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Abstract

The paper analyzes the role of governmental debt in an overlapping generations
economy with stochastic production and capital accumulation. In the absence of
taxation, equilibria with positive debt generically converge to debtless equilibria
with probability one which are dynamically inefficient. It is shown that this may
be overcome by a tax on labor income which minimizes stabilization efforts by
stabilizing the level of debt along a stable set of the underlying dynamical system.
A long-run welfare criterion is formulated which measures consumer welfare at the
stabilized equilibrium. Based on this criterion, the welfare effects of different levels
of debt and different interest policies are investigated with the help of numerical
simulations.
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Introduction

Most industrialized countries have large governmental debt. In the U.S., total outstand-
ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about
66% in 2007. Largely due to the gigantic fiscal stimuli in response to the recent economic
crisis, the past two years have seen a dramatic increase of this ratio to more than 85%
as of 2009. Similar figures apply for other countries suggesting that the sustainability
of governmental debt is - or should be - a highly relevant issue for policy making.
From a theoretical perspective, it is well-known that an increase in governmental debt
may stimulate aggregate demand in the short run but crowds out capital investment in
the long run, cf. Elmendorf & Mankiw (1999). The latter effect is particularly important
in overlapping generations (OLG) economies where the first welfare theorem need not
hold and competitive equilibria may be inefficient due to an overaccumulation of cap-
ital. In such a situation, as first shown by Diamond (1965), introducing governmental
debt leads to a welfare improvement by implementing a dynamically efficient allocation.
Subsequent studies to investigate the role of governmental debt in deterministic OLG
economies may be found, e.g., in de la Croix & Michel (2002, Ch.4), Farmer (1986),
Rankin & Roffia (1999) and in Bullard & Russell (1999) for consumers with multiperiod
lives.

There is a close relationship between the sustainability of governmental debt and the
emergence of a bubble. The latter corresponds to an intrinsically worthless asset that
is traded at a positive price such as fiat money or a private asset that does not pay
dividends. The differences between debt and a bubble are thoroughly exhibited in de
la Croix & Michel (2002, p.212). Starting with the work by Tirole (1985), a large body
of the literature discusses the emergence of bubbles in deterministic OLG models. Ex-
amples may be found, e.g., in Bertocchi & Wang (1994), Kunieda (2008), or Michel &
Wigniolle (2003). Due to the structural similarities between debt and a bubble, the
results by Tirole (1985) are directly applicable to characterize sustainable levels of gov-
ernmental debt in deterministic OLG models, cf. de la Croix & Michel (2002, Ch.4). It
is shown there that steady states with positive debt are saddle-path stable which implies
that sustainable levels of debt are required to lie on a lower-dimensional subset (the so-
called stable manifold) of the state space. This determines a unique debt-to GDP ratio
under which the economy converges to the golden-rule steady state with positive debt.
Debt smaller than the critical level leads to an asymptotically debtless (and inefficient)
situation while larger values imply an unsustainable situation with explosive debt.
Starting with the work of Wang (1993), the literature has increasingly focused on OLG
economies with aggregate risk due to random production shocks. It is not yet known,
however, how the previous findings carry over to a stochastic setting and under what
conditions equilibria with positive debt exist. A first approach in this direction is put
forward in Bertocchi (1994), who analyzes possible equilibrium scenarios in a stochastic
OLG model with riskless debt. The present paper provides a refinement of her results.
If there is aggregate risk, another function of governmental debt is to provide a possi-
bility of risk-sharing between generations. If interest payments on outstanding debt are




financed by issuing new debt to the next generation, the implied risk sharing is essen-
tially determined by the interest on debt. This motivates the question of how different
interest policies on debt affect intergenerational risk-sharing and consumer welfare.
The present paper extends the model of Wang (1993) to study the role of governmental
debt in a stochastic OLG framework which has not been done in the literature. Follow-
ing above’s motivation, two issues are at the center of interest: 1. Which levels of debt
are sustainable in the presence of random shocks? 2.Which interest policy is favorable
and induces optimal risk sharing between generations? To quantify the welfare effects
of different debt policies, the paper develops a long-run welfare concept on the basis of
which the optimum quantity of debt and an optimal interest policy can be determined.
The paper is organized as follows. Section 1 introduces the model. Section 2 analyzes
equilibria with capital-equivalent debt where the return on debt coincides with the cap-
ital return. This structure is generalized in Section 3 which allows for general interest
policies including riskless debt. Section 4 demonstrates how the level of debt can be
stabilized against unfavorable shocks through a labor income tax. The welfare proper-
ties of stabilized equilibria under different debt policies are investigated in Section 5.
Section 6 concludes, all proofs are placed in the Mathematical Appendix.

1 The Model

The framework to be introduced in this section generalizes the stochastic overlapping
generations model in Wang (1993) to include governmental debt and a tax system.

Population. The consumption sector consists of overlapping generations of homogeneous
consumers who live for two periods. The index j € {y, 0} identifies the young and old
generation in each period. Each young consumer is endowed with one unit of labor time
supplied inelastically to the market. Old consumers are retired and do not supply labor.
Abstracting from population growth, each generation consists of N > 0 consumers such
that L7 = N denotes aggregate labor supply at time ¢ > 0. Old consumers in period ¢
own the existing stock of capital K; which they supply to the production process.

Production. Labor and capital are employed by a single firm which produces Y; units
of a consumption good using labor L, and capital K; as inputs in period ¢. In addition,
the production process in period ? is subjected to random shocks corresponding to the
random variable £;. The technology is represented by the linear homogeneous production
function F(-;&;) : R2 — Ry producing gross output (including depreciated capital) as

Y, = F(Ky, Lij&y). (1)

The noise process {e;};>¢ consists of independent, identically distributed random vari-
ables defined on a common probability space (€2, F,P). Each ¢, is distributed according
to the probability measure v supported on € C [emin, Emaz] C Ryy. The process is
adapted to a suitable filtration {F;},>¢ of increasing sub o-algebras of F such that each
g; :  — &€ is Borel-measurable with respect to F;.! Let B[] := E[-|F;] denote the

I The underlying probability space may be constructed by defining © := ENo which may be endowed
with the product topology to become a topological space on which the Borel-c-algebra F := B(12)




expectations operator conditional on the information represented by F;. Throughout,
the notion of an adapted stochastic process {&:};>o taking values in some set = C RY
refers to the probability space and the filtration defined. It implies that each random
variable & : 0 — = is Borel- measurable with respect to F; and hence observable in
period t. All equalities or inequalities involving random variables are assumed to hold
P-almost surely without further notice.

Define y; := % and k; := % as output respectively capital per labor force. By the linear
homogeneity of F'(-;&;), the technology (1) may be written in intensive form as
ye = fkis &) = Fky, 1) (2)

The function f is continuous and twice differentiable with respect to its first argument
with continuous derivatives satisfying fr(k;e) < 0 < fr(k;e) for all £ > 0 and ¢ € €
as well as the Inada conditions limy_,o fx(k;¢) = oo and limy_, fr(k;e) < 1. Profit
maximization and linear homogeneity of the technology (1) imply that market clearing
prices for labor and capital in period ¢t > 0 are given by their marginal products, i.e.,

wi = Wk &) = f(kier) — ko fe(kis ) (3)
Ty = R(kt;&t) = fk(kt;5t)- (4)

Government. The infinitely-lived government taxes consumers and issues debt to finance
its deficit. For the purpose of this paper, debt may be thought of as a one-period lived
bond which pays a (possibly random) return r;; > 0 per unit invested at time ¢ > 0.
Negative debt will not be considered in this paper. Let b; > 0 be the number of bonds per
young consumer issued at time ¢ and 77 an 7 be the taxes levied on a young consumer’s
labor income and old consumer’s capital income, respectively. Negative taxes correspond
to subsidies on the income of the respective group. It follows that debt evolves as

by=rbyy —1 — 717, t>0. (5)

Consumers. At time ¢t > 0 a young consumer earns net labor income w; := w{ — 7/ > 0
that can be consumed and invested in bonds and capital. Let s, and b; be the investments
in capital and bonds at time ¢ > 0. These choices define current consumption as

C%:wt—bt—st (6)
while next period’s consumption is given by the random variable
Copr = beri + SeTip — T (7)

Here the randomness enters through the uncertain returns on both investments and
uncertain tax payments which are treated as given random variables in the decision.
Young consumers evaluate the expected utility of different consumption plans (cf, ¢, )
defined by (6) and (7) according to the von-Neumann Morgenstern utility function

U(c?, %) == u(c?) 4+ v(c?). (8)

may be defined. The measure I’ corresponds to the product measure I’ := ®;>ov while the sub-o-
algebra F; is generated by the class of measurable rectangular sets A =[]~ A, where each A4, is
a Borel-measurable subset of £ and A,, = £ for n > t.




Both functions u and v are C? with derivatives 2”(c) < 0 < 2'(c) for ¢ > 0 and satisfy

limz2'(¢c) =00 for 2z € {u,v}. (9)

c—0

Each young consumer chooses investment to maximize her expected utility of lifetime
consumption. The decision problem reads:

max{u(wt —b—s)+Efo(rfp b+ rss —100)]| s> 0,0+ 5 <w — Ty}. (10)

b,s

Note that no short-selling constraints on b are imposed at the individual level. The
investment in capital s; determines next period’s per-capita capital stock as

kt+1 = S¢. (11)

Old consumers in period ¢ > 0 consume the proceeds on their investments in bonds and
capital during the previous period - net of taxes - as defined by (7).

Equilibrium. Combining the assumptions of market clearing, individual optimality and
rational expectations the following definition of an equilibrium is straightforward.

Definition 1.1
Given initial values by > 0, ky > 0, and ¢y € £, an equilibrium is an adapted stochastic

process {w], e, 5, 7,70, by, St ¢l &, kg1 b, which satisfies the following for each t > 0:

>0

(i) Wages w{ > 0 and returns r; > 0 are determined by (3) and (4) and the returns
on debt satisty r; > 0.

(ii) Taxes satisfy 7/ < w{ and 10 < byrf + kyry while debt b, > 0 evolves as in (5).

(iii) The pair (b, s;) solves the decision problem (10) at the given wage, returns, and
taxes while ¢, ¢}, and k41 are determined by (6), (7), and (11).

Indeterminacy of fiscal policy. The following result shows that without further restric-
tions on taxes {77, 77}, any debt process is consistent with equilibrium. This is a
straightforward generalization of the deterministic case in de la Croix & Michel (2002).

Lemma 1.1

Given ky > 0, let an interior allocation {st,c%,cf,ktﬂ}po, and prices {w],r, 7} }1>0
satisfy (3), (4), and (11), the feasibility condition ¢ + ¢§ + kyy1 = f(ki,e¢) for alle, € €
and the intertemporal efficiency conditions u'(¢}) = Ey[ry1v'(cf1)] = Efry v (¢f)]
for all t > 0. Then, for any non-negative debt process {b;},>o there is a feasible tax
process {1{, 70 }i>o such that {w{, ry, v}, 7/, 70, by, s1, ¢t ¢, kt+1}t>0 is an equilibrium.

In light of the last result, investigating the sustainability of governmental debt requires
further restrictions on tax policies. As in Diamond (1965), the subsequent analysis
therefore assumes that there is no taxation of capital income such that 77 = 0 for all
t > 0. Since the ultimate goal is to analyze the long-run welfare effects of debt policies,
this restriction is also in line with the findings of Chari & Kehoe (1999), who show
that optimal policies in OLG models are characterized by zero capital taxation in the
long-run.




2 Equilibria with Capital-Equivalent Debt

The next two sections study dynamic equilibria in the absence of taxation (7 = 0) under
different assumptions on the return on debt, i.e., on the process {7} };>¢ . In the sequel
we denote by Ej(x) := ’”Z(g) the elasticity of a differentiable function h: R, — R, .
The following additional restrictions on f in (2) and v in (8) will be used frequently:

(P1) Ey(c) > =1Ve >0 (P2) li)m cv'(c) =00 (P3) Ey (k;e) > —1VEk >0,e €.

While (P1) and (P3) are standard, (cf. de la Croix & Michel (2002) and Wang (1993)),
(P2) is more restrictive as it excludes several popular parameterizations such as log
utility. Examples satisfying (P1) and (P2) are power utility v(c) =60, 0 <0 < 1, or
CES utility v(c) = [1 —0+0c%5, 0< 0 < 1, B> 0.

As a first scenario, suppose the government commits itself to paying the capital return
on debt such that r; = r; for each ¢ > 0. This case will be called capital-equivalent (CE)
debt and the remainder of this section will study the existence and properties of equilibria
under this assumption. To unveil the recursive structure of equilibria for the economy,
consider an arbitrary period t. Let current capital k&, > 0 and the shock ¢, € £ be
given which determine the wage w; = w{ > 0 and the return r; > 0 on capital and debt
according to (3) and (4). Then, current debt b; > 0 corresponding to the supply of bonds
follows from its previous value b;_; and (5). Assume that w; > b;. Since investment in
debt and capital are perfect substitutes and the number of bonds traded is determined
by the supply side, the equilibrium problem is to determine next period’s capital stock
0 < kyyq < wy — by in a way consistent with an optimal savings decision derived from
(10) and rational, self-confirming expectations. Let E,[-] denote the expected value with
respect to the distribution v of next period’s production shock. Using (4), (11), and the
first order conditions of (10), define the map H(:;w,b) :]0,w —b[— R,

H(k;w,b) :=u'(w—b—k) —E, [R(k;-)0" (R(k;-)(b+ k))]. (12)

Then, given w; > b, > 0, the expectations-consistent solution k;.; is determined by
H (kyy1;wy, b)) = 0. Existence and uniqueness of such a zero are established next.

Lemma 2.1

Let v satisfy (P1). Then for each w > 0 there exists an upper bound 0 < ™ (w) < w
such that H(-;w,b) has a zero (which is unique) in |0, w — b if and only if b < b™** (w).
If, in addition, (P2) holds, then b™*(w) = w.

In the sequel we assume that the hypotheses of Lemma 2.1 are satisfied permitting us to
define the set V:= {(w,b) € R% |w > 0,b < b™*(w)} and the mapping £ : V — Ry,
which determines the unique zero of H(-;w,b). Invoking the Implicit Function Theorem
(IFT), this map is continuously differentiable with derivatives satisfying the following.

Lemma 2.2
Let v satisfy (P1). Then, at each point (w,b) € V (c¢f. Remark A.1) the partial
derivatives of the map IC are continuous and satisfy

0K (w,b) <0 and 0 < K (w,b) < 9K (w,b)| < 1.




Combining equations (3) to (5), and (11) defines a C' map ® = (9, D) : Vx& — R
which determines the evolution of wages and debt under the exogenous noise process as

Wi = Py(wr, b erp1) 1= WK (wy, be); €441) (13a)
bt—i—l = @b(wtabﬁgt-i-l) = R(’C(wt,bt);5t+1)bt- (13b)

Given initial values (wg,by) € V, the equilibrium process {wy, b;};>o is therefore gen-
erated by randomly mixing the family of mappings {®(-;¢)}.ce, i.e., the realization of
next period’s shock selects a map that determines the next state from the current one.
Structurally, this corresponds to a two-dimensional version of the one-dimensional dy-
namics in Wang (1993). The endogenous state variables {wy,b;}i>o together with the
exogenous noise process {&;};>o completely determine the other equilibrium variables of
the model. Therefore, existence of a dynamic equilibrium is equivalent to determining
(wo, by) € V such that the process generated by (13a), (13b) satisfies (wy, b;) € V for all
t > 0 under P-almost all paths of the noise processes. Since by = 0 implies b; = 0 for all
t > 0, it is clear that a trivial equilibrium with no debt exists for all wy > 0. In this case,
the dynamics reduce to the evolution of wages defined by the map ¢y : R, x& — R,

W1 = QoW E41) = W(K(wy, 0);€441). (14)

The next assumption ensures existence and rules out multiplicity of steady states of ¢g.

Assumption 2.1
For each ¢ € £, the map ¢y(+; ) possesses a unique fixed point w? > 0 which is stable.

In the sequel, let V. := VARZ | and ®'(;¢) := ®(+;¢)o...0®(;¢) the t-fold composition
of the map ®(-;¢) for ¢ > 0. From above’s structure, it is clear that the existence and
properties of equilibrium depend crucially on the dynamic properties of the mappings
(®(+;¢))ece and whether these exhibit contractive or expansive behavior. We therefore
begin by fixing a value ¢ € £ to study the dynamic properties of the map ®(-;¢). The
next result shows that the return R(K(w?,0),¢) at the trivial steady state (w?,0) from
Assumption 2.1 determines whether ®(-; ¢) displays stable - along a certain direction - or
explosive behavior. In anticipation of this result, let & := {e € £ | R(K(@?,0),¢) < 1}
and &, := {¢ € &|R(K(w?0),g) > 1}.> Since the case R(K(w?,0),e) = 1 is non-
generic, & = E\(E; U E,) is assumed to have measure zero, i.e., v(&) = 0.

Lemma 2.3
Let (P1) and Assumption 2.1 be satisfied. Then, the following holds true:

(i) Fore € £° the map ®(-;€) possesses a unique non-trivial fixed point (w.,b.) € V..
This fixed point is saddle-path stable, i.e., the Eigenvalues of the Jacobian matrix
D®(w,, b.; ) are real and satisfy 0 < [\;| < 1 < |\g].

(ii) For ¢ € £ the map ®(-;¢) is explosive, i.e., for each (w,b) € V, there exists a
to € N such that (wy,, by,) := P (w, b;e) ¢ V, that is, wy, < by,.

2 If € is infinite, continuity of ¢ — R(K(w?,0),¢) ensures (Borel-) measurability of &, &, and &.
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Result (i) implies that for ¢ € £° the dynamics generated by ®(+;¢) converge to a non-
trivial steady state for certain initial values. These are defined by the stable manifold

M, = {(w,b) € V0" (w,b;c) € VYR > 1 A lim ®"(w, b;¢) = (ﬁjg,bg)}, €& (15)

n— 00

The set M. will play a key-role throughout this paper. Note that M. is self-supporting
under ®(-;¢), i.e., P(M.;e) C M.. For each £ € £°, Theorem A.l in the appendix
establishes existence of a map . : R, — R, , which is strictly increasing such that
M. = graph(v.). Based on this representation, the next result shows that M. separates
initial points which diverge from those which converge to the trivial steady state.

Lemma 2.4
Let (P1) and Assumption 2.1 be satisfied and w > 0 be arbitrary. Then, for each ¢ € £*:

(i) b<t.(w) = O (w,bje) eV, VE>0 A limy e @ (w,b;e) = (02,0).
(i) b > ¢.(w) = 3Tty > 0 such that ®"(w,b;e) ¢ V.

Geometrically, Lemma 2.4 implies that if (w, b) is below the curve M., then the sequence
! (w, b; £) stays below M. for all ¢ > 0 and converges to the trivial steady state with
zero debt. Conversely, any state above M. stays above and leaves V in finite time.

Based on the properties of the mappings ®(+;¢) e € £, we are now in a position to state
conditions for the existence of equilibrium with positive debt. Let wq := W(kg;&9) > 0
be given. First observe that if ¥(€*) > 0, any initial value in V, will leave this set
in finite time with positive probability. Hence, v(£¥) = 0 is a necessary condition for
non-trivial equilibria to exist. For w > 0, let ™" (w) := min.cgs{1).(w)} which is well-
defined, if either £° is finite or compact and ¢ — . (w) continuous. By Lemma 2.4,
by < ™™ (wy) is necessary for an equilibrium to exist. Sufficiency requires the following
assumption that initial states below graph(¢™") stay below this curve under all shocks.

Assumption 2.2
For all w > 0 one has b < ™" (w) = ®y(w,b;e) < ™" (D, (w,b;e)) Ve € &,.

Combining the results from Lemma 2.3 and 2.4 leads to the following theorem which
extends and, if the noise is degenerate recover the findings of Tirole (1985).

Theorem 2.1
Under (P1) and Assumptions 2.1 and 2.2, suppose v(E*) = 0. Then, any by €]0, ™™ (wy)]
defines an equilibrium with positive debt b, > 0 Vt > 0.

While equilibria exist under the hypotheses of Theorem 2.1 for any initial value by
sufficiently small, typically the level of debt converges to zero with probability one. This
is illustrated in Figure 1 for the case with only two shocks where £ = {¢,&"}. The dotted
arrow represents the case excluded by Assumption 2.2. For any by < by := 9™ (wj) the
state remains in V and below the M_.-curve but b; converges to zero P-almost surely.
Conversely, for any by > by the state leaves V in finite time with positive probability
implying no-existence of equilibrium in this case.

The following example, however, shows that equilibria with persistent debt may exist.

7
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Figure 1: State dynamics under different initial values and noise paths.

Let U(¢¥,¢’) =Inc?+~¢°, v > 0and f(k;e) =ck® 0 < o < 1. The bound from Lemma

2.1 computes b™**(w) = {w such that V = {(w,b) € Ri[b < {Lw}. Moreover,

D, (w,b;6) = e(1 — @) (35w — b)* and ®y(w, b;e) = ea(ymw — b)* b implying £° # 0,

iff ﬁ > 1% The next result shows that the stable sets in (15) are independent of .

Lemma 2.5

Under the previous parametrization, suppose ﬁ > 2. Then £° = & and

Mo=Mi={(wh) e R, [b= (1 “

1+7—1_a)w} Ve € €.

Since M is self-supporting for the family (®(-;€)).ce, (wo, by) € M implies (wy, b;) € M
for ¢ > 0 and debt is bounded away from zero under all possible sequences of shocks.

3 Equilibria with General Debt

To extend the previous analysis to the case with more general interest policies on debt,
the remainder confines attention to the case with multiplicative shocks, i.e., f(k;e) =
eg(k)in (2) where g := f(-;1) : R, — Ry inherits the properties of f(-;¢). While under
the previous scenario the return on debt offered at time ¢ would be ;| = g¢119'(kit1),
the present section generalizes this structure by supposing that?

1 = Ry(z€041) = 2 V(e41), t>0. (16)

3 The multiplicative form (16) seems natural under multiplicative shocks. Under more general tech-
nologies (2), one could generalize (16) to some continuous function R* : Ry x & — Ry where
z — R*(z;¢) is a bijection. While Lemma 3.1 and the dynamic equations (18a,b) below would still
be valid under this extension, a theoretical characterization of the dynamics seems impossible.




The value z; > 0 is determined in period ¢ and ¥ : £ — R, is a time-invariant?
interest policy that determines the risk to which debt investments are subjected. If
¥ =1, debt is riskless while ¥ = id¢ recovers the case with CE debt.

In the sequel we fix some interest policy ¥ and assume that in each period ¢ > 0 the
return on debt is of the form (16). To derive the recursive equilibrium structure of the
economy, consider an arbitrary period ¢. Let current capital k; and the shock £; € £ be
given which determine the wage w; = w{ > 0 according to (3). Given previous values
bi—1 > 0 and z,_; > 0, the current shock determines the return on debt r} = z,_19(g;)
and current debt/supply of bonds b, > 0 according to (5). In addition to finding an
expectations-consistent capital stock ki, the equilibrium problem for period ¢ is to
determine the return offered on debt by fixing a value z; > 0 such that consumers are
willing to absorb the predetermined supply of bonds. Since there are no short-selling
restrictions on debt, any solution s > 0 and b > 0 to (10) satisfies the corresponding first
order conditions. Given w > b >0, let H?(-,;w,b) : Ry, x]0,w — b[— R, i € {1,2},

HY(z,k;w,b) = o/ (w—b—k)—E,[R(k; )0 (b R}(z;-) + kR (k;-))] (17a)
HY(z,k;w,b) = u'(w—b—k) —E, [Ry(2; )0 (bRy(2;-) + kR(k;-))].  (17b)

Then, given w; > b, > 0 the previous problem reduces to solving H? (z;, ky1; wy, by) =
HY (2, ki wy, b)) = 0. Existence and uniqueness of such a solution is established next.

Lemma 3.1
Let (P1)-(P3) be satisfied and ¥ : &€ — Ry, be continuous. Then, for each w > b > 0
there exist unique z > 0, 0 < k < w — b to satisfy H?(z, k;w,b) = HY(z, k;w,b) = 0.

Based on this result, let V := {(w, b) € R% |w > b} denote the set of feasible wage-debt
combinations. By Lemma 3.1 and the Implicit Function Theorem, there exist mappings
K?:V — Ry, and 2¥ : V — R, which are C' on V (cf. Remark A.1) and
which determine the unique zeros of (17a) and (17b) for each (w,b) € V. Before stating
properties of these mappings in Lemma 3.2, we introduce additional restrictions on the
elasticities of preferences and the production technology that will be used subsequently:

(P4) |[Ey(c)|=0Ve >0 (P5) |Eu(c)] <1Ve>0  (P6) Ey(k) + |Ey (k)] < 1Yk > 0.

Under (P4), second period utility v exhibits constant relative risk aversion. Property
(P5) is automatically satisfied if (P1) holds and v(c) = fu(c), f > 0. Finally, (P6) is
necessary and sufficient for the elasticity E,(k) to be a non-decreasing function of F,
which holds, e.g., if g is Cobb-Douglas or CES with elasticity of substitution o > 1.

Lemma 3.2
Let (P1)—(P3) be satisfied and ¥ : & — R, , be continuous. Then, K” and Z” are
continuously differentiable at each point (w,b) € V. Moreover, the following holds true:

(i) The derivatives of K? satisfy 0 < 0,K%(w,b) < —0,K”(w,b).

4 A straightforward generalization would be to consider dynamic risk-sharing rules by making ¢ state
dependent. Lemma 3.1 below would continue to hold under this extension.
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(i) If, in addition, (P4) holds, then Z? satisfies 0 < —0,,Z”(w,b) < 9,Z?(w, b).5

Combining equations (3) to (5) and (11) defines a map ®’ = (&7 V) : V x £ — R%
which determines the evolution wages and debt under the exogenous shocks as

Wit = @i(wt, bi; €441) = W(/Cﬂ(wt, be),€t41) (18a)
bt+1 = @g(wt, bt, 5t+1) = 19(€t+1)zﬂ(wt, bt)bt. (18b)

As before, an equilibrium exist if and only if the process {wy, b, },>0 generated by (18a,b)
satisfies (wy, b)) € V P-almost surely for all £ > 0. Since the equilibrium process is
generated by randomly mixing the family (®?(-;¢)).ce, we proceed as in the previous
section and fix a value ¢ € £ to study the dynamic properties of the map ®?(-;¢).
Note that ®7(+;¢) is independent of ¥ for b = 0 and identical to the map ¢° in (14).
In particular, there exists a trivial equilibrium and, under Assumption 2.1 each map
®?(-; ) possesses a unique stable trivial steady state (w?,0) which is independent of .
In the sequel, the following slightly stronger version of Assumption 2.1 will be necessary.

Assumption 3.1
For each € € £, the map ¢y(-;) from (14) possesses a unique fixed point w° > 0 which
is stable. Moreover, the corresponding capital stock kY := IC(w?,0) satisfies E,(k?) < 1.

As in the previous section, the dynamic behavior of ®’(-;¢) depends crucially on the
return on debt at the trivial steady state. The latter is given by z°9(g) where

B, [R(kZ; )v' (KR (KL -))]
E, [9()v' (KR (K2 )]

Using (19), let £7 := {e € £|229(e) < 1} and &Y := {e € £]2%9(¢) > 1}. As before,
the set £ where 2°0(g) = 1 is assumed to have measure zero, i.e., ¥(£)) = 0. The next

2= 2"(w,0) =

(19)

result extends Lemma 2.3 to the present case with general interest policies. The proof
draws heavily on ideas put forward in Galor (1992).

Lemma 3.3
Under Assumption 3.1 and properties (P1)— (P6), the following holds for any policy 9:

(i) For all ¢ € £ the mapping ®’(-;¢) possesses a unique non-trivial steady state
(w?,b%) € V. This steady state is saddle path-stable.

£77¢

(ii) For all ¢ € EY the mapping ®’(-;¢) is explosive.
Given policy ¥, the previous result permits to define for each ¢ € £” the stable manifold

M = {(w,b) € V() (w,b;c) € V¥n > 1 A lim (&) (w, b; ) = (" 6‘9)}. (20)

£)7e
n—o0

By Theorem A.1, M? can be represented as the graph of a map ¢? : R, , — R, and,
as shown in the appendix, Lemma 2.4 continues to hold in the present setup. It follows

> Numerical experiments with utility functions v not satisfying (P4) have throughout displayed the
same properties of Z? as in Lemma 3.2(ii) suggesting that this restriction could probably be relaxed.
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that all findings from the previous section about existence of equilibria and the persis-
tence of debt including Theorem 2.1 carry over to the case with general interest policies.
Under the restriction imposed in Assumption 2.2 — which can be shown to hold auto-
matically under riskless debt — equilibria exist if ©(€2) = 0 and by < min.ces {17 (wo)}
but are generically asymptotically debtless with probability one.

Lemma 3.3 also entails important insights concerning the discussion in Bertocchi (1994)
about stable sets under safe debt. Referring to the cases discussed there, it shows that
steady states which are asymptotically stable and give rise to stable sets with positive
debt do not exist. In particular, exploiting that the shocks in (18a),(18b) enter in a
multiplicative fashion, it is possible to show that a scenario as in the example of Section
2 where the set M, was independent of ¢ is not possible under safe debt. The reason
is that for this to happen the stable manifold (20) would have to be a horizontal line in
V. . This, however, is impossible since each 1? is strictly increasing by Theorem A.1(ii).

4 Debt Stabilization through Taxation

To analyze the long-run welfare effects of debt, it seems natural to formulate a criterion
that measures consumer welfare at some stationary solution of the state dynamics. In
the stochastic case, the latter corresponds to an invariant probability distribution on the
state space V which extends the deterministic concept of a steady state. The previous
analysis revealed, however, that even if they exist, equilibria are generically asymptot-
ically debtless. Therefore, neither the optimum quantity of debt nor the risk-sharing
effects of different interest policy can be analyzed because, asymptotically, equilibria are
independent of ¢J. Structurally, the reason is that stable subsets of the state space V.
(which can be associated with invariant distributions, cf. Wang (1993)) fail to exist.

The present section investigates whether this may be overcome by a tax on labor income
which stabilizes debt against unfavorable shocks. More specifically, given a subset of
V. to be stabilized, the idea is to design a tax policy to counteract shocks under which
the state would leave the set. In this regard, the goal is to keep stabilization taxes as
minimal as possible. In particular, taxes should be zero if no stabilization is required, as
in the example of Section 2. The policy to be developed satisfies all these requirements.
We consider the scenario of Section 3 with multiplicative noise and some interest policy
¥ with £7 # (). Note that we permit €7 # (), i.e., some maps ®”(-;¢) may be explosive.
To motivate the approach, suppose for a moment that the shocks are degenerate, i.e.,
g, = € or, equivalently, £ = {¢}. In this case, the deterministic case studied in Tirole
(1985) is recovered and a stable set would be given by (a subset of) the stable manifold
M? defined in (20). For any initial value (wg,by) € MY the system converges to the
golden rule steady state (i0.,b.) € M”. In the non-degenerate case, the stable manifold
M? in (20) associated with some shock & € £7 is self-supporting under the map ®?(-; ),
i.e., ®’(M? e) C M? but, in general, not under ®’(-;&') where &’ # . Nevertheless, if
stabilization taxes are to be small, it seems natural to exploit the system’s inherent sta-
bility forces by stabilizing the state along the set MY associated with some ¢ € €. In this
case, taxes are zero whenever realization € occurs and, by continuity, small for shocks

11



close to this value. Therefore, stabilization expenditures should remain small at least
if the variance of shocks is not too large. As an example, suppose € = {€min, &, Emaz
where v({emin}) = v({Emaz}) = 05 and & € 7. In this case, stabilizing the set M?
requires governmental intervention on average every ten periods only. By contrast, any
other objective such as stabilizing the absolute level of debt (b, = b, cf. Diamond (1965))
or the debt-to output ratio (b;/y; = 3, cf. de la Croix & Michel (2002)) is essentially
arbitrary and not related to the system’s stability properties. It stands to reason that,
in general, such a stabilization objective requires much higher stabilization taxes.

To formalize the previous ideas, let w{ > 0 denote the gross wage defined by (3) and
7 := 1 < wi the tax levied on labor income w{ in period ¢ > 0. Then, w; := w) — 7
is the net wage and b, = rjb, 1 — 7y is the debt defined by (5) corresponding to the
number of bonds issued in period ¢. If 7, > 0, the revenues generated from taxation are
used to pay part of the return on outstanding debt. If 7, < 0, young consumers receive
a subsidy on their wage income which is financed by issuing additional debt. The state
space V consists of all pairs (w;,b;) € R% such that w, > b,. Define a feasible policy
as a pair m := (U; ) consisting of interest policy ¥ : £ — R, and some reference
shock erer € £ which identifies the set M™ := MY _to be stabilized. By Theorem A.1,
there exists a map ¢™ := ¢! : R, — Ry such that M™ = graph(y"). Using this
representation, we construct a stabilization policy such that (wy, b;) € M7™ for all ¢ with
probability one. Consider an arbitrary period ¢ > 0. Let the previous net wage w; ; and
previous debt b, ; together with the current realization of the shock £, € £ be given.
These values define the gross wage and debt before taxation (w{, b]) := ® (w;_1, bi_1; )
with ® defined as in (18a,b). Assuming that (w,b}) € V we look for a value 7, < w
such that (w{ — 7, b{ — ;) € MT™ or, equivalently, b) — 7, = Y™ (w] — 7).

Lemma 4.1
Given 7, let the map ™ : R, ; — R, that represents M™ satisfy lim,, ., Y™ (w) # 1.
Then, for each (w,b) € V there exists a unique 7 < w such that b — 1 = ¢(w — 7).
By Theorem A.1, 4™ is strictly increasing with derivative ™ (w) < % <1
for all w > 0. Hence, the additional requirement in Lemma 4.1 should generically be
satisfied. Then, given 7 there exists a map 7" : V — R that defines for each point
(w, b) € V the corresponding tax adjustment 7 = 7™ (w, b) such that (w—7,b—7) € MT.
Letting V* := {(w,b) € V|®’(w,b;e) € V Ve € £}, the stabilized dynamics are
determined by the mapping U™ = (U7 U7) : V7 x & — MT™
wepr = W (wy, by er41) = O (we, by e41) = TT(D7 (wy, by e041)) (21a)
byt = UF(wy, by ergn) = @) (we, b eepn) — T (7 (wy, by €441)).- (21b)
The following figure illustrates how the proposed tax-policy stabilizes the set M™.
Given a feasible policy 7, any initial value can be tax-adjusted to lie on the set M™ and

the state (wy,b;) remains in M™ for all ¢ > 0. Hence, for (wg,by) € M™ the dynamics
(21a,b) are essentially one-dimensional and governed by the map ¢™ : Ry, X & — R, ;.

Wi = " (wi; €p11) = W (wi, Y7 (wy); €441) (22)

while debt is given by b1 = 9™ (wy1). The next result establishes properties of ¢™.
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Figure 2: Tax-stabilization of the set M™.

Lemma 4.2

Suppose that policy w is feasible and (a) ™ (w) < Eifﬁgg(r;)f) and (b) ¥ is differentiable

with derivative ' () < =) for w > 0 and € € £. Then, the following holds:

(i) The map w — ¢™(w;e) is strictly increasing at all (w,e) which satisty (a).

(ii) The map ¢ — ¢™(w;e) is strictly increasing at all (w,e) which satisfy (b).

Condition (a) is automatically satisfied in the CE case where 9 = idg while (b) holds,
e.g., ifde) =X+ (1=NeVee &, A€ |0,1], £:=E,[]. For this class, (a) is satisfied
if the range of noise is not too large such that ™ (w) < —min for w > 0. Assuming that
both (a) and (b) are satisfied, we seek to study the long-run properties of the dynamics
defined by (22) and the existence of invariant distributions corresponding to stable sets
of ™. For a formal definition of these concepts, the reader is referred to Brock & Mirman
(1972) and Wang (1993). The following final result draws heavily on their findings.

Theorem 4.1
Let m be a feasible policy under which (a) and (b) in Lemma 4.2 hold. In addition,
suppose limy, 00 @™ (W; Emaz) /w < 1 < limy, 0 @™ (W; Emin) /w. Then, the following holds:

(i) There exists a unique stable set W™ C Ry, for the family ¢™ = (¢™(:;2)).ce.

(ii) There exists a unique invariant distribution u™ of the dynamical system (22) which
is supported on W™ and which is stable in the weak convergence sense.

5 Optimal Debt Policies

Based on the previous results this section develops a welfare criterion that allows to select
an optimal policy. Let m = (¥, eyf) satisty the hypotheses of Theorem 4.1. For (w,b) € V
and £, € &, denote first and planned second period consumption as ¢¥(w,b;d) =
w—b—K?(w, b) and c®(w,b,c,;9) = b Z?(w, b)I(e; )+ K (w, b)R(K? (w, b), =) defining
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ex-ante lifetime utility V(w, b;9) := u(c¥(w, b;9)) + E, [v(c’(w, b, -;I))]. By Theorem
4.1, there exists a unique probability distribution p™ supported on W™ C R, which is
invariant under (22) and determines long-run expected utility

U0, ) = /R V (w, 4 (w); 9) ™ (dw). (23)

Note that U is well-defined by continuity of the integrand and compactness of W7. The
value U(0, ) can be interpreted as the average utility that consumers attain under
policy m. With reference to the introduction, the interest policy ¥ determines the risk-
sharing of debt while the level of debt relative to the net wage obtains as by = ™ (w,) for
all t. Moreover, the domain of U can be extended to arbitrary policies by setting )™ = 0
if T = (1, £re) is non-feasible, i.e., eo¢ € £Y. In this case, (23) yields utility at the trivial
equilibrium which is independent of 7. With this extension, the criterion (23) is suitable
to investigate the long-run welfare effects of arbitrary debt policies m = (1, £ref)-

The remainder of the paper reports simulation results for a simple parametrization of the
model.® We assume the scenario in Section 3 with power utilities u(c) = ¢, v(c) = yu(c),
CES technology g(k) = [1 — A+ Ak]«, and three possible shocks & = {gmin, gmed gmax}

drawn with probabilities p™", p™edand p™a*. Table 1 lists the parameter values.

‘ Parameter ‘ Value H Parameter ‘ Value H Parameter ‘ Value ‘

gmin 0.9 gmex 1.1 v 1|
gmed 1 pmin pmed 11 /3 A, a, b 0.5 |

Table 1: Parameter set used in the simulations.

We confine attention to the class of interest policies 9y(g) := e + (1 — \)&, ¢ € €
parameterized in A € [0, 1]. In particular, debt is capital equivalent if A = 1 and riskless
if A = 0. Under the previous parametrization, Assumption 3.1 holds and all policies are
feasible, i.e., £/» = £. Hence, an optimal policy exists if U is continuous.

To quantify the welfare effects of different policies, Table 2 reports the utilities defined
in (23) expressed as percentage deviations from utility at the trivial equilibrium. The
latter exists and is unique by the results of Wang (1993) and Assumption 3.1.7

| A= |0 (safedebt) | 025 | 05 | 0.75 [1(CE debt) |
emn | 0.7508% | 0.8071% | 0.8196% | 0.7838% | 0.6944%
med [ 0.8175% | 0.8197% | 0.8210% | 0.8212% | 0.8204%
max | 0.7326% | 0.8058% | 0.8185% | 0.7753% |  0.6799%

Table 2: Long-run utilities under different debt policies.

6 To replicate and verify the subsequent results, the reader is invited to download the C'++ simulation
files from my homepage http://www.marten-hillebrand.de/research/TC/TC.htm.

" The utilities defined in (23) were calculated as time averages of ex-ante utilities V; := V (wy, bs; 9).
Since the state process follows an ergodic Markov process, these averages converge to the corre-
sponding expected utility by means of the ergodic theorem.
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The values in Table 2 identify a unique optimal policy 7* given by e} = €med and

A* = .75. Additional simulations permit to refine the latter value to A* &~ .7. Note that
for any fixed reference shock there exists a unique optimal interest policy determined
by an interior value of X\. As a consequence, a riskless debt return is never optimal.
Since the stabilization policy was designed to keep taxation as minimal as possible, it
seems worthwhile to confirm this property for the present case. In this regard, Table 3
displays the absolute values of taxes expressed as a percentage of debt.

| A= [0 (safedebt) | 025 | 05 | 0.75 [ 1 (CE debt) |
i 4.23% 1.88% | 0.65% | 3.41% |  6.44%

mi

=

€

<X

gref = gme 3.12% 1.31% | 0.49% | 2.29% 4.09%

€
gmax 5.21% 2.05% | 0.83% | 3.46% 5.89%

Table 3: Average absolute stabilization taxes expressed as a percentage of debt.

For any reference value, taxes are least for A = .5 < A\*. Again, this value may further
be refined to A\ &~ .4. Moreover, for all scenarios considered in Table 3 taxes remain
small (< 13%) throughout the entire sample. Nevertheless, note that the interest policy
has a crucial impact on the size of stabilization taxes for any reference shock.

To provide some intuition for the last result, Figure 3 portrays the stable manifolds (20)
under different interest policies. The bold sections represent the support of the invariant
distribution which is bordered by the (smallest and largest) fixed points of ¥™(-;¢)
respectively ¢™(-; &) which are also depicted. Intuitively, if the shock £, = € occurs at

(a) A =0 (riskless) (b) A = 0.5 (tax-minimal) (¢) A=1(CE)

Figure 3: Stable sets M, := Mﬁgin, M peq = Mﬁged, My = Mﬁgax.
time ¢, taxes 7; are large (in absolute value) if the previous state (w;_1,b; 1) is far away
from the set MY and small for (w; 1,b; 1) close to MY (and zero if (w; 1,b; 1) € M?).
As a consequence, taxes are least in Figure 3(b) where the stable manifolds are close
together. Ideally, they would coincide as in the example of Section 2 in which case there
would be no need for stabilization. Albeit this can not be achieved in the present case,
the interest policy can be chosen as in Figure 3(b) such that taxes become negligible
(< .9% of debt throughout and even smaller for A\ = .4).

Another observation from Figures 3(a,c) is that the order of the stable sets is reversed
which affects the sign of taxes depending on the shock. If the set M,eq is stabilized
(Eref = €med) and debt is capital-equivalent (A = 1), young consumers are taxed (7; > 0)
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in ’good times’ (£, = £1ax) and receive a subsidy (73 < 0) in ’bad times’ (g; = £,;,) while
the opposite holds if debt is riskless (A = 0). Moreover, if M.y is stabilized, taxes are
uniformly positive if A = 0 and negative if A = 1 while the opposite holds for M ;p.

6 Conclusions

The results obtained in this paper suggest that any sustainable debt policy must be ac-
companied by a stabilizing tax-policy that prevents debt from exploding or converging
to zero due to unfavorable random shocks. Based on this insight, a stabilization policy
was developed designed to keep taxation as minimal as possible by exploiting the inher-
ent stabilizing forces of the underlying dynamical system. A golden-rule type welfare
criterion was suggested which measures consumer welfare at the stationary solution of
the stabilized equilibrium and permits to simultaneously determine the optimal level of
debt and an optimal interest policy. First simulation results indicate that (i) a unique
optimal policy can be determined, (ii) offering a riskless return on debt is never optimal,
(iii) taxes remain small under the proposed stabilization concept and depend crucially
on the interest policy (iv) the latter can be chosen such that taxes become negligible.
The finding that a riskless return on debt is not optimal confirms existing results in the
literature, cf. Bohn (1991). Nevertheless, a better theoretical understanding of the pre-
vious numerical results seems necessary and is the primary objective of future research.
In addition, recent research in the literature (e.g., Kunieda (2008)) has attempted to
explain the emergence of bubbles in dynamically efficient economies by hypothesizing
certain imperfections in the credit market. Another objective of future research is to an-
alyze whether such imperfections could also explain the existence of non-trivial equilibria
with governmental debt even if the trivial equilibrium is efficient.

A Mathematical Appendix

A.1 Proof of Lemma 1.1

For t > 0, define taxes 77 := wj — ¢ — kyy1 — by < wy and 77 := b7} + kyry — ¢ which

are feasible in the sense of Definition 1.1(ii). Using the corresponding expressions for ¢/
and ¢} together with (3) and (4) in the aggregate feasibility condition shows that debt
evolves according to equation (5). Since Definition 1.1(i) is satisfied by assumption,
it remains to show that (b, s;) solves (10). Since s; > 0 and there are no short-sale
constraints, it suffices to show that the first-order conditions are satisfied. This follows
from the intertemporal efficiency condition and (11) by direct substitution. |

A.2 Proof of Lemma 2.1

Given w > b > 0, define k := w — b > 0 and, for brevity, c°(k,b,£) := R(k;2)(b+ k).
We show that H(-;w,b) is strictly increasing and can, therefore, have at most one zero
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in the interval |0, k[. By (P1), the partial derivative® of (12) takes the form
OpH (k;w,b) = —u"(w—b—k)—E,[fe(k;e)*0"(c°(k,b,-))]
B [Funhs ) (01 (e (kb)) + (k. by (kb)) | > 0.(A1)
We show that H(-;w,b) has a zero in the interval ]0, k[. As existence of a zero for the
case b = 0 is established in Wang (1993), suppose b > 0. Since there exists a unique

zero for b = 0 and Oy H (k;w,0) > 0, there exists a zero also for b > 0 sufficiently small
by virtue of the implicit function theorem. Define the critical value 0 < b™**(w) < w as

b (w) = sup{b €0, w[| H(k;w,b) =0 for some k €]0,w — b[}

Since the supremum is taken over a non-empty set bounded by w, d™**(w) is well-
defined. We claim that H has a zero for each b €]0, 6™ (w)[ which, by the previous
results, is unique. By way of contradiction, suppose that for, say, 0 < b’ < ™ (w) there
is no zero of H(-;w,’). The Inada-assumption in (9) implies lim,_,; H(k;w,b') = oo
such that H(k;w,b") > 0 forall 0 < k < w—"b'". The derivative with respect to b satisfies

OH (kyw,b) = —u"(w — b— k) — E, [R(k;e)*" (°(k, b, 2))] > 0.

Let b > b'. Then, H(k;w,b") > H(k;w,b') >0forall 0 < k < w—10" <w—10. Hence,
H(-;w,b") has no zero for any 0" > b'. But then b’ > b™*"(w), which is a contradiction.
Finally, limy_,o ¢®(k, b, &) = limg_,o(bfx(k; &)+ k fr(k;2)) > limg_,0 bfr(k; ) = oo for each
fixed € € £. Hence, if (P3) holds, the left limit computes

lim H (ks w, ) = o/ (1w — b) ~ lim (HLk]E [k, by Yo' (ks b, -))]> — o (A2)

In this case, there exists a zero for all 0 < b < w implying that ™% (w) = w. |

A.3 Proof of Lemma 2.2

Define ¢°(k,b,e) as in the previous proof. The claim follows by applying the implicit
function theorem. The partial derivatives of the map H defined in (12) compute

OuH (k;w,b) = u"(w—b—Fk)<0 (A.3)
WH (kw,b) = —duH(k;w,b) — B, [R(k; )" (*(k, b, )] > —0uH (k; w, b). (A.4)

Moreover, by (A.1) the derivative with respect to k may be written as

OpH (k;w,b) = OyH (k;w,b) — E, [fkk(k, VW' (c(k,b, ) + (°(k, b, ) v" (°(k, b, )))}

(A.5)
showing that 0y H (k; w,b) > 0,H (k;w,b) by (P1). Combining (A.3) — (A.5) yields
0 < 0,K(w,b) = eH (b D) < —0pK(w,b) = SHw ) = - |

8 Note that interchanging differentiation with the expectations operator [, [] is legitimate since the
integrand is continuously differentiable and integration is over a compact set.
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A.4 Proof of Lemma 2.3

Let £ € £° be fixed. For brevity, we omit the subscript ¢ such that @w° > 0 denotes the
trivial steady state. In addition, define w := W(0;¢) > 0 and £° := KC(w°, 0).

(i) We determine unique values & > 0 and 0 < b < @ solving k = K(w,b), w = W(k, ),
and R(k,e) = 1. Since lim;_oR(k,£) = oo and R(k%,¢) < 1, the last condition
has a solution k €]0, k°[ which is unique by strict concavity of f(-;¢) and determines
w := W(k,e) < w’. We determine b as a solution to w = W(K(w, b),¢). By Lemma 2.2,
there can be at most one such solution. By uniqueness and stability of w°, ¢o(w;e) > w
for all w €]w, w’[. Hence, w < @’ implies lim, ;o W(K(w,b),c) = W(K(w,0),g) > .
Since K(w, b) < w — b, limy_,; W(K (w0, b),e) = w < @ proving that a unique non-trivial
steady state exists. The Jacobian at the steady state computes

7. __— . —l%fkk(l%;e)%lC(w,B) —I%fkk(l%;s)&IC(w,B)
P= DO = | ()o@ B) 1+ bk o)k, )

By Lemma 2.2, the determinant and trace satisfy det J = —k fur(k;£)0,K(w,b) > 0
and trJ = 1+ det.J + bfyr(k; )9 (w,b) > 1 + det.J. The latter inequality implies
0<(1—trJ/2)?2 =1~ trJ + (trJ)?/4 < —det J + (trJ)?/4 ensuring real and distinct
Eigenvalues of J. By Galor (2007, p.88), these properties imply saddle-path stability.

(ii) Let ¢ € &, be fixed. By contradiction, suppose there exists (w,b) € V, such that
(g, by) := ®'(w, b;e) € V for all t > 0. Defining 1, := ¢}(w; ¢), Lemma 2.2 implies i, <
w; and by > 0 for all £. By stability, lim; ., w; = @w°. This and continuity of R(+;¢) imply
existence of T' > 0 such that R(K(iy,0);) > 1 for all ¢ > T implying that by, /b, =
R(K (14, br);€) > R(K(1iy,0);6) > 1. Hence, (b;)i>o is eventually strictly increasing
and, therefore, either diverges or converges. But convergence to some finite value, say
beo > 0 would imply limy_,, R(K(wy, Bt); ) = 1 requiring by the strict monotonicity of
w— R(K(-,0);€), b > 0 that lim;_, o W; = we < W° and R(K(Wuo, boo); ) = 1, which is
impossible. Hence, lim;_, I;t = 00 which contradicts IN)t < wy < wy for all £. [ |

A.5 Properties of the Stable Manifold

This section establishes properties of the stable manifold MY defined in (20). Many of
the employed concepts and a somewhat related analysis may be found in Galor (1992).
While the formal arguments adopt the setup and notation of Section 3, neither the mul-
tiplicative structure of f nor the additional assumptions (P2)—(P6) are used. Therefore,
Theorem A.1 also applies for the scenario of Section 2 under the (weaker) hypotheses of
Lemma 2.3 with the stable manifold M, defined as in (15). The main result is

Theorem A.1
Given some interest policy v, let the hypotheses of Lemma 3.3 be satisfied. In addition,
suppose lim,_,o, t/(¢) = 0. Then, for each ¢ € £ the following holds:

(i) The set M? defined in (20) is the graph of a C'-map ¢? : Ry, — R, .

(ii) The map 7 is strictly increasing and satisfies lim,, o 1? (w) = 0.
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(iii) For all ¢ € £ the map w — W(K?(w, ¥’ (w)); €) is strictly increasing as well.

In what follows fix ¥ and ¢ € £ and suppress these parameters writing ® = ®7(;¢),
etc. For ease of notation, the restriction of F': X — R to A C X is denoted by the same
letter F' instead Fj,. Furthermore, let w® := W(0;e) > 0, @™ := limy,_,oc W(k;¢) < o0,
W+ =u?, w>®[, U := W xR, and V := {(w,b) € V|®"(w,b) € VV¥n > 1} C V.
Obviously, ® : V. — V and the stable set M := {(w, b) € V|lim,,_,, ®"(w,b) = (w0, b)}
is a subset of V containing (w, b). The proof is prefaced by the following results.

Lemma A.1
Let (i,b) # (w,b) € V be such that 1w > and b < b with at leat one strict inequality.
Then the sequences {®" (1, b) } o and {®" (1, b) },>o can not converge to the same limit.

Proof of Lemma A.1. Let (i, by,) = ®"(i,b) and (i, b,) := ®"(w,b), n > 0. By
induction and Lemma 3.2, w,, > w0, lA)n < I;n and 3, := 13n/l~)n satisfy 3,11 = ig”i”iﬂn <
B, for n > 0. Since {f,},>0 is strictly decreasing and bounded by zero, the limit

~ ~

Boo = limy_y00 By exists and 0 < fo < B < 1. If (Wn, bp)p>1 and (Wp, by)p>1 both

converge, then lim,_, Z—" = (s < 1 which implies lim,,_, by # lim,, o0 by O

Lemma A.2
Suppose lim,_,, v/(c) = 0. Then the map ® : V, — U is a C'-diffeomorphism.

Proof of Lemma A.2. Given some (w',0’) € U we determine a unique (w,b) € V such
that ®(w,b) = (w',0'). The condition w' = &, (w,b) determines a unique k' = KC(w, b)
such that w' = W(k';e). The value 2/ = Z(w,b) then follows from the first or-
der conditions E, [2/9(-)v' (b + E'R(K';-))] = E, [R(K';-)v'(b" + E'R(K';-))] from which
b = Z,glg can be inferred. Finally, w is the unique solution to u'(w — b — k') =
E,[2"9()v" (0 + k'R (K";-))]. Hence, @' is a well-defined function. @ is clearly C*! by the
IFT. To see that ® ! is C, it is straightforward to show that the Jacobian D®(w,b)
has determinant det D®(w,b) > 0 for each (w,b) € V.. This yields the derivative of

the inverse D®~!(w',b') = [D®(w,b)]~" which is a continuous function. O

Proof of Theorem A.1.

Step 1: We show that M is a C' manifold. Since (w0, b) is saddle-path stable under ®, the
so-called Stable Manifold Theorem (cf. Nitecki (1971)) implies existence of the locally
stable manifold M™"¢ := {(w, b) € V, |®"(w,b) € UVn > 1 Alim,_,o ®"(w,b) = (w,b)}
for some open neighborhood U C V. of (w,b) where M"¢ is as smooth as ®. It is
well-known (cf. Nitecki (1971, p.89) or Galor (1992)) that the globally stable manifold
obtains as M = U,5® " (M'°¢). The result from Lemma A.2 implies that M inherits
the smoothness of M!°¢ and is hence a C''-manifold in V,. Therefore, the projection
W:={w>0|3b>0:(w,b) € M} is an interval containing w as an interior point.

Step 2: We show that M = graph(«) for some C'-function ¢ : W — R, ,. Tt suffices
to show that for each wy € W there exists a unique 0 < by < wy such that (wg, by) € M.
Suppose there are two such values, say by < by < wp. Then, by Lemma A.1, the

sequences generated from (wp,by) and (wg, by) under ® can not converge to the same
limit which is a contradiction to (20). The smoothness of M then implies that ¢ is C'.
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Step 3 We show that v is strictly increasing. Let w < w be two points in W and suppose
that b := ¢(w) > ¢(w) =: b. By Lemma A.1, the sequences generated from both points
under ® can not converge to the same limit which contradicts (w, b), (1w, b) € M.

Step 4: We show that w — K(w) := K(w, ¢ (w)) is strictly increasing. We first claim

that ¢/ (w) < W for all interior w € W. Suppose this fails to hold at some

iAnterior w € W. Then, by (A.16), ¢'(w) > 8,,1C(( 7,1@(( )))) > g%%}%%}%” By continuity,
D, (w) := W(K(w, (w)); e) is locally decreasing while w — Z(w, ¢ (w)) and, by Step 3,
Py (w) = h(w)Z(w,¥(w))I(e) are non-decreasing and increasing, respectively around
w. Let i < @ € W be an interior point close to . Set b := () > b := h(1d).
Then, (i,b), (0,b) € M and 1y := @, (10, b) = By (1) < Byy(10) = Dy (10, b) =: by and

= Oy () < By(w) = By(, b) =: by. But M being self-supporting under
®, (i1, b)) = ®(i,b) € M and (wy,b) = ®(w,b) € M and, therefore, by = (1)
and b, = 1 w) which contradicts that v is strictly increasing proving the claim. To

see that K resp. d,, are even strictly increasing, suppose there are w > w such that
®,, () = P, (). Then, &, must be constant on the interval [, ] implying by (A.16)
P(w) = 'Zf,’g((g”i((g)))) > _gf”;;gjwq/fé%’))) By the same argumenAt as bAefore, w AH @b(w)Nis
strictly increasing on [w,w]. Defining w, 1= @, () = Wy, by := Qp(w) > Pp(w) =: by,
both (iy,by) and (i, b;) must lie on M which contradicts that M = graph(s). This
proves that K and, therefore, w — W(K(w); é) are strictly increasing for all & € £.

Step 5. We show that W = R, , . Note from (20) that ® : M — M and ®~'(M) C M.
Lemma A.2 implies that ® : M — M N U is a homeomorphism, i.e., a continuous
bijection with continuous inverse ®* : M N U — M. Define &, as above and
W* := WN W*. The next results follow from the previous observations, monotonicity

of ®,,, and uniqueness and stability (on M) of (17, b).

Lemma A.3
The map D, W — W isa homeomorphism with inverse (f;l : W — W satisfying:

(i) ®(w,b) = (By(w), h(Dy (w))) for all (w,b) € M.
(i) ' (w,b) = (B (w), (D" (w))) for all (w,b) € MNT.
(iii) w w(W)

(iv) wZ w= ,'(w)

w

Sl
)ew

w for all w € W.

/\IIV AV
E\

<
S
%w for all w € W*.

Let wyin = inf(W) < @ < wipgq := sup(W) < oo and wy,,, := inf(W*) < w < w},,, ==
sup(W*) < co. Note that w?*,,, = max{wmi,,w"} and w¥,,, = min{w,.., ©7}.

We show that W is open, i.e., W =]win, Wnez|. By contradiction, suppose w,, € W.
Let (wp)n>o be a strictly decreasing sequence in [wy,, w[C W converging to wmiy.
Since ®,, is a strictly increasing bijection, the sequence w? := ®,,(w,) in W* is strictly
decreasing and Converges to wk,,. Suppose wr, € W*. Since Wt is open, this re-
quires Wy, > w’ in which case Wy = Wnin. Hence, lim,,_, o w, = Wy, € W and
lim,, s @w(wn) = Wynin Which implies @, (Wmin) = Wmin < @ and contradicts Lemma
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A.3(iii). Conversely, suppose wr,. ¢ W* i.e., W* is left open. Since d,, is a bijection
between W and W*, let w := (i)w(wmm). Since w is an interior point, w — 6 € W* for
§ > 0 small. But, since ®,, is strictly increasing, ®,,(w) > 1 for all w € W contradicting
o, being a bijection. Hence, wy,;, ¢ W. An analogous argument shows that w,,,, ¢ W.
Hence, W =]win, W[ and also W = W N Wt =|w? *

wmax
We show that Wi, < w® and wy,e, > @W>. By contradiction, suppose first that

i [ are open intervals.

Fazl-  Choose Wy €]wpmin, W[C
W and define w,y; = ®,'(w,) and b, = ¥(w,) for n > 0. By Lemma A.3(iv),
Wy, €|Wmin, W[C W NW for all n. Hence, both sequences are well-defined and strictly

Wnin > w° > 0 such that Oy :JWimins Wimaz|— | Wmin, W

decreasing such that W, = lim, o W, > Wy > 0 and 600 = lim,, l~)n < W both
exist. By construction and Lemma A.3(ii), (i, l;n) =& (w, 1, En,l) or, equivalently,
® (0, bp) = (Wp_1,bn_y) for all n. Therefore, limy o0 (n, by) = limy_oe @ (0, by) =
(Ds0s o). SUPPOSE by = g, 1.€., Wy, N\, bso > 0. Then, by Lemma 3.2 and A.5(iii)
1itmy, 00 Py (W, by) > limy o0 Py (10, beo) = 00 contradicting limy, e @y (i, bp) = boo
Conclude from this that (e, bs) € V which implies (oo, bos) = P (oo, boo) by the
previous properties and continuity of @, i.e. (u?oo,l; ) must be a fixed point of ®. But
this is impossible since 0 < Wy < w < w?. This contradiction proves wy; < w’. An
analogous argument shows w,,q, > w™. Hence, W* =]w®, w>[. This proves the claim
if w® =0 and W™ = oo. To see that Wy, = 0 and Wy, = oo also if w > 0 and /or
W™ < 00, suppose by contradiction that wp;, > 0. Let (w,),>o be a strictly decreasing
sequence in Wy, W[C W converging to wy,;, > 0. Since o, | Winin, wmm[—ﬂwo w™[ is
a strictly increasing bijection, this implies that lim,,_,. @w(wn) = w’ = W(0; &) requir-
ing limy, . K(wy, ¥ (wy,)) = 0. At the same time, (w,,, b,) € M for all n which, using the
same argument as in the previous paragraph, implies by, = lim,,_,~ ¥ (w,) < Wy, such
that (Wmin, bmin) € V. But then, by continuity lim,,_,. K(wy, b,) = K(Wmin, bmin) > 0,
a contradiction. Conclude that wy,;, = 0. A similar argument shows that w,,,, = oo
completing the proof. [ |

A.6 Proof of Lemma 2.4

Again we show the claim for the general scenario of Section 3 under the hypotheses of
Lemma 3.3. The claim of Lemma 2.4 follows from the remarks made in Section A.5. Let
¥ be given and ¢ € £? be fixed. Dependence on these parameters will be suppressed.

(i) Given wo > 0, let by < ¥(wp) =: by. Lemma 3.2 resp. 2.2 and an induction argument
yield that (wt,l;t) = @t(wo,i)o) and (wy, by) := ®(wy, by) satisfy w; > wy > by > by >0
for all ¢ > 0. Defining 8, := b, /b, gives By < 1 and By = B2 (1, by)/ Z(wy, by) < By
for all + > 0. Hence, lim;,o, ; = 3 < 1 and limy_o0 by = b, > 0 imply limy_,o bt =
limy_, q),,(uvt,z}t) = by < b.. The latter implies either limy o Z(wt,bt) = 1/19( )
lim o0 b; = 0. But the first limit, supposmg it exists, satisfies lim;_, o Z(wt,bt) <
limy_, s Z(wy, by) = 1/9(e). Conclude that b,y = 0 which, by continuity of ® implies that
the evolution of the sequence (w;):>¢ is asymptotically governed by (14) which converges
to the trivial steady state for any initial value wy > 0. Conclude that lim,_,, w; = w?.
(ii) Given wy > 0, let by > t)(wq) =: by. By contradiction, let (i, b;) := ®*(wy, by) € V

=}

r
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for all + > 0. Define (wy,b;) as in (i) and £} := b/b > 1, t > 0. By analogous
reasonlngs by < by < W, < w; and limy s B = ' > 1. Hence, lim; o, by = (b, =
boo > b.. Since b, < w, for all ¢, (wt,bt) € V requires by, < oo and lim; o Z (1, Et) =
1/9(¢e). Mon0t0n101ty of w —— Z(-,b) then requires limy ,o Wy = Wse. Since w; > by
implies Wy > boo and ey = boe would imply lim,_, o Z (1, IN)t) = oo by Lemma A.5(iii),
(oo, IN)OO) € V and must be a steady state of ®. But no steady state satisfying boo > bs

exists and the claim follows. [ |
A.7 Proof of Lemma 2.5

For t > 0, let ¢, == 2. Using ®,,, ¥y gives (1 = 6(¢) = 125115 — G "G t > 0.
The map ¢ has a unique non-trivial fixed point { := m — ﬁ which is unstable.

Moreover, (y < ¢ implies lim;_,» ¢; = 0 and (, > ¢ implies that ¢’ (o) > m for finite
to. Hence, by = Cwy is necessary for limy_,,, ®(wq, by;€) = (w., b.). Sufficiency follows
from Theorem A.1 which implies existence of a corresponding by = 1) (wy) for wy > 0. W

A.8 Proof of Lemma 3.1

Given (w,b) € V, let k := w — b > 0. The argument c°(z, k,b, &) := b2 9(c) + kR(k; )
will be suppressed when convenient. Suppose b = 0. Then, H? is independent of z and
¥ and HY(z, k;w,0) = H(k;w,0) for all k& €]0, k[ with H defined as in (12). Hence,
existence of k, €]0, k[ to satisfy HY(z,k,;w,0) = 0 is due to Lemma 2.1. Using k.
condition HY(z, ky;w,0) = 0 can be solved explicitly for z > 0 proving the case b = 0.
Suppose b > 0. The strategy is to use (17b) to eliminate z reducing (17a) to a one-
dimensional problem. Fixing k €]0, k[ we determine 2 > 0 to satisfy HY (2, k;w,b) = 0.
Noting that lim, ., ¢°(z, k,b,¢) = oo for each fixed ¢ € £. Therefore, (P2) implies
. / -1 71 0 7. / —17. 7. : /
zll)rgo z9()v' (=) =10 le)r?oc (2,k,b,e)v' (=) — b kR(k,e) Zlggov (—) = oc.

This being true for all ¢ € £ implies HY(z, ks w, b) < 0 for z sufficiently large. Since
HY(0, ks w, b) = u'(w—b— l%) > 0 this proves existence of Z. To show uniqueness, we
prove that z — HY(z, k;w, b) is strictly decreasing. Using (P1), the derivative satisfies

O.HY (2, by w,b) =~y [9() 0 (¢"(2, kb)) + b2 0()2 0" (¢"(2, kb, ) | (A.6)
< -E, [19(-)(1/(00(2, kb)) + (2, k, b, )" (¢°(2, k, b, )))] <0.

These results imply the existence of a map Z(-;w, b) :]0, k[— R, which determines a
value 2 for each k €0, k[ such that HY (2, k;w,b) = 0. Using (4) yields the derivative

O H? (2, k;w,b) = u"(w — b— k) — E, [R(k; )2 0()" (=) (1 + Eg,(k))] >0 (A7)

where the second term is positive by (P3). By the IFT, Z(-;w,b) is C* and strictly
increasing on ]0, k[ since 8y Z (k; w,b) = —0p HY (2, k;w, b) /0, HY (2, k; w, b) > 0.

22



Using these results, let Hy(-;w,b) :]0, k[— R, Hy(k;w,b) := H?(Z(k;w,b), k;w,b). We
determine a unique k. €]0, k[ that solves H; (k+, w, b) = 0. Since v’ is strictly decreasing,
R(k; )0 (b Z(k;w,b) 9(e) + kR (k; ) < R(k;e)v (kR (k;)) for all & € € which implies
Hi(k;w,b) > u'(w—b—k) —E, [R(k; -)v ( R(k;-))] for all k €]0, k[. Therefore, by (9)
lim H, (k;w, b) > lim (v'(w — b — k) — B, [R(k; )’ (kR (k; )] ) = oo. (A.8)
k—k k—k
Let (k,)n>1 be a sequence in |0, w — b[ with lim,_,o &k, = 0. Since k — z(k;w,b) and,
by (P3), k — kR(k;e) are increasing, ¢, (¢) := b Z(ky; w, b) 0(¢) + ko R (kn, €) is bounded
from above for all £ € £ which implies lim,, o R(kp,&) v (cn(s)) = oo. This being true
for all ¢ € & gives lim,,_, o E, [R(kn, )v’(cn())] = oo and lim,,_, ﬁl(kn;w,b) = —00.
Since (ky,)n>1 was arbitrary, limy_,q I—Afl(k;w,b) = —o0o. This and (A.8) yields existence
of a zero of ﬁl(-; w,b). Finally, using (P2) the partial derivatives of HY(-;w,b) compute

OH (2, k;w,b) = —u"(—) —E, [fkk(k, VU (=) + (1 + Ey (k)R (k;+)? v"(—)] > 0(A.9)
0,H? (2, k;w,b) = —E, [R(k, N bI() V" (=) > 0. (A.10)

Combining (A.9) and (A.10) with the monotonicity of Z(-;w, b) yields 8, Hy (k; w,b) =
OH? (2, k;w,b) + 0, H? (2, k;w,b)0,Z(k;w,b) > 0 where z = Z(k;w,b). Hence, k. is
the unique zero of HI( :w, b) on |0, k[. Setting z = Z(k+; w, b) completes the proof. W

A.9 Proof of Lemma 3.2

As in the previous proof, the argument ¢°(z, k, b, ) defined as before is omitted when
convenient. We preface the proof by the following technical result.

Lemma A.4
For the scenario of Section 3, let (P1)-(P4) hold and ¥ : £ — R, be continuous.
Then, for all (w,b) € V, z := Z%(w,b) and k := K?(w,b) the following holds:

() KBy [(R(K; ) — 20(-))R(K; )" (=)[] = —bBy [(R(K; -) — 20(-))20(-) [v" (=) ]
(i) By [(R(k;-) = 20(-))R(k; ) [v" ()] = 0 = By [(R(k;-) — 20(-)) 20 () [0" (=) ]-

Proof of Lemma A .4.

(i) Equations (17a) and (17b) give HY(z, k;w,b) = HY(z, k;w, b) = 0 and, therefore, 0 =
HY (2, k;w,b) — HY (2, k;w,b) = B, [(R(k; -) — 20())v'(=)]. By (P4), v'(c) = 07" c[v"(¢)]
for all ¢ = bzV(e) + kR(k,e) > 0 which implies (i).

(ii) We have 0 < E, [(R(k;-) — 29(+))?|v"(—)|] which can equivalently be written as
E, [R(k;-)(R(k;-) = 20() 0" ()] = By [20(-)(R(k;-) — 20())[v" (=)]].  Since, by (i),
one of the terms must be non-positive, the claim follows immediately. O
Let (w,b) € V be arbitrary and set z := Z?(w,b) and k := K?(w, b) noting that z > 0
and 0<k<w—b Write H” = (H?, HY) and & = (2,k). The signs of the derivatives

in (A.6), (A.7), (A.9), and (A.10) imply that the Jacobian matrix

O.HY (2, kyw,b) O HY (2, k;w,b)

DeH? (2, k;w, b) =
I3 (Za ,’LU, ) azHg(Z;k7w7b) ang(Z;k;wa)
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has determinant det DgHv(z, k;w,b) > 0 and is hence invertible. The inverse computes

B 1 OLHY (2, k;w,b)  —0,HY (2, k;w,b)
~ det DeH? (2, k;w,b) | —0,HY (2, k;w,b)  0,HY (2, k;w,b)

[DeH" (2, k;w,b)] ™!

The partial derivatives with respect to w and b take the form

OwH (2, k;w,b) = 0pHY (2, k;w,b) =u"(w—b—Fk) <0 (A.11)
HH) (2, k;yw,b) = —u"(w—b—k)—E,[R(k;-)z9(-)0"(=)] >0  (A.12)
OpHy (2, k;w,b) = —u"(w—0b—k)—E,[(20(-)*"(=)] > 0. (A.13)

By the implicit function theorem, omitting the arguments for notational convenience

—0,H? [0, HY — 0, H?] O H?O,HY — 0, HY O, HY

Z’l9 — Zﬂ =
0w 2" (w, ) det D H? 927w, ) det D H?
9, HY[0,H? — 8, H] 0. HY 0, H? — 0, HY 9, HY?
9 b — wsE] [YziT] z2572 9 b — 2552 1 25451 2 )
Ok (w, ) det D, H?  OR(w, ) det D H?

(i) As det D:H? = 9,H} 0 HY — 0 HY 0.HY > 0, 0,HY < 0 < 9,H by (A.6) and
(A.10), and -0, H? < 9,H?, i = 1,2, it follows that

—0,H[0.H? — 0, HY] _ 0,H’0,HY — 0,HY0,H?

9
w ) b) =
0 < 0K (w,0) det D H? det Dg HY

= —8(,’C19(w, b)

(ii) If, in addition, (P4) holds, straightforward calculations and Lemma A.4 imply

OcHY = 0pHy =B, [(R(k;) = 20(-)R(k; )" (=)|(1 + Eg (k) = fur(k; )v'(—)] (A 04)
OHY — O Hy = E, [(R(k;+) — 29()20(-) " (=)]] < 0. (A.15)

By (A.11) and (A.14), 9,27 (w,b) < 0 and, by (A.12) — (A.15), 3,Z?(w, b) > 0. Finally,
—0, HY

9 9 9 9 _ 9 9
aw’(: (U), b)abz (U), b) — ab’(: (U), b)awZ (U), b) = W(&HZ — 8bH1) Z 0 (A16)
which follows from direct calculations and shows that _8‘1 %i?é}wb;’ ) < ?gb’%%bg) <1l. N

Remark A.1

Since Z¥ and K are well-defined and the matrix D¢ H? (2, k; w, b) is non-singular also at
any boundary point (w,0) of V, the implicit function theorem implies that the mappings
Z? and K can locally be extended to an open neighborhood around (w,0). Hence,
their derivatives are well-defined and continuous also on the boundary of V where b = 0.
Hence, Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.

A.10 Proof of Lemma 3.3

Given 9, let € € £ be fixed. To alleviate the notation, these parameters will subsequently
be suppressed. With this convention, denote the trivial steady state as w® > 0 and let
wy, == W(0;¢) > 0. By the monotonicity of K? (cf. Lemma 3.2) and W(+; ¢), any steady
state (w,b) € V, satisfies w, < w < @°. Further results are collected in the next lemma.
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Lemma A.5
Under Assumption 3.1 and the hypotheses of Lemma 3.3, the following holds true:

(i) w > W(K?(w,0);e) for all w €w,, w"].
(ii) W(k;e) > kR(k;e) for all 0 < k < k° := K7 (w?,0).

~

(iii) For any b > 0: lim,\ ; Z%(w, b) = oc.

Proof of Lemma A.5

(i) Uniqueness of @° gives w # W(K?(w,0); e)Vw €|w,,, w°[. Stability implies the claim.
(i) By (3) and (4), the claim is equivalent to B, (k) < 1 for all k €]0, k°]. By Assumption
3.1, Ey(k°) < 3. The derivative E} (k) = (Ey(k))?/(kEy(k))(1 — Ey(k) — |Ey (K)]) is
non-negative by (P5) implying that E, is non-decreasing from which the claim follows.
(iii) By (17a), (17b), for any (w,b) € V, defining z := Z%(w,b) and k = K?(w,b)
and ¢°(z, k,b; ) as above one has E, [R(k;-)v'(c°(z, k,b;-))] = E, [20(-) v'(c°(2, k, b; -))].
This implies that there exists some £ € & such that z0(&) > &¢'(k). Setting ( :=
min.{e/Y(e) |e € £} > 0 (which is well-defined by continuity of ¥ and compactness of
&) gives the inequality Z?(w,b) > Cg'(K?(w, b)) for all (w,b) € V. Hence, for any b > 0,
lim,\ ; K(w, b) = 0 implies lim, ; 2°(w, b)) > Clim,\ ; ¢'(K(w, b)) = oo. O
(i) Emistence. Define H, : V — R, H,(w,b) = w — W(K’?(w,b),e) and the w-
isocline H,, := {(w,b) € V|H,(w,b) = 0,w €Jw,, w’[}. Any interior steady state
satisfies (0,b) € H,. For each @ €]w,, @’ we claim there exists a unique b €0, 0]
such that H,(i,b) = 0. By Lemma A.5(i), limy_,o H,(i,b) = & — W(K?(,0),) < 0
and limy_,, K7 (0, b) = 0 gives limy_,q Hy (1, b) = 1w — w, > 0 implying existence of b.
Uniqueness follows from Lemma 3.2 which implies that H,(w;-) is strictly increasing.
This result permits to define the solution b as a map hy, Jw,,, w°[— R, implying
M, = graph(h,). By the implicit function theorem, h,, is C'' with derivative

o u(Hu(w,b)) 1+ kfu(k;e)0,K(w,b) B
M) = = D)~ kfuhodkw ) - ww) k= Kw,b).

(A.17)
As Hy,(w°,0) = 0 and limy\u, K”(w, w,) = 0 yields Hy,(wy,, wy,) = 0, continuity of H,
implies the boundary behavior lim,,_, 40 hy(w) = 0 and limy, ., by (w) = w, > 0.
Analogously, let H, : V — R, Hy(w,b) := Z?(w, b) — @. Note first that £ € £ implies
lim,,_, g0 Hy (10, 0) = Z?(w°, 0) — ﬁ < 0. By Lemma A.5(iii), lim,,_,o Hy(,0) = co. As
w i Z%(w,0) is strictly decreasing by Lemma 3.2(ii), a unique 0 < w, < w° satisfying
Hy(w,,0) = 0 exists. Define the b-isocline H, := {(w,b) € V|H,(w,b) = 0,w €]w,, w°[}.
Any interior steady state satisfies (w,b) € H,. Given o €]w,, w°[ we determine b €]0, 1]
such that Hy(,b) = 0. Lemma 3.2(ii) implies lim,_,o H,(10,b) = Z?(,0) — 1/9(c) <
Z%(w,,0) — 1/9() = 0. Lemma A.5(iii) yields lim,_,,; Hy (1, b) = oo implying existence

A~

of b. Uniqueness follows from Lemma 3.2(ii) and monotonicity of b — Z?(1,b). This
permits the solution b to be defined as a map hy, :Jw,, w°[— R, and H, = graph(hy).
By the IFT, hy is C'* with derivative

Ow Hy(w, b) OwZ(w, b)

hy(w) = " w.b) 02w >0, b= h(w). (A.18)
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Recall that Hy(w,,0) = 0 and H,(w° 0) < 0. By Lemma A.5(iii), the latter implies
existence of a unique value b° satisfying Hy(w° ) = 0. By continuity of H,, this
implies the boundary behavior lim,,_,go hy(w) = b and limy, sy, hy(w) = 0.

Let w := max{w,,w,} > 0 and the map A :Jw, w’[— R, A(w) := hy(w) — hy(w).
Since (1,b) € V is an interior steady state iff (w,b) € H, N H,, steady state values
w are zeros of A while b = h, (@) = hy(w). By the boundary behavior of h,, and hy,
lim,, g0 A(w) = —limy,_,g0 hy(w) = —b° < 0. As for the left limit, suppose w = w, >
w,. Then, limy, ., A(w) = limy, .y, hy(w) — hy(w,) = w, — hy(w,) > 0. This also holds
if w, = w,. Conversely, if w = w, > w,, then lim,,_,,, A(w) = hy(w,) —limy, ., hy(w) =
hy(w,) > 0. Conclude that lim,_,,, A(w) > 0 and a zero exists.

Uniqueness. Let (w,b) > 0 be an interior steady state. We show that A’(w) <

implying uniqueness by continuity of A’. Let k := K?(w,b) < k* and 7 := Z?(w, b). B
(A.17) and (A.18),

0y Z°(w, b) + ekg" (k) [0,K°(w, b)8, 2” (w,b) — 9K (w, )0, Z° (0, )]

A,(U_)) = 5/;;g”(]%)8blcﬂ(u_), i))abzﬂ(u_)a 6)

(A.19)
Since the denominator is strictly positive by Lemma 3.2, it suffices to show that the
numerator is strictly positive as well. Using (A.16) and the definition of 9,Z”(w, b)
from Lemma 3.2 and recalling that det D¢ H” > 0, this is equivalent to showing that

M = 8kH16bH2 angale — 6l€g”( )6 Hl(abHQ 8{,]’11) >0 (A20)

where the arguments of the function have been omitted for convenience. In what follows,
let M = E,[20() [v'(=)[] = B, [R(k;-) W'(=)]] > 0, My = By [R(k;)* [v"(—)]] > 0,
M = E,[(29(-)?|v"(=)]] > 0 and My := E,[R(k;-) 20(-) [v"(—)]] > 0. Using the
functional forms of the derivatives from (A.7), (A.9), and (A.11) — (A.13), tedious but
straightforward calculations imply that M can be written as M = A+ B + C where

g' (k)

_ _ "t - 2
mo= 1+chg"(F), Bi= L8N My, O = (1+ Ey(F)) [M2M3 — (M) ]

By Lemma A.4(ii), My > M, and M3 > M, which implies C' > 0 by (P3). Obviously,
B > 0. Suppose m > 0. Then, A > 0 which implies M > 0. Conversely, suppose
m < 0 such that —mM,; > 0. By (P3), (1 + E,(k))(My — My) > 0. By (P4), M, =
01 (kMy + bM3) > bM;. By (P5) and the first order condltlons M, =u'(w—b—k)>
(@ — b — k)|(® — b— k) which implies B > |u"(—)|% Mg( —b— k). Hence,

(

g"(k)

q'(k)

Both terms in brackets are non-negative due to (P3) and Lemma A.5(ii), respectively.
Hence, M > 0 also in this case, proving uniqueness of the steady state.

A= ()| =B+ m(Ms — My) + (1 + By (k) (M, — M4)]

A4+ B> [u'"(—)|Ms|(1+ Ey (k) —

(@ — ckg'(k)) |-

Stability. The argument is similar to the one in Lemma 2.3. Computing the determinant
and trace of the Jacobian J at the steady state gives, using Lemma 3.2 and (A.16)

det J = —ekq" (k) [0,/ (0 ,b)+g(awic’(w,b)a,,zﬂ(w,b)—a,,/c”(w,b)awz”(w,b))] >0
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trd = Tbdet T2 (3,2 (,5)-+2hg' (R) [0, (1,5)0,2” (0, 5) — 0K (1, 5)0,. 2" (,5)) ).
V4

As shown before, the numerator in (A.19) is positive which implies tr.J > 1+det .J. The
same reasoning as in the proof of Lemma 2.3 gives the claim.

(ii) Replacing R(K(w, b); ) by 9() Z?(w, b) and using Lemma 3.2 the proof is identical
to the one of Lemma 2.3(ii). |

A.11 Proof of Lemma 4.1

We look for a zero of the function H(7;w,b) := b—7—1(w—7), 7 < w. Since H is C' and
Theorem A.1 implies 0 < ¢'(w) < 1, 0, H(1;w,b) = —(1—4¢'(w—7)) < 0 such that there
is at most one such zero. Using Theorem A.1(ii) gives lim, ., H(7;w,b) = b —w < 0.
Moreover, lim, s o H(T;w,b) = b+ lim, 4 7(1 — M) If lim, o p(w + 7) < 00,
se) =

then lim,, . H(7;w,b) = oco. If lim, o t(w + 7) = 00, then lim, (1 —
1 —lim; o ¢'(w+7) > 0 by 'Hopital’s rule. Hence, lim,_, ., H(7;w,b) = oo again. B

A.12 Proof of Lemma 4.2

Let 7 = (1), £re¢) be given. For w > 0 and € € &, define ®7 (w; ) := W(K? (w, 1™ (w)); £)
which is strictly increasing by Theorem A.1 and linear in . Let w > 0 be arbitrary
but fixed and define (wyet, bret) 1= P (w, ™ (w); erer). Since MT is self-supporting un-
der ®?(-;en), bt = ™ (wyef). Moreover, the multiplicative structure implies that
O (w, ™ (w); ) = (gfefwref, 19’(95(2)1/}” (wref)) fE)r each ¢ € £. Using these relations, the
stabilizing tax can be written as a function 77 (wyef, £) defined implicitly by the condi-
tion G(T; Wye, €) 1= 7T (wref)ﬁ(e)/ﬁ(eref) —T7 =" (wref €/Erer — 7') = 0. By the IFT, the
derivatives of ¢™(w;e) = @I (w;e) — T (DT (w; £ref), €) compute

— S G (67 ()
= (g (w; )
&7 (w3 1) — 2L G (B (w3 1)
1 — ™' (¢™(w; €))
Under (a), the fraction in (A.21a) is strictly positive such that ¢™(-;¢) inherits the
monotonicity properties of ®7 (-;£). Moreover, since w > ¢™(w) and O (w;-) is linear,
the numerator in (A.21b) is strictly positive under (b). This proves the claim. |

Ot (wie) = 0,®7 (w;e) (A.21a)

00" (w; €) (A.21Db)

A.13 Proof of Theorem 4.1

First note that ¢™ is strictly increasing such that both limits are well-defined. By the
results from Theorem A.1, the map ¢ (w;erwer) = W(K? (w, 9™ (w)); 1) has a unique
fixed point wl; > 0 and ¢ (w;Erer) % w iff w § wle. Since & — ¢"(w;e) is strictly
increasing, this implies ¢™ (w; min) < w for all w > Wl and @™ (w; Emax) > w for all w <

s
ref*

™

wle. Hence, non-trivial fixed points of ¢™(-; £min) can only exist in |0, @] and do exist if
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lim,, o @™ (w; Emin) /w > 1. Likewise, non-trivial fixed points of ¢™(+; £1ax) can only exist
in Jw], oof and do exist if lim,,_,o " (w; €mas)/w < 1. Using the terminology of Brock
& Mirman (1972), the map ¢™ possesses a stable fixed-point configuration. Defining
w™ = max{w > 0| " (w;emm) = w} < W < W™ := min{w > 0| ¢"(W;Emax) = W}

the set W™ := [w™, w"] is the unique stable set of ¢™ (for a definition, see Wang (1993,
p.428)) which corresponds to a unique invariant distribution x™ supported on W*. W
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