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Abstract

Large parts of the empirical economic literature state that policy makers have

ex-post proven to be unable to time fiscal policy measures countercyclically. In

this paper we expand the usually applied empirical approaches and allow for

changing reaction patterns over time by employing not only VAR- but as well

time-varying parameter VAR estimation techniques on quarterly fiscal data for

Germany from 1970-2008. Our analysis shows not a general a-cyclical pattern

but three distinct phases of different fiscal policy timing indicating possible mis-

specifications of time-invariant analyses.

∗Views are explicitly those of the authors and not those of Deutsche Bundesbank.
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1 Introduction

The estimation of fiscal multipliers has - since the publication of Keynes general

theory in 1936 - not ceased to play an important role in the empirical economic

literature. The massive economic stimulation packages, which have recently been

implemented in nearly all leading industrial economies to cushion the effects of the

financial crisis on the real economy, have even amplified the general interest in fiscal

multipliers.

The timing of fiscal policy measures on the other hand has received far less atten-

tion and the empirical methods applied to analyze the timing have often been far less

advanced than those in fiscal multiplier analyses. This is surprising as the effective-

ness of fiscal policy in smoothing the business cycles depends crucially on the ability

to implement fiscal measures in time.

Partly the limited attention to the timing of fiscal policy might be due to the gen-

eral analytical problems of such analyses. First, changes in the fiscal stance and the

business cycles development are likely to affect each other, which causes an edongene-

ity problem. Second, changes in the fiscal stance are not only caused by discretionary

fiscal policy but are affected as well by the working of automatic stabilizers. Here the

challenge is to separate discretionary from automatic responses to the business cycle.

Third, the relationship between the business cycle and the fiscal stance might not

be time-invariant. This poses problems e.g. for standard time-invariant time series

analysis. Finally, a reliable empirical analysis needs to rely on a sufficiently large and

long data-set of fiscal indicators, which is often not available.

With this paper we want to contribute to the empirical analysis of the timing of

fiscal policy over the business cycle. To tackle the general endogeneity problem and to

account for the fact that fiscal policy develops over time we propose modern Vector-

Autoregressive (VAR) time-series analyses. We perform such analyses for unadjusted

fiscal indicators as well as for a set of cyclically adjusted variables, which allows

us to distinguish between the timing of discretionary fiscal policy and the working

of automatic stabilizers. To account for possible regime changes in the timing of

fiscal policy in different periods we include time-varying VAR analyses, expanding the

empirical apparatus applied so far in the study of the timing of fiscal policy. The data-

set we use build on the Deutsche Bundesbank national accounts data-base in quarterly

frequency from 1970-2008, which gives us a large data-set with 156 observations -

suitable for time-series analysis.

In our analyses we find a stable pattern of automatic stabilizers throughout the

sample. The time-variant analyses show important changes in the timing of discre-

tionary fiscal policy from 1970 to 2008. We find three distinct phases from 1970 to

1978, 1978 to 1990 and 1990 to 2000. While discretionary policy measures were timed
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countercyclically in the first phase, the second phase showed a strong pro-cyclical tim-

ing. During the third phase - after German reunification - the timing of discretionary

fiscal policy was improved again and measures were implemented slightly counter-

cyclically. The three different phases did not coincide with changes in the political

constellation of the federal government in 1982 and 1998, which indicates that the

partisan orientation of government is unlikely to have been decisive for the general

changes in the timing of fiscal policy. Our findings stand in contrast to large parts of

the current empirical literature, which finds a general a-cyclical timing of fiscal policy

measures over the business cycle - if analyzed from an ex-post perspective. Our results

indicate that the received wisdom of an a-cyclical timing of fiscal policy is likely to

result from empirical misspecifications, which we avoid by allowing for time-varying

responses of fiscal policy to the business cycle.

The paper proceeds as follows: In part two we shortly review some important

contributions in the literature and outline our general research question. Part three

presents the data and the indicators employed and discusses the methods applied to

transform and adjust the data. In part four we present a time-invariant benchmark

analysis of the timing of fiscal policy, which we think is misspecified as there are

important indicators pointing at parameter instability. To account for this finding

we perform a time-variant analysis in part five, which points at strongly time-varying

regimes of fiscal policy timing. The last part concludes.

2 Timing of fiscal policy over the cycle - the literature

In the literature we find multiple approaches to the study of the timing of fiscal

policy over the business cycle. The first - and most common - approach is to distin-

guish discretionary fiscal policy from the working of automatic stabilizers by cyclically

adjusting revenue and expenditure developments (see e.g. Alesina and Perotti 1995

or Giavazzi and Pagano 1996). In this branch of the literature cyclical adjustment

usually takes place by subtracting a ”cyclical” component from the aggregate revenue

and expenditure developments. This cyclical component is calculated based on an

indicator for the state of the business cycle (usually the output gap) and an elastic-

ity measure for the effects of business cycle fluctuations on fiscal developments. The

evidence from this literature points to an a-cyclical timing of fiscal policy - at least

as far as only the deficit or the general fiscal stance is concerned. Gali and Perotti

(2003) found that cyclically adjusted deficits have not reacted to the business cycle

in Europe after the signing of the Maastricht treaty. These results are at least partly

confirmed in other studies like Ballabriga and Martinez-Mongay (2002) or Wyplosz

(2006). Separate analyses of cyclically adjusted spending and expenditure develop-
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ments seem to indicate that although the fiscal balance might point at a-cyclicality of

fiscal policy, discretionary revenue policies seem to be timed counter-cyclically while

discretionary expenditure policies tend to have been pro-cyclical in Europe (see e.g.

Fatas and Mihov (2009) or Turrini (2008)).

A second line of research emerged from the criticism, that fiscal adjustment pro-

cesses are unable to unmask discretionary fiscal policy (see e.g. Chalk (2002) or

Larch and Salto (2005) and for an early discussion Blanchard (1990)). One argument

in this respect is that the elasticity of fiscal variables to the macroeconomic devel-

opment might not be invariant over time (see e.g. Jaeger and Schuknecht (2004))

and might not cover all the relevant cyclically sensitive spending categories (see e.g.

Darby and Melitz 2008). This line of research relies therefore on data of the estimated

impact of legislative changes, which is e.g. collected by Romer and Romer (2007a,b,

2008) for the US. For the Euro area Agnello and Cimadomo (2009) have analyzed

legislative changes for the revenue side and found that revenue policies seem to have

been very pro-cyclical Europe in recent years, challenging the findings of Fatas and

Mihov (2009) or Turrini (2008). However, there are several problems with this kind

of analysis as well. Researchers usually have to rely on government forecasts of the

expected fiscal impact of fiscal policy measures, which might be inaccurate and bi-

ased. Furthermore such estimates are usually only available for a limited number of

countries and years. Additionally nearly all studies in this tradition have to focus on

the revenue side, as comparable data on changes of spending are largely unavailable.

A third branch of research argues that the timing of fiscal policy does not only

need to be analyzed ex post, but as well based on the information available at the time

of passing the measures. This literature relies on real-time data about budget plans

and expectations about the macroeconomic development. The number of studies is

still relatively limited, but so far the results tend to indicate that fiscal plans show

a stronger counter-cyclicality than ex-post data (see e.g. Beetsma and Giuliodori

(2008),Giuliodori and Beetsma (2007) or Cimadomo (2007) for related studies).

In this paper we want to contribute to the literature on the timing of fiscal policy

over the business cycle with a study of the developments in Germany from 1970-2008

on a quarterly basis. The main innovation of our approach is that we do not only esti-

mate time-invariant relationships but employ a time-varying VAR as well. We apply

this approach to cyclically adjusted as well as unadjusted data. By estimation and

comparison of the results of time-varying and time-invariant approaches to adjusted

and unadjusted data we want to contribute to the following questions:

1. Has the timing of fiscal policy over the cycle shown a stable pattern over the

last 40 years in Germany or have there been different regimes at different times?

2. Have the results of time-invariant models been distorted and therefore unreliable
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because of a time-variant pattern?

3. Do the results depend crucially on the employed method of cyclical adjustment

of the government’s fiscal stance?

4. Does the data indicate a stable or a time-variant working of automatic stabilizers

To keep the analyses - despite the application of time-invariant and time-variant

models and adjusted and non-adjusted data - halfway parsimonious, we restrict our-

selves here to an analysis of the government’s fiscal stance (defined as general govern-

ment revenues minus general expenditures excluding interest spending; both including

social security and according to the national accounts definition) and the real output

gap. However, an extension of the approach to separate analyses of expenditure and

revenue developments and even a disaggregation of different spending and revenue

components seems worthwhile in future research.

3 Measurement concepts and data-set

As our research focus lies on the timing of fiscal policy over the business cycle

from an ex-post perspective, we need indicators for the fiscal policy stance and for

the state of the business cycle.

With respect to the state of the business cycle we rely on the real GDP gap, which

we have calculated based on the quarterly national accounts database of Deutsche

Bundesbank. Nominal GDP was first realized by the chain-linked GDP deflator and

then seasonally adjusted. In a second step we applied a HP-Filter (Lambda=1600) to

the real GDP series which we prolonged with its own trend in the past (1960-1970)

and the future (2009-2019) to avoid a distortion of the results at the lower and upper

bound of our series. The real output gap was then calculated by the difference of real

GDP from the real GDP-trend represented by the HP trend.

With respect to fiscal policy we want to distinguish between expansionary and

restrictive fiscal policies. We decided to focus on the general government including

social securities as revenue and expenditure developments in the social security sys-

tem are subject to political discretion and tend to affect the overall fiscal stance of the

government, which in turn influences macroeconomic development. However, we have

excluded interest spending because the government’s ability to change this spending

category is very limited. This is in line with other approaches to fiscal policy analysis

(see e.g. Perotti (2004)), but not uncontested as for example Blanchard and Perotti

(2002) include interest spending. It should be noted here, that the general timing

pattern of fiscal policy over the business cycle is only slightly affected by interest
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spending, which indicates that we could expect very similar results even if we inte-

grate interest spending. For our series of the real fiscal stance of the government we

have subtracted general government expenditures (excluding interest) according to

the national accounts definition from the general government revenues (mostly taxes

and social security contributions). To derive a measure of the real and seasonal ad-

justed fiscal stance we have first realized the expenditure and the revenue series with

the chain-linked GDP deflator and then adjusted the series seasonally.

Figure 1: Fiscal Policy over the business cycle in Germany 1970-2008
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Figure 1 shows the development of the business cycle (real GDP gap - blue line)

and the government fiscal stance as the primary deficit (red line). We see already that

the two series seem to move very closely together in some periods, while the series

diverge strongly during other periods of time. This can be seen as a first indication

that a time-invariant analysis might not be the optimal choice in this case.

Discretionary fiscal policy is usually studied based on cyclically adjusted fiscal

data, which results from a filtering of the automatic stabilization processes from the

data. A ”cyclical” component is calculated and then subtracted from the aggregate
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revenue and expenditure developments. This cyclical component is calculated based

on an indicator for the state of the business cycle (usually the output gap or the

gap of one of its components) and an elasticity measure for the effects of business

cycle fluctuations on fiscal developments. We build our analysis here on the standard

OECD method of cyclical adjustment, laid out e.g. in Girouard/André (2005). The

elasticity of the general government deficit for Germany is calculated to equal 0.49 in

1996, 0.47 in 2000 and 0.51 in 2003 (see Girouard/André (2005), p. 24), meaning that

an output gap of -2 percentage points would account for a cyclical general government

budget deficit of 1 percentage point. However, these calculations are all for annual

data, while we use quarterly data here, which makes assumptions about the quarterly

lag-structure of the elasticities reflecting the automatic stabilizers necessary. We

derived these quarterly elasticities by the following steps. First, we assumed that the

aggregated yearly elasticity of the general government budget deficit with respect to

the real GDP gap equalled during the period of our analysis 0.49 - the average of the

annual values calculated by the OECD for 1996, 2000 and 2003. In a second step we

analysed the correlation of the GDP gap and the fiscal stance of the government in the

same period, which turned out to be on average 0.155 over the whole sample. In line

with other studies on the reaction of fiscal policy to business cycle developments (see

e.g. Blanchard/Perotti (2002)) we argue that discretionary fiscal policy cannot react

in the very same quarter to changes in macroeconomic development. Therefore we

assign the direct contemporary reaction of the fiscal stance to changes in the GDP gap

(which equals on average 0.155 throughout our sample) completely to the automatic

stabilizers. Automatic stabilizers work strongest with respect to tax revenues (see

e.g. Girouard/André (2005)) and here the effect can be expected to be strongest in

the quarter after the change of the macroeconomic conditions as tax payments of the

cyclically sensitive profit taxes are usually adjusted on a quarterly basis. Therefore

we argue that the effect of automatic stabilizers should be slightly higher in the first

quarter than contemporary and fade out afterwards. Based on these arguments and

additional applications of the methods outlined in Girouard/André on the quarterly

data we applied elasticities to the real GDP gap to calculate the effect of the business

cycle on the fiscal stance which equal 0.155 (contemporary reaction, in period t), 0.17

(in t+1, the quarter after the change of the macroeconomic conditions) and 0.1 (in

t+2). Taken together these three elasticities add up to an aggregate elasticity of 0.49

on an annual basis. The yellow line in figure 1 reflects the fiscal stance which was

cyclically adjusted applying these elasticities and the output gap calculated as outlined

above. We see that cyclical adjustment does affect the fiscal stance quantitatively and

qualitatively (sometimes a deficit becomes cyclically adjusted a surplus) but does not

change the complete pattern observable in the time series. In the empirical part we
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will usually estimate the models with cyclically adjusted and cyclically unadjusted

data, which gives us the possibility to discuss the effects of cyclical adjustment on our

results.

4 Evidence based on time-invariant VAR analysis

Our aim is to analyze the timing of fiscal policy over the business cycle - an

attempt, which is directly affected by the possible endogeneity of fiscal policy and the

business cycle: not only the business cycle might affect fiscal policy but fiscal policy

might affect the business cycle as well. To tackle the general endogeneity problem

and to account for the fact that fiscal policy develops over time we propose modern

Vector-Autoregressive (VAR) time-series analyses in which such relationships can be

modelled by vector autoregressions in an intuitive way. This is as well an important

reason why VAR analyses have become the dominant method to study the interactions

fiscal policy and the business cycle.

Here we start our analysis with a time-invariant VAR model as a background for

our time-variant estimations in the following parts.

4.1 The benchmark model: The reduced form time-invariant pa-

rameter VAR

The benchmark reduced-form VAR(p) with time-invariant parameters is given by

yt = ν + A1yt−1 + ... + Apyt−p + et, t = 1, ...,T,

where the residuals et follow a zero mean noise process with a constant residual

variance covariance matrix E
(

ete
′

t

)

= Σe. Moreover, we assume independence for

etand es, if s 6=t. The sample size is T time series observations and p presample values

for each variable. The vectors yt, ν and the residual vector et are of dimension n × 1,

whereas the lag coefficient matrices are all n × n. For one observation t this model

can be rewritten in a more simple form,

yt = BZt−1 + et, t = 1, ...,T

where the n × 1 + np- coefficient matrix is defined by B = [ν : A1 : ... : Ap], and the

1 + pn × 1 regressor matrix is given by Zt−1 =

′

[

1 yt−1 ... yt−p

]

. Vectorizing

this model and applying some Kronecker rules then leads to the following form of the

VAR(p) process to which we will refer from now onwards:
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yt = Ztβ + et, t = 1, ...,T

where the n × m matrix Zt includes all the information from the regressors, Zt =
(

Z
′

t−1 ⊗ In

)

,

and the time invariant m × 1- vectorβ the coefficient values for the n constants and

pn2 lag coefficients β = vec (B). In this version of the n-dimensional VAR of order

p the regressor matrix is not restricted and contains only a constant as exogenous

explanatory variable.

4.2 Identification of an output gap shock

To analyse the structural relations between the output gap and the fiscal stance of the

government based on reduced form VAR processes we asses the impact of exogenous

and unanticipated shocks as they do not affect the systematic and endogenous eco-

nomic relations between the aggregates.1 There are two essential problems of such a

strategy. First, one has to make sure that reactions in the variables displayed e.g. by

impulse response functions are in fact due to the considered economic shock. There-

fore the shock must work isolated from other potential shocks. This is usually the case

if the disturbances of the estimated system are instantaneously uncorrelated and thus

the residual variance-covariance matrix of the estimated process is diagonal. Isolation

can for example be achieved by a transformation of the reduced form disturbances so

that the residuals become uncorrelated and imply a specified contemporaneous struc-

ture of the economy. This leads to a structural parameter model that can be written

in the following general AB-form (without any additional deterministic terms),

Ayt = AA1yt−1 + ... + AApyt−p + Bet, t = 1, ...,T

with A−1Bet = ut,

and hence Σu = E (utu
′
t) = A−1BE (etet) B

′

A−1′

= A−1BΣeB
′

A−1′

,

where (A−1B)−1 is a n × n variance-covariance decomposition matrix, such that

Σu is a n-dimensional diagonal matrix with the variances of the isolated or respec-

tively orthogonalized errors that now indicate economic innovations (or respectively

structural shocks) on the main diagonal.

But even if a parameterization of the structural AB model is chosen in such a way

that the error terms are not instantaneously correlated, the impulse responses based

on the reduced form VAR may still not be unambiguously determined (our second

1Structural shocks and also the identification scheme are assumed to be time-invariant over the
whole sample. Only the lag and constant term coefficients are allowed to be time varying later on.
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problem). In general, there exist more than one parameterization of the matrices A

and B which lead to a diagonal variance-covariance matrix of the structural shocks.2

In other words, more than one economic structure can yield a diagonal variance-

covariance matrix of the innovations. Therefore we have to find a parameterization

of the structural model that leads to isolated shocks and at the same time represents

a reasonable economic structure.

To keep the schemes simple we apply the commonly used assumption that identifi-

cation of the system can be achieved by implementing an economic structure only

on the contemporaneous interactions of the reduced form residuals and not on the

contemporaneous relations of the variables themselves, which corresponds to setting

A = In (Bernanke, 1986). This leads to the B-SVAR form to which we will refer from

now onwards for both datasets,3

Bet = ut.

In a next step we use standard orthogonalization procedures in combination with

institutional information about the timing of the German tax and transfer system

and the existence of political decision lags to identify an isolated structural shock in

the output gap. More precisely, we used the Cholesky-type decomposition approach

introduced by Sims (1980) to orthogonalize the shocks and check whether this leads

to a reasonable economic structure which seems to be the case.4 The implied pa-

rameterization leads to a recursive structure of the economy which is in line with the

usually applied time lags in the German tax and transfer system and evidence for

political decision lags.5 Based on the variable ordering in our VARs the fiscal stance

reacts contemporaneously to the output shock u
gdp
t , but there is no feedback reaction

from the structural primary deficit to the output gap within the same quarter.6 This

2There may exist more than one solution to the linear system of equations.
3In general, empirical studies that consider fiscal policy issues refer to one or more of four main

identification approaches (Caldara and Kamps, 2008). First, the standard recursive approach intro-
duced by Sims (1980) and applied in the context of fiscal policy analysis by Fatas and Mihov (2001);
second, the structural VAR approach by Blanchard and Perotti (2002) and Perotti (2005, 2007);
third, the sign-restriction method by Uhlig (2005); and, fourth, the event-study method by Ramey
and Shapiro (1998). Alternatively, there exist approaches that distinguish between short- and long
run structural shocks (see e.g. Blanchard and Quah, 1989, or Lee and Chin, 2006). However, in
this study we will only focus on the effects that structural shocks have in the short run in a simple
B-SVAR. In future research we plan to apply the approach by Blanchard and Perotti in an AB-SVAR
framework using cyclically unadjusted data as well.

4In fact, this approach is most frequently used in fiscal and monetary policy applications of VARs
and TVP-VARs, see e.g. Muscatelli et al., 2002, Muscatelli et al. (2007) or Baumeister, Durinck and
Peersman (2008)).

5In fact the recursive structure of the economy is given by the recursive relations of the structural
residuals, ut .

6Applying the Cholesky-type decomposition of the residual variance-covariance matrix, the matrix
B−1 is now lower-triangular with unit diagonal and called the Cholesky-decomposition matrix. The
orthogonalized system is just-identified as only one additional zero restriction is set.
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is in line with the literature that studies the interaction of fiscal policy and the busi-

ness cycle (see e.g. Blanchard and Perotti (2002) or for Germany e.g. Heppke-Falk

et al. (2006) and as well the discussion in part (III)). In our approach the contem-

porous reactions of the fiscal stance to changes in the output gap can be assigned

completely to the working of the automatic stabilizers - as reactions in discretionary

policy do not occur only with a time lag.7 We compute the contemporaneous reac-

tions by a maximum likelihood estimation using the scoring algorithm by Amisano

and Giannini (1997) for a generalB- model with constant parameters, where we set

a no-contemporaneous-feedback zero restriction. This method leads to an reaction

of 0.155(0.101) of the fiscal stance within the first quarter to a one percent output

shock.8 The Cholesky decomposition delivers exactly the same value as it implies the

same zero restriction.

Hence, under the assumption that there is no instantaneous reaction in discretionary

policy, the contemporaneous reaction of the cyclically adjusted fiscal stance to a

Cholesky identified GDP gap shock should be equal to zero.9 If not, the applied

cyclical adjustment procedures might be false. Nonetheless, the question how auto-

matic stabilization works within the following quarters is more complicated (see as

well the discussion in part III).

To analyse the economic impact of a shock in the business cycle over a certain hori-

zon we will use impulse responses, that can be interpreted as forward-looking policy

reaction functions.

4.3 Benchmark results

We used multivariate least squares (LS) estimation to obtain time invariant val-

ues for the coefficients of the VAR(p) based on cyclically unadjusted and cyclically

adjusted data. The optimal lag order was chosen to be according to the Schwartz

(SC) information criterion, autocorrelation analysis and due to the fact, that the

7However, the assumption that there is no contemporaneous reaction in discretionary fiscal policy
stands in contrast with the assumption of Heppcke-Falk, Tenhofen and Wolf (2006) and Blanchard and
Perotti (2002). In their approach any contemporaneous and ongoing reaction in a fiscal aggregates
represent only changes in a discretionary policy of the government. But there is another strong
restriction in their approaches. Too identify a discrete fiscal policy shock, they have to assume that
automatic stabilization only takes place within the first quarter. They estimated the contemporary
reactions of the fiscal aggregates (in fact only revenues) and the n explicitely correct for this reaction
in the revenue component by setting the corresponding substract-restriction into the A matrix of
their AB -SVAR. However, in our opinion this assumption is rather stronger than our assumption of
a policy decision lag in a parliamentary and federal political system.

8Alternatively, using a general AB model with diagonal B matrix and a restriction that ensures no
contemporaneous feedback from the fiscal stance to the output gap, the contemporaneous elasticity
between the variables themselves can be estimated by ML using the scoring algorithm. Here we
estimated a value of 0.159 (0.0976), which differs only slightly from the alternatively derived results.

9This can also be tested using the ML estimation procedure or simple tests on instantaneous
causality. In such a case a forecast error identification scheme can be applied.
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time-invariant VARs will be taken as reference for the time varying parameter models

that may be over-fitted with higher lag-orders.

Figure 2 shows the impulse-response functions for cyclically unadjusted (left panel)

and cyclically adjusted data (right panel) with 95For the unadjusted data we see a

positive contemporary reaction of 0.16 which reflects the working of the automatic

stabilizer. The effect of the business cycle on fiscal policy becomes significant in the

first quarter and increases to 0.35. It continues to be significant until the second

quarter but fades out afterwards.

Figure 2: Impulse responses benchmark model
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With respect to the cyclically adjusted data the contemporary effect is zero. From

the second quarter on the effect is negative and it is insignificant for the whole pe-

riod analyzed. The results of the forecast error identification approach for cyclically

adjusted data look similarly and are presented in appendix A iii.

If these specifications would be adequate the results would indicate that discre-

tionary fiscal policy (not including the automatic stabilizers) tended to be a-cyclical

in Germany from 1970 to 2008 - a result largely in line with the findings of other

analyses of cyclically adjusted data in European economies (see for a discussion part

2). However, the specification and the results including the confidence intervals are

only reliable in case of parameter stability. If the response pattern of fiscal policy

to the business cycle has changed over time, this would be reflected in indications

for parameter instability. Recursive coefficient estimates by multi-variate least square

estimation (results presented in appendix A i) and ii)) speak strongly in favour of pa-

rameter instability. Therefore we proceed with a VAR analysis, which is potentially

more appropriate as it allows for a time-varying of the parameters
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5 A time-varying parameter (TVP) VAR approach

The evidence for parameter instability in time-invariant models (see appendix A)

speaks in favour of a time variant model, where VAR coefficients and the correspond-

ing impulse responses might differ over time. One way to analyse these changes would

e.g. be to simply build sub-samples for each fiscal policy or business cycle regime.

But this would also lead to very short samples of only a few observations, which

reduces the reliability of the estimates significantly. Alternatively, there is a large

literature in macroeconomics which documents structural breaks and other sorts of

parameter changes in many time series variables (see e.g. Stock and Watson, 1996).

Moreover, a wide range of alternative specifications have been suggested, including

Markov-switching VARs (e.g. Paap and van Dijk (2003), or Sims and Zha (2006))

and other regime-switching VARs (e.g. Koop and Potter (2006)). However, the most

frequently used method is to use time varying parameter VARs (see e.g. Doan, Sims

and Litterman (1984), Primiceri (2005) or Muscatelli, Spinelli and Trecroci, (2007)).

5.1 The reduced form (homoskedastic) time-varying parameter VAR

In this part of the study we will consider a variation of the benchmark VAR model

that was used to explain the data generation process in the last section. According

to the results from parameter stability analysis in section 2 there might be better

models to explain the data and the structural relations between the variables. But

how could these kind of models look like?

Taking into account the changing regimes hypothesis we have identified in the begin-

ning and further the information about switching parameters we want to allow struc-

tural changes in policy regimes to evolve gradually over time. An adequate empirical

solution to capture these properties would be a VAR model where the coefficients can

potentially change over time.10 We will focus on an “time varying parameter” (TVP)

VAR in the following parts of the study.11 We introduce a VAR framework, where

10There are several other classes of adequate of models and possibilities that take into account
the consequences from the intuitive appeal and switching parameters. Building sub-samples for each
fiscal policy or business cycle regime is one of them. But this would also lead to very short samples
of only a few observations which reduces the reliability of the estimates significantly. Alternatively,
there is a large literature in macroeconomics which documents structural breaks and other sorts of
parameter change in many time series variables (see e.g. Stock and Watson, 1996). Moreover, a wide
range of alternative specifications have been suggested, including Markov-switching VARs (e.g. Paap
and van Dijk (2003), or Sims and Zha (2006) and other regime-switching VARs (e.g. Koop and Potter
(2006). However, the most frequently used method is to use time varying parameter VARs (see e.g.
Doan, Sims and Litterman, 1984, Primiceri, 2005, or Muscatelli, Spinelli and Trecroci, 2007).

11However, we will not consider concerns that might result from time varying moments of the
processes, covered in e.g. in cointegration approaches based on trended series. Instead, we will
continue working with the detrended and seasonally adjusted series from the first parts.
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the VAR parameters evolve over time as observations are added. It should be noted,

however, that only the parameters but not the structure of error covariance matrix

can potentially change over time (so-called homoskedastic TVP-VARs). Some gen-

eral properties of our n-dimensional homoskedastic TVP-VAR(p) process including

an intercept term are presented below.

Starting from the vectorised form of the time invariant VAR(p) model given in part

4.1, we will now introduce a version with time-dependent coefficients,

yt = Ztβt + εt, t = 1, ...,T

where the residuals εt follow a zero mean noise process with time-invariant residual

variance covariance matrix E
(

εtε
′

t

)

= Ht = H. We assume independence for εt and

εs, if s 6=t. The sample size consists of T time series observations and p presample

values for each variable. The vectors yt, νt and the residual vector εt are of dimension

n × 1, whereas the lag coefficient matrices are all n × n. The regressor matrix is of

dimension n × mand is given by

Zt =
(

Z
′

t−1 ⊗ In

)

.

Now, the m×1- vectorβt contains the values for the n constants and pn2 lag coefficients

in period t,

βt = vec (Bt) .

Again the regressor matrix of the n-dimensional time varying VAR of order p is not

restricted and contains only a time varying constant as exogenous explanatory variable

matrix.12

5.2 The normal linear state space representation of the TVP-VAR

One major problem we - as every empirical application – face is that relations be-

tween the economic variables (reduced and structural forms) can not be observed or

measured directly. In our case we do only know that the relations can possibly change

over time and that the data can be analyzed by a TVP-VAR. I such a situation a so

called state space representation of our model with time varying parameters can make

life easier as it includes some additional information on the stochastic behaviour of

the reduced form coefficients over time.

12we plan to integrate other exogenous variables such as dummies and fiscal variables identified as
exogenous in the next versions of the paper.



5 A TIME-VARYING PARAMETER (TVP) VAR APPROACH 17

The main idea of state space models is that the VAR coefficients – from now on called

states- can be calculated recursively from measurable data described by a certain

data generating process (e.g. by a TVP-VAR), while assuming that the they follow

a stochastic process with known properties.13 Hence, usually a state space model

is a two-layer model, where the external layer involves the measurable data and is

therefore called measurement equation and the internal layer involves the information

of the motion of the states and is therefore called state equation. More formally and

according to Ltkepohl (2006, p. 611), this general idea can also be expressed as

the dependency of an observable and possibly multiple time series y1, ..., yT upon an

unobservable state zt that is driven by a stochastic process, whereas the dependency

between yt and zt is described in the measurement equation,

yt = Ztαt + dt + εt, t = 0, ...,T.

In our case this equation takes the form of the TVP-VAR from above. In other words

the measurement equation describes our data generating process (DGP), where yt is

the n × 1 vector of observations, αt is the unobservable m× 1 state vector at time t

and εt the n × 1 vector of serially uncorrelated zero mean measurement errors that

have a time invariant variance-covariance matrix, H. H, the n × m regressor matrix

Zt, and the n × 1 vector dt (that possibly contains other time invariant states and

their regressors are called the measurement system matrices).14

Moreover, we call the unobserved stochastic process of regression coefficients, αt, the

state (or transition) equation. This process is assumed to evolve like a multidimen-

sional (m-dimensional) AR(??)-process of the form

αt = Ttαt−1 + ct + Rtηt, t = 1, ...,T

where the m × m matrix Tt is called the transition matrix that involves all the

information of how past states enter the measurement equation at time t. The m × 1

vector ct involves other exogenous components such as a constant or dummy variables

and Rt is a matrix of dimension m × g that involves structural relations between the

disturbances of the states that are described in the g × 1vector ηt and that have a

time invariant m × m variance-covariance matrix, Q. Q, Tt, ct and Rt are called the

state system matrices.15

13State space models are frequently used in other sciences. Good examples can be found especially
in the literature of physical sciences and engineering.

14The n × 1 vector dt can be decomposed into the n × r matrix Wt that could contain lagged
dependent or other explanatory variables with time invariant coefficients, and the corresponding r × 1
vector δt with the time invariant parameters.

15In the economic literature on state space models the movement of the state vector is generally
assumed to be a first-order autoregressive process (see e.g. Hamilton (1994), Doan, Litterman and
Sims (1984) or Harvey (1992)).
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To keep the structure of our state space model as simple as possible we make four

additional assumptions for our specific version of the state space model (see e.g.

Tanizaki, 1996):

1. We have already assumed only linearized relations in the measurement and state

equation.

2. We further assume the measurement errors and the disturbances of the state

equation each to be serially uncorrelated and to follow a multivariate normal

distribution with mean zero and time invariant variance-covariance matrices H

and Q.16 Furthermore, they are uncorrelated with each other and some initially

chosen normally distributed state-variables, α0, i.e. E (εtε
′
s) = 0, E (ηtη

′
s) = 0,

E (εtη
′
s) = 0 for all tand all s, and E (εtα

′
0) = 0 and E (ηtα

′
0) = 0 for t = 1, ...,T.

The last assumption excludes correlation between εt and αt as well as between

ηt and αt−1 (E (εtα
′
t) = 0and E

(
ηtα

′
t−1

)
= 0 for all t).17

3. Besides the time invariant system matricesHand Q, we further assume the other

system matrices to be time invariant and the vector dt to be equal to zero,

Zt = Z, dt = d = 0, Tt = T , ct = c and Rt = R, whereas R = Imas gequals

m. In order to be able to estimate all the remaining system matrices based

on e.g. procedures that evaluate the likelihood of corresponding models all the

remaining system matrices Z, T , Hand Q, have to be assumed to depend on

an unknown vector of parameters that includes randomly drawn coefficient val-

ues , which determine the system matrices. To keep our application as simple

as possible we only consider the residual variance-covariance matrices of both

(the measurements, H, and the states, Q) to depend on a set of randomly

drawn and normally distributed parameters all contained in the vector PAR.

The residual variances-covariances might be of most interest concerning the

evaluation and structural analysis of our estimated state space model. More-

over, alternative and even less comprehensive scenarios in which only one of

the variance-covariance matrices, H or Q, or even none of them depends on the

randomly drawn set of parameters, PAR, are considered. The smaller the set

of parameters, the less the computational burden of the application.

4. In addition, we make some slightly more specific and economic assumptions on

the characteristics of the linear movement process of the states. According to

16The independence assumption of the disturbances in the state equation is equivalent to setting
g equal to m .

17According to Tanizaki (1996) the normality assumption of the disturbances is required, if we
want use the standard linear recursive algorithm of the Kalman Filter that is derived based on
density functions, to estimate the states. This is discussed more detailed in the next section.
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Doan et al. (1984) and Koop (2009) we assume the state vector αt to be driven

by a specific version of multivariate autoregressive process of order one that can

easily be transformed into standard processes such as random walks. Thereby

we assume the state vector in each period t to depend on a weighted sum of its

initially defined steady state values. Thus, the state in period t, αt is modelled

as an initially defined steady state valuea0 plus the weighted deviation of the

last periods state value, αt−1, from its steady state plus a zero mean residual

component,

αt = a0 + T (αt−1 − a0) + ηt, t = 1, ...,T,

which corresponds to our above notation of the model with a constant term that

equals the weighted steady state of the state vector, c = (1 − T ) a0.
18

From an economic perspective this representation is interesting as the transition ma-

trix T can now be referred to as a “rate of decay towards the prior mean”

or respectively towards the prior steady state (Doan et al. (1984), p. 8).19 The

higher the rate of decay, the weaker is the impact of the initially set steady state on

the value of the state vector in each period t and thus, the more dynamic reactions

in the states are possible.

In order to check our results for robustness we apply different values for the rate of

decay. Depending on the choice of T , the randomly varying coefficients may follow

different stochastic processes.

According to Koop (2009) it is common in economic applications to restrict the states

to follow a stationary process and therefore impose the restriction that |T | < Im. This

stationarity assumption for the states seems to be reasonable for our application As

well. Based on the narrative and descriptive analysis of the data in section 2 we expect

the fiscal regimes to possibly change randomly and frequently over the long horizon

from 1970 to 2008, instead following any kind of a long run trend.20 Obviously,

18In fact, this state equation can be rewritten as αt = (1 − T ) a0 + Tαt−1 + ηt or in terms of our
notation where the constant term is represented by c as αt = c + Tαt−1 + ηt , where c = (1 − T ) a0 .

19The assumption of a steady state fiscal stance level seems to be reasonable with respect to recent
studies from dynamic stochastic general equilibrium theory. This steady state level can be used as the
mean of the prior distribution in the prior setting procedure. In such a case a state equation of the
underlying form would ensure that deviations from the steady state values in the state coefficients are
expected to decay, depending on how high the rate of decay is chosen. In expected values, a high rate
of decay in combination with a large deviation of the last periods states from the steady state level
would lead to a current state vector far away from the steady state assuming the shock to be zero in
expectations. Thus, a high rate of decay leads to persistence in the deviations in each direction. A
lower rate leads to lower and less fluctuations around the steady state. In general the rate of decay
is assumed to be 0 < |T | ≤ Im . We experimented with values between 0.1 and 1.

20In a reference scenario using LS priors where only the covariance matrix of the measurement
residuals has to be estimated by ML, a rate of decay below T = 0.98 ceteris paribus does lead to very
smooth state coefficients in our study. Thus, the impact of the initially set steady state (prior mean)
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this stands in contrast with any specification of non-stationary states as they can be

modelled by e.g. random walks with drift.21

However, also T = Im can imply stationary states and is frequently used in the

economic TVP-VAR literature (see e.g. a number of experiments in Doan et al.

(1984) or Primiceri (2005) for a case where the volatility of a process is time-varying

and is driven by a stochastic process which is a variation of a random walk). In fact,

setting T = Im implies that αt differs from αt−1 only by an additive zero mean random

component. In such a case the states are driven by a multivariate random walk over

time that also seems to be a reasonable specification as frequent and random regime

changes can be modelled. The main difference between this version and the version

where |T | < Im is that there is at least no impact of the initially set steady state and

thus frequent dynamics in the states are possible.22

Based on these main assumptions we will refer to the following TVP-VAR(p) in state

space representation from now onwards:

(measurement equation) yt = Zβt + εt, t = 0, ...,T

(state equation) βt = b0 + T (βt−1 − b0) + ηt, t = 1, ...,T .

where

[

εt

ηt

]

∼ N

[(

0

0

)

,

(

H 0

0 Q

)]

; αt=βt ; a0=b0

is very strong even under conditions where the rate of decay is very high. Usually this can also result
from very tight prior variances-covariances for the state variables that are used in the initialization.
Therefore we tried values between 10−6 up to 106 times the OLS variances as the variance of the prior
distribution, but this does not really decrease the smoothness of the of the states around their steady
state. When more volatile states occurred, they were usually combined with dramatically higher
standard deviations. In some cases playing around with the tightness also led to incredible huge or
small impacts of shocks in the output gap on the fiscal stance. Another possibility to reduce the
smoothness in the states might achieved by setting less “tightness on the state residuals”. In other
words the values of the main diagonal elements of the state residual variance covariance matrix are
increased (later on we will see that this corresponds to higher values for λ ). However, implementing
values significantly higher than the ones considered in the literature by e.g. Doan, Sims and Litterman
(1984) or Muscatelli et al. (2007) often leads to exploding or incredible large impulse responses in
many periods. Therefore we will stick to the tightness on the state residuals that is established in the
literature. In the |T | < Im scenario we refer to a rate of decay equal to T = 0.999 , to be able capture
the dynamics in the states, as suggested by Muscatelli et al. (2007) for a similar model specification
with exogenously determined residual covariance matrices. By the way, Muscatelli et al. (2007) do
not find differences for rates between 0.3 and 0.999 (they only show the results for 0.999).

21In a drifted model frequent breaks could only be introducing by additional structural break
components into the trend slope and the constant. A random walk with drift could be introduced
by e.g. setting the transition matrix equal to Im and additionally introducing another constant term
(c2 6= 0)

22However, no significant differences can be found between both reasonable scenarios suggested in
the literature, |T | < Im with T = 0.999 and T = Im for the reference scenario based on LS priors.
Therefore we will focus just one of the versions from now on. The version with T = 0.999 assuming
stationary states and the state vector in each period t to depend on a weighted sum of its initially
defined steady state values and a random component.
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5.3 Identification of an output gap shock in the TVP-VAR

The identification scheme from the constant parameter case is transferred to the case

of a TVP B-SVAR model. Thus,

Bεt = ut,

where G = E (utu
′
t) = BE (εtε

′
t) B

′

= BHB
′

,

andHis the ML estimated variance-covariance matrix of the measurement residuals

and B−1 is a n × n lower triangular Cholesky-type decomposition matrix with

unit diagonal, such that G is a n-dimensional diagonal matrix with the variances of

isolated or respectively orthogonalized errors that now indicate economic innovations

(or respectively structural shocks) on the main diagonal.23

5.4 Estimation strategy: Maximum likelihood estimation of the state

space model - A three stage estimation procedure

Our estimation strategy consists of three main steps and is based on conventional

methods of developing models for econometric time series. First, we use Kalman fil-

ter recursions given some initially defined variance-covariances of the measurement

and state disturbances and the defined priors to estimate the state variables for each

point of time up to t = T. Based on this, we evaluate the log-likelihood function start-

ing with the initial set of (estimated) hyperparameters to find the residual variance-

covariance estimators that maximize the likelihood of the corresponding models for

changing sets of hyperparameters. Given the optimal variance-covariance estimators

and the initially defined priors we finally compute the optimal Kalman filtering esti-

mates for the states and their variance-covariance matrices.

Obviously, the core of the applied 3-Step ML estimation procedure is the evaluation of

the likelihood function. Thereby, the log-likelihood function is evaluated conditional

on the available data y = (y1, ..., yT)′ with an iterative algorithm to find the optimal

estimators for the residual variances-covariances of the measurement equation, H∗,

and - depending on the scenario- also of the state equation, Q∗, given some resid-

ual variance-covariances, H and Q, the corresponding filtering estimates bt = βt|t

and Pt = Pt|t for t = 1, ...,T, for each randomly taken normally distributed set of

parameters, PAR, and some prior settings for the states, β0 ∼ N (b0,P0).
24

23As the variance-covariance matrix of the measurement disturbances is time-invariant in our ap-
plication we do not need to implement a time-varying Cholesky decomposition.

24In this paper we focus on versions where only the variance covariance matrix of the measurement
errors has to be estimated as only this variance covariance matrix is set to depend on some randomly
drawn and normally distributed parameters, PAR . The variance-covariance matrix of the state
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The log-likelihood function of our Gaussian model can be derived in three steps.25

In a first step, using Bayes’ theorem and the sample density function, the joint density

function can be derived, where θ = (H,Q,b0,P0) is the vector of hyperparameters

and f = f (yt |Yt−1 ; θ) the distribution of yt, conditional on the information set at time

t − 1, Yt−1. Additionally taking the Gaussian properties of our model into account

the true state vector of our state space model at time t is normally distributed by

assumption with mean bt and variance-covariance matrix Pt. Therefore, also yt is

normally distributed with recursively given mean E (yt |Yt−1|) = yt|t−1 and variance-

covariance matrix Cov (yt |Yt−1 ) = Ft. In a second step the Kalman filtering equations

can be used to estimate these quantities, given a specific vector of hyperparameters

θ = (H,Q,b0,P0). Thus, yt|t−1 = Zbt|t−1 + d and Ft = ZPt|t−1 Z ′ + H.26

Finally, taking the joint density function, the normality assumption and the informa-

tion from the Kalman filtering recursions, the log-likelihood function of our Gaussian

state space model is the following:

ln L (θ |y ) = ln L (H,Q,b0,P0 |y ) = −
nT

2
ln (2π) −

1

2

T∑

t=1

ln |F | −
1

2

T∑

t=1

ν
′

tF
−1
t νt,

where we denote the dimension of our data matrix by a general dimension n as we

consider different dimensions of the TVP-VAR and νt is the estimation error from

the Kalman filtering procedure. This function has to be maximized with respect to

the vector of hyperparameters θ = (H,Q,b0,P0), where the factors b0and P0 are

the initially set priors and thus, only H, and - depending on the scenario – as well

Q have to be estimated.27 This is an unconstrained nonlinear optimization problem

that can be solved using a standard iterative algorithm.28 In fact, the procedure

residuals is exogenously specified. Nonetheless we also estimated versions in which we assumed
the variance-covariances of the residuals in the state and the measurement equation H and Q ,
both to be dependent on some randomly chosen and normally distributed parameters. In these
more comprehensive versions the optimal residual variance-covariance matrices are both estimated
by evaluating the likelihood function of the model conditional on the data and given some initially
estimated state vectors as initial set of hyperparameters to run the procedure. However, the main
problem of such larger versions is that due to the large number of parameters to estimate the system is
always in danger to become overparameterized. With respect to our relatively small sample of around
154 (observations depending on the specification) overparameterization is a serious risk. Indeed the
ML estimations lead to rather incredible state coefficients and in many cases to exploding impulse
responses at some points of time. In short, the versions where only the measurement covariance
matrix is estimated lead to significantly more stable results.

25A more detailed derivation of the joint density function is shown in Appendix B. The derivation
is based on Ltkepohl (2006).

26In our case the vector d is equal to zero.
27Some initial residual variance-covariance matrices for the measurement and state disturbances

are constructed by from some randomly drawn normally distributed parameters in order to be able
to start the procedure.

28We decided to use a direct search method called Nelder-Mead simplex search method that is
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we implemented is based on the dual approach of the optimization problem, the

minimization of the negative log-likelihood function.

As mentioned the Kalman filter recursions are a useful tool in the evaluation of

the likelihood function because they provide an optimal estimator bt for the statesβt

at each period of time, given under normality assumptions and the measurements

y1, ..., yT. The filtering estimates resulting from the updating (or correction) step at

each point of time t are given by the expected value of the state variable conditional on

the observations up to this point of time, bt = βt|t = E (βt |y1, ..., yt ) for t = 1, ...,T.

Once our iterative algorithm converges to an optimum, H∗ and Q∗, the Kalman filter

recursions are again used to compute some optimal estimates for the states, b∗
t in a

final step.29 However, to initially start the Kalman filter recursion procedure some

initial states have to be defined. In other words, a prior distribution described by

mean and covariance for the initial states has to be chosen exogenously at first.

.

5.5 Initialization: Priors

In the last section we have introduced the Kalman filter as a useful and efficient tool

to recursively compute an optimal estimator bt for the statesβt at each period of

time, given the measurements y1, ..., yT and under normality assumptions. To start

the Kalman filter recursion procedure a prior distribution for the states described

by mean and variance-covariance matrix has to be chosen exogenously at first. As

the initialization potentially has some influence on the estimation procedure and the

posterior states while it leaves some degrees of freedom to the analyst, we decided to

use different initialization scenarios.

documented in Lagarias, Reeds, Wright, and Wright (1998). This method does not use numerical or
analytic gradients in order to keep the solution procedure simple and robust. In general, the chosen
procedure can handle discontinuity, particularly if it does not occur near the solution. Alternatively,
more efficient numerical methods as gradient or respectively scoring algorithms may be used. How-
ever, a scoring algorithm might have poorer convergence properties far from the optimum and has
a high computational burden. Apart from the choice of an optimization algorithm, every procedure
faces the problem that it might only converge to a local minimum.

29In the Kalman filtering recursions we used the slightly modified method by Anderson and Moore
(1979) to compute the variance-covariances of the filtered states in order to avoid negative definite
matrices because of round-off errors. One essential problem of the Kalman filter is that for every
estimate only the information up to time period t is used. In some cases more reliable estimates may
be reached when all the sample information up to time T is taken into account at each iteration.
Thus, the so called Kalman smoothing recursions may produce more reliable results than the filtering
recursions. Nonetheless, also the smoothing recursions are based on the filtering estimates.
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5.5.1 Least squares priors

In the literature it is common to use LS estimations to fix the prior distribution of the

states (see e.g. Baumeister, Durinck and Peersman (2008)). Usually the advantage of

an LS initialization is that it is less complex than other existing approaches but the

trade-off is that there are less leverages to control the prior expectations (compared

to more comprehensive approaches). However, in a range of comparable studies this

kind of initialization worked well.

In a first step we assume the initial state vector to be normally distributed with

conditional expected value (or respectively conditional mean) β0|0 and conditional

variance-covariance matrix P0|0 . Then the prior state vector is calibrated on the least

squares point estimates of a time invariant VAR(p)-process with the same lag order p

as for the time varying parameter VAR. This gives us β0|0 = bLS
0 as the prior mean.

The corresponding m × m diagonal LS prior variance-covariance matrix is calibrated

in a similar way that allows for an additional regulating leverage called τ . The variance

of each prior state is simply set equal to the corresponding main diagonal element of

the LS estimated variance-covariance matrix Σ̂LS for the constant parameter VAR(p).

All the initial covariances are set to zero as we have assumed no correlation between

the state residuals in our state space model assumptions. In a last step, the elements

of this matrix are multiplied by the parameter τ , which postulates the analyst’s

confidence that the LS prior expectations for the constant terms and lag coefficients

in the state vector are binding for the posterior states. For higher values of τ the prior

states become less binding for the posterior states and thus the analyst’s confidence

in the priors is lower. Therefore we call this parameter the “tightness on the state

coefficients”. Summing it up, the initial state vector is now normally distributed

with conditional expected value bLS
0 and conditional variance-covariance matrix PLS

0 =

τ · diag
(

Σ̂LS
)

, 30

β0 ∼ N
(
bLS

0 ,PLS
0

)
.

Finally and with respect to the chosen estimation procedure, we need to specify the

nature of the residual variance-covariance matrix of the state equation, Q. We have

to specify Q exogenously as in this version of the paper only the variance covariance

matrix of the measurement errors (H) is set to depend on some randomly drawn

and normally distributed parameters, PAR.31 And thus, only the residual covariance

30Where diag
(

Σ̂LS
)

is a diagonal m × m matrix with the LS estimates on the main diagonal.
31We further estimated versions where we initially assumed the variance-covariances of the residuals

in the state and the measurement equation H and Q , both to be dependent on some randomly
chosen and normally distributed parameters. In these more comprehensive versions the optimal
residual variance-covariance matrices H∗ and Q∗ are both estimated by evaluating the likelihood
function of the model conditional on the data and given some initially estimated state vectors as
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Table 1: Prior parameter value

Parameter Value

τ 4

λ 10−7

matrix of the measurements is estimated by evaluating the likelihood function of the

model conditional on the data and given some initially estimated state vectors as an

initial set of hyperparameters to run the procedure. To set the Q we used information

from the properties of our normal linear state space model and additionally referred to

established specifications in the literature. The state residuals have to be uncorrelated

(E (ηtη
′
s) = 0) and thus only the elements on the main diagonal can be different

from zero. Moreover, following Muscatelli et al. (2007) we set Q equal to the prior

variance-covariance matrix of the states, in our this initialization scenario this is

PLS
0 = τ · diag

(

Σ̂LS
)

, weighted by another controlling leverageλ that is predefined

by Doan et al. (1984). Thus, Q = λ · PLS
0 , where λ is called the tightness on the

state residuals. 32

5.5.2 An alternative approach: Some literature priors

An alternative and a bit more sophisticated initialization approach is the one of Mus-

catelli, Spinelli and Trecroci (2007) which is based on the findings of Doan, Litterman

and Sims (1984). In their analysis of macroeconomic shocks, structural change and

real exchange rates Muscatelli et al. (2007) assumed the initial state vector to be nor-

mally distributed as well with conditional expected value (or respectively conditional

mean) b0 = β0|0 and conditional variance-covariance matrix P0 = P0|0 ,

β0 ∼ N (b0,P0) .

The b0 is set to be an initial state vector with “ones” at the coefficient positions

corresponding to the own variable at lag 1 and zeros for all other coefficients (constants

initial set of hyperparameters to run the procedure. The main problem of such larger versions is
that due to the large number of parameters to estimate the system is always in danger to become
overparameterized. With respect to our relatively small sample of around 154 (observations depending
on the specification) overparameterization is a serious risk. Indeed the ML estimations lead to rather
incredible state coefficients and in many cases to exploding impulse responses at some points of time.
In short, the versions where only the measurement covariance matrix is estimated lead to significantly
more stable results.

32We have experimented with specifications for the tightness on the state coefficients τ reaching
from 10−6 to 106 to analyse the effects on the dynamics of the states as described above. The final
setting of the tightness on the state coefficients refers to the approach of Baumeister, Durinck and
Peersman (2008) who set τ equal to 4 which is frequently done in the bayesian literature.
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and lags), respectively for each equation. According to Muscatelli et al. (p. 1413)

this prior expectation is chosen such that changes in each of the involved endogenous

variable yi are “difficult to forecast”. This is because only the first own lag of the

variable has strong influence on the forecast as its coefficient is near one (1 plus a

zero mean disturbance component) and all other coefficients are closely to zero (0

plus a zero mean disturbance component). The corresponding m × m diagonal prior

variance-covariance matrix of the states P0 is set in a slightly more comprehensive

manner, that implies some other useful regulating leverages on the initial states, in

addition to the already introduced tightness of the state residuals, λ. However, for

some specifications of the leverages we generated results similar to the results based

on the LS initialization.33 Therefore, and to keep the initialization section concise we

will only refer to the results from the first procedure. Nonetheless, further work will

be done in the field of prior setting.

5.6 Estimation results

5.6.1 Maximum likelihood estimates

Based on our two datasets we have estimated the parameters of the underlying state

space models using a maximum likelihood procedure. In our specification of the mod-

els only the variances-covariances of the measurement equation have to be estimated

as the state covariance matrix is exogenously determined (done in a first step). In a

second step the optimal states are obtained using the Kalman filtering recursions.

5.6.2 The optimal variances and covariances

Table 2 shows the ML estimates of the parameters of interest, the variances of the

measurement equation for the output gap (ĥ2
11) and the fiscal stance (ĥ2

22) as well

as their covariance (ĥ2
12) for both scenarios, the unadjusted and the adjusted data.

Furthermore, the values of the model log likelihood and the determinant of the co-

variance matrices are given. In addition the corresponding least squares estimates for

the parameters of the benchmark time invariant VAR are presented.

33Definitions of the following parameter specifications are made in Appendix C, where a detailed
explanation of the initialization and the leverages is presented. According to Doan et al . (1984) we
have set ϑ = 630, γ = 0.07 and λ = 10−7 . Setting w2 = 1/74, the effects of gdp gap shocks on fiscal
stance were much closer to zero than they were in any time invariant parameter VAR estimation on
sub-samples or in the time varying parameter VAR estimation. This can be due to a far to small
weight on the lags of other variables in the explanation of the fiscal stance. In other words, the
relative tightness on the lags of other variables is set too high. Therefore we tried up to a 100 times
higher weights which lead to results similar to the results based on the LS initialization.
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Table 2: ML Estimates of the Residual Variances-Covariances - Measurement Equation; LS
Priors

Parameter Cyclically unadjusted
data
(1970Q1-2008Q4)

Cyclically adjusted data
(1970Q3-2008Q4)

ML Esti-
mates (TVP
VAR)

LS Es-
timates
(VAR)

ML Esti-
mates
(TVP VAR)

LS Esti-
mates
(VAR)

ĥ2
11 0.3318*10-4 0.3341*10-4 0.3355*10-4 0.3377*10-4

ĥ2
22 0.4960*10-4 0.4989*10-4 0.4902*10-4 0.4929*10-4

ĥ2
12 0.0527*10-4 0.0533*10-4 0.0038*10-4 0.0373*10-4

Log Likeli-
hood

1114.99 1125.71 1099.28 1109.97

Determinant 1.6181*10-9 1.5341*10-9 1.6443*10-9 1.5568*10-9

The residual variances based on TVP VARs and constant parameter VARs are very

close to slightly smaller TVP VAR variances for both datasets. The same holds for the

covariances in the unadjusted dataset. In general, this can be taken as evidence for

the reliability of the time varying estimations. In our state space model we assumed

the residual variance-covariance matrix to be time-invariant as it is the case the

benchmark VAR. Therefore, estimates that are close to the benchmark results seem

to be speak for the quality of the time varying model. However, as we used the LS

estimations as first and second moment of the states prior distribution, this result

is not really astonishing. In both model categories the values of the log likelihood

functions are slightly higher for the unadjusted data. Comparing both set-ups, the

log-likelihood values are a little bit higher in the constant parameter case. However,

any statements on the quality of the models have to be based on tests on the likelihood

ratios which will be part of future work.

The optimal states

The optimal estimates for the time varying state variables are provided by the final

Kalman filter recursion, using the information of the estimated variance-covariance

matrix of the measurement disturbances. Figures of the state variables within the

corresponding two-standard error bounds are available from the authors upon request.

5.7 Structural analysis

5.7.1 Analysis of cyclically unadjusted data in a time-varying framework:

How do the results change if we estimate the effects of the business cycle on fiscal

policy within a time-varying framework? We start with a discsussion of the results
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in our reference Scenario (LS 1 - see appendix) with cyclically undadjusted data

represented in figures 3-5. Data on the estimated Variances and Covariances can be

found in appendix C

Figure 3: Time-varying parameter SVAR Impulse responses - cyclically unadjusted data
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In figures 3, 4 and 5 - which reflect the same impulse response functions of the gov-

ernments’ fiscal stance to an output gap shock of one percentage point from different

angles - we see first a contemporary reaction of the deficit to changes in the GDP gap,

which reflects the working of the automatic stabilizers. The effect equals 0.155 - the

same value as in the time-invariant model. Thereafter the surplus increases further

reflecting in large parts the further fading-in of automatic stabilizers. Here we can

see that the effects have been stronger in earlier times of the period analyzed which

might be interpreted as evidence for larger automatic stabilizers in earlier years.
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Figure 4: Time-varying parameter SVAR Impulse responses - cyclically unadjusted data
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Figure 5: Time-varying parameter SVAR Impulse responses - cyclically unadjusted data
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Most important for our analyses however is that we can distinguish three distinc-

tive periods. In the first period from the start of our dataset to 1979 fiscal policy

has been strongly counter-cyclical for at least 2 and a half years and never really

turned pro-cyclical (see figure 6). After 1979 and until reunification in 1990 however,

fiscal policy usually started to be pro-cyclical already after around 6 quarters. As

the cyclically unadjusted data reflects the combined effects of discretionary policy

and the - always counter-cyclical - automatic stabilizers this points at a strong pro-

cyclical timing of fiscal policy from 1979 to 1990 (see as well the analysis of cyclically

adjusted data). After 1990 overall fiscal policy - consisting of discretionary measures

and automatic stabilizers - became less pro-cyclical again.

5.7.2 Analysis of cyclically adjusted data in a time-varying framework:

In figures 6-8 - which reflect the same impulse response functions of the govern-

ment’s fiscal stance to an output gap shock of one percentage point from different

angles - we do not see a contemporary reaction of the deficit to changes in the GDP

gap, as these are estimated based on cyclically adjusted data.

Figure 6: Time-varying parameter SVAR Impulse responses - cyclically adjusted data
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However, the fiscal policy reaction in the first quarter after the shock is in almost

all quarters before reunification positive, which might indicate that we have not yet

managed sufficiently to take out the working of automatic stabilizers by the method

of cyclical adjustment applied. This correspondents as well with our findings in the
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time-invariant benchmark model. Besides this we still find evidence for the same

three distinct periods from 1970 to 1979, from 1979 to 1990 and afterwards. As we

have taken out large parts of the automatic stabilizers now we can get a better feeling

of how pro-cyclical fiscal policy has been especially in the period from 1979 to 1990.

Here we see (see figure 7) that fiscal policy turned in this period to usually have a

pro-cyclical effect already one year after the macroeconomic shock. If we consider

that fiscal policy decision making might take a whole year from formulating the idea

of a policy change and implementation of this change fiscal policy would have been

almost always wrong in these years. After reunification the timing of fiscal policy

improved slightly again.

Figure 7: Time-varying parameter SVAR Impulse responses - cyclically adjusted data
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Figure 8: Time-varying parameter SVAR Impulse responses - cyclically adjusted data
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6 Conclusion and outlook

Large parts of the current empirical economic literature argue that the timing

of fiscal policy has been largely a-cyclical in the last decades. Most of these studies

rely on cyclically adjusted data on fiscal policy and estimate time-invariant models.

For a large dataset for Germany 1970-2008 at quarterly frequency we were able to

confirm these results for the relationship of the real GDP gap and the governments

fiscal stance in a time-invariant VAR benchmark estimation. However, we found that

parameter stability tests strongly point at a parameter instability and therefore a

misspecificaiton of the time-invariant model. Based on these findings we derived a

time-varying parameter (TVP) VAR, and applied it to the same data. The suspected

time-varying regimes with repsect to the timing of fiscal policy over the business cycle

were strongly confirmed by this approach: we found three distinctive regimes : 1970-

1979, 1979-1990 and 1990-2008. During the first regime, policy makers were - from an

ex post perspective - successful in timing fiscal policy measures countercyclically. Dur-

ing the second regime, fiscal policy measures have largely been timed pro-cyclically

and in the third regime, the timing became slightly more counter-cyclical again. This

indicates that the findings by time-invariant approaches of a largely a-cyclical fiscal

policy might results from a misspecification of these models, as timing differs strongly

across different regimes. Nonetheless there are still many points for an improval of
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the results derived so far. First, the cyclical adjustment procedure applied here seems

to be unable to take out all the working of the automatic stabilizers and there is

some indication in the results, that automatic stabilizers have been larger in the early

years of our data-set. Therefore one possible line for further research is to improve

the method of cyclical adjustement - most likely by applying time-varying elasticities

within the process of cyclical adjustment. Second, we have estimated VAR models

with time-varying parameters but a constant structure of the error covariance over

time. Here a robustness check which allows for a varying structure of the error co-

variance seems to make sense. Furthermore, a more technical point is the calculation

and display of median impulse response functions and some impulse responses within

95Finally a separate analysis of revenue and expenditure developments over the busi-

ness cycle could help us to understand, which side of the budget is responsible for the

timing of fiscal policy over the cycle and could open the door for a more far-reaching

research on the causes of different timing patterns in different decades. These points

rank high on our research agenda for the next months.
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8 Appendices

8.1 Appendix A:

8.1.1 Appendix A:i Stability Analysis for time-invariant benchmark model

(Choleski identification): UNADJUSTED DATA

Method: Recursive coefficients estimated by multivariate LS.

1. Constants (gdp gap/def):

1. Lag 1 (gdp gap/def):
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1. Lag 2 (gdp gap/def):
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Results: indicating parameter instability

8.1.2 Appendix A:ii Stability Analysis for time-invariant benchmark model

(Choleski identification): ADJUSTED DATA

Method: Recursive coefficients estimated by multivariate LS.

1. Constants (gdp gap(1st row) / def (2nd row):

1. Lag 1 (gdp gap(1st row) / def (2nd row):
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1. Lag 2 (gdp gap(1st row) / def (2nd row):
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1. Results: serious problems with parameter stability

8.1.3 Appendix A:iii Forecast-Error-Responses:

8.2 APPENDIX B:

8.2.1 B.1 The log-likelihood function

The log-likelihood function of our Gaussian model can be derived in three steps.34 In

a first step, using Bayes’ theorem and the sample density function, the joint density

function can be derived as follows,

L (y;H,Q,b0,P0)

= f (y1, ..., yT;H,Q,b0,P0)

= f (y1;H,Q,b0,P0) · f (y2, ..., yT |y1; H,Q,b0,P0)
...

= f (y1;H,Q,b0,P0) · f (y2 |y1; H,Q,b0,P0) · · · · · f (yT |y1, ..., yT−1; H,Q,b0,P0)

=
∏T

t=1 f (yt |Yt−1 ;H,Q,b0,P0)

=
∏T

t=1 f (yt |Yt−1 ; θ)

.

Where θ = (H,Q,b0,P0) is a vector of hyperparameters and f = f (yt |Yt−1 ; θ) the

distribution of yt, conditional on the information set at time t − 1, Yt−1. Based

on this information set, Yt−1, and given a specific set of hyperparameters, the true

34The derivation is based on Ltkepohl (2006, p. 632)).
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state vector of our model at time t is by assumption normally distributed with

mean bt and variance-covariance matrix Pt. Therefore, also yt is normally dis-

tributed with recursively given mean E (yt |Yt−1|) = yt|t−1 and variance-covariance

matrix Cov (yt |Yt−1 ) = Ft, where the Kalman filter recursions can be used to es-

timate these quantities, given a specific vector θ. Thus, yt|t−1 = Zbt|t−1 + d and

Ft = ZPt|t−1 Z ′ + H.35 This leads to the following log-likelihood function that has

to be evaluated for our Gaussian model, where the dimension of our data matrix is

denoted by a general dimension n and νt is the estimation error from the Kalman

filtering procedure,

ln L (θ |y ) = ln L (H,Q,b0,P0 |y ) = −
nT

2
ln (2π) −

1

2

T∑

t=1

ln |F | −
1

2

T∑

t=1

ν
′

tF
−1
t νt

8.3 APPENDIX C:

8.3.1 APPENDIX C. 1. An alternative initialization approach

The prior mean of the states

In the vectorised form of the state-space model where the measurement equation is de-

scribed by an n-dimensional TVP-VAR of order p and an m =
(
n + pn2

)
-dimensional

state vector, this would then lead to the following vector of prior expectations,

b0 =







constant
︷ ︸︸ ︷(

0 0 ... 0
)

︸ ︷︷ ︸

(1 × n)

lag 1
︷ ︸︸ ︷((

1 0 ... 0
)(

0 1 ... 0
)

...
(

0 0 ... 1
))

︸ ︷︷ ︸

(1 × n2)

...

...

lag p
︷ ︸︸ ︷((

0 0 ... 0
)(

0 0 ... 0
)

...
(

0 0 ... 0
))

︸ ︷︷ ︸

(1 × n2)







′

(m × 1)

.

The prior variance-covariance of the states

For all the states (constant terms and lag coefficients) that can be found in the

equation for only one variable i = 1 the diagonal states’ variance-covariance matrix

Pi
0 is given by

P1
0 =

(

ϑσ̂2
1(1 × 1)

0′
(1 ×pn)

0
(pn × 1)

(
G ⊗ C1

)

(pn × pn)

)

(1+pn × 1+pn)

,

35In our case the vector d is equal to zero.
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where

G =









γ2
/
1 0 . . . 0

0 γ2
/
2 . . . 0

...
...

. . . 0

0 0 . . . γ2
/
p









(p × p)

and C1 =









1 0 . . . 0

0 w2
(
σ̂2

1

/
σ̂2

2

)
. . . 0

...
...

. . .
...

0 0 . . . w2
(
σ̂2

1

/
σ̂2

n

)









(n × n)

.

This structure can be transferred to the vectorised form of the state space model for

all the nvariables:36

P0 =




ϑσ̂2

(n × n) 0′
(n ×pn2)

0
(pn2 × n)

(G ⊗ C)
(pn2 × pn2)





(n+pn2 × n+pn2)

,

where

σ̂2 =









σ̂2
1 0 . . . 0

0 σ̂2
2 . . . 0

...
...

. . .
...

0 0 . . . σ̂2
n









(n × n)

;G =









γ2
/
1 0 . . . 0

0 γ2
/
2 . . . 0

...
...

. . . 0

0 0 . . . γ2
/
p









(p × p)

and the elements of the main diagonal of the n2 × n2 matrix C written in a 1 × n2

vector ς, are the following,37

ς =















Variances of the impacts of all n variables in the 1. variable

for only one lag j = 1, ..., p
︷ ︸︸ ︷

1 w
2
(

σ̂
2
2

/

σ̂
2
1

)

. . . w
2
(

σ̂
2
n

/

σ̂
2
1

)

︸ ︷︷ ︸

(1 × n)

Variances of the impacts of all n variables in the 2. variable

for only one lag j = 1, ..., p
︷ ︸︸ ︷

w
2
(

σ̂
2
1

/

σ̂
2
2

)

1 . . . w
2
(

σ̂
2
n

/

σ̂
2
2

)

· · · · · · w
2
(

σ̂
2
1

/

σ̂
2
n

)

w
2
(

σ̂
2
2

/

σ̂
2
n

)

. . . 1

︸ ︷︷ ︸

Variances of the impacts of all n variables in the n − th variable

for only one lag j = 1, ..., p















(

1 × n
2
)

.

The term σ̂2
i is the estimated residual variance that comes from regressions for uni-

variate AR(p)-processes for each of the i = 1, ..., n series separately.38 Corresponding

36Thereby one has to pay attention to the fact the ordering of the state coefficients in the vectorised
form differs from the one in matrix notation which. The ordering in the state vector – starting with
the coefficients of the constant of each equation and continued by the coefficients that model the
impact of the first variable on each of the other variables in the first lag, and then the coefficients
that model the impact of the second variable on each of the other variables in the first lag and so
on until the impact of the n-th variable in the first lag is modelled, continued until the p-th lag -
equals the ordering of the variances that can be found on the main diagonal of the variance-covariance
matrix of the states. The covariances are generally assumed to be zero.

37The complete matrix is presented in B.2.
38The lag order of the univariate AR(p) processes corresponds to the lag order chosen for the

TVP-VAR
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to the order of the coefficients the n × n matrix σ̂2 includes the variances of the

constants, whereas the variance of the constant in equation i is set to the residual

variance of series i. All variances are weighted by the factor ϑ, that can be used as

a leverage on the prior expectation for the constants in b0 where the corresponding

terms are set to zero. Thus, the higher the ϑ is set, the less binding is the initial

zero restriction on the constants. According to Doan et al. we call this factor the

“relative tightness on the constant terms”.

The factor γ is called the “relative tightness on the lag coefficients” and might

be used to regulate how binding the prior expectations on each lag coefficient in b0 are,

thereby including the coefficient of a variable at its own first lag which is restricted

to unity in each equation. The higher γ2 (γ), the higher the variances of all the

impact-coefficients in each variable in e.g. one specific lag j = 1, ..., p, and thus the

less binding the prior expectation on all of these coefficients is, whereof most are set

to zero. However, this also includes the prior expectation on the impact of the own

variable at lag 1 that is set to 1 for each series.39

Based on this the p × p matrix G is used to put a lag-specific “relative tightness

on the lag coefficients” . Multiplying all elements of the main diagonal of C that

correspond to only lag j by the lag-specific factor γ2
/
j, puts a relative weight on the

variances of all the coefficients of a specific lag, whereas lags of higher order have

less weight than lags of lower order. Therefore the prior expectations on higher lag

order coefficients are relatively more binding as variances in higher lags are relatively

smaller. As the prior expectations on these coefficients are zero, a tighter restriction

on them ensures that they are less useful in forecasts than lower lags are. Thus, γ2
/
j

is called the “relative looseness on the lags”.

The elements of the main diagonal of the n2 × n2 matrix C are the lag-unweighted

variances of the impacts of variable 1 in each of the n equations in the first lag

followed by the impacts of the second variable in each of the n equations in the first

lag and so on, written one below the other. The lag-unweighted variances of the own

lags of each variable i are set to one, whereas the other elements are ratios of the

estimated variances from univariate regressions for each series. These elements are

further multiplied by another factor w2 that additionally weights the impacts of the

lags of all other variables on e.g. the variable i. The smaller the w2, the more binding

the zero expectation from the priors in b0on the corresponding coefficients and the

less useful they are in the forecast of the variable i. Thus, this leverage is called the

“relative tightness on lags of other variables”.

39As the variances of each variables own first lag coefficient that is set to unity in b0 are set to
1 before being weighted by γ2 , the weighted variances of these first lag coefficients are just γ2 · 1 .
Thus, according to Muscatelli et al. (p. 1414) the γ that is then the standard deviation of the first lag
coefficient can be defined as the “analyst’s confidence that the first-order autoregressive coefficients
is near to unity ”. The lower the standard deviation, the higher the confidence.
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Finally, and according to the Muscatelli et al. scenario we need to specify the nature

of the residual variance-covariance matrices of the state space model representation.

Having defined the prior expectations and their variances we follow the authors in set-

ting the diagonal variance-covariance matrix of the residuals of the state equation, Q,

equal to the prior variance-covariance matrix of the states multiplied by a fixed factor

that is suggested by Doan et al. (1984). We set Q = λ ·P0 and call λ the “tightness

on the state residuals”. Thus, Q does not depend on some randomly chosen nor-

mally distributed parameters, PAR, whereas the variance-covariance matrix of the

measurement errors, H, does.

Summing it up, the alternative initialization scenario based on the approach of Mus-

catelli et al. (2007) offers at least five leverages to control and manage the prior

setting process which is useful at least with respect to a possibly strong impact of

the priors on the estimation process. Moreover, the literature provides predefined

values for this initialization approach that have worked well in other long time series

analyses. Doan et al. (1984) suggest these predefined values to be:

Parameter Value

ϑ 630

γ 0.07

w2 1/74

λ 10−7

8.4 Appendix D:Estimation Results

i) Cyclically unadjusted Data (start: 1970Q1)

i.2) Estimated States

1. (a) LS-Scenario(1):
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i) Cyclically adjusted data: (start: 1970Q3)

ii.2 Estimated States

1. (a) LS-Scenario(1):
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Start: DATA: 1970Q1 ; VAR: 1970Q3:

b) LS(1)-Scenario:

Forecast Error Impulse Responses
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Feedback: Fiscal Stance GDP Gap
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