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Abstract

The superiority of full information approaches when estimating a system of equation is well known for

large samples. However, less is known about the small sample properties of these estimators relative to limited

information approachs. This is especially true for the context of Panel data although they are meanwhile

a standard tool in estimating static and dynamic economic processes. Here only extensive Monte Carlo

simulation evidence is given for single equation models. We expand the scope of Monte Carlo simulation

evidence to system estimation. We especially aim to contribute to the methodological debate about appropriate

dynamic panel data estimators beside standard - large N , small T - panel data assumptions. Since frequently

used dynamic panel data models in ’first differences’ have shown a poor empirical performance in these

circumstances, we put a special emphasis on appropriate estimators with variables in levels based on Hausman-

Taylor (1981) type estimator. We compare the model’s performance in terms common evaluation criteria (such

as bias and root mean square error) relative to various alternative specifications including the Anderson &

Hsiao (1981) IV, the Arellano & Bond (1991) and Blundell & Bond (1998) GMM estimators.

Building upon the small sample simulation evidence, the paper then applies a simultaneous equation

approach to analyse the effects of regional equalization policy instruments on regional economic output and

endogeneized private and public factor demand equations for Germany. By doing so we are able to identify

the direct and indirect policy channels of regional equalization schemes, which are often left unidentified

in single equation estimations. To give an example, though our empirical analysis strongly confirms recent

findings of a negative direct output effect of the German interstate/federal fiscal equalization transfer scheme

(Länderfinanzausgleich) via its ’horizontal’ (state-to-state) element, the additional analysis of the structural

factor input equations reveals, that the ’vertical’ (federal-to-state) transfer element contributes positively to

the public sector investment rate. And the latter in turn is estimated to have a positive effect on regional

output as well. Similarly we search for direct and indirect effects of the private sector investment promotion

schemesv as well as active labour market spendings.

JEL-Classification: C33, H54, R11

Keywords: Dynamic Panel Data, Simultaneous Equations, Economic growth, Regional Policy
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1 Introduction

This paper seek to analyse the appropriateness of different dynamic Panel data models in estimating

small simultaneous equation systems. The notion of simultaneity among variables arises for many econo-

mic relations. Having a specific application in mind we are especially interested in modelling a system of

output growth and convergence together with endogeneized factor demand equations. To do so we the-

refore specify different dynamic model representations and judge among them on the grounds a Monte

Carlo simulation excercise for small samples. In doing so we particularly aim to bridge the gap between

two strands of panel econometric literature: 1.) simultaneous equations with panel data (see e.g. Cornwell

et al. 1992, Baltagi, 2005), 2.) dynamic panel data models (see e.g. Arellano, 2003). Whereas the former

approach is typically restricted to static models, the literature on dynamic panel data models merely

focuses on single equation estimation. Throughout the paper we aim to match both strands of the litera-

ture starting from the static simultaneous equation panel data model and search for concepts along the

literature on dynamic estimators to augment the static SEM approach.

Standard dynamic panel data models are typically transform data in first differences to control for a

correlation of the lagged endogenous regressor and the composed error term. However, in a growth model

context the difference estimators have typically shown a poor empirical performance (see e.g. Bond et

al. 2001) in particular due to the ’weak instruments problem’. Building up on orthogonality conditions

(instrument sets) of newly derived estimators in the dynamic panel data field, we thus aim to specify an

estimator in levels rather than first differences. We show how the static simultaneous equations models

with strictly exogenous regressors (e.g. Hausman-Taylor, 1981, Amemiya-Macurdy, 1986, or Breusch et

al., 1989) may be augmented by appropriate instruments for the lagged endogenous variable stemming

from both - the field of static as well as dynamic modelling approaches. We compare the performance of

various estimators in a Monte Carlo simulation exercise.

In a empirical application we then estimate dynamic simultaneous equation modelling with panel

data to assess the role of regional equalization/support policies for the regional growth and convergence

process among German states (Bundesländer). Different from using commonly applied single equation

’Barro’-type convergence equations (see e.g. Scheufele & Ludwig, 2009, for a recent survey on German

state level convergence) we explicitly set up a system of equations in order to account more appropriately

for the possible endogeneity of right hand side regressors in the output (growth) equation. Compared to

the single-equation approach the system estimation is able to spell out feed-back simultaneities among the

endogenous variables specified in the system and identify the direct/indirect effects of regional equalization

payments on output (per employee) and its factor inputs. The latter inputs include the private and public

sector investment rates, human capital and employment growth.

The remainder of the paper is organised as follows: Section 2 starts with a short description of different

dynamic panel data models in a simultaneous equation setting. The section puts a special emphasis on

the derivation of dynamic versions for static simultaneous equation error component models based on

the familiar Hausman-Taylor type (1981, thereafter HT) and related estimators. Section 3 presents a

small Monte Carlo simulation study for the dynamic simultaneous equation panel data models in focus

since there is little reference in the literature for this type of estimators. For the empirical application in

section 4 we briefly outline the human and public capital augmented Solow growth model and discuss how

the factor inputs of the underlying production function can be endogeneized by appropriate structural

equations. Section 5 reviews the major equalization/support instruments that are used in the German
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regional policy context and describes in how far they are included in the model as additional exogenous

regressors for both the factor input and output growth equations. This section also sketches earlier

empirical findings for the macroeconomic impact of regional equalization schemes. Section 6 discusses

data issues including the time-series properties of the variables in focus. For our empirical application

with respect to regional equalization transfer schemes in a growth system section 7 reports the estimation

results and computes dynamic interim and long-run multipliers to analyse the effects on the endogenous

variables with respect to exogenous (policy) changes. Section 8 finally concludes.

2 Dynamic Panel Data Models and Simultaneous Equations

As outlined above our aim is to estimate a system of dynamic simultaneous equations with error com-

ponents in each equation. The model may take either reflect a system of structural equations or a more

flexible VAR approach (with potentially additional exogenous regressors such as typically assumed in a

VARX context). The n-th structural equation of the system can be written in the following general form

yi,t = α+

l∑
j=0

γ′jYi,t−j +

k∑
j=0

β′jXi,t−j + ui,t, with: ui,t = µi + νi,t, (1)

for i = 1, . . . , N (cross-sectional dimension) and t = 1, . . . , T (time dimension). yi,t is the endogenous

variable and Yi is a vector of current and lagged endogenous explanatory variables of the system including

the (one-period) lagged endogenous variable of the respective equation. Xi a vector of explanatory time-

varying and time invariant regressors, ui,t is the combined error term, where ui,t is composed of the two

error components µi as the unobservable individual effects and νi is the remainder error term. Both µi

and νi are assumed to be i.i.d. residuals with standard normality assumptions. In terms of orthogonality

conditions these assumptions are given as follows:

E(νitνjs) = 0, for either i 6= j or t 6= s, or both (2)

E(µiµj) = 0, for i 6= j

E(µiνjt) = 0, ∀i, j, t

The first two assumptions state that the homoscedastic error terms are mutually uncorrelated over

time and across cross-sections. Furthermore the unobserved individual heterogeneity is random and un-

correlated between individuals. The third assumptions rules out any correlation between the individual

effects and the remainder disturbance term (that is µi is exogenous).

As already sketched above, there are broadly two strands of literature from which we can benefit for

the composition of appropriate estimators for the model in eq.(6). However, until now only little effort

has been made to link these subfields. In the following we will first discuss the main concepts of each

strand of literature and then propose a unifying framework.
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2.1 Dynamic Panel data models and Small Sample Performance

There are numerous contributions in the recent literature with respect to the single equation estimation

of the dynamic model of eq.(6), which especially deal with the problem introduced by the inclusion of

a lagged dependent variable in the estimation equation and its built-in correlation with the individual

effect: That is, since yit is also a function of µi, yi,t−1 is a function of µi and thus yi,t−1 as right-hand side

regressor in eq.(6) is correlated with the error term. Even in the absence of serial correlation of νit this

renders OLS, FEM and REM models biased and inconsistent (see e.g. Nickel, 1981, Sevestre & Trogon,

1985 or Baltagi, 2005, for an overview).

The most widely applied approaches of dealing with this kind of endogeneity typically start with first

differencing (FD) equation (6) to get rid of µi and then estimate the model by instrumental variable (IV)

techniques. The advantage of the FD transformation is that this form of data transformation does not

invoke the inconsistency problem associated with the standard FEM or REM estimation (see e.g. Baltagi,

2005). Anderson & Hsiao (1982) were among the first to propose an estimator for the transformed FD

model of eq.(6):1

(yit − yi,t−1) = α(yi,t−1 − yi,t−2) +

k∑
j=1

βj(Xi,t−j −Xi,t−j+1) + (uit − ui,t−1), (3)

where (uit−ui,t−1) = (νit−νi,t−1) since (µi−µi) = 0. As a result of first differencing the unobservable

individual effect has been eliminated from the model. However, there appears the problem that the error

term (νit − νi,t−1) is correlated with (yi,t−1 − yi,t−2) and thus the latter needs to be estimated by

appropriate instruments which are uncorrelated with the error term. Anderson & Hsiao recommend to

use lagged variables, either the lagged observation yi,t−2 or the lagged difference (yi,t−2 − yi,t−3) as

instruments for (yi,t−1 − yi,t−2). These IVs are correlated with the explanatory variable, but not with

the error term. Arellano (1989) compares the two alternatives and recommends yi,t−2 rather than the

lagged differences as instruments since they have shown a superior empirical performance. The respective

orthogonality conditions for this approach can be stated as:

E(yi,t−2∆ui,t) = 0 or alternatively: E(∆yi,t−2∆ui,t) = 0, (4)

where ∆ is the difference operator defined as ∆ui,t = ui,t − ui,t−1. The AH model can be estimated

for t = 3, . . . , T due to the construction of the instruments. Subsequently, refined instrument sets for the

estimation of eq.(9) have been proposed in the literature: Trying to improve the small sample behaviour

of the AH estimator Sevestre & Trognon (1995) propose a more efficient FD estimator which is based

on a GLS transformation of eq.(8). 2 Searching for additional orthogonality conditions Arellano & Bond

(1991) propose an GMM estimator, which makes use of all lagged endogenous variables - rather than just

yi,t−2 or ∆yi,t−2 - of the form:3

1In the stylized presentation for sake of simplicity we skip the vector of endogenous explanatory variables Y except for
the equation’s own (one-period) lagged value since it is as a special characteristics of a Simultaneous Equation Model (SEM)
and can easily added to the system.

2Since this GLS transformation leads to disturbances that are linear combinations of the ui,t’s, the only valid instruments
for ∆yi,t−1 are current and lagged values of ∆X.

3The use of GMM in DPD models was introduced by Holtz-Eakin et al. (1988), who propose a way to use ’uncollapsed’
IV sets.
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E(yi,t−ρ∆ui,t) = 0 for all ρ = 2, . . . , t− 1. (5)

Eq.(10) is also called the ’standard moment condition’ and is widely used in empirical estimation.

However, one general drawback of dynamic model estimators in first differences is their poor empirical

performance especially in a growth model framework (see Munnel, 1992, and Holtz-Eakin, 1994, for poor

empirical estimates of a production function in FD, Bond et al. (2001) for growth equation estimates).

Bond et al. (2001) argue that first difference IV/GMM estimators can be poorly behaved, since lagged

levels of the time series provide only ’weak instruments’ for sub-sequent first-differences.

In response to this critique a second generation dynamic panel data models has been developed which

also makes use of appropriate orthogonality conditions (in linear form) for the equation in levels (see e.g.

Arellano & Bover, 1995, Ahn & Schmidt, 1995, and Blundell & Bond, 1998) as:4.

E(∆yi,t−1ui,t) = 0 for t=3,...,T. (6)

.

Thus, rather than using lagged levels of variables for equations in first difference as in the FD estima-

tors, we get an orthogonality condition for the model in level that uses instruments in first differences.

Eq. (11) is also called the ’stationarity moment condition’.5 Blundell & Bond (1998) propose a GMM

estimator that uses jointly both the standard and stationarity moment conditions. This latter approach

is typically labelled ’system’ GMM as a combination of ’level’ and ’difference’ IV/GMM. Though labelled

as ’system’ GMM, this estimator treats the data system as a single-equation problem since the same

linear functional relationship is believed to apply in both the transformed and untransformed variables

(see e.g. Roodman, 2006).

However, the empirical application of the more sophisticated Arellano & Bond (1991) or Blundell &

Bond (1998) type GMM estimators does not come without extra costs either: In simulation studies Kiviet

(1995), Judson & Owen (1996), Harris & Matyas (1996), Hayakawa (2005) and Soto (2007) among others

have shown that the gains in efficiency terms of moving from parsimonious models to more complex

representations with larger instrument sets (orthogonality conditions) is rather marginal in panel data

settings with increasing T . That is, the GMM estimators of Arellano & Bond, Arellano & Bover, Ahn

& Schmidt and Blundell & Bond are typically designed for panel data sets with large N and small T .

According to Judson & Owen (1996) the associated loss in efficiency of instrument reduction from more

advanced GMM techniques to the standard Anderson & Hsiao (1981) estimator is negliable for large T

(approximately T ≥ 10), while at the same time the ’many instruments problem’ and computational

difficulties associated with the large instrument sets are avoided. 6

Soto (2007) runs a simulation experiment to compare first difference, level and system GMM estimators

4The original form in Ahn & Schmidt (1995) is E(∆yi,t−1ui,T ) = 0 for t = 3, ..., T derived from a set of non-linear
moment conditions. Blundell & Bond (1998) rewrote it as in (11) for convenience. The latter moment condition is also
proposed in Arellano & Bover (1995)

5That is because for eq.(11) to be valid we need an additional stationarity assumption concerning the initial values yi,1.
Typically yi,1 = µ/(1 − α) + wi,1 is considered as an initial condition for making yi,t mean-stationary, with assumptions
on the disturbance wi,1 as E(µiwi,1) = 0 and E(wi,1νi,t) = 0.

6Blundell & Bond (19988) them self argue that their GMM estimator is only appropriate for small T large N settings.
For an overview of the literature on the ’many instruments problem’ see e.g. Hayakawa (2005).
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in settings whereN is small compared to T (e.g.N = 35, T = 12, which comes much closer to the empirical

setup in this study compared to the typical large N , small T assumption). His results show in terms of

RMSE and standard deviation that on average the empirical fit of the first difference estimators is much

lower compared to level and system counterparts. Though the latter estimator shows the best overall

performance, the relative advantage to the level GMM estimator is rather marginal. If additionally the

model is characterized by a high level of persistence (as it is typically the case in economic growth studies)

the two estimators show an almost equal empirical performance. Similarly, comparing first differences,

level and system GMM estimators Hayakawa (2005) even finds that the system estimator has a more severe

downward bias than the level estimator, if the variance of the individual effects (σµ) is smaller than the

variance of the remainder error term (σν). That is, for many regions of the α-coefficient of the lagged

dependent variable (especially moderate and high value) and a (
σµ
σν

) = 0, 25 the level estimator displays

the smallest bias among the estimators. This result indicates that the fact that the system estimator is

a weighted sum of the FD and level estimator becomes a disadvantage of particular combinations for

(
σµ
σν

) = 0, 25 and moderate high regions of α.

Thus, for our panel data set, which we will apply in the second part of the paper and which has a

dimension of N = 16 and T = 10, it might be a fruitful approach to start with a more parsimonious level

estimator, especially since in a simultaneous equation setting the ’many instruments problem’ may be very

severe. A promising starting point for doing so is proposed by Harris & Matyas (1996) as well as Harris

et al. (1996), who derive consistent generalizations of familiar static error components (single equation)

models to the dynamic panel data case. These models comprise IV estimators proposed by Hausman-

Taylor (1981), Amemiya & Macurdy (1986), Breusch et al. (1989). Another advantage of starting from

this modelling perspective to setup dynamic simultaneous equation models is that for the static case

there is a bulk of literature dealing with simultaneity, whereas contributions (both theoretical as well as

empirical) in a dynamic context are rather spare. Among the few exceptions is a theoretical contribution

by Ben Jedidia (1994), who proposes as system estimator of the Ahn & Schmidt (1995) single equation

estimator.7 Another system estimator which as recently been a applied in a series of papers by Driffield

and associates is a FD-3SLS estimator, which generalizes the Anderson & Hsiao (1981) type estimator

to the system case (see e.g. Driffield & Girma, 2003, Driffield & Taylor (2006) as well as Driffield & De

Propris, 2006). Finally, Kimhi & Rekah (2005) apply an Arellano & Bond (1991) type estimator for a two

equation system that explicitly accounts endogeneity and predeterminedness of right-hand side regressors

in a limited information approach.8

2.2 Static simultaneous equation models with panel data

Theoretical and empirical contributions to static case simultaneous equation estimators with panel data

structure are much more common and for instance given by Baltagi (1980, 1981 & 2005), Baltagi & Chang

(1994, 2000), Prucha (1984), Hsiao (1986), Balestra & Krishnakumar (1987), Krishnakumar (1988), Bjorn

& Krishnakumar (2007), Cornwell et al. (1992) as well as Park (2005). Among the standard estimators

in empirical application are Baltagi’s (1980 & 1981) EC-SUR and EC-3SLS, which are extensions of

7A short summary of this model is given in Krishnakumar (1995).
8Also, starting from a time-series perspective Binder et al. (2005) derive different Panel VAR models and evaluate them

in a Monte Carlo simulation exercise.
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the random effects model (REM) for the system case. The use of instrumental variables in the model

is necessary for the case that we have to deal with endogeneity of right-hand side regressors. More

general approaches in this field - which comprise the EC-SUR and EC-3SLS as special cases - are system

extensions of the Hausman-Taylor (1981) type single equation estimators: HT-SUR and HT-3SLS (a

convenient overview is given in Cornwell et al., 1992, Ahn & Schmidt, 1999, as well as Park, 2005 among

others).

We thus start with a short description of the static system estimators and then propose different

methods, how these estimators can be expanded to the dynamic case by appropriate orthogonality con-

ditions (instrument choice). The basic approach to these type of models is to first transform the model

into a spherical one by a GLS correction (taking into account both error components either for a block

diagonal or full covariance matrix) and then using appropriate instruments to estimate the model by

limited or full information IV methods (2SLS or 3SLS respectively). The HT model specification starts

with a standard (one way) error component model such as eq.(6), where the lagged endogenous variables

is excluded (static case).

Additionally, the vector of explanatory variables X is separated into right-hand side regressors in

the model that are treated as either (doubly) exogenous (that is both uncorrelated with the unobserved

individual effects and the remainder error term) or singly exogenous as being correlated with µi. Further,

a distinction is made between time-varying and time invariant explanatory variables. Following HT we

define the sub-vector of time-varying variables as X and the sub-vector of time invariant variables Z.

Taking into account the distinction between doubly and singly exogenous variables we can split each

sub-vector into two sub-vectors such as X = [X1, X2] and Z = [Z1, Z2], where X1 and Z1 are doubly

exogenous with respect to µ and ν, while X2 and Z2 are treated as singly exogenous (correlated with µ).

The full augmented model can be written in the following form:

yit = α+ β′1X1it + β′2X2it + γ′1Z1i + γ′2Z2i + uit, (7)

where again the unobservable individual effects are treated as random with (uit = µij + νijt). The

presence of X2 and Z2 would be a severe cause for biased inference in the standard REM approach. The

underlying orthogonality conditions of the HT model are:

E(X1itµj) = 0, ∀i, j, t (8)

E(X1itνjs) = 0, ∀i, j, t, s

E(X2itνjs) = 0, ∀i, j, t, s

E(Z1iµj) = 0, ∀i, j

E(Z1iνjs) = 0, ∀i, j, s

E(Z2iνjs) = 0. ∀i, j, s

The main idea of the HT model is to use instrumental variable methods to circumvent the endogeneity

problem ofX2 and Z2. Thereby the strictly exogenous time-variant variables (X1) are used as instruments

for estimating time invariant singly exogenous coefficients (Z2), where group means of X1 are used to

instrument Z2. Deviations from individual means of X1 and X2 are used as instruments for X1 and X2
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(in the logic of the fixed effect (FEM) or within group estimator), while Z1 are used as their own (strictly

exogenous) instruments. The HT strategy thus makes use of information already contained in the model

to instrument X2 and Z2 and does not rely on other externals IVs.

Amemiya & Macurdy (1986) propose an extension to the HT model based on the assumption that

the X1 variables are doubly exogenous and thus all past, present and future values become valid instru-

ments. Therefore, instead of just using group means of the time-varying variables X1, the Amemiya &

Macurdy estimator extends the instrument set to include the vector X1∗, which includes T time invariant

instruments for each time period t within the estimation period according to

X1∗ =


X11,t X11,t+1 · · · X11T

X12,t X12,t+1 · · · X12T
...

...
...

X1N,t X1N,t+1 · · · X1NT

⊗ eT , (9)

where eT is an Tx1 vector of ones.

Turning to the case of simultaneous equations some further aspects have to be taken into account.

First, different from the single-equation case the right-hand side of eq.(11) includes a vector of endoge-

nous explanatory variables Yi,t. The main difference to the Xi,t and Zi variables is that Yi,t are correlated

with the statistical noise νi,t and the unobservable individual effects µi,t. Recalling the singly an doubly

exogenous variables introduced above for the Yi,t variables we now define a further category - endoge-

nous regressors. Endogeneity is defined as a correlation of a variable with both error components. The

motivation for this three-type distinction is as follows: The structural model has statistical noise and an

individual effect in every structural equation. In computing its reduced form each reduced form equation

will have an individual effect which is a linear combination of the individual effects in the structural

equations. As Cornwell et al. (1992) note, the solution for every endogenous variable will therefore in

general involve every structural error and also the individual effect from every equation. The nature of

this solution implies that every endogenous variable should be correlated with every structural error and

hence also with the individual effects. The importance of this argument is that there cannot be any

endogenous variable correlated with the remainder error term but not with the individual effect.

Taking into account the vector of endogenous explanatory variables Yi,t we can write the nth structural

equation of the system according to eq.(11) as:

yn = Rnξn + un (10)

un = µn + νn,

where n denotes the nth structural equation of the system with n = 1, . . . , N , Rn = (Yn, Xn, Zn) and

ξ = (δ′, β′, γ′), where δ′ is a coefficient vector for Yn. We can then stack the equations given in eq. (15)

into the form usual considered in a system (SUR or 3SLS) context as:

y = Rξ + u, (11)
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where y′ = (y′1, . . . , y
′
N ) and similar for ξ and u. R is defined as

R =


R1 · · · 0
...

. . .
...

0 · · · RN

 (12)

As in the single equation model we assume that both µ and ν are i.i.d. errors with the zero mean

and covariance matrices for the error components as [σ2
µ(j,l)

] (with j = 1, . . . , N and l = 1, . . . , N) for the

unobserved individual effects, Σν = [σ2
ν(j,l)

] for the remainder error term respectively.

For estimation one has to transform the system of equations in (16) by Ω−1/2 so that the error is

whitened, where Ω = E(uu′) is the variance-covariance for the system of equations equation consisting

of the cross-equation variance components according to:

Ω−1/2 = (Σν + TΣµ)−1/2 ⊗ Pv + Σ−1/2ν ⊗Qv, (13)

where Qv is an operator transforming a variable into its deviations from group means, while Pv

produces group means of a variable. Pv is defined as IN ⊗ J̄T , where IN is an identity matrix of dimension

N and J̄T = JT /T and JT is an (TxT ) matrix of ones. Qv is defined as INT − Pv, where INT is an

identity matrix of dimension NT . Kinal & Lahiri (1990) suggest obtaining the Cholesky decomposition

of Σν and Σµ to reduce the computation and simplify the transformation of the system. To do so we thus

need consistent estimators of σ2
µ and σ2

ν , these are typically based on untransformed 2sls estimates of the

respective modelling approach (e.g. HT or AM, for further details see e.g. Baltagi, 2005). After having

whitened the error terms in the model we can use 3SLS to the transformed models using all relevant

instrument variables based on the singly and doubly exogenous variables to estimate all parameters of

the system.

2.3 Synthesis to Dynamic Simultaneous Equation Panel Data Models

Having briefly reviewed system estimators for the static case, these models can now be generalized to the

dynamic setting. Harris & Matyas (1996) argue that for dynamic panel data models the lagged dependent

variable yi,t−1 can be treated as predetermined and thus in analogy to the X2 variables, that is it is singly

exogenous with respect to the error component µi. The authors propose to use lagged deviations from

group means from X1 as QvX1i,t−1 as well as lagged group means PvX1i,t−1 as instruments for yi,t−1. In

the Amemiya-Macurdy case additionally to the QvXi,t−1 the vector X1∗ has to be augmented to include

lags of X1∗t−1 (where the subscript D indicates the augmented Instrument matrix for the dynamic case)

as

X1∗D =


X11,t−1 X11,t X11,t+1 · · · X11T

X12,t−1 X12,t X12,t+1 · · · X12T
...

...
...

...

X1N,t−1 X1N,t X1N,t+1 · · · X1NT

⊗ eT . (14)
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A further extension to the instrument set is proposed by Ahn & Schmidt (1995): Given the strict

exogeneity of X1 (and Z1 analogously) with respect to ui,t, Ahn & Schmidt (1995) demonstrate that

there are many more instruments in the space spanned by Qv in addition to QvX1 that help to explain

the regressor (Qvyt−1). The authors propose a vector of instruments defined as X1∗∗, where

X1∗∗ = Qv



X11,t−j · · · X11,t X11,t+1 · · · X11T

X12,t−j · · · X12,t X12,t+1 · · · X12T
...

...
...

...
...

X1N,t−j · · · X1N,t X1N,t+1 · · · X1NT

⊗ IT
 . (15)

This vector of instruments can be interpreted as using all leads and lags of variablesX1 in its deviations

from group means. An alternative interpretation of this instrument set can be given, if we make use of the

fact that first differences and deviations from means preserve the same information in the data. Making

use of this information Ahn & Schmidt (1995) rewrite the instrument set X1∗∗ as

X1∗∗
P
=


X11,t−1 X11,t X11,t+1 · · · X11T

X12,t−1 X12,t X12,t+1 · · · X12T
...

...
...

...

X1N,t−1 X1N,t X1N,t+1 · · · X1NT

⊗Q (16)

=


X11,t−1 X11,t X11,t+1 · · · X11T

X12,t−1 X12,t X12,t+1 · · · X12T
...

...
...

...

X1N,t−1 X1N,t X1N,t+1 · · · X1NT

⊗ L

where L is a matrix operator that performs the first difference transformation to X1 and the ’
P
=’

relationship between to matrices means that they yield the same projections. Thus, the vector of instru-

ments can be alternatively interpreted as using all leads and lags of variables X1 in its first differences

rather than deviations from group means.9 Focusing on lagged values, the proposal by Ahn & Schmidt

(1995) includes all lags and not only the first as proposed by Harris & Matyas (1996). The overall set of

instruments from X1 is thus [X1∗∗, X1∗]. However, as in the single equation dynamic panel data model,

the ’many instruments problem’ may be in order here, so that in most cases we restrict the lag length to

1 and follow the suggestion of Harris & Matyas (1996).

We will classify the two groups of instruments based on deviations of group means and first differences

as IV∆X and IV QX. Especially for the latter Kiviet (1995) found remarkably good model properties

both in terms of bias and efficiency when performing model comparison among different (single equation)

dynamic panel data estimators. Kiviet (1995) shows that IV QX is virtually unbiased and efficient, that

9In the following we primary make use of the ’collapsed’ interpretation of the GMM-style instrument set proposed by
Ahn & Schmidt (1999). The total number of GMM-style X1∗∗ instruments is T (T − 1).
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is it beats the Arellano & Bond (1991) GMM type and Anderson & Hsiao IV-type estimator for all of

the Monte Carlo simulation designs. Comparing the efficiency of the closely related (restricted) EC-3SLS

estimator in a dynamic setup with no additional instrument for t− 1, Haque et al. (1993) also find that

this level estimator is more efficient than the Arellano & Bond (1991) GMM first difference counterpart.

So far we have only derived instrumental variables based on the strictly exogenous variables to better

explain yi,t−1. However, another way of exploiting additional orthogonality conditions would be to utilize

a combination of moment conditions from the dynamic panel data literature and the HT type models

presented above. Since the HT model is typically estimated in levels, a straightforward starting point

would be to make use of the stationarity moment condition in eq.(11) as E(∆yi,t−1ui,t) = 0 for t=3,...,T.

This orthogonality condition can be used to extend the instruments set of the different HT/AM estimators.
10. For the HT models we focus on the ’collapsed’ version of the IV set. This leads to the following sets

of instrument for our dynamic HT model (for convenience assuming that all exogenous variables are

time-varying and strictly exogenous - thus X1; additionally we focus only on one lagged value for the

exogenous and predetermined variables) :

• HT1 = (QvX1i,t, QvX1i,t−1, PvX1i,t, PvX1i,t−1),

• AM1 = (QvX1i,t, QvX1i,t−1, X
∗
Di),

• HT2 = (QvX1i,t, QvX1i,t−1, PvX1i,t, PvX1i,t−1,∆Yi,t−1),

• AM2 = (QvX1i,t, QvX1i,t−1, X
∗
Di,∆Yi,t−1),

• HT3 = (∆X1i,t,∆X1i,t−1, PvX1i,t, PvX1i,t−1,∆Yi,t−1),

• AM3 = (∆X1i,t,∆X1i,t−1, X
∗
Di,∆Yi,t−1),

where ∆Yi,t−1 is the entire set of predetermined endogenous variables of the system, X1 captures all

exogenous variables. Following Cornwell et al. (1992) and Ahn & Schmidt (1999) we implicitly assume

that the same instruments are available for each structural equation. A final aspect worth noting is that

in the static case under the homoscedasticity assumption the asymptotic equivalence between 3SLS and

GMM holds. However, Ahn & Schmidt (1999) show that this is not the case for the dynamic model using

the full orthogonality conditions, in particular eq.(10). For the full argument see Ahn & Schmidt (1999).

Thus, using a GMM framework could potentially bring additional gains in efficiency, however at the same

time the ’many instruments problem’ may be in order.

3 Monte Carlo Simulation Exercise

Before we turn to the empirical application of the growth model outlined in section 2, this section serves to

perform some preliminary Monte Carlo simulation experiments for a two equation dynamic simultaneous

equation model with error components. As described above, though there is a vast literature on monte

carlo simulations for DPD estimators in a single equation context, less evidence is known for the multiple

10Ahn & Schmidt (1995) similarly propose a combination of the standard orthogonality condition with the orthogonality
conditions of the HT- and AM-type estimators for the single equation case

11



equation case. In the following we draw on the simulation setup of Matyas & Lovrics (1990), using a

2-equation model with the endogenous variables y1 and y2 of the following form:

y1i,t = α0 + α1y2i,t + α2y1i,t−1 + α3x1i,t + µ1i + ν1i,t, (17)

y2i,t = β0 + β1y1i,t + β2x2i,t + β3x3i,t + µ2i + ν2i,t, (18)

where exogenous regressors x1, x2, x3 are generated by the following DGP:

x1i,t = ρ1x1i,t−1 + ψ1i,t (19)

x2i,t = ρ2x2i,t−1 + ψ2i,t (20)

x3i,t = ρ3x3i,t−1 + ψ3i,t (21)

In this setup special attention has to be given to the properly specification of the various error terms

in the equations for the endogenous and exogenous variables. Here we make the following assumptions

(mostly) in line with the recent mainstream body of Monte Carlo simulation work:

ν1i,t ∼ N(0, σ2
ν1) (22)

ν2i,t ∼ N(0, σ2
ν2) (23)

µ1i,t ∼ N2(0,Σµ) (24)

µ2i,t ∼ N2(0,Σµ) (25)

ψ1i,t ∼ N(0, σ2
ψ1) (26)

ψ2i,t ∼ N(0, σ2
ψ2) (27)

ψ3i,t ∼ N(0, σ2
ψ3) (28)

As in Arellano & Bond (1991) we use σ2
ν1 and σ2

ν2 as normalization parameter which we set equal

to 1. Different from the time varying error term ν we model the unobservable individual effects µ as

multivariate normally distributed to test whether a full information approach may enhance the estimator

efficiency. The general distribution function for a set of p variables is denoted Np(a,Σ), where a is a (p×1)

vector of means and Σ is the (p×p) covariance matrix of the variables (see also Mooney, 1997). We specify

µ as multivariate normally distributed with zero mean and variance-covariance matrix according to

Σµ =

[
1 0, 5

0, 5 1

]
(29)

Throughout the Monte Carlo simulation experiment we also define a load factor ξ determining the ratio

of the two error components as ξ =
σµ
σν

. This gives us the opportunity to test for the estimators’ perfor-

mance for different error component weighting schemes (as found e.g. in Hayakawa, 2005). While we keep

some parameters constant (σψi = 0, 9; ρi = 0, 5; βi = 0, 5), we modify the following parameters during the

exercise: α2 = (0, 8; 0, 5), which then also varies α1,3 = (1− α2); ξ = (4; 1; 0, 5);N = (15; 25; 50; 100) and

T = (5; 10; 15). With respect to the initial observations we proceed as follows: y0,i = 0 and x0,i = 1/(1−ρ).
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In line with Arellano-Bond (1991), for the DGP we set T = T + 10 and cut off the first 10 cross-sections

so that the actual samples contain NT observations. The total number of repetitions is set to 1000, where

we keep the observations on xi fixed over replications

For estimator comparison we compute various common evaluation criteria as bias, std.dev., rmse,

NOMAD and NORMADSQD, where the latter are (normalized) evaluation criteria averaged over all

estimated model parameters. That is the NOMAD (normalized mean absolute deviation) computes the

absolute deviation of each parameter estimate from the true parameter, normalizing it by the true para-

meter and averaging it over all parameters and replications considered. The NORMSQD computes the

mse for each parameter, normalizing it by the square of the true parameter, averaging it over all parame-

ters and taking its square root (for details see Baltagi & Li, 2000). We compute results of Anderson-Hsiao

(1982), Arellano-Bond (1991), Blundell-Bond (1998) estimators and HT1 to HT3 as defined above.

At this stage of research we predominently focus on limited information methods in line with Ma-

tyas & Lovrics (1990), this means that we apply the same set of system IVs denoted as ZS for both

equations using X1t,i, . . . , X3t,i; X1t−1,i, . . . , X3t−1,i and Y 1t−1,i, . . . , Y 1t−n,i but do not account for

cross-equation residual correlations.11 For the rival estimators of the HT-specifications we use the follo-

wing data transformations:

• AH: (∆X1t,i, . . . ,∆X3t,i); (∆X1t−1,i, . . . ,∆X3t−1,i); Y 1t−2,i

• AB: (∆X1t,i, . . . ,∆X3t,i); (∆X1t−1,i, . . . ,∆X3t−1,i); (Y 1t−2,i, . . . , Y 1t−n,i)

• BB1: Level : (X1t,i, . . . , X3t,i); (X1t−1,i, . . . , X3t−1,i); ∆Y 1t−1,i; Diff : as AH

• BB2: Level : (X1t,i, . . . , X3t,i); (X1t−1,i, . . . , X3t−1,i); (∆Y 1t−1,i, . . . ,∆Y 1t−n,i); Diff : as AB

For the GMM estimators we use an efficient two-step approach including the Windmeijer (2005) small

sample correction to make the competition for the HT-specifications as tough as possible.12 In the case

of full information estimation we specify the optimal weighting matrx V S for the whole system as:

V SN = N−1
N∑
i=1

ZSi
′ûSi û

S
i
′ZSi (30)

where ui is estimated from a consistent 1.stage regression (such as 2SLS), ZSi is the instrument matrix

for the whole system.

Turning to the results, figure 1 to 8 first report the Monte Carlo results with respect to the autoregres-

sive parameter for the endogenous variable in eq.(23) which is given a prominent role in single equation

Monte Carlo study comparisons. Thereby, our simulation results merely confirm the results given so far:

As figure 1 shows for the standard large N , small T setting the two-step efficient Blundell-Bond (1998)

estimators perform best in terms of bias from the true α2-value. The box plots in figure 1 show that the

mean of the two BB estimators are very close to the true value of 0,8 with a small standard deviation.

The HT specifications also work well with the HT2 and HT3 being slightly downward biased. The figure

11An extension to run Monte Carlo simulations based on full information methods for the various estimators is currently
ongoing. However, some first results are presented here of a restricted set of simulation parameters. At this stage we also
ignore AM-type estimators.

12For the estimation we use the ivreg2 (see Baum et al., 2003) and xtabond2 (see Roodman, 2006) Stata routines.
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also confirms the poor performance of FD estimators (both AH and AB) typically found in simulation

work. In figure 2 we now keep the number of cross-sections fixed, but augment the time period to T = 10.

The results show that though the BB2 still has the smallest bias on average, the BB1 specification is

outperformed by the HT1-HT3 models. The performance of the FD estimators is somewhat better for

longer time periods, however they are still the less accurate estimators for the true α2 coefficient.

[Figure 1 and Figure 2 about here]

If we now reduce the number of cross-sections to N = 10 we offset the standard panel data assumptions

and move on to two-sided small sample panels in which the time dimension of the panel is not that short

and the cross-section dimension not that large. The results in figure 3 show that for these settings the

HT specifications on average slightly outperform both BB estimators. This impression is also supported

if we relax the assumption of an equal weight of the two error components. For a load factor of ξ = 4 in

figure 4 the HT2 specification works best. In figure 5 and 6 we finally reduce the degree of persistence in

the autoregressive coefficient to α2 = 0, 5. Here the results show that the BB estimator break down for

different load factors, while the HT2 specification works best. Thus, in non-standard panel settings the

HT-IV estimators seem to be more accurate than their GMM rivals, which may suffer from a substantial

weak instrumentation bias.

[Figure 3 to Figure 8 about here]

In our system context, not only the bias of single coefficient estimates but also the overall performance

of the various estimators is of special importance. Figure 9 to 15 therefor report the NORMSQD values

for the various estimators. In the standard large N , small T setting the Blundell-Bond estimators are

most efficient. However, this dominance changes with increasing time period and smaller cross section

dimension. Especially for settings with less persistence in the lagged endogenous variable and a high load

factor (figure 15). Here the HT specification perform far better than the BB as well as FD estimators.

Figure 16 to 19 show the performance of the (absolute) bias and RMSE for β2 as well as the overall

performance criteria NOMAD and NORMSQD for different settings of the cross section dimension of the

panel data. The general tendency in all figures shows that the estimators’ performance increases with a

higher cross-section dimension. Accumulating the different cross-section cases for the different estimators,

the figures show that the HT specifications (in particular the HT2 version) perform best. Interestingly the

BB specification come close to the HT results with respect to (absolute) bias for α2 and overall NOMAD,

while they are sensitive to outliers as the RMSE for α2 and overall NORMSQD criteria show. With

respect to the latter the BB estimators are even outperformed by simple FD-IV rival estimators.13 In

the next section we now turn to an empirical application for the different dynamic simultaneous equation

panel data models.

[Figure 9 - Figure 19 about here]

13Standard Monte Carlo simulation results for N = (25, 100) and T = (5, 10) are given in table A.1 to table A.6. Other
results can be obtained from the author upon request.
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Finally, also some preliminary simulation results are given for full information estimation. As figure

20 shows the results for N = 25 and T = 10 are rather mixed with no clear efficiency gains based on the

full information approach. However, further simulation runs with varying settings for the cross-section

and time-dimension of the panel data are neccessary to give a complete picture of the relative efficiency

of full versus limited estimation in the context of panel data.

[Figure 20 about here]

4 Modelling Output (Growth) and Factor Demand Equations

for Policy Analysis

At the core of our modelling system we use a human and public capital augmented neoclassical Solow

growth model in its standard empirical growth formulation (see e.g. Barro & Sala-i-Martin, 1991/1995,

for the standard two-factor production function or Gondl, 2001, and Lall & Yilmaz, 2001, for its human

and public capital generalization) as:

log(yi,t)− log(yi,t−1) = α− βlog(yi,t−1) +

1∑
j=0

γj log(invi,t−j) (31)

+

1∑
j=0

δj log(pubi,t−j) +

1∑
j=0

φj log(hci,t−j)

+

1∑
j=0

ωj log(n+ g + δ)i,t−j + Ψ′Z + ui,t,

where i = 1, . . . , N is the cross-sectional dimension and t = 1, . . . , T is the time dimension. The

dependent variable yit is defined as output per employee for region i and time period t, yi,t−1 is the

one-period lagged observation. Next to its own lagged value we include current and (one-period) lagged

values of the following factor inputs as right-hand side regressors: inv is the private sector investment rate,

pub is the public sector investment rate, hc is a measure for human capital, n is the labour force growth

rate, g and δ are exogenous technical change and depreciation (the later two variables are capped to 0,05

as standard in the related literature). Z is a vector of further exogenous output growth determinants

including regional equalization policies, uit is the error term and α, β, γ, δ, φ, ω are coefficient, Ψ is a

coefficient vector.

Eq.(1) can be equivalently rewritten as a dynamic panel data model in levels with output per employee

for region i in period t as dependent variable (see e.g. Gondl, 2001):

log(yi,t) = α+ θlog(yi,t−1) +

1∑
j=0

γj log(invi,t−j) (32)

+

1∑
j=0

δj log(pubi,t−j) +

1∑
j=0

φj log(hci,t−j)
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+

1∑
j=0

ωj log(n+ g + δ)i,t−j + Ψ′Z + ui,t,

with θ = (1− β). In empirical estimation we will use eq.(2) and additionally add structural equations

for the various factor inputs [inv, pub, (n + g + δ), hc] based on theoretical motives. In principle we will

build up dynamic specification for the various factor demands in a rather ad-hoc fashion somewhat related

to the Nadiri & Rosen (1974) type factor demand system (or also labeled second generation dynamic

factor demand model; for a recent overview of different approaches to factor demand modelling see e.g.

Larsson, 2004, Morana, 2007).

By account for the endogeneity of the factor inputs we are able to explicitly channel the relationship

between regional policies and the arguments of the production function in a structural manner. Some of

the likely gains associated with this system approach compared to the single equation estimation are as

follows:14 First, the role of the policy variables in the system can be interpreted more meaningful: That

is, the indirect effects of regional policies on the production function are modelled via the endogeneized

factor inputs and so the policy variables in the growth equation are left to determine the effect on total

factor productivity solely. Second, by addressing potential r.h.s. regressor endogeneity and cross-equation

residual correlation, this setup generally results in consistent and more efficient parameter estimates

compared to the single equation approach. By using appropriate instrumental variables for endogenous

right-hand side variables in the system approach, the single parameters will be estimated consistently

(see e.g. Bond et al., 2001, with an explicit reference to growth model estimates), further the system

approach will lead to more efficient results especially if there is a non-zero covariance matrix of the error

terms (see e.g. Greene, 2003).

In extension to eq.(1)/(2) we can thus write the resulting 5-equation system compactly in a partial

adjustment framework as a restricted version of the more general ARDL(p, q1, . . . , qn) or in the system

case VARX-form:15

y∗i,t = f1(inv∗i,t, pub
∗
i,t, [n+ g + δ]∗i,t, hc

∗
i,t,Z) + u1, (33)

inv∗i,t = f2(y∗i,t, pub
∗
i,t, [n+ g + δ]∗i,t, hc

∗
i,t,Z) + u2,

pub∗i,t = f3(y∗i,t, inv
∗
i,t, [n+ g + δ]∗i,t, hc

∗
i,t,Z) + u3,

(n+ g + δ)∗i,t = f4(y∗i,t, inv
∗
i,t, pub

∗
i,t, hc

∗
i,t,Z) + u4,

hc∗i,t = f5(y∗i,t, inv
∗
i,t, pub

∗
i,t, [n+ g + δ]∗i,t,Z) + u5,

where
′∗′ denote the equilibrium level for a variable x. This equilibrium level is assumed to be connected

to actual current and past observations of x according to:

14See e.g. Ulubasoglu & Doucouliagos (2004) for a further discussion.
15For details how the partial adjustment model can be derived as a restricted form of the more general ARDL(p, q1, . . . , qn)-

model (where p denotes the number of own lags for the endogenous variable in the estimated equation and q is the lag
length of the respective n exogenous variables) see e.g. Smith & Fuentes (2004).
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log(xi,t)− log(xi,t−1) = ηlog(x∗i,t)− ηlog(xi,t−1) (34)

and solving for x∗i,t yields:

log(x∗i,t) =
1

η
log(xi,t) + log(xi,t−1), (35)

where η can be interpreted as the speed of adjustment parameter for variable x. Substituting this

equation for each x∗i,t in the equation system of (3) yields for each equation a relationship for estimation

with only observable variables, since each equilibrium value is substituted by current and one-period

lagged observed values for the respective variable. In the empirical estimation we will judge on theoretical

and econometric grounds which of current and lagged variables out of this ’pool’ will be included in the

final regression output for each equation of the system in (3). Typically we start from a more general

model and test down by excluding insignificant variables.

5 Regional Equalization Policy Instruments

A prominent role in the design of the empirical model of the equation system in eq.(3) is given to

regional equalization policy instruments included in the vector of exogenous explanatory variables Z.

We will focus on three of the major policy schemes in the actual institutional setup of German regional

policy: 1.) the federal/interstate fiscal equalization transfer scheme (Laenderfinanzausgleich, thereafter

LFA), 2.) the joint federal/state government program ’Improvement of Regional Economic Structures’

(Gemeinschaftsaufgabe ”Verbesserung der regionalen Wirtschaftsstruktur”, thereafter GRW), as well as

3.) instruments of the active labour market policy (thereafter ALMP).16 Especially, the LFA is a matter

of heavy debate both at the political as well as academic level.17 A central question arising in this

controversy is whether those transfers associated with the LFA are effective in fostering growth in the

relatively poor recipient regions and thus support the central goal of income convergence among German

states. In the latter sense equalization payments of the LFA are seen as an ’allocative’ policy instrument,

where positive macroeconomic effects are likewise associated with spillovers of public (infrastructure)

investments as well as scale effects in the production of public goods (for a summary see e.g. Kellermann,

1998). The two central layers of the LFA comprise a horizontal reallocation between different units of

the same administrative level (states) as well as transfers stemming from vertical linkages between the

federal government and the states. The LFA targets the level of regional tax revenues, where equalization

is achieved through a combination of horizontal and vertical transfer payments which both serve as to

subsidize low revenue states to fill the gap between a state’s actual revenues relative to a population

weighted average level of tax revenues across states. Since most tax categories can be directly related to

the economic output performance of a region, the LFA can be interpreted as equalization transfers from

regions with high income to low income regions (in terms of GDP per capita).

In the recent literature contrasting arguments can be found with respect to the likely macroeconomic

16A detailed description of the institutional setup of these instruments is given in Alecke et al., 2006.
17The latter is in particular due to the large transfer amounts for the East German states (”Aufbau Ost”) which are

nested within the overall transfer scheme.
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effects of federal transfer payments such as the LFA - either in favour of promoting per capita income

convergence or against it. A typical argument from the latter point of view is that equalization transfers

may result in persistent ’transfer dependency’, where poor net recipient regions have little incentives to

boost their revenue base. On the contrary, transfers can also been seen as a form of public capital which

in turn may help to foster the productivity of private capital stock and thus also output growth. For the

magnitude of this public capital growth channel the share of investive spending items relative to total

net transfers is relevant: The higher the share of investive (or supply side) spendings relative to total

transfers, the stronger we expect the impulse of the LFA on the regional growth pattern. Focusing on net

transfers to the East German states Bradley et al. (2006) show that these transfers may have a significant

impact on the aggregate development pattern. However, the results are based on simulation experiment

using a one-region macromodel for East Germany. In this modelling framework the federal transfers are

necessarily exogenous and do not affect parameters such as the tax rate, which in tum may lower the

economic growth rate (see e.g. Gondl, 2001). A more appropriate setup to test for the overall growth

effect of transfers on the economy in focus would therefore be to include all (donor and recipient) states

in a joined estimation setup.

Previous empirical contributions of this kind have shown mixed results: For Canada Kaufman et al.

(1997) find a significant positive influence of net transfer payments on the regional growth and conver-

gence process of its provinces. One the contrary, studies based on German data mainly reveal a negative

relationship between LFA transfers and regional economic growth: Baretti (2001) uses data for 10 West

German states (excluding Berlin) between 1970 and 1997, Berthold et al. (2001) expand the approach to

a panel of all 16 German states using a shorter observation period between 1991 and 1998. Both studies

find a significant negative relationship between the elements of the LFA and the regional growth process

in Germany. Starting from a theoretical model of the LFA, Baretti (2001) derives two proxy variables

measuring the effect of LFA payments on regional growth: 1.) the marginal absorption of additional re-

gional tax revenues due to the LFA, 2.) the average tax revenue relevant for the LFA in all other regions

excluding i. The first variable is assumed to have a negative effect on growth, while for the latter - mea-

suring the absolute financial mass of the LFA - the effect is a priori not that clear. For details see Baretti

(2001) or Baretti et al. (2000).

In the empirical estimation Baretti (2001) found a negative absorption effect of the LFA on growth,

while the overall financial mass was tested insignificantly. The main conceptual problem of the approach of

Baretti (2001) is that the productive character of LFA transfers in terms of public capital as input for the

regional production function is not appropriately captured in the two proxy variables. Thus, Berthold et

al. (2001) use a more direct way and take net transfers disaggregated by horizontal and vertical payment

flows. However, as Baretti (2001) points out, the main methodological critique of this study is that the

estimation approach does not appropriately account of a possible endogeneity of LFA transfers relative to

economic growth. Finally, Alecke et al. (2006) use a ’Barro’-type convergence equation to test for output

effects on a panel on all 16 German states for the most recent sample period between 1994-2003. Their

results do not support any causal relationship between LFA payments and regional economic growth.

The joint federal/state government programme ’Improvement of Regional Economic Structures’ (Ge-

meinschaftsaufgabe ”Verbesserung der regionalen Wirtschaftsstruktur”, GRW) comprises two major com-

ponents: The first pillar of the programme serves as an regional investment support scheme for the private

sector. The second pillar aims at providing public infrastructure to subsidized regions, where the infra-
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structure projects are closely related to the private sector business activity and do not comprise basic

or household related infrastructure. There is a broad empirical literature analysing the impact of va-

rious investment incentives on an economy’s investment and growth path (for a literature overview see

e.g. Gondl, 2001). Macroeconomic evaluations of the German GRW are conducted by Schalk & Untiedt

(2000), Gerling (2002), Blien et al. (2003a&b), Eckey & Kosfeld (2004) as well as Alecke et al. (2006).

Schalk & Untiedt (2000) estimate the impact of regional investment incentives on investment activity

and growth via its effect on the regional user costs of capital.18 The latter variable reflects the com-

pound effect of all tax instruments including the GRW items investment bonus, investment grants and

depreciation allowances, which subsequently reduce the total tax burden and thus in turn the user costs

of capital. The estimation results for West German districts shows that investment and output react

positively to a reduction in the user costs of capital. However as Gondl (2001) argues, one drawback of

the user cost of capital approach is that the compound measure of various tax instruments cannot give an

insight as to the role of the single tax and GRW instruments in the total effect. Alecke et al. (2006) use

a more direct estimation method by adding GRW payment flows in an augmented growth regression and

find analogously that the GRW funds spent in the observation period contributed to higher interregional

capital mobility and higher per capita income in the receiving regions. Eckey & Kosfeld (2004) find a

positive effect of the GRW only in the subsidized regions, while the effect in the non-subsidized regions

is negative. According to the authors the GRW on average has thus only very marginal positive growth

effects. Finally, focusing on labour market effects in East German regions Blien et al. (2003a&b) find a

positive employment effect of the GRW.

The latter study of Blien et al. (2003a&b) additionally integrates the macro impact analysis of the

GRW together with an assessment of instruments of the active labour market policy in East Germany.

With respect to the latter Blien et al. (2003a&b) find equivalently positive employment effects. However,

this result contrasts the bulk of recent studies on the macroeconomic effects of the active labour market

policy (ALMP) in Germany: Fertig et al. (2002), Hujer et al. (2002) as well as Hagen (2003) find at

most partially positive employment effects. While Fertig et al. argue that direct employment support

instruments (ABM, SAM) even have an adverse on the reduction of the unemployment rate and only

qualification scheme result in positive employment effects, Hujer et al. support the later effect only for

West German regions with insignificant effects for East Germany. According to Hagen (2003) no one of

the ALMP instruments has persistent effects on employment. Focusing on the impact of regional ALMP

spending programs on output growth Alecke et al. (2006) do not find any statistically significant effect

either.

6 Database and Variable Description

Before we start estimating different panel data models, we briefly describe the underlying dataset. For

the empirical estimation we use a panel data set for the 16 German states between 1995 and 2004 (160

observation). The sample period is chosen to allow for an appropriate lag length (observations typically

start in 1991). All variables are denoted in real terms. If is no specific price series is available, the GDP

deflator is used. We have constructed different ratios or composite indicators for the respective variables,

18A similar approach is also followed by Gerling (2002).
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a detailed description of the variables and source is given in table 1. Finally, since the data to be used

in estimation consist of macroeconomic time series the (non)-stationarity of the data - and thus spurious

regression - may be an issue. We therefore present unit panel root tests for the five endogenous variables

in table 2 (using the test proposed by Levin-Lin-Chu, 2002, and Im-Pesaran-Shin, 1997). We compute

four different alternatives: 1.) no lag, no trend; 2.) no lag, trend; 3.) lag(1), no trend; 4.) lag(1), trend.

We apply the tests both to the variable in levels as well as first differences.

Turning to the results, interestingly, for output per employee in levels both test statistics reject the

null hypothesis of non-stationarity for all four variants, though the variable is typically assumed I(1). One

likely explanation for this result is the relatively short sample period with a low growth performance on

average. Although employment growth is overwhelmingly tested to pass the null of non-stationarity, for

private and public investment as well as human capital only about half of the variants of the test statistics

turn out significant in favor of against non-stationarity in the data (all in levels).19 Taking together the

empirical evidence for the level variables as our major focus throughout the analysis, we finally choose a

pragmatic approach and follow the related literature (see e.g. Haque et al., 1993) assuming that - since

we are broadly using per capita values and/or flow/stock-ratios and get somewhat supportive test results

- the underlying variables can be treated as stationary (or for the case of I(1) we will assume based

on theoretical grounds that the variables in the respective equation are cointegrated without explicitly

testing) even though some caveats may apply.

[Table 1 about here]

[Table 2 about here]

7 Empirical Results and Multiplier Analysis

In the empirical application of the above specified 5-equation growth system we compare the results of

the HT and AM estimates with the empirical performance of the most common alternative dynamic

panel data approaches in the literature, that is the Anderson & Hsiao IV and Arellano & Bond GMM

estimators in first differences as well as the Blundell & Bond system GMM estimator.20 Thereby the AH

model and the BB1 GMM model use only current and one period lagged and ’collapsed’ instruments for

both the exogenous and predetermined variables in line with the HT models. The AB and BB2 estimator

use GMM style ’all lags’ instruments for the predetermined variables which by far exceed their collapsed

counterparts. The BB1 model is especially designed to test for the validity of the standard moment

condition when moving from the HT level to the system estimator. The AB and BB2 models can be used

to check for the relevance of the ’many instruments problem’.

We start with a limited information approach, which accounts for the endogenous variables of the

system by appropriate IVs (orthogonality conditions) but ignores cross equations residual correlations

19The first difference transformation almost exclusively passes the unit root tests.
20For estimation we use the ivreg2 and xtabond2 Stata-routines provided by Baum et al. (2003) and Roodman (2006)

respectively.

20



(full information approach). The estimation results for the five equations are given in table 9 to table

13.21 First, we concentrate on the technical comparison of the various estimators. Having identified the

most appropriate representation in a second step we then turn to a discuss and interpretation of the

impacts of regional equalization schemes on regional output and factor demand.

[Table 9 - Table 13 about here]

For the model comparison we employ a broad set of postestimation tests to check for the appropriaten-

ess of the respective representation. These test includes the Pagan-Hall (1983) test for heteroscedasticity

in IV regression residuals, the Arellano-Bond (1991) test for autocorrelation in the error terms and the

Anderson canonical correlation LR test for instrument appropriateness. For the level and system esti-

mator we also calculate the C-statistics (’diff-in-Sargan’) in order to check whether the use of additional

instruments in various estimators is valid. Under the null hypothesis of the C-statistic that both the

smaller set of instruments and the additional ones are valid, the C-statistic is distributed as χ2 with

degrees of freedom according to the additional instruments tested. For the HT models we also report the

GLS transformation factor (θ̂) based on σµ and σµ (under the assumption of a block-diagonal covariance

matrix). The ratio of the two error components may give a further indication whether the system or level

estimator may be more biased according to Hayakawa’s (2005) results, whose results are also confirmed

by our system Monte Carlo simulations in section 6. We also report the total number of instruments

used in each model finally compute the Root Mean Square Error (RMSE) to judge among the predictive

performance of the various estimators as a relative efficiency indicator.

Turning to the regression results the HT1-HT3 level and BB1-BB2 estimators on average clearly

outperform the FD model for all equations. Starting with the central output equation (table 9) here the

HT2 model show the smallest RMSE followed by the other HT, BB and AH model. For the AB-GMM

estimator the RMSE is significantly worse though the model uses by far more instruments than the

first difference counterpart AH-2sls. Also for the BB2 estimator the use of additional instruments (205

compared to 42 in BB1) does not result in improved RMSE values.

For the HT2 and HT3 model the null hypothesis of C-statistic, which tests for the additional instru-

ments based on the stationary moment condition E(∆yi,t−1ui,t) = 0, cannot be rejected for reasonable

confidence levels. Thus, both the augmented HT2 and HT3 models’ instrument sets are valid. On the

contrary for the BB1-GMM models the use of the lagged levels of predetermined endogenous variables in

the difference equation as valid instruments is strongly rejected. Additionally, for the output model the

ratio
σµ
σµ

is much below unity when deriving the GLS correction factor θ̂. Taking Hayakawa (2005) and

our Monte Carlo results as a guideline, this would favors the level estimator since the system counterpart

could be severely biased - a result which is mirrored in our estimation output. Furthermore, all models

tested pass the Pagan & Hall (1983) heteroscedasticity test and the Arellano & Bond (1991) autocor-

relation test.22 The AH-2SLS model fails to pass the Anderson canonical correlation LR test which is

another hint that there may be a ’weak instrument problem’ in these specifications.

In terms of model comparisons the other equations of the system reveal quite similar results: In all

21Since HT- and AM-model resulted in almost the same parameter estimates, we skip the AM output here. Results can
be obtained upon request.

22We have tested for AR(2) in the FD estimators and AR(1) in the level estimators.
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equations the ratio
σµ
σµ

is around 0,25 and the coefficient of the lagged endogenous variable shows moderate

high values. Taken together this result with the C-statistic, which rejects the use of the standard moment

condition jointly with the level specification, and the RMSE criterion which is again best for the HT

level models, we may conclude that the system estimator is not superior to the level estimator in our

estimation setup. Moreover, in concordance with earlier research FD estimator show a significant ’weak

instrument problem, e.g. the AH model persistently fails to pass the Anderson canonical correlation LR

test. For most models heteroscedasticity and autocorrelation of the residuals is no problem. With respect

to the HT models the C-statistic also justifies the use of augmented instruments derived from the HT

literature together with the stationarity moment condition. As Kiviet (1995) found for the single equation

case, also for the system specification thereby the IV QX (HT2) performs slightly better than the IV∆X

(HT3). This also mirrors our Monte Carlo findings in section 6.

For our further modelling steps we thus focus on the HT2 model specification. First, in addition to the

postestimation test conducted so far, we want to check for the appropriateness endogeneity classification

and employ the Durbin-Wu-Hausman endogeneity test for all five equations. The null hypothesis of the

DWH endogeneity test is that an ordinary least squares (OLS) estimator of the same equation would

yield consistent estimates: that is, an endogeneity among the regressors would not have deleterious effects

on OLS estimates. A rejection of the null indicates that endogenous regressors’ effects on the estimates

are meaningful, and instrumental variables techniques are required. The test results are given in table

14.

Table 14: Durbin-Wu-Hausman (DWH) endogeneity tests for HT2 specification

Equation D.F. χ2

(p-value)

log(yi,t) 5 10,25
(0,06)

log(invi,t) 3 0,89
(0,82)

log(pubi,t) 5 10,54
(0,06)

log([n+ g + δ]i,t) 5 29,59
(0,00)

hci,t 4 26,19
(0,00)

Note: A description of the Hausman m-statistic used for DWH is given in eq.(23). The test compares OLS and
IV parameter estimates. We used the endog option implemented in the stata routine ivreg2 to run the DWH
test (see Baum et al., 2003).

The results generally support our ex-ante expectation that endogeneity is a matter in the growth

system even if the null hypothesis of the DWH test cannot be rejected for the investment model. Second,

we finally aim to further enhance the estimation efficiency by applying a full information (3SLS) approach.

The likely benefit from this approach can be seen if we plot the residual correlation of the single equation

estimates (based on the HT2 specification).
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Table 15: Cross-equation correlation of σµ for HT2 specification

log(yi,t) log(invi,t) log(pubi,t) log([n+g+δ]i,t) hci,t

log(yi,t) 1,00

log(invi,t) -0,25*** 1,00
(p=0,00)

log(pubi,t) 0,34*** -0,26*** 1,00
(p=0,00) (p=0,00)

log([n+ g + δ]i,t) -0,08 0,13* 0,15** 1,00
(p=0,29) (p=0,10) (p=0,05)

hci,t -0,004 -0,06 0,02 0,48*** 1,00
(p=0,93) (p=0,33) (p=0,72) (p=0,00)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively.

Table 16: Cross-equation correlation of σν for HT2 specification

log(yi,t) log(invi,t) log(pubi,t) log([n+g+δ]i,t) hci,t

log(yi,t) 1,00

log(invi,t) 0,08 1,00
(p=0,26)

log(pubi,t) -0,01 -0,07 1,00
(p=0,86) (p=0,38)

log([n+ g + δ]i,t) -0,13* -0,32*** 0,05 1,00
(p=0,09) (p=0,00) (p=0,49)

hci,t 0,18** 0,13 -0,04 -0,02 1,00
(p=0,02) (p=0,11) (p=0,63) (p=0,82)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively.

With respect to the unobservable individual effects (σµ) most of the cross-equation residual correlati-

ons in table 15 turn out to be statistically significant, while the results are mixed for the remainder error

term σν (see table 16). Thus, on average it seems very promising to switch to a full information approach

using the unrestricted Ω−1/2 transformation as described in section 5. For the HT2 model the resulting

HT2-3SLS estimates are shown in table 17.

[Table 17 about here]

To compare the 2SLS and 3SLS estimators with respect to estimation efficiency we employ the Haus-

man (1978) m-statistic, which is defined as:

m = q̂′(Q̂− V̂ )−1q̂, (36)

where q̂ = β̂3SLS − β̂2SLS is the difference between the 3SLS and 2SLS estimators of the same

parameter, Q̂ and V̂ denote consistent estimates of the asymptotic covariance matrices of β̂3SLS and

β̂2SLS respectively. The m-statistic has a χ2 distribution with degrees of freedom equal to the number
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of parameter estimates. The underlying idea of the test is quite simple: Under the assumption that

the 3SLS estimator is generally more efficient than the 2SLS estimator, we test whether the difference

between the estimators is large, indicating that the more complex GLS transformation in the 3SLS case

induced a misspecification in the model which renders it inconsistent. Thus, under the null hypothesis

both estimators are consistent but only β̂3SLS is efficient. Under the alternative hypothesis only β̂2SLS

is consistent.23 The results of the Hausman m-statistics in table 17 show that for all equations the null

hypothesis cannot be rejected for reasonable confidence levels (or even turns out to be negative), giving

strong support for the 3SLS compared to the 2SLS results.

Hence, since the HT2-3SLS model is even more efficient than the 2SLS counterpart, a discussion of the

estimation results seems most reasonable for this specification. As table 17 shows, the results show different

simultaneities among the output and factor input variables. For the output equation we get a high level

of persistence in the data. Surprisingly, the investment rate does not show a positive impact on output

(growth), a result that is in line with related work by Gondl (2001) for a panel Southern European Regions

and Paci & Pigliaru (1995) for Italian regions. For Germany the most likely explanation is that throughout

our estimation period the investment rates in the East German states are still significantly higher, while

there was almost no difference in regional growth (the latter is also reflected by the insignificant dummy

variable East). However, the share of public investment relative to total government expenditure shows a

significant positive effect on output. Employment growth and human capital are tested insignificant in the

HT2-3SLS output equation. For the investment rate equation again public capital shows a positive effects

as well as the human capital composite indicator. The estimated coefficient for the lagged endogenous

variable is lower than in the output equation, the same also accounts for the public investment rate and

employment growth equation.

As the estimation results shows, also the regional equalization policy instruments work through various

direct and indirect channels on the regional economic development path. With respect to the direct effect

on output per employee (yi,t), the results mainly confirm previous research. That is, we find a negative

in the horizontal (interstate) element of the LFA (in line with Baretti (2001), Berthold et al. (2001)).

The vertical element is slightly positive but tested not significantly different from zero. One the contrary

we get weak support for a positive output effects of the active labour market policy (ALMP), while the

effect of the GRW is estimated negative. These qualitative results are also confirmed by the first step

estimators (HT-2SLS and BB-GMM) and also reflect the recent literature discussed in section 3.

Going beyond the these direct effects, we additionally get evidence for some important indirect policy

channels on factor inputs that are typically ignored in the empirical literature. That is for example, though

the LFA is estimated to have a negative distortionary effect on output and also investment, we detect a

significant positive effect of the vertical (federal) redistribution mechanism on public investive spendings.

The latter in turn are estimated to have a positive effect on output per employee, so that the vertical

LFA element also affects output positively through the public sector investment channel. Taking a closer

look at the employment effect of the active labour market policy instruments we get rather evidence for

a small negative cumulated effect of ALMP spendings on employment growth (different to total factor

23By construction, if the 2SLS variance is larger than the 3SLS variance, the test statistic will be negative. Though the
original test is not defined for negative values, here we will follow Schreiber (2007) and take the absolute value of the
m-statistics as indicator for rejecting the null hypothesis of 3SLS efficiency.

24



productivity). In our analysis we also could not find much empirical support for positive investment effects

of the investment promotion element of the GRW (only the FD estimator estimator find weak support for

positive GRW infrastructure effects on the regional output, while the private investment scheme shows

negative results for various estimators; also, only the HT2-2SLS model estimates positive employment

growth effects of GRW infrastructure spendings). The main difference with respect to the positive effects

typically found in the literature may be explained by the use of different regional scales. Empirical work

on the GRW is typically conducted at at more narrow administrative units (districts or labour market

regions). Thus, though there may be positive GRW effects for these smaller regional units, the effects

may vanish when analysed from a macro-regional perspective.

So far, we have focused on discussing the estimation results within the structural form representation

of the DSEM model. However, in order to fully analyse the marginal impact of changes in the exogenous

(policy) determinants on the endogenous variables we have to transform our 5-equation system into the

so-called reduced and final form subsequently (see e.g. Lütkepohl, 2005, Bardsen et al., 2005). Starting

point for this transformation is the system written in matrix notation as:

BYt + ΓXt = Ut, (37)

where Yt is the vector endogenous variables, Xt is the vector of exogenous variables containing both

predetermined (lagged) endogenous as well as current and lagged exogenous variables. B and Γ are

the respective matrices of endogenous and predetermined variables parameters. The reduced form of

the system is obtained by premultiplying eq.(37) with B−1, where Π = B−1Γ containing the reduced

form coefficients πi which are in general nonlinear functions of the structural form parameters. The

reduced form coefficients as partial derivates of the endogenous variables with respect to the exogenous

variables can be used to compute the so-called impact multiplier measuring an instantaneous effect on the

endogenous variable based on an exogenous variable change in the same (first) period t. Additionally, in

order to account for the total multiplier of the exogenous variable change also the dynamic nature of the

system has to be taken into account. Hence, subsequent effects for the periods t+ 1, t+ 2, . . . , t−n come

through lagged dependent variables in form of time distributed (dynamic) interim multipliers, moving

the system forward towards long-term equilibrium. The sum of the interim multipliers gives therefore the

opportunity of evaluating the overall exogenous effects of a policy variable change on the five endogenous

variables of the model (see also Bardsen et al., 2005, Glytsos, 2005).

The interim (or also called delayed) multipliers for the t+ 1, t+ 2 up to t− n periods are calculated

by partioning the matrix Π into three submatrices: Π1 containing only current exogenous variables, Π2

with lagged exogenous variables and Π3 with predetermined (lagged) endogenous variables. According to

the final form of the model the interim multipliers are obtained as follows: For t + 1 = (Π2 + Π3 × Π1);

t + 2 = Π3(Π2 + Π3 × Π1); t + 3 = Π2
3(Π2 + Π3 × Π1); t + n = Πn−2

3 (Π2 + Π3 × Π1). Finally, the total

multipliers are given by the matrix ΠLRn = Π1 +
t=n∑
t=2

Πt−2
3 (Π2 + Π3 ×Π1). For the structural form 3SLS

regression output from table 17 we can now compute both direct impact and long run multiplier matrices

of an (sustained one percentage) change of the system’s exogenous variables on the endogenous ones (for

the LR multiplier we set n = 10 and n = 25):
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Π1 =



LFA(h) log(GRW [inv]) log(ALMP ) LFA(v) log(unemp)

log(y) −0, 061 −0, 02 0, 031 0, 002 −0, 007

log(inv) −0, 160 0 0, 011 0, 016 −0, 056

log(pub) −0, 017 0 0, 048 0, 072 −0, 258

log(n+ g + d) −0, 129 0 0, 368 0, 013 −1, 985

hc −0, 005 0 0, 001 0, 001 −0, 002


(38)

ΠLR10
=



LFA(h) log(GRW [inv]) log(ALMP ) LFA(v) log(unemp)

log(y) −0, 546 −0, 161 0, 227 0, 084 −0, 104

log(inv) −1, 179 0 −0, 094 0, 458 −0, 503

log(pub) −0, 495 0 −0, 179 0, 559 −0, 429

log(n+ g + d) −0, 146 0 −0, 358 0, 097 −0, 047

hc −0, 024 0 −0, 003 0, 010 −0, 009


(39)

ΠLR25 =



LFA(h) log(GRW [inv]) log(ALMP ) LFA(v) log(unemp)

log(y) −1, 191 −0, 289 0, 292 0, 334 −0, 156

log(inv) −2, 139 0 −0, 597 1, 242 −0, 386

log(pub) −1, 144 0 −0, 565 1, 120 −0, 272

log(n+ g + d) 0, 003 0 −0, 352 0, 031 0, 049

hc −0, 022 0 −0, 010 0, 016 0, 001


(40)

Additionally we compute the time distribution of the dynamic interim multipliers which are given in

figure 21 for the net overall LFA effect (combining both horizontal and vertical effects) and disaggregated

for each exogenous variable component in figure 22.24 The results underline the qualitative discussion

given for the structural form estimation results. That is, taking a look at the overall (net) LFA effect, we

see from figure 21 that the primary effect on the public investment rate is positive, resulting in dynamic

adjustment processes in the first 5 periods. Afterwards dynamic multiplier effects fade out rapidly.

On the contrary, the net LFA effect on private investment, employment growth and output is negative.

While investment and employment effects fade out within the displayed time period (n = 25), the negative

output adjustment process is observed to be of high persistence. This tendency can also be confirmed

if we look at the disaggregated dynamic multiplier effects in figure 22 as well as the impact and long-

run multiplier matrices in eq.(38) to eq.(40). The horizontal element of the LFA has a negative impact

multiplier for all endogenous variables in the system (column 1 of the impact matrix in eq.(38)), which is

the highest for public sector investment and employment growth. The long run effects after 10 years and

25 years (where most of the dynamic adjustment processes have been worked through the system) show

24In figure 22 we skip the graphical presentation of the GRW since the latter only affects output.
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that while the impact on employment growth is rather of a temporary manner, the long run impact on

private investment is more persistent. Also, the negative long-run effect of an horizontal LFA increase on

output and public sector investment rate are significantly higher than the initial impacts. According to

the model specification there is almost no effect on changes of the horizontal LFA on human capital.

As discussed before the negative effect of the overall LFA transfer flows is partly offset by the positive

short and long run impact of the vertical transfer payments on the endogenous variables (listed in column

2 of eq.(38) to eq.(40), as well as row to in figure 22). However, only for public sector investment shows

a small positive net long run multiplier where the positive long run effect of vertical transfer payments

offsets the negative long run impact of horizontal transfers. For output and the private sector investment

the positive long run effects of vertical LFA transfers account only for about 15% to 40% of the negative

horizontal transfer effect respectively. The long run impact of a change in active labour market transfer

schemes is rather small with positive output and negative employment (growth) effects. However, as the

dynamic multipliers in figure 22 show, the employment effects of ALMP changws rather fade out rapidly,

while negative investment effects contrast positive output adjustment processes even for a longer time

period (see row 3 in figure 22). The postive dynamic adjustment process of output with respect to ALMP

fades out after around 25 periods (left graph in row 3 of figure 22).

To sum up, the most robust result is found with respect to the negative output effect of the LFA

indicating that this transfer scheme is not an allocative policy instrument to foster the economic growth

process in lagging regions, even though the vertical element has a positive stimulus on public sector

investment. This confirms earlier empirical results, but also adds a new dimension to the discussion

of the allocative effect of LFA transfers. The ALMP shows positive output effects but adverse effects

for employment growth (even though the short run impact is positive) and investment rates, the GRW

investment schemes do not show significant macro-regional effects on output or factor demand equations.

[Figure 21 and Figure 22 about here]

8 Conclusion

In this paper we have specified Dynamic Simultaneous Equation Error Models with panel data for the

estimation of economic systems such our empirical application to the analyse of direct and indirect effects

of regional equalization policy instruments on regional output (growth) and factor inputs. The aim of this

paper was twofold: First, we tried put forward the methodological discussion about appropriate dynamic

panel data estimators in the context of growth regressions with non-standard (large N , small T ) panel

data assumptions. Since frequently used dynamic models in ’first differences’ have generally shown a

poor empirical performance in these circumstances, we put a special emphasis on appropriate estimators

which merely use levels of variables instead of first differences. We are doing so by using straightforward

generalizations of familiar static panel data models with strictly exogenous variables based on the most

commonly known Hausman-Taylor (1981) type estimator.

The rather new contribution of this paper to the field is to propose a Dynamic Simultaneous Equation

Model with error-component structure as a synthesis of two separate subfields in panel econometrics: 1.)

static simultaneous equation models for estimators with strictly exogenous variables on the one side, as
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well as 2.)dynamic - but dominantly single equation - panel data (DPD) estimators on the other side. The

combination of the two types of model elements allows to account both for potential endogeneity and cross-

correlations among the residuals (system approach contribution) as well as for an appropriate handling

of dynamic specifications and predetermined variables (DPD contribution). Basically, our modelling

strategy is to search for appropriate orthogonality conditions (instrument sets) stemming from both

subfield which can be combined for consistent and efficient system estimators. We have checked for

the empirical performance somewhat new synthesis estimator we compare its performance to various

competitors in the field including the Anderson & Hsiao (1981) IV, the Arellano & Bond (1991) GMM

(both in first differences) and Blundell & Bond (1998) system GMM estimator - both on the grounds of

a Monte Carlo simulation exercise as well as an empirical application. The Monte Carlo results thereby

confirm the broad single equation evidence that (rather simple) IV estimators may be the better choice

in non-standard panel data settings,

Taken together with the evidence from the empirical application, our analysis shows that the dynamic

Hausman Tayler (HT) 3SLS system estimator is a consistent and efficient representation of the underlying

system of output and factor demand equations for German NUTS1 regions. We thus rely on this model

when discussing the various direct and indirect policy channels of regional equalization schemes which

are often left unidentified in single equation estimations. To sum up, the most robust result is found with

respect to the negative output effects of the horizontal LFA indicating that this transfer scheme is not

an allocative policy instrument to foster the economic growth process in lagging regions, even though the

vertical element has a positive stimulus on public sector investment. Calculating dynamic interim and

long-run multipliers we could show that overall (net) LFA effect still remains negative. This result thus

confirms recent findings in the empirical literature, but also adds a new dimension to the discussion of

the allocative effect of (horizontal and vertical) LFA transfers. The active labour market policy (ALMP)

shows positive output effects but adverse one for investment rates and employment growth, though the

latter effects rapidly fade out as seen in the dynamic multiplier analysis. Finally, for the GRW investment

promotion schemes do not find any significant macro-regional impact on the output equation or its factor

inputs.

Future research effort should more carefully account for the following aspects: From a methodolog-

ical point of view it has to be carefully analysed whether standard statistical inference is valid for the

evaluation of the different estimators in the two-sided small panel setting or whether bootstrapped stan-

dard errors should be seen as a promising alternative (see e.g. Galiani & Gonzalez-Rocha, 2003, for a

discussion in single equation settings). For the empirical application of an evaluation of regional equal-

ization payments in a growth system for two of the three policy instruments analysed (namely ALMP

and GRW) data on smaller regional units (NUTS2) are available. This data could be used in the outlined

econometric model setup presented here to check for the robustness of the policy results, especially with

respect to the GRW investment schemes.
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Figure 1: Monte Carlo simulation results for true α2 = 0, 8 with N = 100, T = 5, ξ = 1

Figure 2: Monte Carlo simulation results for true α2 = 0, 8 with N = 100, T = 10, ξ = 1
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Figure 3: Monte Carlo simulation results for true α2 = 0, 8 with N = 25, T = 10, ξ = 1

Figure 4: Monte Carlo simulation results for true α2 = 0, 8 with N = 25, T = 10, ξ = 4
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Figure 5: Monte Carlo simulation results for true α2 = 0, 8 with N = 25, T = 10, ξ = 0, 5

Figure 6: Monte Carlo simulation results for true α2 = 0, 5 with N = 25, T = 10, ξ = 1
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Figure 7: Monte Carlo simulation results for true α2 = 0, 5 with N = 25, T = 10, ξ = 0, 5

Figure 8: Monte Carlo simulation results for true α2 = 0, 5 with N = 25, T = 10, ξ = 4
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Figure 9: Monte Carlo simulation results for NORMSQD with N = 100, T = 5, ξ = 1, α2 = 0, 8

Figure 10: Monte Carlo simulation results for NORMSQD with
N = 100, T = 10, ξ = 1, α2 = 0, 8
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Figure 11: Monte Carlo simulation results for NORMSQD with
N = 25, T = 10, ξ = 1, α2 = 0, 8

Figure 12: Monte Carlo simulation results for NORMSQD with
N = 25, T = 10, ξ = 4, α2 = 0, 8
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Figure 13: Monte Carlo simulation results for NORMSQD with
N = 25, T = 10, ξ = 1, α2 = 0, 5

Figure 14: Monte Carlo simulation results for NORMSQD with
N = 25, T = 10, ξ = 0, 5, α2 = 0, 5
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Figure 15: Monte Carlo simulation results for NORMSQD with
N = 25, T = 10, ξ = 4, α2 = 0, 5

Figure 16: Results of (absolute) bias for α2 = 0, 8 with different N using T = 10, ξ = 4
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Figure 17: Results of RMSE for α2 = 0, 8 with different N using T = 10, ξ = 4

Figure 18: Results of NOMAD for different N using T = 10, ξ = 4, α2 = 0, 8
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Figure 19: Results of NORMSQD for different N using T = 10, ξ = 4, α2 = 0, 8

Figure 20: NOMAD comparison for limited and full information estimation with
N = 25, T = 10, α2 = 0, 8,ξ = 1
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Table 1: Data description and source

Variable name Description Source

yit Output per employee, 1000 EUR, in real terms VGRdL

invit Private sector investment rate as ratio of GFCG relative to the
regional capital stock (default) or GDP, in real terms

VGRdL

pubit Public sector investment rate as ratio of public investment
relative to total regional government spendings, in real terms

SVR

pubavit Average of the public sector investment rate for all regions net
of region i

Own calculation

hcit Human capital measure computed as a weighted composite
indicator built up on the following ratios: 1.) high school
graduates with university qualification per total population
between 18-20 years (hcschool), 2.) number of university degrees
per total population between 25-30 years (hcuni), 3.) share of
employed persons with a university degree relative to total
employment (hcsvh), 4.) number of patents per populations
(hcpat); the following composite indicators have been tested:

Statistisches
Bundesamt

hc1 = 0,50*hcsvh + 0,30*hcschool + 0,15*hcuni + 0,05*hcpat
hc2 = 0,33*hcsvh + 0,33*hcschool + 0,33*hcuni + 0,01*hcpat
hc3 = 0,35*hcsvh + 0,25*hcschool + 0,35*hcuni + 0,05*hcpat
hc4 = 0,35*hcsvh + 0,15*hcschool + 0,45*hcuni + 0,05*hcpat (hc4 = default)
hc5 = 0,30*hcsvh + 0,30*hcschool + 0,30*hcuni + 0,10*hcpat
hc6 = 0,20*hcsvh + 0,40*hcschool + 0,35*hcuni + 0,05*hcpat
hc7 = 0,25*hcsvh + 0,25*hcschool + 0,25*hcuni + 0,25*hcpat

(n+ g + δ)it Employment growth plus constant (0,05) VGRdL; own
calculation

unempit Unemployed persons Statistisches
Bundesamt

Industrysharei,t Share of industry sector GVA relative to total GVA VGRdL

τit Total regional tax volume (ex ante) Statistisches
Bundesamt

nmrit Net migration (in- minus outmigration) per population Statistisches
Bundesamt

popit Population VGRdL

LFA[horizontal]it Interstate redistribution transfer element per head, in real terms Federal ministry of
finance

LFA[vertical]it Federal redistribution transfer element per head, in real terms Federal ministry of
finance

GRW [priv.Inv]it Federal transfers to the private sector within GRW, in real terms BAWA

GRW [infra]it Private sector related federal infrastructure spendings within
GRW, in real terms

BAWA

ALMPit Active labour market spendings (ALMP)# per head of
population, in real terms

Amtl. Nachrichten der
BfA, various issues

East (0,1)-Dummy for East Germany Own calculation

Note: #= ALMP include no.5-14 (1993), no.5-15 (1994), no.5-17 (1995,1996,1997) all based on table III/1.
no.1-32 (1998), no.1-34 (1999/2000), no.1-39 (2001,2002), no.1-46 (2003, 2004) all based on table VI/1.
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Table 8: Estimation Results for the dynamic HT2-3SLS model

Dep. Var.: log(yi,t) log(invi,t) log(pubi,t) log[n+ g + δ]i,t) hci,t

log(yi,t) -0,01
(0,009)

log(yi,t−1) 0,95*** 0,07
(0,029) (0,119)

log(invi,t) -0,002 0,81***
(0,014) (0,241)

log(invi,t−1) 0,82*** 0,09** -0,83***
(0,054) (0,049) (0,222)

log(∆invi,t) 0,03***
(0,009)

log(pubi,t) 0,03** 0,21***
(0,013) (0,062)

log(pubi,t−1) 0,86*** -0,14 0,004
(0,053) (0,097) (0,004)

log([n+ g + δ]i,t) 0,02 0,13***
(0,047)

log([n+ g + δ]i,t−1) 0,59***
(0,099)

hci,t 0,06 1,37** -0,16 -0,12
(0,098) (0,645) (0,522) (0,845)

hci,t−1 0,92***
(0,039)

log(unempi,t) -0,02
(0,026)

log(∆unempi,t) -1,94***
(0,315)

log(∆popi,t) -0,19
(0,398)

log(nmri,t) 3,94 0,26
(4,587) (0,363)

log(τi,t) 0,06
(0,106)

Industrysharei,t -0,58* 0,29 0,06
(0,338) (0,268) (0,516)

East -0,03 -0,08 0,25*
(0,022) (0,097) (0,141)

LFA(horizontal)i,t -0,06*** -0,15** -0,01 0,14 -0,003
(0,018) (0,073) (0,059) (0,128) (0,005)

LFA(vertical)i,t 0,01 0,07 0,07** -0,04 0,001
(0,009) (0,057) (0,037) (0,077) (0,003)

log(GRW [priv.inv.]i,t) -0,002* 0,0008 0,003
(0,001) (0,005) (0,007)

log(GRW [infra]i,t) 0,001 0,002 0,002 0,004
(0,001) (0,004) (0,004) (0,006)

log(ALMPi,t) 0,03* 0,03 0,36* -0,008
(0,017) (0,071) (0,212) (0,008)

log(ALMPi,t−1) -0,49** 0,003
(0,202) (0,008)

No. of obs. 160 160 160 160 160
Time effects yes yes yes yes yes
Hausman |m− stat.| χ2(21) = 6, 8 χ2(21) = 30, 1# χ2(19) = 10, 6 χ2(25) = 19, 9 χ2(20) = 5, 9
(3sls vs. 2sls) (p=0,99) (p=0,09) (p=0,93) (p=0,75) (p=0,99)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. #= Excluding time
effects: χ2(11) = 8, 81(p = 0, 64).
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