes bmax(w) = 
1+
w su
h that V = f(w; b) 2 R2+ jb < 
1+
wg. Moreover,�w(w; b; ") = "(1� �)( 
1+
w� b)� and �b(w; b; ") = "�( 
1+
w� b)��1b implying Es 6= ;,i� 
1+
 > �1�� . The next result shows that the stable sets in (15) are independent of ".Lemma 2.5Under the previous parametrization, suppose 
1+
 > �1�� . Then Es = E andM" �M := n(w; b) 2 R2++ �� b = � 
1 + 
 � �1� ��wo 8" 2 E :Sin
eM is self-supporting for the family (�(�; "))"2E , (w0; b0) 2 M implies (wt; bt) 2 Mfor t � 0 and debt is bounded away from zero under all possible sequen
es of sho
ks.3 Equilibria with General DebtTo extend the previous analysis to the 
ase with more general interest poli
ies on debt,the remainder 
on�nes attention to the 
ase with multipli
ative sho
ks, i.e., f(k; ") ="g(k) in (2) where g := f(�; 1) : R+ �! R+ inherits the properties of f(�; "). While underthe previous s
enario the return on debt o�ered at time t would be r?t+1 = "t+1g0(kt+1),the present se
tion generalizes this stru
ture by supposing that3r?t+1 = R?#(zt; "t+1) := zt #("t+1); t � 0: (16)3 The multipli
ative form (16) seems natural under multipli
ative sho
ks. Under more general te
h-nologies (2), one 
ould generalize (16) to some 
ontinuous fun
tion R? : R++ � E �! R++ wherez 7�! R?(z; ") is a bije
tion. While Lemma 3.1 and the dynami
 equations (18a,b) below would stillbe valid under this extension, a theoreti
al 
hara
terization of the dynami
s seems impossible.8



The value zt > 0 is determined in period t and # : E �! R++ is a time-invariant4interest poli
y that determines the risk to whi
h debt investments are subje
ted. If# � �#, debt is riskless while # = idE re
overs the 
ase with CE debt.In the sequel we �x some interest poli
y # and assume that in ea
h period t � 0 thereturn on debt is of the form (16). To derive the re
ursive equilibrium stru
ture of thee
onomy, 
onsider an arbitrary period t. Let 
urrent 
apital kt and the sho
k "t 2 E begiven whi
h determine the wage wt = wgt > 0 a

ording to (3). Given previous valuesbt�1 � 0 and zt�1 > 0, the 
urrent sho
k determines the return on debt r?t = zt�1#("t)and 
urrent debt/supply of bonds bt � 0 a

ording to (5). In addition to �nding anexpe
tations-
onsistent 
apital sto
k kt+1, the equilibrium problem for period t is todetermine the return o�ered on debt by �xing a value zt > 0 su
h that 
onsumers arewilling to absorb the predetermined supply of bonds. Sin
e there are no short-sellingrestri
tions on debt, any solution s > 0 and b � 0 to (10) satis�es the 
orresponding �rstorder 
onditions. Given w > b � 0, let H#i (�; �;w; b) : R++�℄0; w � b[�! R, i 2 f1; 2g,H#1 (z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?#(z; �) + kR(k; �)�� (17a)H#2 (z; k;w; b) := u0(w � b� k)� E � �R?#(z; �)v0�bR?#(z; �) + kR(k; �)��: (17b)Then, given wt > bt � 0 the previous problem redu
es to solving H#1 (zt; kt+1;wt; bt) =H#2 (zt; kt+1;wt; bt) = 0. Existen
e and uniqueness of su
h a solution is established next.Lemma 3.1Let (P1){(P3) be satis�ed and # : E �! R++ be 
ontinuous. Then, for ea
h w > b � 0there exist unique z > 0, 0 < k < w � b to satisfy H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0.Based on this result, let V := f(w; b) 2 R2+ jw > bg denote the set of feasible wage-debt
ombinations. By Lemma 3.1 and the Impli
it Fun
tion Theorem, there exist mappingsK# : V �! R++ and Z# : V �! R++ whi
h are C1 on V (
f. Remark A.1) andwhi
h determine the unique zeros of (17a) and (17b) for ea
h (w; b) 2 V. Before statingproperties of these mappings in Lemma 3.2, we introdu
e additional restri
tions on theelasti
ities of preferen
es and the produ
tion te
hnology that will be used subsequently:(P4) jEv0(
)j = � 8
 > 0 (P5) jEu0(
)j � 1 8
 > 0 (P6) Eg(k) + jEg0(k)j � 1 8k > 0:Under (P4), se
ond period utility v exhibits 
onstant relative risk aversion. Property(P5) is automati
ally satis�ed if (P1) holds and v(
) = �u(
), � > 0. Finally, (P6) isne
essary and suÆ
ient for the elasti
ity Eg(k) to be a non-de
reasing fun
tion of k,whi
h holds, e.g., if g is Cobb-Douglas or CES with elasti
ity of substitution � � 1.Lemma 3.2Let (P1){(P3) be satis�ed and # : E �! R++ be 
ontinuous. Then, K# and Z# are
ontinuously di�erentiable at ea
h point (w; b) 2 V. Moreover, the following holds true:(i) The derivatives of K# satisfy 0 < �wK#(w; b) < ��bK#(w; b).4 A straightforward generalization would be to 
onsider dynami
 risk-sharing rules by making # statedependent. Lemma 3.1 below would 
ontinue to hold under this extension.9



(ii) If, in addition, (P4) holds, then Z# satis�es 0 < ��wZ#(w; b) < �bZ#(w; b).5Combining equations (3) to (5) and (11) de�nes a map �# = (�#w;�#b ) : V � E �! R2+whi
h determines the evolution wages and debt under the exogenous sho
ks aswt+1 = �#w(wt; bt; "t+1) :=W(K#(wt; bt); "t+1) (18a)bt+1 = �#b (wt; bt; "t+1) := #("t+1)Z#(wt; bt)bt: (18b)As before, an equilibrium exist if and only if the pro
ess fwt; btgt�0 generated by (18a,b)satis�es (wt; bt) 2 V P-almost surely for all t � 0. Sin
e the equilibrium pro
ess isgenerated by randomly mixing the family (�#(�; "))"2E , we pro
eed as in the previousse
tion and �x a value " 2 E to study the dynami
 properties of the map �#(�; ").Note that �#(�; ") is independent of # for b = 0 and identi
al to the map �0 in (14).In parti
ular, there exists a trivial equilibrium and, under Assumption 2.1 ea
h map�#(�; ") possesses a unique stable trivial steady state ( �w0"; 0) whi
h is independent of #.In the sequel, the following slightly stronger version of Assumption 2.1 will be ne
essary.Assumption 3.1For ea
h " 2 E , the map �0(�; ") from (14) possesses a unique �xed point �w0" > 0 whi
his stable. Moreover, the 
orresponding 
apital sto
k �k0" := K( �w0" ; 0) satis�es Eg(�k0") � 12 .As in the previous se
tion, the dynami
 behavior of �#(�; ") depends 
ru
ially on thereturn on debt at the trivial steady state. The latter is given by �z0"#(") where�z0" := Z#( �w0" ; 0) = E � [R(�k0" ; �)v0(�k0"R(�k0" ; �))℄E � [#(�)v0(�k0"R(�k0" ; �))℄ : (19)Using (19), let E#s := f" 2 E j �z0"#(") < 1g and E#x := f" 2 E j �z0"#(") > 1g. As before,the set E#0 where �z0"#(") = 1 is assumed to have measure zero, i.e., �(E#0 ) = 0. The nextresult extends Lemma 2.3 to the present 
ase with general interest poli
ies. The proofdraws heavily on ideas put forward in Galor (1992).Lemma 3.3Under Assumption 3.1 and properties (P1){ (P6), the following holds for any poli
y #:(i) For all " 2 E#s the mapping �#(�; ") possesses a unique non-trivial steady state( �w#" ;�b#" ) 2 V+ . This steady state is saddle path-stable.(ii) For all " 2 E#x the mapping �#(�; ") is explosive.Given poli
y #, the previous result permits to de�ne for ea
h " 2 E#s the stable manifoldM#" := n(w; b) 2 V j(�#)n(w; b; ") 2 V 8n � 1 ^ limn!1(�#)n(w; b; ") = ( �w#" ;�b#" )o: (20)By Theorem A.1,M#" 
an be represented as the graph of a map  #" : R++ �! R++ and,as shown in the appendix, Lemma 2.4 
ontinues to hold in the present setup. It follows5 Numeri
al experiments with utility fun
tions v not satisfying (P4) have throughout displayed thesame properties of Z# as in Lemma 3.2(ii) suggesting that this restri
tion 
ould probably be relaxed.10



that all �ndings from the previous se
tion about existen
e of equilibria and the persis-ten
e of debt in
luding Theorem 2.1 
arry over to the 
ase with general interest poli
ies.Under the restri
tion imposed in Assumption 2.2 { whi
h 
an be shown to hold auto-mati
ally under riskless debt { equilibria exist if �(E#x ) = 0 and b0 � min"2E#s f #" (w0)gbut are generi
ally asymptoti
ally debtless with probability one.Lemma 3.3 also entails important insights 
on
erning the dis
ussion in Berto

hi (1994)about stable sets under safe debt. Referring to the 
ases dis
ussed there, it shows thatsteady states whi
h are asymptoti
ally stable and give rise to stable sets with positivedebt do not exist. In parti
ular, exploiting that the sho
ks in (18a),(18b) enter in amultipli
ative fashion, it is possible to show that a s
enario as in the example of Se
tion2 where the set M" was independent of " is not possible under safe debt. The reasonis that for this to happen the stable manifold (20) would have to be a horizontal line inV+ . This, however, is impossible sin
e ea
h  #" is stri
tly in
reasing by Theorem A.1(ii).4 Debt Stabilization through TaxationTo analyze the long-run welfare e�e
ts of debt, it seems natural to formulate a 
riterionthat measures 
onsumer welfare at some stationary solution of the state dynami
s. Inthe sto
hasti
 
ase, the latter 
orresponds to an invariant probability distribution on thestate spa
e V whi
h extends the deterministi
 
on
ept of a steady state. The previousanalysis revealed, however, that even if they exist, equilibria are generi
ally asymptot-i
ally debtless. Therefore, neither the optimum quantity of debt nor the risk-sharinge�e
ts of di�erent interest poli
y 
an be analyzed be
ause, asymptoti
ally, equilibria areindependent of #. Stru
turally, the reason is that stable subsets of the state spa
e V+(whi
h 
an be asso
iated with invariant distributions, 
f. Wang (1993)) fail to exist.The present se
tion investigates whether this may be over
ome by a tax on labor in
omewhi
h stabilizes debt against unfavorable sho
ks. More spe
i�
ally, given a subset ofV+ to be stabilized, the idea is to design a tax poli
y to 
ountera
t sho
ks under whi
hthe state would leave the set. In this regard, the goal is to keep stabilization taxes asminimal as possible. In parti
ular, taxes should be zero if no stabilization is required, asin the example of Se
tion 2. The poli
y to be developed satis�es all these requirements.We 
onsider the s
enario of Se
tion 3 with multipli
ative noise and some interest poli
y# with E#s 6= ;. Note that we permit E#x 6= ;, i.e., some maps �#(�; ") may be explosive.To motivate the approa
h, suppose for a moment that the sho
ks are degenerate, i.e.,"t � " or, equivalently, E = f"g. In this 
ase, the deterministi
 
ase studied in Tirole(1985) is re
overed and a stable set would be given by (a subset of) the stable manifoldM#" de�ned in (20). For any initial value (w0; b0) 2 M#" the system 
onverges to thegolden rule steady state ( �w";�b") 2 M#" . In the non-degenerate 
ase, the stable manifoldM#" in (20) asso
iated with some sho
k " 2 E#s is self-supporting under the map �#(�; "),i.e., �#(M#" ; ") �M#" but, in general, not under �#(�; "0) where "0 6= ". Nevertheless, ifstabilization taxes are to be small, it seems natural to exploit the system's inherent sta-bility for
es by stabilizing the state along the setM#" asso
iated with some " 2 E . In this
ase, taxes are zero whenever realization " o

urs and, by 
ontinuity, small for sho
ks11




lose to this value. Therefore, stabilization expenditures should remain small at leastif the varian
e of sho
ks is not too large. As an example, suppose E = f"min; �"; "maxgwhere �(f"ming) = �(f"maxg) = :05 and �" 2 E#s . In this 
ase, stabilizing the set M#�"requires governmental intervention on average every ten periods only. By 
ontrast, anyother obje
tive su
h as stabilizing the absolute level of debt (bt � �b, 
f. Diamond (1965))or the debt-to output ratio (bt=yt � ��, 
f. de la Croix & Mi
hel (2002)) is essentiallyarbitrary and not related to the system's stability properties. It stands to reason that,in general, su
h a stabilization obje
tive requires mu
h higher stabilization taxes.To formalize the previous ideas, let wgt > 0 denote the gross wage de�ned by (3) and�t := � yt < wgt the tax levied on labor in
ome wgt in period t � 0. Then, wt := wgt � �tis the net wage and bt = r?t bt�1 � �t is the debt de�ned by (5) 
orresponding to thenumber of bonds issued in period t. If �t > 0, the revenues generated from taxation areused to pay part of the return on outstanding debt. If �t < 0, young 
onsumers re
eivea subsidy on their wage in
ome whi
h is �nan
ed by issuing additional debt. The statespa
e V 
onsists of all pairs (wt; bt) 2 R2+ su
h that wt > bt. De�ne a feasible poli
yas a pair � := (#; "ref) 
onsisting of interest poli
y # : E �! R++ and some referen
esho
k "ref 2 E#s whi
h identi�es the set M� :=M#"ref to be stabilized. By Theorem A.1,there exists a map  � :=  #"ref : R++ �! R++ su
h that M� = graph( �). Using thisrepresentation, we 
onstru
t a stabilization poli
y su
h that (wt; bt) 2 M� for all t withprobability one. Consider an arbitrary period t � 0. Let the previous net wage wt�1 andprevious debt bt�1 together with the 
urrent realization of the sho
k "t 2 E be given.These values de�ne the gross wage and debt before taxation (wgt ; bgt ) := �#(wt�1; bt�1; "t)with �# de�ned as in (18a,b). Assuming that (wgt ; bgt ) 2 V we look for a value �t < wgtsu
h that (wgt � �t; bgt � �t) 2 M� or, equivalently, bgt � �t =  �(wgt � �t).Lemma 4.1Given �, let the map  � : R++ �! R++ that representsM� satisfy limw!1  � 0(w) 6= 1.Then, for ea
h (w; b) 2 V there exists a unique � < w su
h that b� � =  (w � �).By Theorem A.1,  � is stri
tly in
reasing with derivative  � 0(w) � �wK#(w; �(w))��bK#(w; �(w)) < 1for all w > 0. Hen
e, the additional requirement in Lemma 4.1 should generi
ally besatis�ed. Then, given � there exists a map T � : V �! R that de�nes for ea
h point(w; b) 2 V the 
orresponding tax adjustment � = T �(w; b) su
h that (w��; b��) 2 M�.Letting V� := f(w; b) 2 V j�#(w; b; ") 2 V 8" 2 Eg, the stabilized dynami
s aredetermined by the mapping 	� = (	�w;	�b ) : V� � E �!M�wt+1 = 	�w(wt; bt; "t+1) := �#w(wt; bt; "t+1)� T �(�#(wt; bt; "t+1)) (21a)bt+1 = 	�b (wt; bt; "t+1) := �#b (wt; bt; "t+1)� T �(�#(wt; bt; "t+1)): (21b)The following �gure illustrates how the proposed tax-poli
y stabilizes the set M�.Given a feasible poli
y �, any initial value 
an be tax-adjusted to lie on the setM� andthe state (wt; bt) remains in M� for all t � 0. Hen
e, for (w0; b0) 2 M� the dynami
s(21a,b) are essentially one-dimensional and governed by the map �� : R++ �E �! R++wt+1 = ��(wt; "t+1) := 	�w(wt;  �(wt); "t+1) (22)while debt is given by bt+1 =  �(wt+1). The next result establishes properties of ��.12
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Figure 2: Tax-stabilization of the set M�.Lemma 4.2Suppose that poli
y � is feasible and (a)  � 0(w) < ""ref #("ref)#(") and (b) # is di�erentiablewith derivative #0(") � #("ref)"ref for w > 0 and " 2 E . Then, the following holds:(i) The map w 7�! ��(w; ") is stri
tly in
reasing at all (w; ") whi
h satisfy (a).(ii) The map " 7�! ��(w; ") is stri
tly in
reasing at all (w; ") whi
h satisfy (b).Condition (a) is automati
ally satis�ed in the CE 
ase where # = idE while (b) holds,e.g., if #(") = �"+ (1� �)�" 8" 2 E , � 2 [0; 1℄, �" := E � ["t℄. For this 
lass, (a) is satis�edif the range of noise is not too large su
h that  � 0(w) < "min"max for w > 0. Assuming thatboth (a) and (b) are satis�ed, we seek to study the long-run properties of the dynami
sde�ned by (22) and the existen
e of invariant distributions 
orresponding to stable setsof ��. For a formal de�nition of these 
on
epts, the reader is referred to Bro
k & Mirman(1972) and Wang (1993). The following �nal result draws heavily on their �ndings.Theorem 4.1Let � be a feasible poli
y under whi
h (a) and (b) in Lemma 4.2 hold. In addition,suppose limw!1 ��(w; "max)=w < 1 < limw!0 ��(w; "min)=w. Then, the following holds:(i) There exists a unique stable set �W � � R++ for the family �� = (��(�; "))"2E .(ii) There exists a unique invariant distribution �� of the dynami
al system (22) whi
his supported on �W � and whi
h is stable in the weak 
onvergen
e sense.5 Optimal Debt Poli
iesBased on the previous results this se
tion develops a welfare 
riterion that allows to sele
tan optimal poli
y. Let � = (#; "ref) satisfy the hypotheses of Theorem 4.1. For (w; b) 2 Vand "+ 2 E , denote �rst and planned se
ond period 
onsumption as 
y(w; b;#) :=w�b�K#(w; b) and 
o(w; b; "+;#) := bZ#(w; b)#("+)+K#(w; b)R(K#(w; b); "+) de�ning13



ex-ante lifetime utility V (w; b;#) := u(
y(w; b;#)) + E � [v(
o(w; b; �;#))℄. By Theorem4.1, there exists a unique probability distribution �� supported on �W � � R++ whi
h isinvariant under (22) and determines long-run expe
ted utilityU(#; "ref) := ZR++ V (w;  �(w);#)��(dw): (23)Note that U is well-de�ned by 
ontinuity of the integrand and 
ompa
tness of �W �. Thevalue U(#; "ref) 
an be interpreted as the average utility that 
onsumers attain underpoli
y �. With referen
e to the introdu
tion, the interest poli
y # determines the risk-sharing of debt while the level of debt relative to the net wage obtains as bt =  �(wt) forall t. Moreover, the domain of U 
an be extended to arbitrary poli
ies by setting  � � 0if � = (#; "ref) is non-feasible, i.e., "ref 2 E#x . In this 
ase, (23) yields utility at the trivialequilibrium whi
h is independent of �. With this extension, the 
riterion (23) is suitableto investigate the long-run welfare e�e
ts of arbitrary debt poli
ies � = (#; "ref).The remainder of the paper reports simulation results for a simple parametrization of themodel.6 We assume the s
enario in Se
tion 3 with power utilities u(
) = 
�, v(
) = 
u(
),CES te
hnology g(k) = [1�A+Ak�℄ 1� , and three possible sho
ks E = f"min; "med; "maxgdrawn with probabilities pmin, pmed, and pmax. Table 1 lists the parameter values.Parameter Value Parameter Value Parameter Value"min 0.9 "max 1.1 
 1"med 1 pmin, pmed 1/3 A, �, � 0.5Table 1: Parameter set used in the simulations.We 
on�ne attention to the 
lass of interest poli
ies #�(") := �" + (1 � �)�", " 2 Eparameterized in � 2 [0; 1℄. In parti
ular, debt is 
apital equivalent if � = 1 and risklessif � = 0. Under the previous parametrization, Assumption 3.1 holds and all poli
ies arefeasible, i.e., E#�s � E . Hen
e, an optimal poli
y exists if U is 
ontinuous.To quantify the welfare e�e
ts of di�erent poli
ies, Table 2 reports the utilities de�nedin (23) expressed as per
entage deviations from utility at the trivial equilibrium. Thelatter exists and is unique by the results of Wang (1993) and Assumption 3.1.7� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)"min 0.7508% 0.8071% 0.8196% 0.7838% 0.6944%"ref = "med 0.8175% 0.8197% 0.8210% 0.8212% 0.8204%"max 0.7326% 0.8058% 0.8185% 0.7753% 0.6799%Table 2: Long-run utilities under di�erent debt poli
ies.6 To repli
ate and verify the subsequent results, the reader is invited to download the C++ simulation�les from my homepage http://www.marten-hillebrand.de/resear
h/TC/TC.htm.7 The utilities de�ned in (23) were 
al
ulated as time averages of ex-ante utilities Vt := V (wt; bt;#).Sin
e the state pro
ess follows an ergodi
 Markov pro
ess, these averages 
onverge to the 
orre-sponding expe
ted utility by means of the ergodi
 theorem.14



The values in Table 2 identify a unique optimal poli
y �? given by "?ref = "med and�? = :75. Additional simulations permit to re�ne the latter value to �? � :7. Note thatfor any �xed referen
e sho
k there exists a unique optimal interest poli
y determinedby an interior value of �. As a 
onsequen
e, a riskless debt return is never optimal.Sin
e the stabilization poli
y was designed to keep taxation as minimal as possible, itseems worthwhile to 
on�rm this property for the present 
ase. In this regard, Table 3displays the absolute values of taxes expressed as a per
entage of debt.� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)"min 4.23% 1.88% 0.65% 3.41% 6.44%"ref = "med 3.12% 1.31% 0.49% 2.29% 4.09%"max 5.21% 2.05% 0.83% 3.46% 5.89%Table 3: Average absolute stabilization taxes expressed as a per
entage of debt.For any referen
e value, taxes are least for � = :5 < �?. Again, this value may furtherbe re�ned to � � :4. Moreover, for all s
enarios 
onsidered in Table 3 taxes remainsmall (< 13%) throughout the entire sample. Nevertheless, note that the interest poli
yhas a 
ru
ial impa
t on the size of stabilization taxes for any referen
e sho
k.To provide some intuition for the last result, Figure 3 portrays the stable manifolds (20)under di�erent interest poli
ies. The bold se
tions represent the support of the invariantdistribution whi
h is bordered by the (smallest and largest) �xed points of 	�(�; ")respe
tively ��(�; ") whi
h are also depi
ted. Intuitively, if the sho
k "t = " o

urs at
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onsequen
e, taxes are least in Figure 3(b) where the stable manifolds are 
losetogether. Ideally, they would 
oin
ide as in the example of Se
tion 2 in whi
h 
ase therewould be no need for stabilization. Albeit this 
an not be a
hieved in the present 
ase,the interest poli
y 
an be 
hosen as in Figure 3(b) su
h that taxes be
ome negligible(< :9% of debt throughout and even smaller for � = :4).Another observation from Figures 3(a,
) is that the order of the stable sets is reversedwhi
h a�e
ts the sign of taxes depending on the sho
k. If the set Mmed is stabilized("ref = "med) and debt is 
apital-equivalent (� = 1), young 
onsumers are taxed (�t > 0)15



in 'good times' ("t = "max) and re
eive a subsidy (�t < 0) in 'bad times' ("t = "min) whilethe opposite holds if debt is riskless (� = 0). Moreover, ifMmax is stabilized, taxes areuniformly positive if � = 0 and negative if � = 1 while the opposite holds for Mmin.6 Con
lusionsThe results obtained in this paper suggest that any sustainable debt poli
y must be a
-
ompanied by a stabilizing tax-poli
y that prevents debt from exploding or 
onvergingto zero due to unfavorable random sho
ks. Based on this insight, a stabilization poli
ywas developed designed to keep taxation as minimal as possible by exploiting the inher-ent stabilizing for
es of the underlying dynami
al system. A golden-rule type welfare
riterion was suggested whi
h measures 
onsumer welfare at the stationary solution ofthe stabilized equilibrium and permits to simultaneously determine the optimal level ofdebt and an optimal interest poli
y. First simulation results indi
ate that (i) a uniqueoptimal poli
y 
an be determined, (ii) o�ering a riskless return on debt is never optimal,(iii) taxes remain small under the proposed stabilization 
on
ept and depend 
ru
iallyon the interest poli
y (iv) the latter 
an be 
hosen su
h that taxes be
ome negligible.The �nding that a riskless return on debt is not optimal 
on�rms existing results in theliterature, 
f. Bohn (1991). Nevertheless, a better theoreti
al understanding of the pre-vious numeri
al results seems ne
essary and is the primary obje
tive of future resear
h.In addition, re
ent resear
h in the literature (e.g., Kunieda (2008)) has attempted toexplain the emergen
e of bubbles in dynami
ally eÆ
ient e
onomies by hypothesizing
ertain imperfe
tions in the 
redit market. Another obje
tive of future resear
h is to an-alyze whether su
h imperfe
tions 
ould also explain the existen
e of non-trivial equilibriawith governmental debt even if the trivial equilibrium is eÆ
ient.A Mathemati
al AppendixA.1 Proof of Lemma 1.1For t � 0, de�ne taxes � yt := wgt � 
yt � kt+1 � bt < wt and � ot := bt�1r?t + ktrt � 
ot whi
hare feasible in the sense of De�nition 1.1(ii). Using the 
orresponding expressions for 
ytand 
ot together with (3) and (4) in the aggregate feasibility 
ondition shows that debtevolves a

ording to equation (5). Sin
e De�nition 1.1(i) is satis�ed by assumption,it remains to show that (bt; st) solves (10). Sin
e st > 0 and there are no short-sale
onstraints, it suÆ
es to show that the �rst-order 
onditions are satis�ed. This followsfrom the intertemporal eÆ
ien
y 
ondition and (11) by dire
t substitution. �A.2 Proof of Lemma 2.1Given w > b � 0, de�ne �k := w � b > 0 and, for brevity, 
o(k; b; ") := R(k; ")(b + k).We show that H(�;w; b) is stri
tly in
reasing and 
an, therefore, have at most one zero16



in the interval ℄0; �k[. By (P1), the partial derivative8 of (12) takes the form�kH(k;w; b) = �u00(w � b� k)� E � �fk(k; ")2v00�
o(k; b; �)���E �hfkk(k; ")�v0�
o(k; b; �)�+ 
o(k; b; �)v00�
o(k; b; �)��i > 0:(A.1)We show that H(�;w; b) has a zero in the interval ℄0; �k[. As existen
e of a zero for the
ase b = 0 is established in Wang (1993), suppose b > 0. Sin
e there exists a uniquezero for b = 0 and �kH(k;w; 0) > 0, there exists a zero also for b > 0 suÆ
iently smallby virtue of the impli
it fun
tion theorem. De�ne the 
riti
al value 0 < bmax(w) � w asbmax(w) := supnb 2℄0; w[ jH(k;w; b) = 0 for some k 2℄0; w � b[o:Sin
e the supremum is taken over a non-empty set bounded by w, bmax(w) is well-de�ned. We 
laim that H has a zero for ea
h b 2℄0; bmax(w)[ whi
h, by the previousresults, is unique. By way of 
ontradi
tion, suppose that for, say, 0 < b0 < bmax(w) thereis no zero of H(�;w; b0). The Inada-assumption in (9) implies limk!�kH(k;w; b0) = 1su
h that H(k;w; b0) > 0 for all 0 < k < w�b0. The derivative with respe
t to b satis�es�bH(k;w; b) = �u00(w � b� k)� E � �R(k; ")2v00�
o(k; b; ")�� > 0:Let b00 > b0. Then, H(k;w; b00) > H(k;w; b0) > 0 for all 0 < k < w� b00 < w� b0. Hen
e,H(�;w; b00) has no zero for any b00 > b0. But then b0 � bmax(w), whi
h is a 
ontradi
tion.Finally, limk!0 
o(k; b; ") = limk!0(bfk(k; ")+kfk(k; ")) � limk!0 bfk(k; ") =1 for ea
h�xed " 2 E . Hen
e, if (P3) holds, the left limit 
omputeslimk!0H(k;w; b) = u0(w � b)� limk!0� 1b + kE � �
o(k; b; �)v0�
o(k; b; �)��� = �1: (A.2)In this 
ase, there exists a zero for all 0 < b < w implying that bmax(w) = w. �A.3 Proof of Lemma 2.2De�ne 
o(k; b; ") as in the previous proof. The 
laim follows by applying the impli
itfun
tion theorem. The partial derivatives of the map H de�ned in (12) 
ompute�wH(k;w; b) = u00(w � b� k) < 0 (A.3)�bH(k;w; b) = ��wH(k;w; b)� E � �R(k; �)2v00�
o(k; b; �)�� > ��wH(k;w; b): (A.4)Moreover, by (A.1) the derivative with respe
t to k may be written as�kH(k;w; b) = �bH(k;w; b)� E � �fkk(k; �)(v0(
o(k; b; �)) + (
o(k; b; �) v00(
o(k; b; �)))�(A.5)showing that �kH(k;w; b) � �bH(k;w; b) by (P1). Combining (A.3) { (A.5) yields0 < �wK(w; b) = ��wH(k;w; b)�kH(k;w; b) < ��bK(w; b) = �bH(k;w; b)�kH(k;w; b) � 1: �8 Note that inter
hanging di�erentiation with the expe
tations operator E� ��� is legitimate sin
e theintegrand is 
ontinuously di�erentiable and integration is over a 
ompa
t set.17



A.4 Proof of Lemma 2.3Let " 2 Es be �xed. For brevity, we omit the subs
ript " su
h that �w0 > 0 denotes thetrivial steady state. In addition, de�ne w :=W(0; ") � 0 and �k0 := K( �w0; 0).(i) We determine unique values �k > 0 and 0 < �b < �w solving k = K(w; b), w =W(k; "),and R(k; ") = 1. Sin
e limk!0R(k; ") = 1 and R(�k0; ") < 1, the last 
onditionhas a solution �k 2℄0; �k0[ whi
h is unique by stri
t 
on
avity of f(�; ") and determines�w :=W(�k; ") < �w0. We determine �b as a solution to �w =W(K( �w; b); "). By Lemma 2.2,there 
an be at most one su
h solution. By uniqueness and stability of �w0, �0(w; ") > wfor all w 2℄w; �w0[. Hen
e, �w < �w0 implies limb!0W(K( �w; b); ") = W(K( �w; 0); ") > �w.Sin
e K( �w; b) < �w� b, limb! �wW(K( �w; b); ") = w < �w proving that a unique non-trivialsteady state exists. The Ja
obian at the steady state 
omputes�J := D�( �w;�b; ") = � ��kfkk(�k; ")�wK( �w;�b) ��kfkk(�k; ")�bK( �w;�b)bfkk(�k; ")�wK( �w;�b) 1 + bfkk(�k; ")�bK( �w;�b) � :By Lemma 2.2, the determinant and tra
e satisfy det �J = ��kfkk(�k; ")�wK( �w;�b) > 0and tr �J = 1 + det �J + bfkk(�k; ")�bK( �w;�b) > 1 + det �J . The latter inequality implies0 � (1 � tr �J=2)2 = 1 � tr �J + (tr �J)2=4 < � det �J + (tr �J)2=4 ensuring real and distin
tEigenvalues of �J . By Galor (2007, p.88), these properties imply saddle-path stability.(ii) Let " 2 Ex be �xed. By 
ontradi
tion, suppose there exists (w; b) 2 V+ su
h that( ~wt;~bt) := �t(w; b; ") 2 V for all t � 0. De�ning ŵt := �t0(w; "), Lemma 2.2 implies ~wt <ŵt and ~bt > 0 for all t. By stability, limt!1 ŵt = �w0. This and 
ontinuity ofR(�; ") implyexisten
e of T > 0 su
h that R(K(ŵt; 0); ") > 1 for all t � T implying that ~bt+1=~bt =R(K( ~wt;~bt); ") > R(K(ŵt; 0); ") > 1. Hen
e, (~bt)t�0 is eventually stri
tly in
reasingand, therefore, either diverges or 
onverges. But 
onvergen
e to some �nite value, sayb1 > 0 would imply limt!1R(K( ~wt;~bt); ") = 1 requiring by the stri
t monotoni
ity ofw 7! R(K(�; b); "), b > 0 that limt!1 ~wt = w1 � �w0 and R(K(w1; b1); ") = 1, whi
h isimpossible. Hen
e, limt!1 ~bt =1 whi
h 
ontradi
ts ~bt < ~wt < ŵt for all t. �A.5 Properties of the Stable ManifoldThis se
tion establishes properties of the stable manifoldM#" de�ned in (20). Many ofthe employed 
on
epts and a somewhat related analysis may be found in Galor (1992).While the formal arguments adopt the setup and notation of Se
tion 3, neither the mul-tipli
ative stru
ture of f nor the additional assumptions (P2){(P6) are used. Therefore,Theorem A.1 also applies for the s
enario of Se
tion 2 under the (weaker) hypotheses ofLemma 2.3 with the stable manifoldM" de�ned as in (15). The main result isTheorem A.1Given some interest poli
y #, let the hypotheses of Lemma 3.3 be satis�ed. In addition,suppose lim
!1 u0(
) = 0. Then, for ea
h " 2 E#s the following holds:(i) The set M#" de�ned in (20) is the graph of a C1-map  #" : R++ �! R++ .(ii) The map  #" is stri
tly in
reasing and satis�es limw!0  #" (w) = 0.18



(iii) For all "̂ 2 E the map w 7�! W(K#(w;  #" (w)); "̂) is stri
tly in
reasing as well.In what follows �x # and " 2 E#s and suppress these parameters writing � = �#(�; "),et
. For ease of notation, the restri
tion of F : X �! R to A ( X is denoted by the sameletter F instead FjA . Furthermore, let w0 :=W(0; ") � 0, �w1 := limk!1W(k; ") � 1,W + :=℄w0; �w1[, U := W + � R++ , and �V := f(w; b) 2 V j�n(w; b) 2 V 8n � 1g � V.Obviously, � : �V �! �V and the stable setM := f(w; b) 2 �V j limn!1�n(w; b) = ( �w;�b)gis a subset of �V 
ontaining ( �w;�b). The proof is prefa
ed by the following results.Lemma A.1Let (ŵ; b̂) 6= ( ~w;~b) 2 �V be su
h that ŵ � ~w and b̂ � ~b with at leat one stri
t inequality.Then the sequen
es f�n(ŵ; b̂)gn�0 and f�n( ~w;~b)gn�0 
an not 
onverge to the same limit.Proof of Lemma A.1. Let (ŵn; b̂n) := �n(ŵ; b̂) and ( ~wn;~bn) := �n( ~w;~b), n > 0. Byindu
tion and Lemma 3.2, ŵn > ~wn, b̂n < ~bn and �n := b̂n=~bn satisfy �n+1 = Z(ŵn;b̂n)Z( ~wn;~bn)�n <�n for n � 0. Sin
e f�ngn�0 is stri
tly de
reasing and bounded by zero, the limit�1 := limn!1 �n exists and 0 � �1 < �1 < 1. If (ŵn; b̂n)n�1 and ( ~wn;~bn)n�1 both
onverge, then limn!1 b̂n~bn = �1 < 1 whi
h implies limn!1 b̂n 6= limn!1 ~bn. �Lemma A.2Suppose lim
!1 u0(
) = 0. Then the map � : V+ �! U is a C1-di�eomorphism.Proof of Lemma A.2. Given some (w0; b0) 2 U we determine a unique (w; b) 2 V+ su
hthat �(w; b) = (w0; b0). The 
ondition w0 = �w(w; b) determines a unique k0 = K(w; b)su
h that w0 = W(k0; "). The value z0 = Z(w; b) then follows from the �rst or-der 
onditions E � [z0#(�)v0(b0 + k0R(k0; �))℄ = E � [R(k0; �)v0(b0 + k0R(k0; �))℄ from whi
hb = b0z0#(") 
an be inferred. Finally, w is the unique solution to u0(w � b � k0) =E � [z0#(�)v0(b0+k0R(k0; �))℄. Hen
e, ��1 is a well-de�ned fun
tion. � is 
learly C1 by theIFT. To see that ��1 is C1, it is straightforward to show that the Ja
obian D�(w; b)has determinant detD�(w; b) > 0 for ea
h (w; b) 2 V+ . This yields the derivative ofthe inverse D��1(w0; b0) = [D�(w; b)℄�1 whi
h is a 
ontinuous fun
tion. �Proof of Theorem A.1.Step 1: We show thatM is a C1 manifold. Sin
e ( �w;�b) is saddle-path stable under �, theso-
alled Stable Manifold Theorem (
f. Nite
ki (1971)) implies existen
e of the lo
allystable manifoldMlo
 := f(w; b) 2 V+ j�n(w; b) 2 U 8n � 1 ^ limn!1�n(w; b) = ( �w;�b)gfor some open neighborhood U � V+ of ( �w;�b) where Mlo
 is as smooth as �. It iswell-known (
f. Nite
ki (1971, p.89) or Galor (1992)) that the globally stable manifoldobtains as M = [n�0��n(Mlo
). The result from Lemma A.2 implies that M inheritsthe smoothness of Mlo
 and is hen
e a C1-manifold in V+ . Therefore, the proje
tionW := fw > 0 j 9b > 0 : (w; b) 2 Mg is an interval 
ontaining �w as an interior point.Step 2: We show that M = graph( ) for some C1-fun
tion  : W �! R++ . It suÆ
esto show that for ea
h w0 2 W there exists a unique 0 < b0 < w0 su
h that (w0; b0) 2 M.Suppose there are two su
h values, say b̂0 < ~b0 < w0. Then, by Lemma A.1, thesequen
es generated from (w0; b̂0) and (w0;~b0) under � 
an not 
onverge to the samelimit whi
h is a 
ontradi
tion to (20). The smoothness ofM then implies that  is C1.19



Step 3: We show that  is stri
tly in
reasing. Let ŵ < ~w be two points in W and supposethat b̂ :=  (ŵ) �  ( ~w) =: ~b. By Lemma A.1, the sequen
es generated from both pointsunder � 
an not 
onverge to the same limit whi
h 
ontradi
ts (ŵ; b̂); ( ~w;~b) 2 M.Step 4: We show that w 7�! K̂(w) := K(w;  (w)) is stri
tly in
reasing. We �rst 
laimthat  0(w) � �wK(w; (w))�bK(w; (w)) for all interior w 2 W . Suppose this fails to hold at someinterior ŵ 2 W . Then, by (A.16),  0(ŵ) > �wK(ŵ; (ŵ))��bK(ŵ; (ŵ)) � ��wZ(ŵ; (ŵ))�bZ(ŵ; (ŵ)) . By 
ontinuity,�̂w(w) :=W(K(w;  (w)); ") is lo
ally de
reasing while w 7! Z(w;  (w)) and, by Step 3,�̂b(w) :=  (w)Z(w;  (w))#(") are non-de
reasing and in
reasing, respe
tively aroundŵ. Let ŵ < ~w 2 W be an interior point 
lose to ŵ. Set ~b :=  ( ~w) > b̂ :=  (ŵ).Then, (ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := �w(ŵ; b̂) = �̂w(ŵ) < �̂w( ~w) = �w( ~w;~b) =: ~w1 andb̂1 := �b(ŵ; b̂) = �̂b(ŵ) < �̂b( ~w) = �b( ~w;~b) =: ~b1. But M being self-supporting under�, (ŵ1; b̂1) = �(ŵ; b̂) 2 M and ( ~w1;~b1) = �( ~w;~b) 2 M and, therefore, b̂1 =  (ŵ1)and ~b1 =  ( ~w1) whi
h 
ontradi
ts that  is stri
tly in
reasing proving the 
laim. Tosee that K̂ resp. �̂w are even stri
tly in
reasing, suppose there are ŵ > ~w su
h that�̂w(ŵ) = �̂w( ~w). Then, �̂w must be 
onstant on the interval [ ~w; ŵ℄ implying by (A.16) 0(w) = �wK(w; (w))�bK(w; (w)) � ��wZ(ŵ; (ŵ))�bZ(ŵ; (ŵ)) . By the same argument as before, w 7! �̂b(w) isstri
tly in
reasing on [ ~w; ŵ℄. De�ning ŵ1 := �̂w(ŵ) = ~w1, b̂1 := �̂b(ŵ) > �̂b( ~w) =: ~b1,both (ŵ1; b̂1) and ( ~w1;~b1) must lie on M whi
h 
ontradi
ts that M = graph( ). Thisproves that K̂ and, therefore, w 7�! W(K̂(w); "̂) are stri
tly in
reasing for all "̂ 2 E .Step 5: We show that W = R++ . Note from (20) that � :M�!M and ��1(M) �M.Lemma A.2 implies that � : M �! M \ U is a homeomorphism, i.e., a 
ontinuousbije
tion with 
ontinuous inverse ��1 : M \ U �! M. De�ne �̂w as above andW ? := W \ W + . The next results follow from the previous observations, monotoni
ityof �̂w, and uniqueness and stability (on M) of ( �w;�b).Lemma A.3The map �̂w : W �! W ? is a homeomorphism with inverse �̂�1w : W ? �! W satisfying:(i) �(w; b) = (�̂w(w);  (�̂w(w))) for all (w; b) 2 M.(ii) ��1(w; b) = (�̂�1w (w);  (�̂�1w (w))) for all (w; b) 2 M\ U.(iii) w T �w) �̂w(w) S w for all w 2 W .(iv) w T �w) �̂�1w (w) T w for all w 2 W ? .Let wmin := inf(W ) < �w < wmax := sup(W ) � 1 and w?min := inf(W ?) < �w < w?max :=sup(W ?) � 1. Note that w?min = maxfwmin; w0g and w?max = minfwmax; �w1g.We show that W is open, i.e., W =℄wmin; wmax[. By 
ontradi
tion, suppose wmin 2 W .Let (wn)n�0 be a stri
tly de
reasing sequen
e in [wmin; �w[� W 
onverging to wmin.Sin
e �̂w is a stri
tly in
reasing bije
tion, the sequen
e w?n := �̂w(wn) in W ? is stri
tlyde
reasing and 
onverges to w?min. Suppose w?min 2 W ? . Sin
e W + is open, this re-quires wmin > w0 in whi
h 
ase w?min = wmin. Hen
e, limn!1wn = wmin 2 W andlimn!1 �̂w(wn) = wmin whi
h implies �̂w(wmin) = wmin < �w and 
ontradi
ts Lemma20



A.3(iii). Conversely, suppose w?min =2 W ? , i.e., W ? is left open. Sin
e �̂w is a bije
tionbetween W and W ? , let ~w := �̂w(wmin). Sin
e ~w is an interior point, ~w � Æ 2 W ? forÆ > 0 small. But, sin
e �̂w is stri
tly in
reasing, �̂w(w) � ~w for all w 2 W 
ontradi
ting�̂w being a bije
tion. Hen
e, wmin =2 W . An analogous argument shows that wmax =2 W .Hen
e, W =℄wmin; wmax[ and also W ? = W \ W + =℄w?min; w?max[ are open intervals.We show that wmin � w0 and wmax � �w1. By 
ontradi
tion, suppose �rst thatwmin > w0 � 0 su
h that �̂w :℄wmin; wmax[�!℄wmin; w?max[. Choose ~w0 2℄wmin; �w[�W and de�ne ~wn+1 := �̂�1w ( ~wn) and ~bn :=  (wn) for n � 0. By Lemma A.3(iv),~wn 2℄wmin; �w[� W ? \ W for all n. Hen
e, both sequen
es are well-de�ned and stri
tlyde
reasing su
h that ~w1 := limn!1 ~wn � wmin > 0 and ~b1 := limn!1 ~bn � ~w1 bothexist. By 
onstru
tion and Lemma A.3(ii), ( ~wn;~bn) = ��1( ~wn�1;~bn�1) or, equivalently,�( ~wn;~bn) = ( ~wn�1;~bn�1) for all n. Therefore, limn!1( ~wn;~bn) = limn!1�( ~wn;~bn) =( ~w1;~b1). Suppose ~b1 = ~w1, i.e., ~wn & ~b1 > 0. Then, by Lemma 3.2 and A.5(iii)limn!1�b( ~wn;~bn) � limn!1�b( ~wn;~b1) = 1 
ontradi
ting limn!1�b( ~wn;~bn) = ~b1.Con
lude from this that ( ~w1;~b1) 2 V whi
h implies ( ~w1;~b1) = �( ~w1;~b1) by theprevious properties and 
ontinuity of �, i.e., ( ~w1;~b1) must be a �xed point of �. Butthis is impossible sin
e 0 < ~w1 < �w < �w0" . This 
ontradi
tion proves wmin � w0. Ananalogous argument shows wmax � �w1. Hen
e, W ? =℄w0; �w1[. This proves the 
laimif w0 = 0 and �w1 = 1. To see that wmin = 0 and wmax = 1 also if w0 > 0 and /or�w1 <1, suppose by 
ontradi
tion that wmin > 0. Let (wn)n�0 be a stri
tly de
reasingsequen
e in ℄wmin; �w[� W 
onverging to wmin > 0. Sin
e �̂w :℄wmin; wmax[�!℄w0; �w1[ isa stri
tly in
reasing bije
tion, this implies that limn!1 �̂w(wn) = w0 =W(0; ") requir-ing limn!1K(wn;  (wn)) = 0. At the same time, (wn; bn) 2 M for all n whi
h, using thesame argument as in the previous paragraph, implies bmin := limn!1  (wn) < wmin su
hthat (wmin; bmin) 2 V. But then, by 
ontinuity limn!1K(wn; bn) = K(wmin; bmin) > 0,a 
ontradi
tion. Con
lude that wmin = 0. A similar argument shows that wmax = 1
ompleting the proof. �A.6 Proof of Lemma 2.4Again we show the 
laim for the general s
enario of Se
tion 3 under the hypotheses ofLemma 3.3. The 
laim of Lemma 2.4 follows from the remarks made in Se
tion A.5. Let# be given and " 2 E#s be �xed. Dependen
e on these parameters will be suppressed.(i) Given w0 > 0, let b̂0 <  (w0) =: b0. Lemma 3.2 resp. 2.2 and an indu
tion argumentyield that (ŵt; b̂t) := �t(w0; b̂0) and (wt; bt) := �t(w0; b0) satisfy ŵt > wt > bt > b̂t � 0for all t > 0. De�ning �t := b̂t=bt gives �0 < 1 and �t+1 = �tZ(ŵt; b̂t)=Z(wt; bt) < �tfor all t � 0. Hen
e, limt!1 �t = �� < 1 and limt!1 bt = �b" > 0 imply limt!1 b̂t =limt!1�b(ŵt; b̂t) = b̂1 < �b". The latter implies either limt!1Z(ŵt; b̂t) = 1=#(") orlimt!1 b̂t = 0. But the �rst limit, supposing it exists, satis�es limt!1Z(ŵt; b̂t) <limt!1Z(wt; bt) = 1=#("). Con
lude that b̂1 = 0 whi
h, by 
ontinuity of � implies thatthe evolution of the sequen
e (ŵt)t�0 is asymptoti
ally governed by (14) whi
h 
onvergesto the trivial steady state for any initial value w0 > 0. Con
lude that limt!1 ŵt = �w0" .(ii) Given w0 > 0, let ~b0 >  (w0) =: b0. By 
ontradi
tion, let ( ~wt;~bt) := �t(w0;~b0) 2 V21



for all t � 0. De�ne (wt; bt) as in (i) and � 0t := ~bt=bt > 1, t � 0. By analogousreasonings, bt < ~bt < ~wt < wt and limt!1 � 0t = �� 0 > 1. Hen
e, limt!1 ~bt = �� 0�b" =:~b1 > �b". Sin
e ~bt < wt for all t, ( ~wt;~bt) 2 V requires ~b1 < 1 and limt!1Z( ~wt;~bt) =1=#("). Monotoni
ity of w 7�! Z(�; b) then requires limt!1 ~wt = ~w1. Sin
e ~wt > ~btimplies ~w1 � ~b1 and ~w1 = ~b1 would imply limt!1Z( ~wt;~bt) =1 by Lemma A.5(iii),( ~w1;~b1) 2 V and must be a steady state of �. But no steady state satisfying ~b1 > �b"exists and the 
laim follows. �A.7 Proof of Lemma 2.5For t � 0, let �t := btwt . Using �w, �b gives �t+1 = �(�t) := �1�� [ 
1+
 � �t℄�1�t, t � 0.The map � has a unique non-trivial �xed point �� := 
1+
 � �1�� whi
h is unstable.Moreover, �0 < �� implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) > 
1+
 for �nitet0. Hen
e, b0 = ��w0 is ne
essary for limt!1 �t(w0; b0; ") = ( �w";�b"). SuÆ
ien
y followsfrom Theorem A.1 whi
h implies existen
e of a 
orresponding b0 =  (w0) for w0 > 0. �A.8 Proof of Lemma 3.1Given (w; b) 2 V, let �k := w � b > 0. The argument 
o(z; k; b; ") := b z #(") + kR(k; ")will be suppressed when 
onvenient. Suppose b = 0. Then, H#1 is independent of z and# and H#1 (z; k;w; 0) = H(k;w; 0) for all k 2℄0; �k[ with H de�ned as in (12). Hen
e,existen
e of k+ 2℄0; �k[ to satisfy H#1 (z; k+;w; 0) = 0 is due to Lemma 2.1. Using k+
ondition H#2 (z; k+;w; 0) = 0 
an be solved expli
itly for z > 0 proving the 
ase b = 0.Suppose b > 0. The strategy is to use (17b) to eliminate z redu
ing (17a) to a one-dimensional problem. Fixing k̂ 2℄0; �k[ we determine ẑ > 0 to satisfy H#2 (ẑ; k̂;w; b) = 0.Noting that limz!1 
o(z; k; b; ") =1 for ea
h �xed " 2 E . Therefore, (P2) implieslimz!1 z #(") v0(�) = b�1 limz!1 
o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H#2 (z; k̂;w; b) < 0 for z suÆ
iently large. Sin
eH#2 (0; k̂;w; b) = u0(w � b � k̂) > 0 this proves existen
e of ẑ. To show uniqueness, weprove that z 7�! H#2 (z; k;w; b) is stri
tly de
reasing. Using (P1), the derivative satis�es�zH#2 (z; k;w; b) = �E �h#(�) v0�
o(z; k; b; �)�+ b z #(�)2 v00�
o(z; k; b; �)�i (A.6)< �E �h#(�)�v0�
o(z; k; b; �)�+ 
o(z; k; b; �)v00�
o(z; k; b; �)��i � 0:These results imply the existen
e of a map Ẑ(�;w; b) :℄0; �k[�! R++ whi
h determines avalue ẑ for ea
h k̂ 2℄0; �k[ su
h that H#2 (ẑ; k̂;w; b) = 0. Using (4) yields the derivative�kH#2 (z; k;w; b) = u00(w � b� k)� E �hR(k; �) z #(�)v00(�)�1 + Eg0(k)�i > 0 (A.7)where the se
ond term is positive by (P3). By the IFT, Ẑ(�;w; b) is C1 and stri
tlyin
reasing on ℄0; �k[ sin
e �kẐ(k;w; b) = ��kH#2 (z; k;w; b)=�zH#2 (z; k;w; b) > 0.22



Using these results, let Ĥ1(�;w; b) :℄0; �k[�! R, Ĥ1(k;w; b) := H#1 (Ẑ(k;w; b); k;w; b). Wedetermine a unique k+ 2℄0; �k[ that solves Ĥ1(k+;w; b) = 0. Sin
e v0 is stri
tly de
reasing,R(k; ")v0�b Ẑ(k;w; b)#(") + kR(k; ")� < R(k; ")v0�kR(k; ")� for all " 2 E whi
h impliesĤ1(k;w; b) > u0(w� b� k)� E � �R(k; �)v0�kR(k; �)�� for all k 2℄0; �k[. Therefore, by (9)limk!�k Ĥ1(k;w; b) � limk!�k�u0(w � b� k)� E � �R(k; �)v0�kR(k; �)��� =1: (A.8)Let (kn)n�1 be a sequen
e in ℄0; w � b[ with limn!1 kn = 0. Sin
e k 7! Ẑ(k;w; b) and,by (P3), k 7! kR(k; ") are in
reasing, 
n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is boundedfrom above for all " 2 E whi
h implies limn!1R(kn; ") v0�
n(")� =1. This being truefor all " 2 E gives limn!1 E � �R(kn; �)v0�
n(�)�� = 1 and limn!1 Ĥ1(kn;w; b) = �1.Sin
e (kn)n�1 was arbitrary, limk!0 Ĥ1(k;w; b) = �1. This and (A.8) yields existen
eof a zero of Ĥ1(�;w; b). Finally, using (P2) the partial derivatives of H#1 (�;w; b) 
ompute�kH#1 (z; k;w; b) = �u00(�)� E � �fkk(k; �) v0(�) + (1 + Eg0(k))R(k; �)2 v00(�)� > 0(A.9)�zH#1 (z; k;w; b) = �E �hR(k; �) b #(�) v00(�) > 0: (A.10)Combining (A.9) and (A.10) with the monotoni
ity of Ẑ(�;w; b) yields �kĤ1(k;w; b) =�kH#1 (z; k;w; b) + �zH#1 (z; k;w; b)�kẐ(k;w; b) > 0 where z = Ẑ(k;w; b). Hen
e, k+ isthe unique zero of Ĥ1(�;w; b) on ℄0; �k[. Setting z = Ẑ(k+;w; b) 
ompletes the proof. �A.9 Proof of Lemma 3.2As in the previous proof, the argument 
o(z; k; b; ") de�ned as before is omitted when
onvenient. We prefa
e the proof by the following te
hni
al result.Lemma A.4For the s
enario of Se
tion 3, let (P1){(P4) hold and # : E �! R++ be 
ontinuous.Then, for all (w; b) 2 V, z := Z#(w; b) and k := K#(w; b) the following holds:(i) kE � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.(ii) E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.Proof of Lemma A.4.(i) Equations (17a) and (17b) give H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0 and, therefore, 0 =H#1 (z; k;w; b)�H#2 (z; k;w; b) = E � [(R(k; �)� z#(�))v0(�)℄. By (P4), v0(
) = ��1
jv00(
)jfor all 
 = bz#(") + kR(k; ") > 0 whi
h implies (i).(ii) We have 0 � E � [(R(k; �)� z#(�))2jv00(�)j℄ whi
h 
an equivalently be written asE � [R(k; �)(R(k; �)� z#(�))jv00(�)j℄ � E � [z#(�)(R(k; �)� z#(�))jv00(�)j℄. Sin
e, by (i),one of the terms must be non-positive, the 
laim follows immediately. 2Let (w; b) 2 V be arbitrary and set z := Z#(w; b) and k := K#(w; b) noting that z > 0and 0 < k < w � b. Write H# = (H#1 ; H#2 ) and � = (z; k). The signs of the derivativesin (A.6), (A.7), (A.9), and (A.10) imply that the Ja
obian matrixD�H#(z; k;w; b) = � �zH#1 (z; k;w; b) �kH#1 (z; k;w; b)�zH#2 (z; k;w; b) �kH#2 (z; k;w; b) � :23



has determinant detD�H#(z; k;w; b) > 0 and is hen
e invertible. The inverse 
omputes[D�H#(z; k;w; b)℄�1 = 1detD�H#(z; k;w; b) � �kH#2 (z; k;w; b) ��kH#1 (z; k;w; b)��zH#2 (z; k;w; b) �zH#1 (z; k;w; b) � :The partial derivatives with respe
t to w and b take the form�wH#1 (z; k;w; b) = �wH#2 (z; k;w; b) = u00(w � b� k) < 0 (A.11)�bH#1 (z; k;w; b) = �u00(w � b� k)� E � �R(k; �) z #(�)v00���� > 0 (A.12)�bH#2 (z; k;w; b) = �u00(w � b� k)� E � �(z #(�))2v00���� > 0: (A.13)By the impli
it fun
tion theorem, omitting the arguments for notational 
onvenien
e�wZ#(w; b) = ��wH#1 [�kH#2 � �kH#1 ℄detD�H# ; �bZ#(w; b) = �kH#1 �bH#2 � �kH#2 �bH#1detD�H#�wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# ; �bK#(w; b) = �zH#2 �bH#1 � �zH#1 �bH#2detD�H# :(i) As detD�H# = �zH#1 �kH#2 � �kH#1 �zH#2 > 0, �zH#2 < 0 < �zH#1 by (A.6) and(A.10), and ��wH#1 < �bH#i , i = 1; 2, it follows that0 < �wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# < �zH#1 �bH#2 � �zH#2 �bH#1detD�H# = ��bK#(w; b):(ii) If, in addition, (P4) holds, straightforward 
al
ulations and Lemma A.4 imply�kH#1 � �kH#2 = E � [(R(k; �)� z#(�))R(k; �)jv00(�)j(1 + Eg0(k))� fkk(k; �)v0(�)℄ > 0(A.14)�bH#1 � �bH#2 = E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄ � 0: (A.15)By (A.11) and (A.14), �wZ#(w; b) < 0 and, by (A.12) { (A.15), �bZ#(w; b) > 0. Finally,�wK#(w; b)�bZ#(w; b)� �bK#(w; b)�wZ#(w; b) = ��wH#1detD�H# (�bH#2 � �bH#1 ) � 0 (A.16)whi
h follows from dire
t 
al
ulations and shows that ��wZ#(w;b)�bZ#(w;b) � �wK#(w;b)��bK#(w;b) < 1. �Remark A.1Sin
e Z# and K# are well-de�ned and the matrix D�H#(z; k;w; b) is non-singular also atany boundary point (w; 0) of V, the impli
it fun
tion theorem implies that the mappingsZ# and K# 
an lo
ally be extended to an open neighborhood around (w; 0). Hen
e,their derivatives are well-de�ned and 
ontinuous also on the boundary of V where b = 0.Hen
e, Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.A.10 Proof of Lemma 3.3Given #, let " 2 E be �xed. To alleviate the notation, these parameters will subsequentlybe suppressed. With this 
onvention, denote the trivial steady state as �w0 > 0 and letwk :=W(0; ") � 0. By the monotoni
ity of K# (
f. Lemma 3.2) andW(�; "), any steadystate ( �w;�b) 2 V+ satis�es wk < �w < �w0. Further results are 
olle
ted in the next lemma.24



Lemma A.5Under Assumption 3.1 and the hypotheses of Lemma 3.3, the following holds true:(i) w >W(K#(w; 0); ") for all w 2℄wk; �w0[.(ii) W(k; ") � kR(k; ") for all 0 < k � �k0 := K#( �w0; 0).(iii) For any b̂ � 0: limw&b̂Z#(w; b̂) =1.Proof of Lemma A.5(i) Uniqueness of �w0 gives w 6=W(K#(w; 0); ")8w 2℄wk; �w0[. Stability implies the 
laim.(ii) By (3) and (4), the 
laim is equivalent to Eg(k) � 12 for all k 2℄0; �k0℄. By Assumption3.1, Eg(�k0) � 12 . The derivative E 0g(k) = (Eg0(k))2=(kEg(k))(1 � Eg(k) � jEg0(k)j) isnon-negative by (P5) implying that Eg is non-de
reasing from whi
h the 
laim follows.(iii) By (17a), (17b), for any (w; b) 2 V, de�ning z := Z#(w; b) and k := K#(w; b)and 
o(z; k; b; ") as above one has E � [R(k; �)v0(
o(z; k; b; �))℄ = E � [z#(�) v0(
o(z; k; b; �))℄.This implies that there exists some ~" 2 E su
h that z#(~") � ~"g0(k). Setting � :=min"f"=#(") j " 2 Eg > 0 (whi
h is well-de�ned by 
ontinuity of # and 
ompa
tness ofE) gives the inequality Z#(w; b) � �g0(K#(w; b)) for all (w; b) 2 V. Hen
e, for any b̂ � 0,limw&b̂K(w; b̂) = 0 implies limw&b̂Z#(w; b̂)) � � limw&b̂ g0(K(w; b̂)) =1. 2(i) Existen
e. De�ne Hw : V �! R, Hw(w; b) := w � W(K#(w; b); ") and the w-iso
line H w := f(w; b) 2 V jHw(w; b) = 0; w 2℄wk; �w0[g. Any interior steady statesatis�es ( �w;�b) 2 H w . For ea
h ŵ 2℄wk; �w0[ we 
laim there exists a unique b̂ 2℄0; ŵ[su
h that Hw(ŵ; b̂) = 0. By Lemma A.5(i), limb!0Hw(ŵ; b) = ŵ �W(K#(ŵ; 0); ") < 0and limb!ŵK#(ŵ; b) = 0 gives limb!ŵHw(ŵ; b) = ŵ � wk > 0 implying existen
e of b̂.Uniqueness follows from Lemma 3.2 whi
h implies that Hw(w; �) is stri
tly in
reasing.This result permits to de�ne the solution b̂ as a map hw :℄wk; �w0[�! R++ implyingH w = graph(hw). By the impli
it fun
tion theorem, hw is C1 with derivativeh0w(w) = ��w(Hw(w; b))�b(Hw(w; b)) = �1 + kfkk(k; ")�wK(w; b)kfkk(k; ")�bK(w; b) ; b = hw(w); k = K(w; b): (A.17)As Hw( �w0; 0) = 0 and limw&wk K#(w;wk) = 0 yields Hw(wk; wk) = 0, 
ontinuity of Hwimplies the boundary behavior limw! �w0 hw(w) = 0 and limw!wk hw(w) = wk � 0.Analogously, let Hb : V �! R, Hb(w; b) := Z#(w; b)� 1#(") . Note �rst that " 2 E#s implieslimw! �w0Hb(ŵ; 0) = Z#( �w0; 0)� 1#(") < 0. By Lemma A.5(iii), limw!0Hb(ŵ; 0) =1. Asw 7! Z#(w; 0) is stri
tly de
reasing by Lemma 3.2(ii), a unique 0 < wz < �w0 satisfyingHb(wz; 0) = 0 exists. De�ne the b-iso
line H b := f(w; b) 2 V jHb(w; b) = 0; w 2℄wz; �w0[g.Any interior steady state satis�es ( �w;�b) 2 H b . Given ŵ 2℄wz; �w0[ we determine b̂ 2℄0; ŵ[su
h that Hb(ŵ; b̂) = 0. Lemma 3.2(ii) implies limb!0Hb(ŵ; b) = Z#(ŵ; 0) � 1=#(") <Z#(wz; 0)� 1=#(") = 0. Lemma A.5(iii) yields limb!ŵHb(ŵ; b) =1 implying existen
eof b̂. Uniqueness follows from Lemma 3.2(ii) and monotoni
ity of b 7! Z#(ŵ; b). Thispermits the solution b̂ to be de�ned as a map hb :℄wz; �w0[�! R++ and H b = graph(hb).By the IFT, hb is C1 with derivativeh0b(w) = ��wHb(w; b)�bHb(w; b) = ��wZ(w; b)�bZ(w; b) > 0; b = hb(w): (A.18)25



Re
all that Hb(wz; 0) = 0 and Hb( �w0; 0) < 0. By Lemma A.5(iii), the latter impliesexisten
e of a unique value �b0 satisfying Hb( �w0;�b0) = 0. By 
ontinuity of Hb, thisimplies the boundary behavior limw! �w0 hb(w) = �b0 and limw!wz hb(w) = 0.Let w := maxfwk; wzg > 0 and the map � :℄w; �w0[�! R, �(w) := hw(w) � hb(w).Sin
e ( �w;�b) 2 V is an interior steady state i� ( �w;�b) 2 H w \ H b , steady state values�w are zeros of � while �b = hw( �w) = hb( �w). By the boundary behavior of hw and hb,limw! �w0 �(w) = � limw! �w0 hb(w) = ��b0 < 0. As for the left limit, suppose w = wk >wz. Then, limw!w�(w) = limw!wk hw(w)� hb(wk) = wk � hb(wk) > 0. This also holdsif wk = wz. Conversely, if w = wz > wk, then limw!w�(w) = hw(wz)�limw!wz hb(w) =hw(wz) > 0. Con
lude that limw!w�(w) > 0 and a zero exists.Uniqueness. Let ( �w;�b) � 0 be an interior steady state. We show that �0( �w) < 0implying uniqueness by 
ontinuity of �0. Let �k := K#( �w;�b) < �k0 and �z := Z#( �w;�b). By(A.17) and (A.18),�0( �w) = ��bZ#( �w;�b) + "�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�"�kg00(�k)�bK#( �w;�b)�bZ#( �w;�b) :(A.19)Sin
e the denominator is stri
tly positive by Lemma 3.2, it suÆ
es to show that thenumerator is stri
tly positive as well. Using (A.16) and the de�nition of �bZ#( �w;�b)from Lemma 3.2 and re
alling that detD�H# > 0, this is equivalent to showing thatM := �kH1�bH2 � �kH2�bH1 � "�kg00(�k)�wH1(�bH2 � �bH1) > 0 (A.20)where the arguments of the fun
tion have been omitted for 
onvenien
e. In what follows,let M1 := E � [�z#(�) jv0(�)j℄ = E � [R(�k; �) jv0(�)j℄ > 0, M2 := E � [R(�k; �)2 jv00(�)j℄ > 0,M3 := E � [(�z#(�))2 jv00(�)j℄ > 0 and M4 := E � [R(�k; �) �z#(�) jv00(�)j℄ > 0. Using thefun
tional forms of the derivatives from (A.7), (A.9), and (A.11) { (A.13), tedious butstraightforward 
al
ulations imply that M 
an be written as M = A+B + C whereA := ju00(�)jh�g00(�k)g0(�k)M1 +m(M3 �M4) + (1 + Eg0(�k))(M2 �M4)im := 1 + "�kg00(�k); B := �g00(�k)g0(�k)M1M3; C := (1 + Eg0(�k))hM2M3 � �M4�2i:By Lemma A.4(ii), M2 � M4 and M3 � M4 whi
h implies C � 0 by (P3). Obviously,B > 0. Suppose m � 0. Then, A > 0 whi
h implies M > 0. Conversely, supposem < 0 su
h that �mM4 > 0. By (P3), (1 + Eg0(�k))(M2 �M4) � 0. By (P4), M1 =��1(�kM2 + �bM3) > �bM3. By (P5) and the �rst order 
onditions, M1 = u0( �w � �b� �k) �ju00( �w � �b� �k)j( �w � �b� �k) whi
h implies B � ju00(�)jg00(�k)g0(�k)M3( �w � �b� �k). Hen
e,A+B > ju00(�)jM3h(1 + Eg0(�k))� g00(�k)g0(�k) ( �w � "�kg0(�k))i:Both terms in bra
kets are non-negative due to (P3) and Lemma A.5(ii), respe
tively.Hen
e, M > 0 also in this 
ase, proving uniqueness of the steady state.Stability. The argument is similar to the one in Lemma 2.3. Computing the determinantand tra
e of the Ja
obian �J at the steady state gives, using Lemma 3.2 and (A.16)det �J = �"�kg00(�k)h�wK#( �w;�b)+ �b�z��wK#( �w;�b)�bZ#( �w;�b)��bK#( �w;�b)�wZ#( �w;�b)�i > 026



tr �J = 1+det �J+�b�z��bZ#( �w;�b)+"�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)��:As shown before, the numerator in (A.19) is positive whi
h implies tr �J > 1+det �J . Thesame reasoning as in the proof of Lemma 2.3 gives the 
laim.(ii) Repla
ing R(K(w; b); ") by #(")Z#(w; b) and using Lemma 3.2 the proof is identi
alto the one of Lemma 2.3(ii). �A.11 Proof of Lemma 4.1We look for a zero of the fun
tionH(� ;w; b) := b��� (w��), � < w. Sin
eH is C1 andTheorem A.1 implies 0 <  0(w) < 1, ��H(� ;w; b) = �(1� 0(w��)) < 0 su
h that thereis at most one su
h zero. Using Theorem A.1(ii) gives lim�!wH(� ;w; b) = b � w < 0.Moreover, lim�!�1H(� ;w; b) = b + lim�!1 �(1 �  (w+�)� ). If lim�!1  (w + �) < 1,then lim�!�1H(� ;w; b) = 1. If lim�!1  (w + �) = 1, then lim�!1(1 �  (w+�)� ) =1� lim�!1  0(w+ �) > 0 by l'Hopital's rule. Hen
e, lim�!�1H(� ;w; b) =1 again. �A.12 Proof of Lemma 4.2Let � = (#; "ref) be given. For w > 0 and " 2 E , de�ne �̂�w(w; ") :=W(K#(w;  �(w)); ")whi
h is stri
tly in
reasing by Theorem A.1 and linear in ". Let w > 0 be arbitrarybut �xed and de�ne (wref ; bref) := �#(w;  �(w); "ref). Sin
e M� is self-supporting un-der �#(�; "ref), bref =  �(wref). Moreover, the multipli
ative stru
ture implies that�#(w;  �(w); ") = � ""refwref ; #(")#("ref ) ��wref�� for ea
h " 2 E . Using these relations, thestabilizing tax 
an be written as a fun
tion T̂ �(wref; ") de�ned impli
itly by the 
ondi-tion G(� ;wref ; ") :=  ��wref�#(")=#("ref)� � �  ��wref "="ref � �� = 0. By the IFT, thederivatives of ��(w; ") = �̂�w(w; ")� T̂ �(�̂�w(w; "ref); ") 
ompute�w��(w; ") = �w�̂�w(w; ")1� "ref" #(")#("ref) � 0(��(w; "ref))1�  � 0(��(w; ")) (A.21a)�"��(w; ") = �̂�w(w; 1)� #0(")#("ref ) �(�̂�w(w; "ref))1�  � 0(��(w; ")) : (A.21b)Under (a), the fra
tion in (A.21a) is stri
tly positive su
h that ��(�; ") inherits themonotoni
ity properties of �̂�w(�; "). Moreover, sin
e w >  �(w) and �̂�w(w; �) is linear,the numerator in (A.21b) is stri
tly positive under (b). This proves the 
laim. �A.13 Proof of Theorem 4.1First note that �� is stri
tly in
reasing su
h that both limits are well-de�ned. By theresults from Theorem A.1, the map ��(w; "ref) = W(K#(w;  �(w)); "ref) has a unique�xed point �w�ref > 0 and ��(w; "ref) T w i� w S �w�ref . Sin
e " 7�! ��(w; ") is stri
tlyin
reasing, this implies ��(w; "min) < w for all w � �w�ref and ��(w; "max) > w for all w ��w�ref . Hen
e, non-trivial �xed points of ��(�; "min) 
an only exist in ℄0; �w�ref [ and do exist if27



limw!0 ��(w; "min)=w > 1. Likewise, non-trivial �xed points of ��(�; "max) 
an only existin ℄ �w�ref;1[ and do exist if limw!0 ��(w; "max)=w < 1. Using the terminology of Bro
k& Mirman (1972), the map �� possesses a stable �xed-point 
on�guration. De�ningw� := maxfw > 0j��(w; "min) = wg < �w�ref < �w� := minfw > 0j��(w; "max) = wgthe set �W � := [w�; �w�℄ is the unique stable set of �� (for a de�nition, see Wang (1993,p.428)) whi
h 
orresponds to a unique invariant distribution �� supported on �W � . �Referen
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