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Abstract

This paper studies the properties of convexity (concavity) and strategic com-
plements (substitutes) in network formation and the implications for the structure
of pairwise stable networks. First, different definitions of convexity (concavity)
in own links from the literature are put into the context of diminishing marginal
utility of own links. Second, it is shown that there always exists a pairwise stable
network as long as the utility function of each player satisfies convexity in own links
and strategic complements. For network societies with a profile of utility functions
satisfying concavity in own links and strategic complements, a local uniqueness
property of pairwise stable networks is derived. The results do neither require any
specification on the utility function nor any other additional assumptions such as
homogeneity.

Keywords: Networks, Network Formation, Game Theory, Supermodularity, Increasing
Differences, Stability, Existence, Uniqueness

JEL-Classification: A14, C72, D20

∗Institute of Mathematical Economics, Bielefeld University, postbox 100131, D-33501 Bielefeld,
Germany. Email: thellmann@wiwi.uni-bielefeld.de, phone: +49 521 106 2574, fax: +49 521 106 2997.

1



1 Introduction

In the seminal paper of Jackson and Wolinsky (1996) the concept of pairwise stability
for the formation of undirected networks is introduced. Since then, pairwise stability
has been the most commonly used notion of stability in the vast growing literature of
network formation. Although pairwise stable networks have been analyzed widely in
different models of network formation, not a lot is understood yet with respect to the
general structure of pairwise stable networks. While imposing a specific functional form
of utility over networks leads to specific results in terms of pairwise stable networks, the
question remains which properties stable networks generally have. Even with respect
to the existence of pairwise stable networks not a lot can be found in the literature.
There are two studies which derive sufficient conditions for existence or uniqueness of
pairwise stable networks. Jackson and Watts (2002b) directly address the question of
existence. They show that the existence of a function similar to a network potential
function is sufficient for ruling out cycles and thus guaranteeing the existence of pairwise
stable networks. A different objective can be found in Chakrabarti and Gilles (2007), in
which they analyze network potentials. However, they show by a corollary of a result by
Jackson and Watts (2002b) that for network societies having an ordinal network potential
function there always exists a pairwise stable network. Both conditions in Jackson and
Watts (2002b) and Chakrabarti and Gilles (2007) are strong, for instance in the case of
Chakrabarti and Gilles (2007), a link between two players needs to be either beneficial to
both or to none.1 In most models of network formation this condition is not satisfied. The
assumption needed in Jackson and Watts (2002b) is similar. Hence, both results require
strong assumptions just to prove existence of pairwise stable networks. Note that both
papers do not present any examples of models from the literature of network formation
which satisfy their assumptions.

In this paper, I also approach the question of existence conditions for pairwise stable
networks. In contrast to previous work, I aim at analyzing the structure of pairwise
stable networks by neither imposing restrictive assumptions such as the existence of an
ordinal potential nor specifying the utility function. Instead, I impose only very natural
conditions on the profile of utility functions such as convexity (concavity) in own links
and strategic complements (substitutes). The former assumption captures that players
have increasing (decreasing) marginal returns from own links, while the latter implies
increasing (decreasing) marginal utility from other players’ links. The notion of convexity
(concavity) respectively strategic complements (substitutes) is not new and has been used
in some models of network formation.2 In Bloch and Jackson (2007), and Calvó-Armengol
and Ilkiliç (2009) convexity (concavity) in own links is defined with respect to marginal
utilities of link deletion. Instead, Goyal and Joshi (2006a) define convexity (concavity)
with respect to link addition. However, in their paper the utility function does not take

1The property of pairwise sign compatibility is required for this result, see for instance Chakrabarti
and Gilles (2007). Pairwise sign compatibility requires that for any network and any link the incentives
for the two involved players to keep (add) or delete (not add) the link are the same.

2See for instance Bloch and Jackson (2007), Goyal and Joshi (2006a), and Calvó-Armengol and Ilkiliç
(2009).
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into account the whole network structure, but merely focuses on one particular network
statistic, the degree distribution. I generalize their definition of convexity (concavity) and
show an equivalence result for all collected notions of convexity (concavity).

The main result of this paper is that in a network society with a profile of utility functions
which are convex in own links and satisfy the strategic complements property there
always exists a pairwise stable network. This result only requires these very natural
assumptions, and there are several models in the literature of network formation, in
which these are satisfied. Besides the conditions of convexity and strategic complements,
the result does not rely on any specification of or homogeneity assumptions on the utility
function. Since there are several examples in the literature, where the conditions of the
theorem are satisfied and the conditions have natural interpretations of non-diminishing
marginal utility, the existence result seems to be more appealing than those which require
the existence of a potential-like function. Furthermore, the implications of concavity
and strategic substitutes in network formation are studied. It is generally not possible
to establish a corresponding existence result as I show by a counterexample. However,
concavity and strategic substitutes also have strong implications for the general structure
of pairwise stable networks. In generic cases, pairwise stable networks are unique for the
range of networks that can be reached by either only adding links or by only deleting links.
Non-generic cases can be ruled out by either imposing a no-indifference property or simply
requiring strict inequalities in the definition of pairwise stability. Again, the result is of
very general nature, since neither a specification of the utility function nor a homogeneous
profile of utility functions is required. The assumptions of concavity and substitutability
are very intuitive: they resemble non-increasing marginal utility from additional own
respectively other players’ links. Several models can be found in the literature of network
formation which satisfy both conditions.

The driving force for these results is that the effects of additional own and other players’
links on marginal utility are either both positive or both negative. Therefore, we are
not able to establish results of the same generality for the other two combinations, i.e.
convexity and strategic substitutes respectively concavity and complements.

Most closely related to my approach is the work of Goyal and Joshi (2006a). They also use
different combinations of the four conditions convexity and concavity in own links, as well
as, strategic complements and strategic substitutes to obtain existence and uniqueness
results for utility functions that have a particular structure: in Goyal and Joshi’s model,
each player’s utility function only depends on the degree distribution. Moreover, Goyal
and Joshi (2006a) provide qualitative results in terms of special architectures of pairwise
stable networks, which are driven by the particular structure of their utility function. My
approach is more general, since no specification of the utility function is assumed. Even
in this very general framework, I am able to show the effects of the above conditions,
which have strong implications for existence and uniqueness of pairwise stable networks.

The paper is organized as follows: First, the formal model is presented and several notions
of convexity and concavity are discussed. I clarify the relation of the ones from the
literature and the notion of non-diminishing (non-increasing) marginal utility from own
links and present an equivalence result of all these definitions. Second, the a result to
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exclude the existence of closed improvement cylces is presented, thereby showing existence
conditions of pairwise stable networks. As an implication, I show in Section 4 that the
assumptions of convexity and strategic complements are sufficient to exclude the existence
of closed improvement cylces, which implies the existence of pairwise stable networks. In
Section 5, the effects of assuming concavity and strategic substitutes are analyzed. The
main result in this section is that the these conditions imply a local uniqueness property
in generic cases. The final section concludes. The proofs of all results can be found in the
appendix.

2 The Model

Throughout the paper the set of nodes or vertices is assumed to be finite and given by
N = {1, ..., n}. I will refer to nodes of the network as individuals or players. I focus here
on undirected networks, the set of all possible edges of the graph is defined as the set of all
unordered pairs of players of size 2, gN := {K ⊂ N : |K| = 2}. A network is a collection
or a set of edges or links, giving gN the interpretation of the complete network, since it
contains all possible links. The set of all undirected networks can hence be defined as
G := {g : g ⊆ gN}. Given a network g ∈ G, players i and j are directly connected in g, if
the corresponding edge is contained in g, that is {i, j} ∈ g. For short notation, I denote
a link also as (ji =)ij := {i, j}. Individuals have a preference ordering over the set of
networks. For each player, this preference ordering can be presented by a utility function
ui : G → R, with the usual assumptions on the preference ordering. By u =

∏

i∈N ui, I
denote the profile of utility functions. Given the set of all players N , the set of all possible
networks G and the profile of utility functions u, we say that the triple G = (N,G, u)
defines a network society. In a network g ∈ G, the set of neighbors of player i ∈ N is
given by Ni(g) := {j ∈ N : ij ∈ g}. Similarly, Li(g) := {ij ∈ g : j ∈ N} denotes the set
of player i’s links in g. I denote the set of links obtained by deleting player i and all of
his links by L−i(g) := {jk ∈ g : jk 6∈ Li(g)}. Obviously it holds that g = Li(g) ∪ L−i(g)
for all g ∈ G.

When self-interested players form links, we may ask which networks evolve and persist.
While best-responses may also lead to cycles, we want to look for networks that are not
altered by self-interested players. As an analog to equilibrium in non-cooperative game
theory these networks are referred to as stable. There are two distinct approaches how
stable networks are defined in the literature. One looks at the link announcement game
defined in Myerson (1991) and uses well-known equilibrium concepts of non-cooperative
game theory. The second approach defines desired properties of stability directly on the
set of networks. I introduce here only the well-known concept of pairwise stability defined
by Jackson and Wolinsky (1996).3

Pairwise Stability. A network g is pairwise stable (PS) if no link will be cut by a single
player, and no two players want to form a link:

3A game theoretic foundation and a comparison of the several definitions of stability can be found in
Bloch and Jackson (2006).
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(i) ∀ij ∈ g, ui(g) ≥ ui(g\ij) and uj(g) ≥ uj(g\ij) and

(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).

In words, (i) implies that all links in a pairwise stable network must be beneficial to the
two involved players and (ii) says, that there are no additional links (links not contained
in g) which are beneficial to both players. This definition reflects the behavior of self
interested players who are in control of their links: two players will form a link if it is
beneficial to both, while any single player will reject a link that is not beneficial. Pairwise
stability is a basic notion that can be refined in multiple ways (e.g. unilateral stability,
Buskens and Van de Rijt, 2005; strong stability, Dutta and Mutuswami, 1997; or bilateral
stability, Goyal and Vega-Redondo, 2007). Since stability depends on the network society
G = (N,G, u), I denote the set of stable networks, in this case the set of all pairwise
stable networks as PS(G).

For the following, the subsequent notation of link addition and link deletion proof networks
is useful for the results:

Link Addition Proof Networks. A network g is link addition proof if no two players want
to form a link: ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).
Link Deletion Proof Networks. A network g is link deletion proof if no link will be cut by
a single player: ∀ij ∈ g, ui(g) ≥ ui(g\ij).

In a link addition proof network no link will be added and in a link deletion proof network
no links will be deleted by self interested (myopic) players. Both conditions simply coincide
with the two conditions of pairwise stability. Let us denote the set of link addition proof
networks by Ga(G) := {g ∈ G | ∀ij ∈ gN \g : mui(g∪ij, ij) > 0 =⇒ muj(g∪ij, ij) < 0},
and the set of link deletion proof networks by Gd(G) := {g ∈ G | ∀ij ∈ g : mui(g, ij) ≥ 0}.
Trivially, a network which is link addition proof and link deletion proof is pairwise stable,
Ga(G) ∩ Gd(G) = PS(G). Furthermore, the empty network is deletion proof, g∅ ∈ Gd,
since there exists no link which can be deleted in the empty network, and analogously the
complete network is link addition proof, gN ∈ Ga.

2.1 Concavity and Convexity in Network Formation

Consider a network society G = (N,G, u) as defined above. The decision to form or to
sever a link typically depends on players’ marginal utility from a given link. If the marginal
utility from a given link positive, the player has an incentive to form that link. Similar
considerations hold, when we consider marginal utilities of sets of links. Depending on
a given network g, let us denote player i′s marginal utility of a set of links currently in
network g as mui(g, l) = ui(g) − ui(g \ l), s.t. l ⊆ g. Similarly we can denote player i′s
marginal utility of a set of new links by mui(g ∪ l, l) = ui(g ∪ l) − ui(g) for l ⊆ gN \ g.

A common assumption on utility functions in economic theory is convexity or concavity,
representing increasing respectively diminishing marginal utility. Convexity and concav-
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ity, however, are defined for functions on an interval in the real numbers. In the model of
bilateral links, the decision variables (the set of own links) are discrete. Thus, it does not
really make sense to speak about the curvature or derivative of the utility function. We
may, however, think about diminishing or increasing marginal utility of a given link with
respect to the set inclusion ordering “⊆”. In the literature on network formation several
definitions of convexity with respect to own links can be found. For instance, Bloch and
Jackson (2007) define the following:

Definition 1 (Bloch and Jackson (2007)). The utility function ui of player i is convex
(concave) in own current links, if ∀g ∈ G and ∀li ⊆ Li(g) the following holds:

mui(g, li) ≥ (≤)
∑

ij∈li

mui(g, ij).

This convexity property is defined on the set of own links currently contained in a network
g. The marginal payoffs from a given set of links already in a network needs to be at least
as high as the sum of the marginal payoffs from each link separately. By defining the
property on the set of links already in network g, the definition gives the interpretation of
marginal utilities that are obtained from deleting links (instead of adding). This definition
of convexity is little bit counterintuitive, since it is defined with respect to link deletion,
which will turn out to be equivalent to concavity in link addition (see Proposition 1). A
similar version of Definition 1 is given in Calvó-Armengol and Ilkiliç (2009) labeled as
α-supermodularity in own links.4 Taking α = 1 in their definition of α-supermodularity
gives us Definition 1.

The natural dual to Definition 1 is to consider link addition instead of link deletion. Calvó-
Armengol and Ilkiliç (2009) define such a property and call it strong submodularity.5

Adapting the definition of Calvó-Armengol and Ilkiliç (2009) to our framework, we define
convexity (concavity) in own new links, by simply requiring the property to hold for all
links that can be potentially added instead of requiring it for all links that are already
(currently) contained in g.

Definition 2. The utility function ui of player i is convex (concave) in own new links,
if ∀g ∈ G and ∀li ⊆ Li(g) the following holds:

mui(g ∪ li, li) ≥ (≤)
∑

ik∈li

mui(g ∪ ik, ik).

4Note that the set of all possible own links Li(g
N ) together with the set inclusion ordering ⊆ is a lattice

for all i ∈ N . Thus convexity in own current links is equivalent to submodularity of the utility function
in the set of own links (see for instance Ichiishi, 1981, Theorem 1). Therefore, both the definitions of own
current links (Bloch and Jackson, 2007) as well as supermodularity in own links (Calvó-Armengol and
Ilkiliç, 2009) are confusing, since both are defined with respect to the set of links already contained in a
network, and hence have the interpretation of link deletion. For a textbook on supermodular functions
and lattices, see Topkis (1998).

5Calvó-Armengol and Ilkiliç (2009) again introduce a weight β in their definition, which is omitted
here and also allow for simultaneous link deletion.
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Both notions of convexity (concavity) are defined on different sets and indeed have
different interpretations.6 While the first only considers links that are currently in network
g, the latter considers only potential outside links. By looking more closely at the
definitions, convexity (concavity) in own current links expresses something similar than
concavity (convexity) in own new links: Marginal utility of a given link seems to be non-
increasing (non-decreasing) when adding links. However it is not so clear whether both
definitions are actually equivalent: If so, why would we need different definitions for the
same property? A third definition can be found in Goyal and Joshi (2006a). In Goyal
and Joshi’s model, however, the utility function depends only on the degree distribution.
Hence in their paper, convexity in own links is defined by increasing (decreasing) marginal
utility in the number of own links. Instead of comparing numbers, we adopt their definition
by defining convexity with respect to the set inclusion ordering “⊆”.

Definition 3. A utility function ui of player i is convex (concave) in own links, if ∀g ∈ G,
∀li ⊆ Li(g

N \ g), and ∀ij 6∈ g ∪ li :

mui(g ∪ ij, ij) ≤ (≥)mui(g ∪ li ∪ ij, ij).

This definition represents the intuition of non-diminishing (non-increasing) marginal util-
ity of a given link from own links: By adding some links, the marginal utility of a given
link does not decrease (increase). Hence, marginal utility is non-decreasing with respect
to the set inclusion ordering.

Definitions 1, 2, and 3 are all giving a formalization of convexity in network formation.
While the first is defined on the set of links contained in a network, the other two are
defined on the set of links that can potentially be added. Thus, the definitions point into
different directions, i.e. link deletion and link addition. Let us try to organize the three
notions of convexity. Reversing convexity and concavity in Definition 1, the following
result shows that all definitions are equivalent:

Proposition 1. Let ui : G → R the utility function of player i. Then the following
statements are equivalent:

(1) ui is concave (convex) in own current links.

(2) ui is convex (concave) in own new links.

(3) ui is convex (concave) in own links.

The proof can be found in the appendix. The result shows that in fact all three definitions
of convexity are equivalent. Although it may seem odds, let me point out again that
concavity in own current links is equivalent to convexity in own links. The reason is
simply that the definition of concavity in own current links is misleading, since it is defined
on the links already contained in a network. Proposition 1 shows that the definitions
are substitutable, which is used in some of the proofs. Furthermore, the introduction

6Subsequently, I show that concavity in own new links is equivalent to convexity in own current links.
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of Definition 3 helps us understand convexity in network formation by thinking about
diminishing marginal utility. Since all three notions are equivalent, I will thus only refer
to convexity according to Definition 3.

Up to now, we have defined and discussed the effects of changing own links on the marginal
utility of a given link. However, marginal utilities and hence incentives to form links may
also be affected by the links of other players. Again, the marginal utility of a given link
can differ significantly, when other players change links. If the effect of additional links
of other players on marginal utility of a given link is non-negative, then Goyal and Joshi
(2006a) speak about strategic complementarity of the utility function. This label is quite
natural, since it corresponds to the definition of complementary goods: Here, the goods
are the links. However, in contrast to microeconomic theory or industrial organization
the domain of our utility function is discrete. Thus, we cannot assume differentiability of
the utility function. In order to find a reasonable definition of strategic complementary,
we have to consider the set inclusion ordering ⊆.

However, we cannot turn to Goyal and Joshi (2006a) and take their definition of strategic
complements, since in their work the domain of the utility function is not the network
itself, but the number of links. This assumption, however, is itself quite restrictive: Two
networks which have the same number of own and other players’s links imply the same
utility. Thus they define strategic complements respectively substitutes as increasing
marginal utility of a given link in the number of other players links. Rather, I adapt their
definition to our more general class of utility functions by defining it with respect to set
inclusion ordering:

Definition 4. A utility function ui of player i satisfies the strategic complements (substi-
tutes) property, if for all g ∈ G and any set of links l−i ⊆ L−i(g

N \ g) it holds that

mui(g, ij) ≤ (≥)mui(g ∪ l−i, ij). (1)

In words, if the utility function satisfies the strategic complements (substitutes) property
and other players add links such that player i is not involved, then the marginal utility
of a given link does not decrease (increase).7

Although both notions of convexity (concavity) and complementarity (substitutability)
may seem restrictive, since both have to hold for the whole set of networks G, we find
many examples in the literature of network formation, which satisfy the properties. I
present some of them subsequently.

7As an analog to the equivalence between the definitions of convexity in own links and supermodularity
of the utility function in Li(g

N ), we can also relate the strategic complements (substitutes) property
with the property of increasing (decreasing) differences (for the definition of increasing differences see e.g.
Topkis, 1998); the utility function ui has increasing (decreasing) differences in (gi, g−i), if and only if it
satisfies the strategic complements (substitutes) property. Here gi = Li(g) and g−i = L−i(g).
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3 The Existence of Pairwise Stable Networks

Up to now, we can hardly find satisfying results for the existence of pairwise stable
networks. I have mentioned two results already and to my knowledge Jackson and Watts
(2002b) and Chakrabarti and Gilles (2007) are the only studies which do not require
any specification on the profile of utility functions for the existence results. However
both require the existence of some kind of potential function, which is a very restrictive
assumption. In fact both works do not present examples from network formation litera-
ture, which satisfy these properties. Rather than potential functions, I will use here the
notions of convexity (concavity) and complementarity (substitutability) and study their
implications for the structure of pairwise stable networks.

Some of the existence results in Jackson and Watts (2002b) are shown by improving paths.
An improving path is a sequence of networks such that each two consecutive networks in
the sequence only differ in one link and the addition (or deletion) of that link is improving
for both (one of the two) involved players. I adapt the formal definition from Jackson and
Watts (2002b):

Improving Paths. An improving path from network g to network g′ is a finite sequence of
networks (g1, ..., gK) such that gk ∈ G for all k = 1, ..., K, g1 = g, gK = g′, and for all
k = 1, ..., K − 1 it holds that either

gk+1 = gk \ ij and ui(gk \ ij) > ui(gk), or

gk+1 = gk ∪ ij and ui(gk ∪ ij) > ui(gk) and uj(gk ∪ ij) ≥ uj(gk).

Thus, given a network gk the next element in an improving path gk+1 is formed either by
one player beneficially cutting a link or by two players creating a link, which is beneficial
to both, reflecting again the idea that two players need to agree about forming a link, but
one player can delete any link by himself. Implicitly it is assumed here that players are
myopic: When adding or severing a link they do not take into account the final network
in the sequence, but only see the myopic improvement.8 We can trivially observe that a
network g is pairwise stable if and only if there is no improvement path leaving g.

Given the notion of improving paths, Jackson and Watts (2002b) define an cycle C as an
improving path (g1, ..., gK) such that g1 = gK . Thus, in an improvement cycle, players
myopically add and cut links but finally arrive at the same network. A cycle C is a
closed cycle, if for all networks g ∈ C there does not exists an improving path leading
to a network g′ /∈ C. In a dynamic framework, where players can only add or sever one
link at a time and play a myopic best response, then closed cycles and pairwise stable
networks would constitute recurrent classes: Once a closed cycle is reached, no player will
add or cut links that lead to a network outside the closed cycle.9 Therefore, closed cycles

8If we assume farsighted behavior, then individuals do not compare two consecutive elements of the
sequence, but rather the current network to the resulting network. For a study on farsighted behavior,
see Page (2004).

9See Jackson and Watts (2002a) for such a setup and the observation that pairwise stable networks
and closed cycles are the only recurrent classes.
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represent something similar than pairwise stable networks: If we assume myopic players,
who can only alter one link at a time and always play a best response, then once a stable
network or a closed cycle is reached, it will never be abandoned. In a sense, closed cycles
are not less stable than pairwise stable networks.

With these definitions, Jackson and Watts (2002b) get the following important result
stated as a lemma.

Lemma 1 (Jackson and Watts, 2002b). For any network society G, there exists at least
one pairwise stable network or a closed cycle of networks.

In Jackson and Watts (2002b) and in Chakrabarti and Gilles (2007) this lemma is used to
show existence of a pairwise stable network. Both papers show in a similar fashion that
a network society with a utility function, which allows for an ordinal potential, implies
non-existence of cycles, and hence the existence of pairwise stable networks by Lemma 1.

Lemma 1 implies that one way to proof existence of pairwise stable networks is to show
non-existence of closed cycles. With the property of ordinal potentials however, it is
shown in both works of Jackson and Watts (2002b) and Chakrabarti and Gilles (2007)
that no cycles exist. However, to show existence of pairwise stable networks, we do not
need to rule out cycles, just closed cycles. The following lemma shows conditions under
which closed cycles fail not exist:

Lemma 2. Suppose an improvement cycle C either that does not contain

• a link addition proof network, i.e ∀g ∈ C =⇒ g /∈ Ga, or

• a link deletion proof network, i.e ∀g ∈ C =⇒ g /∈ Gd.

Then C cannot be a closed cycle.

The proof is straightforward and presented in the appendix. If a cycle does not contain
a link addition proof network, then it cannot be closed, since there always exists an
improving path to a link addition proof network. This is trivial, since we can always
add links in a non-link addition proof network. Thus there exists an improving path
to either the complete network (which is link addition proof) or another link addition
proof network. But we assumed that a link addition proof network is not part of the
improvement cycle. Since we have constructed an improvement path leading out of the
cycle, the cycle cannot be closed. The second part is shown analogously.

Lemma 2 is helpful for proving the main result. In the proof of Theorem 1, I show that
no addition proof network can be part of any improvement cycle, ruling out the existence
of closed cycles and thus implying the existence of pairwise stable networks.
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4 The Implications of Convexity and Strategic Com-

plements for the Structure of Pairwise Stable Net-

works

In this part, I show the implications of a profile of utility functions satisfying the assump-
tions of convexity and strategic complements on the structure of pairwise stable networks.
Recall, that convexity in own links means that the marginal utility from a given link is
non-decreasing when adding other own links. In other words, the returns from own links
are non-decreasing with respect to the set inclusion ordering. The assumption of strategic
complements refers to the effects of additional links of other players on marginal utility.
The incentive (marginal utility) to form a given link is non-decreasing when other players
add links. Hence, the effects of both adding own and other players links are non-negative
for the incentive to form a given link. The main result for a network society such that the
profile of utility functions satisfies convexity in own links and the strategic complements
property is that there always exists a pairwise stable network. The intuition behind this
result, presented in Theorem 1, is the following: if a network g is link deletion proof, then
any improvement from g can only involve the addition of links. In an improving path,
a successor of a link deletion proof network g is again link deletion proof since marginal
utilities of all current (and new) links have not decreased, if convexity and strategic
complements are satisfied. Continuing in this manner a pairwise stable networks has to
be reached eventually. In other words, no cycle can contain a deletion proof network since
otherwise it cannot be a cycle. The following result summarizes this intuition.

Lemma 3. Let G be a network society and suppose that u satisfies the strategic comple-
ments property and convexity in own links. Then:

(1) No link addition proof network g ∈ Ga can be part of an improvement cycle.

(2) No link deletion proof network g ∈ Gd can be part of an improvement cycle.

The proof is presented in the appendix. Convexity and strategic complements imply
that adding links to a deletion proof network does not decrease the marginal utility of
a given link since the effects of own links and the effects of other links are non-negative
on marginal utility. Thus, once a link deletion proof network is reached, any improving
path emanating from it only involves link addition. Hence, an improvement cycle cannot
contain a link deletion proof network since otherwise it cannot be a cycle (since no links
will ever be deleted). Analogous considerations hold for link addition proofness. The
following theorem summarizes the results obtained in Lemma 1-3.

Theorem 1. Suppose a profile of utility functions u = (u1, ..., un) of a network society G

satisfies the strategic complements property and convexity in own links. Then:

(1) There does not exist a closed improvement cycle.

(2) There exists a pairwise stable network.
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This result is an immediate implication of Lemma 2 and Lemma 3. The proof of Theo-
rem 1 is thus omitted since by Lemma 3 no addition proof network can be part of any
improvement cycle in a network society G with a profile of utility functions satisfying
convexity and strategic complements. Then, by Lemma 2 there does not exist a closed
cycle, implying part (1) of Theorem 1. By the result of Jackson and Watts (2002b)
(see Lemma 1) we get thus existence of pairwise stable networks, part (2) of Theorem 1.
This result shows that convexity and strategic complements are indeed sufficient for the
existence of pairwise stable networks. Particularly appealing is generality of the result,
and Theorem 1 is therefore in the spirit of the existence results of Jackson and Watts
(2002b) and Chakrabarti and Gilles (2007). However, the assumptions imposed here seem
to be more intuitive and less restrictive, as they simply reflect non-diminishing marginal
utility. Furthermore, they are easy to check and instead of the papers above, I can easily
find models in the literature which satisfy the assumptions of convexity and strategic
complements. Among them is the model of “Provision of a Pure Public” by Goyal and
Joshi (2006a), presented subsequently.

By simply requiring the properties of convexity and strategic complements, we thus arrive
at a general result: there always exists a pairwise stable network. The result is an
analog to the existence of pure strategy Nash equilibria for supermodular games (see
e.g. Milgrom and Rogers (1990), Theorem 5) since the same conditions on the utility
function are satisfied; convexity in own links is equivalent to supermodularity and strategic
complements are equivalent to increasing differences. However, in contrast to existence
of pure strategy Nash equilibria, we get here the existence of pairwise stable networks.10

In some models of network formation these properties result from the setup in the model.
For instance, Example 1 taken from Goyal and Joshi (2006a) and presented subsequently
satisfies the assumptions of Theorem 1. In general, however, a more natural assump-
tion on the utility function is concavity, i.e. diminishing marginal utility together with
substitutability. These are models, where additional (own and other) links decrease the
incentive to form (the marginal utility of) a given link, i.e. links are substitutable. These
assumptions will be discussed in the next subsection.

Example 1 (Goyal and Joshi (2006a), Provision of a Pure Public Good). In this model
there are n players choosing an output level xi (second stage) to produce a public good
which is valuable for everybody π̃i(x) =

∑

i∈N xi. Players can collaborate (first stage)
and share their knowledge about production of the public good, which reduces the marginal
costs of producing the output, but is costly with c > 0. The marginal costs of producing
the public good is given by fi(xi, g) = 1

2
( xi

di(g)+1
)2, for all i ∈ N , where di represents player

i’s degree, i.e. di(g) = |Li(g)|.

Given di(g), player i’s maximization problem at the second stage is thus maxxi∈R+
xi +

∑

j∈N\i xj −
1
2
( xi

di(g)+1
)2. This implies optimal output of x∗

i (g) = (di(g) + 1)2. Hence, in

10Pairwise Stability is an entirely different concept than pure strategy Nash equilibria. Note that in
the Myerson network formation game, where each player can announce the set of players he wants to
form a link with and a link is formed if and only if two players announce each other, there trivially exist
pure strategy Nash equilibria. For instance the strategy profile, where any player announces the empty
set is a Nash equilibrium.
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equilibrium every player chooses optimal output x∗
i (g) for all i ∈ N , yielding the utility

function

uPG
i (g) =

1

2
(di(g) + 1)2 +

∑

j∈N\{i}

(dj(g) + 1)2 − cdi(g),

where the first term is the difference of own (equilibrium-) output and production costs,
the second term is the (equilibrium-) output of all other agents, and the last term is the
costs of collaboration. Marginal utility of a given link ij satisfies

muPG
i (g ∪ ij, ij) = 9/2 + di(g) + 2dj(g) − c.

Thus, marginal utility of a given link is increasing in both di and dj, implying convexity
and strategic complements.

The reason that the “Provision of a Pure Public” model satisfies convexity and strategic
complements is primely due to the structure of marginal cost of producing the output:
an additional link lowers marginal costs quadratically, hence increasing optimal output
quadratically. Since the utility function is linear in own and other player’s public good
output, we get convexity in of own links and strategic complements.

5 The Implications of Concavity and Strategic Sub-

stitutes for the Structure of Pairwise Stable Net-

works

In many models of network formation the effects of own and other players’ links on
marginal utility are just the other way around: marginal utility is decreasing in own links
and links are substitutes rather than complements. This is also more intuitive if we think
about markets and goods. A common assumption in economic theory is diminishing
marginal utility. The more an individual consumes the less valuable is an additional
consumption good. This is also natural if we think about network formation: we find
many models and I present some of them in this chapter, where concavity in own links is
satisfied instead of convexity. Here concavity and substitutability, again, have a common
interpretation: the effects of additional own and other players’ links on marginal utility of
any given link are non-positive, in other words, links are substitutable. This is especially
true in models where connectivity to other players matters, i.e. models where the utility
function is decreasing in distances to other players, such as the Connections Model.11

For the case of convexity and strategic complements, there always exists a pairwise stable
network. This is not true anymore in the case of concavity and substitutability. Consider
the following example, which is kept as simple as possible to show that even though both
substitutability and convexity are satisfied, there does not exist a pairwise stable network.

11Calvó-Armengol and Ilkiliç (2009) show that the homogeneous connections model satisfies concavity
in own links. A more general proof is given in Büchel and Hellmann (2009) for the heterogeneous
connections model.
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Example 2. Let G = (N,G, u) such that N = {1, 2, 3}. Suppose that mui(ij, ij) > 0
for all i, j ∈ N , meaning that any player wants to form a link to any other player in the
empty network. Furthermore, in the complete network any player wants to delete links:
mui(g

N , ij) < 0 for all i, j ∈ N , implying also that no player wants to form an additional
link, when two links are already in the network. In the case of two links, let the marginals
of current links satisfy:

network player 1 player 2 player 3
g = {12, 13} mu1({12, 13}, 13) > 0 mu2({12, 13}, 12) < 0 mu3({12, 13}, 13) > 0
g = {12, 23} mu1({12, 23}, 12) > 0 mu2({12, 23}, 12) > 0 mu3({12, 23}, 23) < 0
g = {13, 23} mu1({13, 23}, 13) < 0 mu2({12, 23}, 23) > 0 mu3({12, 23}, 23) > 0

Suppose now, that the utility functions satisfies the above conditions on the marginals.
With these assumptions only, it is easy to see that there does not exist a pairwise stable
network. This is illustrated Figure 1.

Figure 1: The closed cycle C of networks of Example 2

The networks presented in Figure 1 form a closed cycle. Hence, none of those can be
pairwise stable. Note that the only networks not shown in Figure 1 are the empty and
the complete network which are trivially on an improving path to the closed cycle C, and
therefore not stable, since mui(ij, ij) > 0 and mui(g

N , ij) < 0 for all i, j ∈ N .
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I show now, that we can easily construct a utility function satisfying concavity and strategic
substitutes and the above assumptions on the marginals. Consider, for instance, the
following profile of utility functions, such that ui(g

∅) = 0 and ui(g
N) = −1 for all i ∈ N ,

ui(ij) = 2, and uk(ij) = 1 forall k, i, j ∈ N such that k 6= i, j. Furthermore, for |g| = 2
it holds that uj(ij, jk) = 3 for all i, j, k ∈ N and u2(12, 13) = 0 and u3(12, 13) = 2,
u1(12, 23) = 2 and u3(12, 23) = 0, and u1(13, 23) = 0 and u2(13, 23) = 2. It is easy to
check that this particular utility function satisfies the above assumption on the marginals
as well as concavity and strategic substitutes. Consider, for instance player 1. Calculating
the marginal utilities for the above specified utility function gives:

mu1({12}, 12) > mu1({12, 13}, 12), mu1({12, 23}, 12) > mu1(g
N , 12),

mu1({13}, 13) > mu1({12, 13}, 13), mu1({13, 23}, 13) > mu1(g
N , 13),

implying that concavity is satisfied for player 1. Furthermore, since

mu1({12}, 12) > mu1({12, 23}, 12), mu1({12, 13}, 12) > mu1(g
N , 12)

mu1({13}, 13) > mu1({13, 23}, 13), mu1({12, 13}, 13) > mu1(g
N , 13),

the strategic substitutes property is satisfied. Moreover, it is easy to see that the marginal
utilities satisfy the conditions above. Analogous considerations hold for the other two
players. Hence, there does not exist a pairwise stable network, although the profile of
utility functions satisfies concavity and substitutes.

Generally, Example 2 shows that existence of a pairwise stable network is not guaranteed
in a network society with a profile of utility functions satisfying concavity and strategic
substitutes. In other words, these conditions are not sufficient for the existence of pairwise
stable networks. Lemma 1 states that non-existence of a pairwise stable network implies
existence of a closed cycle. This is of course true in Example 2. However, one should
not be misled and suppose that convexity and strategic substitutes are sufficient for the
existence of a closed cycle. It is easy to see that existence of a closed cycle is generally
not guaranteed: consider, for instance, a network society with a profile of utility functions
such that own and other players’ links do not have an effect on marginal utilities, i.e.
mui(g, ij) = mui(g

′, ij) for all g, g′ ∈ G and for all ij ∈ gN . Here, both concavity
and convexity together with strategic substitutes and strategic complements are satisfied.
Thus, by Theorem 1 there does not exist a closed cycle, although strategic substitutes
and concavity are satisfied. Thus, we can neither guarantee existence of pairwise stable
networks nor existence of closed cycles, when the utility function only satisfies concavity
and strategic substitutes.

The existence results for network societies with a profile of utility functions satisfying
concavity and strategic substitutes are negative. However, the assumptions put some
structure on the incentives of players, which may thus be helpful deriving some general
properties of stable networks and improving paths in cases where concavity and strategic
substitutes are satisfied. In the case of concavity and strategic complements, a deletion
(addition) proof network can only have a successor in an improving path that is again
deletion (addition) proof, which was the main idea to show the existence of pairwise
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stable networks. However, the effects of own and other players’ links are just the other
way around if we have concavity and strategic substitutes. Thus, reaching a link deletion
proof network in an improving path by adding a link, implies that the predecessor should
also be deletion proof. The following result can be interpreted this way.

Lemma 4. Let there be a network society G such that u satisfies the strategic substitutes
property and concavity in own links. Then the following holds:

(1) If a network g ∈ G is link deletion proof, then all networks g′ ⊆ g are link deletion
proof, g′ ∈ Gd.

(2) If a network g ∈ G is link addition proof, then all networks g′ ⊇ g are addition
proof, g′ ∈ Ga.

The proof is straightforward and presented in the appendix. However, the assertion is
strong. Any subnetwork of a deletion proof network is deletion proof and any super-
network of an addition proof network is also addition proof. Thus, the improving path
result from Lemma 2 is just reversed in the case of concavity and strategic substitutes:
a link addition proof network that is reached in an improving path by deleting a link
has a predecessor which is addition proof. In Lemma 2, where convexity and strategic
complements are satisfied each link addition proof network (if it is not pairwise stable)
has a successor in an improving path that is link addition proof.

Lemma 4 has some trivial implications: since any supernetwork (subnetwork) of a link
addition (deletion) proof network is link addition (deletion) proof, all networks are link
addition (deletion) proof if the empty (complete) network is link addition (deletion) proof.
Of course in this case the empty (complete) network is pairwise stable. Hence, there
cannot exist any cycle since all other networks are link addition (deletion) proof in that
case.

Furthermore, note that a pairwise stable network g is both link deletion proof and link
addition proof. Thus, by Lemma 4 any supernetwork of pairwise stable network g needs
to be addition proof and any subnetwork of g needs to be deletion proof. Therefore,
Lemma 4 suggests that in generic cases there may be no super- or subnetworks of a
pairwise stable network g which are also pairwise stable. The intuition is the following:
suppose there exists another pairwise stable network g′ and suppose g ( g′. Since any
subnetwork of g′ (since g′ is pairwise stable) is link deletion proof and any supernetwork
of g (since g is pairwise stable) is link addition proof, this immediately implies that all g̃
such that g ⊆ g̃ ⊆ g′ are also pairwise stable. To exclude this non-generic case consider
the following definition adapted from Jackson and Watts (2002b).12

Definition 5 (Jackson and Wolinsky, 1996). The utility function ui of player i exhibits
no indifference if for all g ∈ G and for any link ij ∈ Li(g

N \ g) the following holds:
ui(g) 6= ui(g ∪ ij).

12At first glance, the definition in Jackson and Watts (2002b) seems different from our Definition 5.
However, both are equivalent as one can easily verify.
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It is clear that in case of no indifference and concavity and strategic substitutes the above
described case cannot occur since otherwise any network in between two pairwise stable
networks is stable and thus some players are indifferent between pairwise stable networks,
which is excluded by Definition 5. The following result summarizes this intuition.

Theorem 2. Let G be a network society and suppose u satisfies the strategic substitutes
property, concavity in own links, and exhibits no indifference. Then:

(1) If g is pairwise stable, then for all g′ ⊂ g and for all g′ ⊃ g it holds that g′ 6∈ [PS(G)].

(2) If gN is pairwise stable, then there exists no other pairwise stable network.

(3) If g∅ is pairwise stable, then there exists no other pairwise stable network.

As usual the proof can be found in the appendix of this chapter. Note that in the proof
the no-indifference property is only needed locally, i.e. only needed for the pairwise
stable networks. We could similarly put a slightly stronger assumption on the pairwise
stable networks, requiring muk(g ∪ ij, ij) < 0 for at least one k ∈ {i, j} instead of
mui(g ∪ ij, ij) > 0 =⇒ muj(g ∪ ij, ij) < 0 as property (ii) in Definition 2, which
introduces pairwise stability. With that notion we would have the same statement with
weaker requirements since if u satisfies the no-indifference property, then for any pairwise
stable network we have muk(g ∪ ij, ij) < 0 for at least one k ∈ {i, j}. Thus, the no-
indifference property (or weaker: the adjusted pairwise stability concept) rules out the
non-generic case, where players are indifferent between a pairwise stable network and an
adjacent network.

Hence, rather than existence of pairwise stability we get a uniqueness result in case
of concavity and strategic substitutes together with no indifference: a pairwise stable
network g (if it exists) is “locally” unique, there exists no other pairwise stable network
which contains g or is contained in g. In other words, there exists no other pairwise
stable network which can be attained by only adding respectively deleting any set of links
from g. Since G together with the set inclusion ordering ⊆ is a partially ordered set,
local uniqueness can also be interpreted the following way: if a network g ∈ G is pairwise
stable, then for any network g′ ∈ G such that g and g′ are ordered by the bilateral relation
⊆ it holds that g′ is pairwise stable if and only if g′ = g. Furthermore, if the complete or
the empty network is stable, then it is the only stable network.

There are several models of network formation in the literature which satisfy the assump-
tions of concavity and strategic substitutes. Consider the following model, taken from
Goyal and Joshi (2006a).

Example 3 (Goyal and Joshi (2006a), Friendships Networks). In the friendship model,
there are n individuals who derive utility from social interaction. Individuals can form
friendships and their utility is increasing in the number of friends and the time each
individual is able to spend with his friends. Each player has a fixed amount of time
available and allocates it equally among his friends. One representation by a utility
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function capturing the above described setting is given by:

ui(g) =
√

di(g) +
∑

j∈Ni(g)

1

dj(g)
,

resembling the above assumptions. Here, again, di(g) := |Li(g)| is the number of player
i′s links, also called degree. The marginal utility of a given link can be calculated:

mui(g ∪ ik, ik) =
√

di(g) + 1 −
√

di(g) +
1

dk(g)
.

Therefore, mui(g∪ik, ik) is decreasing in own degree and thus in own links and decreasing
in player k’s degree and thus non-increasing in other players’ links. Hence, concavity and
strategic substitutes are satisfied.

Other examples, satisfying the properties of concavity and strategic substitutes are the
Free-Trade-Agreements-Model by Goyal and Joshi (2006b) and the Patent Races Model by
Goyal and Joshi (2006a). Therefore, as a concluding remark of the discussion of networks
societies with a profile of utility functions satisfying concavity and strategic substitutes,
we see that these properties are satisfied in many models in the literature and hence can
be seen as very natural and intuitive properties.

6 Conclusion

In this paper, I have studied conditions which are sufficient for the existence of pairwise
stable networks. I have focused on definitions which seem quite natural and are widely
used in economics and network formation: convexity and concavity, describing the effects
of own links on marginal utility, and complementarity and substitutability representing
the effects of other players links on marginal utility. In the case of convexity (concavity)
several definitions can be found in the literature. All of them are equivalent, and they have
the interpretation of non-diminishing and non-increasing marginal utilities with respect
to the set inclusion ordering.

In the main result of this paper it is shown that the properties of convexity and com-
plementarity are sufficient for the existence of pairwise stable networks. Past studies
needed strong and restrictive assumptions to derive sufficient conditions for the existence
of pairwise stable networks and were not able to find models in the literature satisfying
the assumptions. The properties of convexity and complementarity, however, can be
found in some models of which I presented one example here. An even more intuitive
assumption on the utility function is concavity and substitutability representing non-
increasing marginal utility. These conditions are, however, not sufficient for existence of
pairwise stable networks. Instead, conditional on existence, pairwise stable networks are
locally unique: in generic cases, there exists no other network that can be reached by
link addition or link deletion which is pairwise stable. Again, many network formation
models from the literature can be found satisfying the assumptions of concavity and
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substitutability. It is not possible to obtain results of the same generality for the other
combinations of the above properties, since then the effects of own and other players’ links
on marginals are opposite.

A particular feature of this study is the generality of the analysis. The utility function
is not specified, it is only restricted to natural settings which are not strong as many
models in the literature share them. The contribution of this paper to the network
formation literature is three-fold. First, the notion of convexity and concavity is clarified
and definitions in the literature are organized. Second, I am able to establish an existence
result only depending on very natural settings compared to past work. Third, the results
elaborate on the general structure of pairwise stable networks. Some of them may help
characterize pairwise stable networks in different models of network formation, using e.g.
the uniqueness result.
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APPENDIX

Proof of Proposition 1.

(3)⇒ (2) Suppose that for a player i ∈ N , ui is convex (concave) in own links. I show that then
ui is also convex in own new links, i.e. mui(g∪li, li) ≥

∑

ij∈li
mui(g∪ij, ij) for every

g ∈ G, and for any set of own new links li ⊆ Li(g
N\g). Let g ∈ G and li ⊆ Li(g

N\g).
Since any network is a set of single links, li can also be written as li = {ij1, ..., ijm}.
By definition of marginal utility we get mui(g ∪ li, li) = ui(g ∪ li) − ui(g). We can
add zeros and rearrange the summation to get:

mui(g ∪ li, li) = ui(g ∪ li) − ui(g)

= ui(g ∪ li) − ui(g ∪ li \ ij1) + ui(g ∪ li \ ij1)

−ui(g ∪ li \ (ij1 ∪ ij2)) + ui(g ∪ li \ (ij1 ∪ ij2)) − ...

−ui(g ∪ li \ {
m−1
∪

k=1
ijk}) + ui(g ∪ li \ {

m−1
∪

k=1
ijk}) − ui(g)

=
m

∑

x=1

(

ui(g ∪ li \ {
x−1
∪

k=1
ijk}) − ui(g ∪ li \ {

x
∪

k=1
ijk})

)

(2)

We can now apply convexity in own links by leaving out the links li \ {
x
∪

k=1
ijk} in

every summand and get:

m
∑

x=1

(

ui(g ∪ li \ {
x−1
∪

k=1
ijk}) − ui(g ∪ li \ {

x
∪

k=1
ijk})

)

≥
m

∑

x=1

(ui(g ∪ ijx) − ui(g))

=
∑

ij∈li

(ui(g ∪ ij) − ui(g)) =
∑

ij∈li

mui(g ∪ ij, ij),

implying convexity in own new links, since li and g, where chosen arbitrarily.

(3)⇒(1) This step can be shown analogously to step 1. Suppose that for a player i ∈ N , ui

is convex in own links. I show that then ui is also concave in own current links, i.e.
mui(g, li) ≤

∑

ij∈li
mui(g, ij) for every g ∈ G, and li ⊆ Li(g).

Let g ∈ G and li ⊆ Li(g). We can write li as a list of its links, li = {ij1, ..., ijm}. By
definition of marginal utility we get mui(g, li) = ui(g)− ui(g \ li). Similar to step 1,
I add zeros and rearrange the summation to get:

mui(g, li) = ui(g) − ui(g \ li)

= ui(g) − ui(g \ ij1) + ui(g \ ij1) − ui(g \ (ij1 ∪ ij2)) + ui(g \ (ij1 ∪ ij2))

−... + ... − ui(g \ {
m−1
∪

k=1
ijk}) + ui(g \ {

m−1
∪

k=1
ijk}) − ui(g \ li)

=
m

∑

x=1

(

ui(g \ {
x−1
∪

k=1
ijk}) − ui(g \ {

x

∪)
k=1

ijk})

)
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By convexity in own links, adding a set of links increases the marginal utility of a

given link. Thus, adding {
x−1
∪

k=1
ijk} to the network g \ {

x−1
∪

k=1
ijk} in every summand

yields higher marginals:

m
∑

x=1

(

ui(g \ {
x−1
∪

k=1
ijk}) − ui(g \ {

x

∪)
k=1

ijk})

)

≤

m
∑

x=1

(ui(g) − ui(g \ ijx))

=
∑

ij∈li

(ui(g) − ui(g \ ij)) =
∑

ij∈li

mui(g, ij),

implying concavity in own current links, since g ∈ G and li ⊆ Li(g) where chosen
arbitrarily.

(2)⇒(3) Now, suppose ui is convex in own new links. By Definition 2 it holds for all g ∈ G
and for any set of own links li ⊆ Li(g

N \ g) that:

mui(g ∪ li, li) ≥
∑

ij∈li

mui(g ∪ ij, ij) (3)

Applying (3) to a set of own links l̄i ⊆ Li(g
N \ g) of size two, e.g. l̄i = {ik, il} for

some links ik, il ∈ Li(g
N \ g), implies:

mui(g ∪ ik ∪ il, ik ∪ il) ≥ mui(g ∪ ik, ik) + mui(g ∪ il, il), (4)

for all g ∈ G, and for any two links ik, il ∈ Li(g
N \ g). By equivalently rearranging

equation (4) we get:

⇔ ui(g ∪ ik ∪ il) − ui(g) ≥ ui(g ∪ ik) − ui(g) + ui(g ∪ il) − ui(g)

⇔ ui(g ∪ ik ∪ il) − ui(g ∪ il) ≥ ui(g ∪ ik) − ui(g)

⇔ mui(g ∪ il ∪ ik, ik) ≥ mui(g ∪ ik, ik) (5)

This holds again for all g ∈ G, and for any two links ik, il ∈ Li(g
N\g). I complete the

proof of this step by showing that this implies convexity in own links. Let there be a
network g̃ ∈ N , a link ij 6∈ g̃ and set of own links {ij1, ..., ijm} = l̃i ⊆ Li(g

N\(g̃∪ij)).

Define a sequence of networks (g0, g1, ..., gm) such that g0 = g̃ and gk = g̃ ∪ (
k
∪

l=1
ijl)

for all k = 1, ...,m. Applying inequality (5) to every gk in the sequence, such that
k = 0, 1, ...,m − 1, we get:

mui(gk ∪ ij, ij)
(5)

≤ mui(gk ∪ ijk+1 ∪ ij, ij) = mui(gk+1 ∪ ij, ij), (6)

for all k = 0, 1, ...,m − 1. Since the inequality holds for every two consecutive
elements in the sequence, it holds especially for the first and last element (g0 = g̃
and gm = g̃ ∪ l̃i) in the sequence:

(6) ⇒ mui(g̃, ij) ≤ mui(gm ∪ ij, ij) = mui(g̃ ∪ l̃i ∪ ij, ij)
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which, again holds for all networks g̃ ∈ G, for all links ij 6∈ g̃ and l̃i ⊆ Li(g
N\(g̃∪ij)),

implying convexity in own links.

(1)⇒ (3) We show this step similarly to step 3. By definition of concavity in own current
links we get

mui(g, li) ≤
∑

ij∈li

mui(g, ij), (7)

for all i ∈ N , for all g ∈ G and for any set of own current links li ⊆ Li(g). Letting
li = {ik, il} for any two links ij, ik ∈ Li(g), (7) implies:

mui(g, ik ∪ il) ≤ mui(g, ik) + mui(g, il). (8)

Rearranging (8) gives:

⇔ ui(g) − ui(g \ {ik, il}) ≤ ui(g) − ui(g \ ik) + ui(g) − ui(g \ il)

⇔ ui(g \ il) − ui(g \ {ik, il}) ≤ ui(g) − ui(g \ ik)

⇔ ui(g
′ ∪ ik) − ui(g

′) ≤ ui(g
′ ∪ ik ∪ il) − ui(g

′ ∪ il))

⇔ mui(g
′ ∪ ik, ik) ≤ mui(g

′ ∪ il ∪ ik, ik), (9)

with g′ := g \ {il, ik}. Equation (9) holds for all i ∈ N , for all g′ ∈ G, and for any
two links ik, il ∈ Li(g

N \ g′), and thus is equivalent to (5), completing the proof,
since (5) implies convexity in own links, as shown in step 3.

To show the analogous equivalences for concavity in own links one can simply invert all
“≤”-signs.

Proof of Lemma 2.

(1) Let C be an improvement cycle and suppose for all g ∈ C it holds that g /∈ Ga,
i.e. no link addition proof network is part of the improvement cycle C. Trivially
for all networks g /∈ Ga there exists an improvement path leading to a link addition
proof network: Take g /∈ Ga, then there exists by definition a link ij ∈ gN \ g such
that mui(g ∪ ij, ij) > 0 and muj(g ∪ ij, ij) ≥ 0. Thus the link can be added as
an improvement in the sense of improvement paths. If the new network is addition
proof, then we are done, otherwise there exists another link which can be added.
Hence, we can construct an improvement path that only involves the addition of
links. Because the number of links is finite, this process leads either to a link addition
proof network or eventually to the complete network, which is trivially addition
proof. Thus, C cannot be a closed cycle, since it does not contain an addition proof
network, implying that there exists an improving path to an addition proof network,
which is not contained in C.

(2) This part is completely analogous, since if no network in an improvement cycle
is deletion proof then there exists an improvement path which only involves link
deletion, leading eventually to an deletion proof network, e.g. the empty network.
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Proof of Lemma 3.

(1) Let g ∈ Ga, and suppose the contrary of the proposition is true, i.e. suppose
there exists an improvement path from g to itself, labeled by (g1, ..., gm), such that
g1 = gm = g. For any improvement path emanating from g, links can only be deleted
by assumption, since g ∈ Ga. Since (g1, ..., gm) is a cycle, there have to be links,
which are added along the improvement path. Let gk be the first network in the
improvement path, which is reached by adding a link from network gk−1. Label the
first link that is added along the sequence as ij. This link ij is either not contained
in g (i.e. is not part of the first network in the sequence) or is deleted along the
sequence. For h < k, define gh as the network in sequence such that is reached by
deleting the link ij from network gh−1 (set h = 1 if the link ij is not contained in
g), i.e. gh = gh−1 − ij or let h = 1 if ij 6∈ g. Since we assume that (g1, ..., gm)
is an improving path, we get 0 > mui(gh ∪ ij, ij) for at least one of the involved
players, if h ≥ 2. Furthermore, since g is assumed to be addition proof, we get either
0 ≥ mui(gh ∪ ij, ij) for both players or 0 > mui(gh ∪ ij, ij) for at least one of the
involved players if h = 1. Let l := gh \ gk−1, li := Li(gh \ gk−1) and l−i := l \ li. We
defined gk as the first network in the sequence that is reached by adding a link to
the predecessor. Hence, up to gk−1 links have only been deleted along the sequence.
Since h < k, we get thus gk−1 ∪ li ∪ l−i = gh. Now, since u satisfies convexity in own
links we get:

mui(gk−1 ∪ ij, ij) ≤ mui(gk−1 ∪ li ∪ ij, ij). (10)

Similarly by strategic complements,

mui(gk−1 ∪ li ∪ ij, ij) ≤ mui(gk−1 ∪ li ∪ l−i ∪ ij, ij). (11)

Notice that gk−1 ∪ li ∪ l−i = gh implying by (10) and (11): mui(gk−1 ∪ ij, ij) ≤
mui(gh ∪ ij, ij). But for mui(gh ∪ ij, ij) it holds that mui(gh ∪ ij, ij) < 0 for one
player or mui(gh ∪ ij, ij) ≤ 0 for both involved players. Hence the link is not
added along the improvement path, contradicting the supposition that there exists
an improvement cycle, where g ∈ Ga is part of.

(2) Similarly to (1), suppose that g ∈ Gd and the contrary of the proposition is true.
Take such an improvement path from g to itself, labeled by (g1, ..., gm) such that
g1 = gm = g. For any improvement from g, links can only be added by assumption.
Let gk be the first network in the sequence that is reached by deleting a link, say
gk = gk−1 − ij and let i be the player, such that mui(gk−1, ij) < 0. This link has
either been added along the improvement path or has initially been part of g. Let
h < k be such that gh = gh−1 + ij or let h = 1 if ij ∈ g. By definition of g and
improving paths, we get 0 ≤ mui(gh, ij). Since gk−1 is a reached by only adding links
from gh, let l = gk−1 \ gh be the set of links that are added. Let li = l ∩ Li(g

N) the
subset of those links, where player i is involved and l−i = l\ li the set of links, where
player i is not involved. By strategic complements and convexity, it holds that:
mui(gh, ij) ≤ mui(gh ∪ li, ij) ≤ mui(gh ∪ li ∪ l−i, ij) = mui(gk−1, ij), contradicting
the supposition that there exists an improvement cycle, where g ∈ Gd is part of.
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Proof of Lemma 4.

(1) Let g ∈ Gd and consider a network g′ ⊆ g. Since g is link deletion proof, we have
for all links ij ∈ g : mui(g, ij) ≥ 0. Let l := g \ g′, li := l ∩ Li(g

N) and l−i := l \ li.
Then we get by strategic substitutes and concavity for all ij ∈ G:

mui(g
′, ij) ≥ mui(g

′ ∪ li, ij) ≥ mui(g
′ ∪ li ∪ l−i, ij) = mui(g, ij) ≥ 0.

(2) The proof is analogous, take g ∈ Ga, g′ ⊇ g. As above by substitutes and concavity
we get for all ij 6∈ g′ :

mui(g
′ ∪ ij, ij) ≤ mui(g ∪ ij, ij).

By g being addition-proof, it follows that g′ ∈ Ga.

Proof of Theorem 2.

(1) Suppose that the profile of utility functions satisfies concavity in own links and the
strategic substitutes property and exhibits no indifference. Suppose the contrary of
the proposition is true and there exist two networks g̃, ĝ ∈ G such that g̃ ⊂ ĝ and
g̃, ĝ ∈ PS(G). Let g̃ ⊆ g ⊆ ĝ. By Lemma 4, it holds that g ∈ Ga(G), since g ⊇ g̃
and g̃ ∈ PS(G). Furthermore, by Lemma 4, it holds that g ∈ Gd(G), since g ⊆ ĝ
and ĝ ∈ PS(G). Thus, g ∈ Ga(G) ∩ Gd(G) = PS(G). Since g̃ ( ĝ, there exists at
least one link ij ∈ gN such that g̃ ∪ ij ⊆ ĝ, implying that g̃ ∪ ij is pairwise stable.
Particularly it holds that mui(g∪ ij, ij) ≥ 0 and muj(g∪ ij, ij) ≥ 0. However, since
g̃ is also pairwise stable we have mui(g ∪ ij, ij) > 0 ⇒ muj(g ∪ ij, ij) < 0. Thus,
mui(g ∪ ij, ij) = muj(g ∪ ij, ij) = 0, contradicting that u exhibits no indifference.

(2), (3) Both statements follow directly from (1), since every network is a superset of the
empty network and every network is a subset of the complete network.
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