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Finding good predictors for in�ation by
shotgun stochastic search�;y

Michael Scharnagl
Deutsche Bundesbank

Christian Schumacher
Deutsche Bundesbank

20 October 2009

Abstract

This paper evaluates a novel sampling algorithm, called shotgun stochastic
search (S3), for Bayesian model averaging in the context of �nding predictors for
in�ation when the set of potential predictors is large. This is a relevant case in
the forecasting literature, where often hundreds of predictors are compared with
autoregressive distributed lag models for in�ation. With such a large model space,
standard Bayesian approaches like MCMC model composition (MC3) tend to con-
verge slowly. On the other hand, S3 systematically searches in the neighborhood
of good models and concentrates on regions of high posterior probability in the
model space. We carry out a Monte Carlo simulations to compare the computa-
tional e¢ ciency of S3 to MC3, based on standard data generating processes from the
literature. When many potential predictors are available, S3 outperforms MC3. In
an empirical exercise, we apply the two algorithms to �nd predictors for US in�ation
from a set of about one hundred indicators and their lags. S3 absorbs posterior mass
much quicker than MC3 and makes Bayesian estimation of the standard in�ation
equations with many predictors computationally feasible.

JEL classi�cation E31, E37, C52, C11

1 Introduction

Finding good indicators for in�ation is a highly relevant task for the conduct of mone-
tary policy. Many empirical exercises are based on autoregressive distributed lags models
following Stock and Watson (1999, 2002), where future in�ation is regressed on a small
set of indicators and their lags. Recently, also Bayesian estimation techniques have been

�This paper represents the authors�personal opinions and does not necessarily re�ect the views of the
Deutsche Bundesbank.
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tian Schumacher: Phone: ++49/+69-9566-2939, E-mail: christian.schumacher@bundesbank.de.

1



employed to assess the relative importance of indicators for in�ation. For example, Jacob-
son and Karlsson (2004) and Eklund and Karlsson (2007) use Bayesian model averaging
(BMA) for that purpose and provide inclusion probabilities to assess the information con-
tent of predictors. BMA has the general advantage of taking explicitly into account model
uncertainty with respect to the proper selection of indicators and is thus tailor-made to
make probability statements about the importance of indicators, see the general survey in
Hoeting et al. (1999). However, as standard Bayesian simulation techniques usually have
slow convergence properties, these approaches are restricted to relatively small datasets
so far and taking into account large datasets of hundreds of variables seems infeasible as
in Stock and Watson (1999, 2002) and De Mol et al. (2008).
Recently, Hans et al. (2007) have proposed a novel algorithm called shotgun stochastic

search (S3) to regressions with a large set of potential regressors. The key feature of S3 is
the thorough analysis of the neighborhood of a particular model, where the neighborhood
is de�ned by the model combinations that emerge from adding, deleting or swapping
a few variables from the current model in the chain. By evaluating all models in the
neighborhood and deriving a proposal from them leads to a quick approach of regions
with a high posterior probability. Hans et al. (2007) employ S3 in the context of the gene
expression cancer genomics. In this paper, we evaluate to what extent this new search
algorithm can be a useful alternative to standard MCMC techniques such as MCMCmodel
composition (MC3) by Raftery et al. (1997) and Brown et al. (2002), that have been
employed in the context of �nding good predictors for in�ation in the recent literature,
see Jacobson and Karlsson (2004) and Eklund and Karlsson (2007). In particular, we
want to check to what extent S3 can be useful to �nd good predictors for in�ation when
the number of predictors is large.
We carry out a Monte Carlo analysis to compare S3 with MCMC model composition

(MC3). The design of the MC exercise follows the recent literature and thus is based on
well-known DGPs, see Fernandez, Ley, and Steel (2001). In our results, we �nd substantial
improvements in computational e¢ ciency by S3 in all our DGPs chosen. If we expand the
DGP to consider large datasets of potential predictors, the computational gains of S3 are
even more pronounced.
To illustrate the empirical performance of the method, we also carry out an empirical

exercise based on the data from Stock and Watson (2002), which contains 131 potential
predictors. We compare the relative performance of the algorithms with respect to their
ability to accumulate posterior mass, when the forecast model can include the predictors
and up to six lags of them. In this very large model space, S3 accumulate posterior mass
quickly. Based on these results, we make an attempt to �nd good predictors for US in�a-
tion in terms of inclusion probabilities. We discuss the results for di¤erent subsamples. In
line with the results from the empirical literature, for example Banerjee and Marcellino
(2006) and De Mol et al. (2008), we �nd considerable instability in the selection of indica-
tors over time. However, by looking at group inclusion probabilities following Scharnagl
and Schumacher (2007), we can at least identify clusters or groups of variables that pro-
vide stable information content for in�ation. The S3 algorithm makes such an analysis
feasible.
The paper proceeds as follows: In section 2, we discuss S3 and its relationship to MC3.
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Section 3 contains the Monte Carlo results, section 4 the empirical results, and section 5
concludes.

2 Shotgun stochastic search

2.1 Bayesian model averaging and inclusion probabilities

Consider the multiple regression model

y = X� + "; (1)

where y is a (T � 1)-dimensional vector, X is (T � k)-dimensional and contains the
observations of the predictors, and " is a vector of residuals. Consider the problem
of making inference on the determinants of y given data y and X, when there are no
restrictions with respect to the size of the model, i.e. di¤erent model dimensions are
admissible. Let p be equal to the number of possible predictor variables. Then, the
(p� 1)-dimensional indicator vector i = (1; : : : ; p)0 with

j =

�
1 if variable j is in modelMi

0 else
(2)

describes a particular modelMi from the model spaceM =fM1; : : : ;MMg, where M =

2p. Given data y and X, the posterior model probability of a modelMi is

p(ijy) =
p(yji)p(i)PR
j=1 p(yjj)p(j)

; (3)

where p (yji) is the marginal likelihood, and p(i) is the prior model probability. Given
the posterior model probabilities, we can make inference on the quantities of interest
by Bayesian model averaging (BMA). In our context, we are interested in the relevance
of indicators included in X. To assess this relevance, we rely on inclusion probabilities
de�ned for variable xi as

p(xi jy ) =
MX
j=1

Ifxi 2Mjgp(j jy ); (4)

using the posterior model probabilities de�ned above and the variable-speci�c indicator
function Ifxi 2 Mjg, where If�g denotes the indicator function that equals one if the
set de�ned by the condition inside curly brackets is non-empty, or zero otherwise. Of
course, we can rewrite the indicator function as Ifxi 2 Mjg = Ifi = 1g. The statistic
(4) is equal to the sum of the posterior weights of all models that contain variable xi.
It can thus be regarded as the posterior probability of a variable being in the forecast
model. Jacobson and Karlsson (2004) and Eklund and Karlsson (2007) employ inclusion
probabilities to assess the relevance of indicators for Swedish in�ation. Scharnagl and
Schumacher (2007) provide an application to Euro area in�ation.
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2.2 The S3 algorithm

If p is large, the dimension M of the model space is large, and simulation methods have
to be employed to search over the model spaceM. The basic idea of shotgun stochastic
search is that in the neighborhood of the current model, we can expect several other models
with a similar �t. Therefore, the identi�cation and evaluation of this neighborhood as a
description of this speci�c region of model space could be fruitful. Shotgun Stochastic
Search (S3) identi�es the neighborhood as each regression model that di¤ers from the
current model in one variable. It compares all models that di¤er from the current one in
this respect, and thus "shoots" in various directions. This is done by looking at a score,
which is in most cases equal to the posterior probability p(ijy). From the neighborhood,
a new candidate model is chosen. Evaluating all models close to the present one in parallel
helps to move in the direction and the exploration of regions of model space with high
posterior probabilities, i.e. searching for many good models in the neighborhood of good
models.
Let us denote the set of models collected by S3 by G. Starting point of the algorithm is

model  [0], and therefore G =
�
 [0]
	
. A constant B is chosen which denotes the maximum

number of elements in G. For r = 1; :::; R, the following steps are iterated:

� Step 1: Given  [r], construct the neighborhood

nbd
�
 [r]
�
=
�
+ [r];o [r];� [r]

	
(5)

and compute the posterior model probability p(jy) for all  2 nbd
�
 [r]
�
. Update

the model space G according to G [ nbd
�
 [r]
�
. If jGj > B, remove jGj � B models

with lowest scores. The neighborhood is de�ned as follows:

�+[r], addition: one variable is added from the set of currently excluded vari-
ables. The new model contains k + 1 variables.

�o[r], replacement: one of the currently included k variable is replaced by one
of the currently excluded p � k variables. The number of included variables
does not change.

��[r], deletion: one variable is excluded from the model. The new model
contains k � 1 variables.

� Step 2: Sampling of single models + [r]� , o [r]� and � [r]� from + [r], o [r] and � [r]

separately, with probabilities proportional to p(jy) and normalization within each
subset.

� Step 3: Sampling of a model  [r+1] from
n

+ [r]
� ;

o [r]
� ;

� [r]
�

o
with probabilities pro-

portional to p(jy) and normalization within this set. With model  [r+1], we go to
step 1.

In the end, G contains the B best models in terms of posterior model probability as
found by S3, not just the sequence of chosen models  [0], ...,  [R]. In particular, G contains
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the best models from the union of neighborhoods

R[
r=0

nbd
�
 [r]
�
: (6)

The hierarchical sampling in steps 2 and 3 takes into account that the three parts of the
neighborhood have di¤erent dimensions. If 2 � k < p, the sizes of the subsets in the
neighborhood are

��+[r]�� = p � k,
��o[r]�� = k (p� k), and

���[r]�� = k, respectively. If
k = p, + = ;. By splitting the sampling into steps 2 and 3, we remove any dependence
from the current size of a model and the three moves adding, deleting, and swapping
become equally important a priori.

2.3 Comparison of S3 and MC3

The basic MC3 approach is based on a chain with elements r = 1; :::; R. At each replication
r, the algorithm consists of two steps, see Brown et al. (2002) and Jacobson and Karlsson
(2004):

� Step 1: Given the last element of the chain  [r], a new candidate model  0 is chosen
following two moves:

�move 1: With probability pA a variable is drawn from the set of all potential
variables. If this variable is already included in the current model  [r] it will
be dropped and if it is not it will be added.

�move 2: With probability 1� pA a randomly chosen variable from the current
model is substituted by a randomly drawn variable from the set of excluded
variables.

� Step 2: The candidate model corresponding to  0 is accepted with probability

� = min

�
1;

p (yj 0) p ( 0)
p (yj [r]) p ( [r])

�
: (7)

Here,  [r] represents the current model. p (yj 0) is the marginal likelihood, and p ()
the model prior. If the draw accepts the candidate,  0 becomes  [r+1], and we go to
step 1.

In step 1, Brown et al. (2002) use pA = 0:5. Thus, swapping in move 2 receives the
same probability as move 1.1 Raftery et al. (1997) only carry out move 1, without move
2, thus neglecting candidate models of constant size. Sampling the candidate model as
above can also be described by application of the proposal distribution T ( 0; [r]) de�ned
as

T ( 0; [r]) =

�
0 for  0 =2 nbd

�
 [r]
�

const for  0 2 nbd
�
 [r]
� ; (8)

1Due to the dimensional imbalance of the two groups, the probability of selecting a model in move 1
is 1p and

1
k

1
p�k for move 2, where p is the number of potential explanatory variables and k is the number

of variables included in the current model.
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where nbd
�
 [r]
�
can be de�ned as in Raftery et al. (1997) with nbd

�
 [r]
�
= f+;�g,

thus model sets obtained from swapping o are neglected. Following the hierarchical
selection with swapping by Brown et al. (2002) and Jacobson and Karlsson (2004), the
probability of selecting a model in move 1 is 1

p
and 1

k
1
p�k for move 2, where p is the number

of potential explanatory variables and k is the number of variables included in the current
model. Thus, at each replication, MC3 selects a candidate model without referring to its
posterior model probability. Only in step 2, the decision on accepting or rejecting the
candidate takes into account the posterior model probabilities.
There are at least three major di¤erences between MC3 and S3:

1. The new candidate model within MC3 is chosen according to the two-step procedure
just described. Within each move, the probability for each model de�ning the
relevant part of the neighborhood is the same. In S3, the choice of the candidate
model depends on the model posterior probabilities in the whole neighborhood.
Neglecting the dimensional imbalance in the subsets of the neighborhood, Hans et
al. (2007) de�ne the proposal distribution of a candidate model in S3 according to

T ( 0; [r]) =
p (yj 0) p ( 0)� 1( 0 2 nbd

�
 [r]
�
)P

2nbd([r]) p (yj) p ()
: (9)

Thus, the move to a new candidate model is highly dependent on its posterior prob-
ability. Therefore, S3 concentrates on speci�c regions of the model space, namely
those with high posterior mass, whereas MC3 neglects the posterior information for
selecting a candidate model as in (8).

2. The chain in MC3 includes all accepted candidate models. The chain in S3 includes
all neighborhoods of all candidate models, dependent on B and the posterior mass
already in the chain.

3. The dimensional di¤erences in the neighborhood are taken into account in di¤erent
ways. However, the neighborhood in MC3 can be de�ned exactly as in S3. Thus,
we can remove the dependence on the dimensional discrepancies between deleting,
adding, and swapping completely.

All in all, we expect the di¤erence in the proposal distribution (di¤erence 1) as most
relevant. Whereas the other two di¤erences can be accounted for easily, the di¤erences in
how a candidate is selected can a¤ect the chain heavily according to the results in Hans
et al. (2007). We will now compare the two approaches in a Monte Carlo analysis.

3 Monte Carlo simulations

To assess the computational e¤ectiveness of S3, we carry out a Monte Carlo simulation
exercise, where S3 is compared to MC3 as proposed in Raftery et al. (1997) and Brown
et al. (2002).2 The design of the Monte Carlo analysis follows Fernandez, Ley and Steel

2As in Brown et al. (2002) and Jacobson and Karlsson (2004), we use pA = 0:5 in step 1 of MC3, see
section 2.3.
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(2001), Eklund and Karlsson (2007) and Hans et al. (2007) in terms of data generating
process (DGP). Thus, we discuss the performance of S3 in a standard framework that has
been extensively employed in the economics literature. In an additional step, we extend
that framework to a large regressor case, that might be relevant in the present context of
�nding predictors for in�ation from a large set of indicators.

3.1 DGP

This data generating process is used by Fernandez, Ley and Steel (2001) and Eklund and
Karlsson (2007). A (T � 15)-dimensional matrix of 15 predictors X is generated with
sample size T = 100. The �rst ten variables x1, ..., x10 are iid N (0; 1) and the other �ve
variables are constructed according to

(x11; :::;x15) = (x1; :::;x5)
�
0:3 0:5 0:7 0:9 1:1

�0
� + e (10)

with � =
�
1 1 1 1 1

�
. e is (T � 5)-dimensional vector of shocks and iid N(0; 1).

This produces a correlation between the �rst �ve and the last �ve predictors. The the-
oretical correlation coe¢ cient increases from 0:153 (x1) to 0:561 (x5). The theoretical
value of the correlation between the last �ve regressors is 0:740. The endogenous variable
is generated according to

yt = 4 + 2x1;t � x5;t + 1:5x7;t + x11;t + 0:5x13;t + �"t (11)

where the disturbances "t are iid N(0; 1) and � = 2:5. Of course, the DGP is in line with
the general model (1), based on the true coe¢ cient

� =
�
2 0 0 0 �1 0 1:5 0 0 0 1 0 0:5 0 0

�0
:

Due to the high collinearity implied by the DGP, we denote this DGP in the results
below as �multicollinearity�. As an alternative, the same DGP without multicollinearity
is employed, where (10) simpli�es to

(x11; :::;x15) = e: (12)

We denote this DGP below as �basic�. Thus, our experiment contains two DGPs with
p = 15 variables. The analysis is based on 1000 Monte Carlo replications of the DGP.
For each replication the number of MC3 iterations or evaluated models in S3 is 150000.
Note that by relating the number of evaluated models in S3 to the number of iterations
in MC3, where one model is evaluated only, we try to make the computational burden
comparable. The number of burn-in iterations (or evaluated models) is 5000. In each
replication, the algorithms start using a randomly drawn vector of �ve variables.
In addition to the DGP above, which is standard in the economics literature on

Bayesian techniques cited above, we also consider a higher-dimensional model that con-
tains in addition �ve variables, that are iid N(0; 1) and do not help to explain yt. Thus,
this DGP provides p = 20 potential explanatory variables that are noisier and have over-
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all less information content. In this case, it is more di¢ cult for the two algorithms to
�nd the good indicators for yt. This goes more in the direction of �nding regressors in
large datasets as in Stock and Watson (1999), Eklund and Karlsson (2007) and De Mol
et al. (2008). In large datasets as employed in the empirical application below, we often
observe that certain indicators turn out to have little or no information content at all, for
example longer lags for certain indicators. As the model space increases considerably by
this extension, we increase also the number of evaluated models to 1000000.

3.2 Priors and posterior distributions

We now specify the prior distributions and de�ne the marginal likelihood for a modelMi

based on regressors Xi of size (T � ki). The priors employed below are standard in the
literature on Bayesian model averaging, for example Koop (2003). We employ the same
prior distributions for MC3 and S3.
Concerning the prior distribution of the coe¢ cients �, we use a normal-gamma natural

conjugate prior
�ijh � N

�
0ki ; h

�1Vi

�
; (13)

and the variance is speci�ed by using the g-prior

Vi = (giX
0
iXi)

�1 (14)

and
h = �2 (15)

where �2 is the variance of the error term, see (11) above. Concerning the hyperparameter
gi, we follow Fernandez, Ley and Steel (2001), and use

gi =

(
1
p2

if T � p2
1
T

if T > p2
; (16)

where p is again the number of potential explanatory variables. Using the g-prior, the
marginal likelihood of modelMi is

p (yji) _
�

gi
gi + 1

� ki
2
�

1

gi + 1
y0PXi

y +
gi

gi + 1
(y � y)0 (y � y)

��T�1
2

(17)

with PXi
= IT �Xi (X

0
iXi)

�1X0
i. y is the in-sample mean of y. The model prior is equal

to
p (i) = �

ki (1� �)p�ki (18)

where � is a hyperparameter representing the probability that a variable is in the model.
This induces a binomial prior distribution over model size

Pr (jj = k) =
�
p

k

�
�k (1� �)p�k (19)
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A priori, the expected model size equals p�. In our exercise, it is assumed that the model
size k is on average 5, in line with DGP (11). The corresponding hyperparameter � = 0:33
in (18) is speci�ed appropriately to ensure the prior model size.
Given p (i) and p (yji), we can calculate the posterior probability of a model Mi

according to p (ijy) / p (yji) p (i) up to a normalizing constant which is equal for all
models.

3.3 Criteria for evaluation of performance

In a �rst step, the complete set of all potential models is generated. This is possible as
the number of all potential models in the DGP equals M = 215 = 32768 which is rather
small. All models are estimated and evaluated. In particular, for all models 8i = 1; : : : ;M ,
the posterior probability p (ijy) is calculated. This set is the basis for evaluating the
performance of MC3 and S3. The performance can be evaluated on a variety of measures.
As the number of iterations is very di¤erent for both algorithms due to the inclusion of
complete neighborhoods by the S3 algorithm, the evaluation is done in the context of the
number of models evaluated rather than by just comparing the number of iterations.

Relative posterior density To investigate how quickly the two algorithms accumulate
posterior mass, we count the number of model evaluations until a certain fraction of
posterior mass of the true distribution is reached. Di¤erences may occur, for example, if
an algorithm has some tendency of visit models with low posterior probability too often.
The calculations are based on the analytical posteriors as de�ned above.
Hans et al. (2007) compare MC3 relative to S3 only in an empirical exercise, as they

are not able to evaluate all possible models due to the huge number of regressors. The
DGP chosen here from economic applications, however, allows for a systematic Monte
Carlo investigation, as the model space is small enough. All models can be evaluated,
and it is possible to relate the posterior mass accumulated by both algorithms to the
"true" mass.
This comparison is done in two steps: First, MC3 and S3 are applied to a draw of

data from the DGP for a large number of model evaluations, in our example 150000.
Second, we search in the chains from MC3 and S3, after which number of model eval-
uations a prespeci�ed fraction of total posterior probability from the true distribution
of models is accumulated. In particular, we present results for the relative probability
ratios [0:30; 0:50; 0:80; 0:90; 0:93; 0:95; 0:97]. To get an impression on the time necessary
to obtain the ratios above, we also search for the time (in seconds) elapsed and report
that.

Finding the "true" vector We also check whether the true vector is part of the chains.
Searching for the iteration number or number of models evaluated when the true vector
is found gives an indication how fast the algorithms enter the regions of high posterior
probability of the model space. Again, we also evaluate the time necessary for �nding the
true model.

9



3.4 Monte Carlo results

Below in table 1, we present results for the standard DGP with p = 15 variables with
multicollinearity and without multicollinearity, denoted as basic. Based on the basic DGP

Table 1: Number of model evaluations need or time elapsed to reach relative posterior
mass or �nd best model, p = 15 variables

A. Model evaluations

posterior mass 0.30 0.50 0.80 0.90 0.93 0.95 0.97 best model

basic
MC3 8858 14124 26420 34508 38017 41737 49417 16403
S3 30 73 183 913 2246 5908 23304 83

multicollinearity
MC3 7901 14129 25915 37086 41131 45468 52288 17941
S3 59 165 1313 3983 8960 21105 71524 12920

B. Time

posterior mass 0.30 0.50 0.80 0.90 0.93 0.95 0.97 best model

basic
MC3 3.32 4.61 7.60 9.56 10.42 11.33 13.19 5.16
S3 1.30 1.31 1.34 1.51 1.84 2.73 6.98 1.31

multicollinearity
MC3 3.03 4.51 7.31 9.96 10.92 11.95 13.57 5.41
S3 1.27 1.30 1.58 2.22 3.41 6.33 18.44 4.32

Note: In panel A, the table contains the number of model evaluations needed to reach a selected
posterior mass, or, alternatively, to �nd the true model. In panel B, the entries are the time elapsed
to reach posterior mass or �nd the true model. Details on the DGP and the simulation design can
be found in reported in Section 3.1, 3.2, and 3.3.

without multicollinearity, S3 is much faster in accumulating posterior mass than MC3 up
to 97% of the posterior mass. With multicollinearity, S3 is only faster until 95% of the
mass is accumulated. Thus, S3 is slower in accumulating the total mass, as it visits low
probability models extremely seldom, in particular when the regressors are correlated.
However, until 95% of mass, S3 is always faster. Also, the true models are found earlier
than for MC3. In the search, S3 is extremely faster than MC3 up to 80% mass, and slows
down a little bit. Interestingly, although S3 aims at searching over the regions of high
posterior probability only, it still has the ability to scan the overall distribution of models.
In table 2, we present results for the DGP with p = 20 variables. Compared to the case

with p = 15 variables, the time elapsed as well as the model evaluations needed increases
considerably, indicating that the �ve additional regressors make it much more di¢ cult for
both MC3 and S3 to �nd the regions of high posterior mass in the model space. However,
S3 does now more clearly outperform MC3 and is quicker in all examples shown. This also
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Table 2: Number of model evaluations need or time elapsed to reach relative posterior
mass or �nd best model, p = 20 variables

A. Model evaluations

posterior mass 0.30 0.50 0.80 0.90 0.93 0.95 0.97 best model

basic
MC3 182442 277736 458765 577900 628310 667377 714622 316753
S3 48 98 213 954 2566 7798 43550 664

multicollinearity
MC3 183431 295591 513946 635608 679124 713715 752143 323811
S3 57 113 601 3422 9745 23728 114474 63645

B. Time

posterior mass 0.30 0.50 0.80 0.90 0.93 0.95 0.97 best model

basic
MC3 57.91 81.79 127.03 156.78 169.36 179.09 190.83 91.51
S3 11.60 11.62 11.64 11.81 12.18 13.37 21.48 11.74

multicollinearity
MC3 59.14 87.70 143.23 174.13 185.13 193.87 203.53 94.78
S3 11.15 11.16 11.27 11.90 13.32 16.41 36.46 25.00

Note: In panel A, the table contains the number of model evaluations needed to reach a selected
posterior mass, or, alternatively, to �nd the true model. In panel B, the entries are the time elapsed
to reach posterior mass or �nd the true model. Details on the DGP and the simulation design can
be found in reported in Section 3.1, 3.2, and 3.3.
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holds for the multicollinear data. Thus, we can conclude that S3 can cope with noisy data
better than MC3. Interestingly, Hans et al. (2007) argue that due to the concentration on
regions of high posterior mass, S3 might not be able to approximate the full distribution
of models, as it neglects models with low posterior probability. However, our results show
that more than 90% of posterior mass can be discovered quicker than MC3. Thus, the S3

algorithm seems to approximate the overall distribution quite well.

4 Empirical illustration

Below, we analyze the relative performance of MC3 and S3 on a large macroeconomic
dataset from Stock and Watson (2002) that has been used in many applications, see for
example De Mol et al. (2008) as a recent example. The data includes real variables (sec-
toral industrial production, employment and hours worked), nominal variables (consumer
and producer price indices, wages, money aggregates), asset prices (stock prices and ex-
change rates), the yield curve and surveys, for a total of 131 variables. The sample has
a monthly frequency and ranges from 1959M01 to 2003M12. The series are transformed
to obtain stationarity. In general, for real variables, such as employment, industrial pro-
duction, and sales, we take the monthly growth rate. We take �rst di¤erences for series
already expressed in rates: unemployment rate, capacity utilization, interest rate and
some surveys. Prices and wages are transformed to �rst di¤erences of annual in�ation
following De Mol et al. (2008). The variable we forecast is yht+h = �t+h � �t and an-
nual in�ation �t = 100 � ln(Pt=Pt�12) with monthly CPI denoted Pt (series mnemonic
PUNEW). Thus, the equation (1) contains yht+h on the left-hand side. The forecasts for
the level of in�ation are recovered as �T+hjT = yhT+hjT + �T . We consider two estimation
periods ending in 1970M01 and 2002M12 with a window of 10 years, i.e. parameters are
estimated at each time using the most recent 10 years of data. The forecast horizon is
h = 12 as in De Mol et al. (2008). On the right-hand side of equation (1), we consider
not only t-dated predictors, but also up to 6 lags of them. Thus, our model is in line
with the speci�cations by Stock and Watson (2002). Note that this choice implies that
we have p = 131 � (6 + 1) = 917 potential predictors on the right-hand side. Thus, the
model space includes 2917 variables, which is very large compared to other applications on
in�ation forecasting, but not in the literature the S3 algorithm is taken from, see Hans et
al. (2007). Note that the 131 predictor variables include also in�ation; thus, autoregres-
sive terms are allowed to matter. Di¤erently from the marginal likelihood employed in
the Monte Carlo exercise above, we follow here Eklund and Karlsson (2007) and choose
the predictive likelihood in order to compute model weights. In both samples, the train-
ing sample contains 60% of the initial observations, whereas the evaluation or hold-out
sample contains the �nal 40% of observations, for details on the choice of these parameter
settings, see Eklund and Karlsson (2007). In general, the predictive measures turn out to
be superior to the marginal likelihood when structural instabilities are present. Based on
the data used here, De Mol et al. (2008) indeed report certain instabilities with respect
to the selection of predictors for in�ation over time, see also Banerjee and Marcellino
(2006). Following these results, we also use predictive posterior weights as in Eklund and
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Karlsson (2007).
Given the data and models, we carry out two empirical exercises: First, we compare

the relative performance of MC3 and S3 for the two sample sizes. We limit ourselves two
this rather small number of periods in order to let the exercise remain computationally
feasible. Second, we employ S3 to make an attempt to �nd good predictors of US in�ation
in the data.

4.1 Relative performance with respect to US in�ation

In this exercise, for a given number of 5000000 model evaluations, we report the posterior
mass accumulated by the two algorithms. Thus, we can evaluate to what extent the
results from the Monte Carlo exercise can be con�rmed by empirics in the present context
of forecasting US in�ation. The results can be found in �gure 1. The horizontal axis

Figure 1: Posterior predictive mass accumulated

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
x 10 44 first subsample

0 20 40 60 80 100
0

2

4

6
x 10 52 second subsample

Note: The �gure shows posterior predictive mass accumulated by MC3 (line with crosses) and S3 (circle
line) applied to US data dependent on the models evaluated in the respective chains. On the horizontal

axis, the model evaluations are rescaled so that 100 corresponds to the maximum number of model

evaluations (5000000). The two subsamples end in 1970M01 and 2002M12, respectively, and contain a

window of 10 years of data.

displays the model evaluations, rescaled so 100 corresponds to the maximum number
of model evaluations (5000000). The results show that S3 is capable of accumulating
posterior predictive mass much quicker than MC3. Even if the number of models evaluated
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increases, MC3 cannot catch up to S3.3 Thus, S3 seems to be a more useful algorithm in
the present context with a very large dimension of the data.

4.2 What are the good predictors for US in�ation?

Based on S3 only, we compute inclusion probabilities that help to distinguish good from
bad predictors of in�ation. De Mol et al. (2008) carry out a similar exercise based on least-
angle regressions and �nd a temporal instability of the selection of variables. Banerjee
and Marcellino (2006) evaluate ADL models with single indicators for US in�ation with
respect to their out-of sample performance and �nd that the best predictors vary over time.
Complementing the work by De Mol et al. (2008), we provide inclusion probabilities for
predictors estimated by BMA, see (4) above. The simulation-based techniques employed
here allow us to make probability statements on the relevance of indicators for US in�ation.
In table 3, we provide the inclusion probabilities for di¤erent variables that perform best.
In each case, the inclusion probabilities are de�ned as the sum of posterior predictive model
weights of those models that include a particular variable or its lags. The tables show

Table 3: Inclusion probabilities of variables

1st sample 2nd sample

Building permits, total (HSBR) 1.00 Employees, mining (CES006) 1.00
Housing starts, west (HSWST) 0.92 C&I loans outstanding (FCLNQ) 0.84
CPI, commodities (PUC) 0.14 Personal income (a0m052) 0.40

Consumer expectations (HHSNTN) 0.12 Interest rate, U.S.Treasury, 1-yr. (FYGT1) 0.40
PCE de�ator (GMDCN) 0.08 Personal income less transfers (A0M051) 0.37

PCE de�ator, non-durables (GMDC) 0.08 Employees, non-durables (CES033) 0.33
Building permits, west (HSBWST) 0.08 Employees, manufacturing (CES015) 0.27

M2, real (FM2DQ) 0.07 Commercial paper minus Fed funds rate (scp90) 0.25
CPI, all items (PUNEW) 0.07 Persons unemployed 27 weeks + (LHU27) 0.12

CPI, all items less shelter (PUXHS) 0.05 Interest rate, U.S.Treasury bills, 6-mo. (FYGM6) 0.10

Note: The entries represent inclusion probabilites as the sum of posterior predictive model weights that
include a particular variable or its lags. The two subsamples end in 1970M01 and 2002M12, respectively.

that indeed the relevant indicators change over time. In particular, we �nd no indicator
in the top 10 of the second sample, that is also member of the top 10 in the �rst sample.
Interestingly, lags of in�ation (PUNEW) matter in the �rst part of the sample, whereas
they do not rank among the top 10 in the second sample, perhaps re�ecting the decline in
in�ation persistence in the Great Moderation. Overall, our �ndings of instability are in
line with De Mol et al. (2008). They suggest that due to the collinearity and instability in
the data, di¤erent indicators are selected over time and estimation can be very sensitive
to minor perturbations of the data and model speci�cations. The authors indicate that
representatives of clusters or groups of variables might change over time. We follow this
conjecture and investigate the role of groups of variables based on an identi�cation of
representatives of particular groups of indicators, following Scharnagl and Schumacher

3Indeed, MC3 also accumulates posterior mass, but to a small extent only, so it does not show up in
the �gure due to the huge di¤erence to S3.
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(2007). The group inclusion probabilities are de�ned as the sum of posterior predictive
model weights that include at least one representative variable or its lags of a particular
group. In the dataset used here, the groups are de�ned following the classi�cation by
Stock and Watson (2002). In particular, we distinguish the groups: employment and
hours, exchange rates, housing starts and sales, interest rates and spreads, inventories
and orders, money and credit, price indexes and wages, real output and income, sales and
stock prices. Given this classi�cation, we investigate whether at least some groups can be
identi�ed that matter for in�ation in both periods of time. Results are presented in table
4. In the �rst subsample, the groups housing starts and sales (1:00), price indexes and

Table 4: Group inclusion probabilities

1st sample 2nd sample

employment and hours 0.19 1.00
exchange rates 0.04 0.03

housing starts and sales 1.00 0.05
interest rates and spreads 0.09 0.81
inventories and orders 0.05 0.04

misc 0.12 0.05
money and credit 0.22 0.85

price indexes and wages 0.58 0.35
real output and income 0.16 0.80

retail, manufacturing and trade sales 0.02 0.01
stock prices 0.07 0.03

Note: The entries represent group inclusion probabilites de�ned as the sum of posterior predictive model
weights that include at least one variable or its lags from a particular group. The two subsamples end in
1970M01 and 2002M12, respectively.

wages (0:58), money and credit (0:21), employment and hours (0:19), and real output and
income (0:16) have the highest group inclusion probabilities. In the second subsample, the
groups employment and hours (1:00), money and credit (0:85), interest rates and spreads
(0:81), real output and income (0:80), and price indexes and wages (0:35) matter most.
Thus, also group inclusion probabilities indicate a considerable degree of instability of
the relevance of indicators. Although there are some groups of predictors that seem to
have information content in both subsamples, their groups inclusion probabilities di¤er in
the subsamples quite substantially. These groups are employment and hours, money and
credit, real output and income, and price indexes. Apart from these groups, there seems
to be little information content in the remaining ones.

5 Conclusions

The present paper considers Shotgun Stochastic Search (S3) as a competitive algorithm
to search for predictors of in�ation, when the number of potential predictors is large.
In a Monte Carlo exercise and an empirical application for US in�ation with about 131
predictors and their lags, S3 outperforms standard MC3 in terms of a quicker accumulation
of posterior predictive mass. Thus, BMA with selecting candidate models according to
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their relative posterior weights seems to be superior to randomly sampling of candidate
models. Thus, S3 provides us with an interesting way to the Bayesian estimation of the
widely-used autoregressive distributed lag model by Stock and Watson (1999, 2002) with
sampling techniques when the set of potential predictors is large.
Of course, the present investigation relied only on one particular set of Monte Carlo

simulations and one application to a particular dataset, although both are standard in
the literature. Depending on the particular problem, it should be checked whether S3

is appropriate. A drawback could be that this algorithm concentrates too much on the
neighborhood and, perhaps, local areas of high mass. Thus, it cannot be ruled out that
other regions are left out. In these environments, it could be useful to consider to jump
between traditional MC3 and S3 within one chain. Another more general drawback of S3

is perhaps that despite its computational gains, the simulation-based BMA approach still
requires a lot of computing time. This makes it di¢ cult to estimate a model recursively
as in Stock and Watson (1999, 2002), when the number of recursions is large. However,
in case we have a moderate number of recursions and the main purpose of the analysis
is to make probability statements, say, on the inclusion of variables from a large set, the
BMA approach based on S3 is a reasonable choice.
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