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Abstract

We analyze the influence of the number of competitors, the costs of doping and the dis-

tribution of talents on doping behavior. In an n-player strategic game modeled as an all-pay

auction, the players have private information about their talent and the amount of doping.

The main finding of the analysis is the existence of a doping threshold. In the leading case

only athletes with a talent above this threshold dope. The value of the doping threshold is

increasing in the number of participating athletes and the size of the relative doping costs.

The amount of doping the players take increases with the talent. In addition, the more the

distribution of talents is skewed to the left the smaller is the doping threshold.
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1 Introduction

In sport contests a multitude of different behaviors and strategies of athletes can be observed.

The major objectives of elite athletes are victories and positive results at important sport compe-

titions, the World Champion title in their specific discipline, or even a gold medal at the Olympic

Games. To achieve such goals athletes have to push their physical and mental limits far and

farther out. Past and present incidents show that for achieving their dreams some athletes even

cross the border and take performance enhancing drugs. It has to be mentioned that doping

is by far not a recent phenomenon. Written sources show that already ancient Greek athletes

doped by using stimulants (Verroken, 2005).

The ongoing commercialization of elite sports has led to a radical increase in the sums of

money paid out in prizes to athletes and the possible contracts to be gained, including sponsoring

contracts. This has probably increased the incentive to resort to doping substances and caused

the doping problem to spread. A typical example of this development is found in competitive

cycling.1 So far the anti-doping regulations of the IOC and the efforts of the national anti-doping

organizations have been unable to establish a doping-free environment for sports competitions.

For a decade now sports events like the Tour de France have suffered from negative advertising

primarily associated with doping cases and have only marginally benefited from the suspense of

the sport and the prowess of its athletes. This has caused a significant loss in spectator interest

and the withdrawal of sponsor funding. From a game-theoretical perspective an analysis of the

doping issue presents a typical example of the prisoner’s dilemma.

Many researchers have investigated the doping problem and have explored actual or promising

anti-doping regulations (e.g., Kräkel (2007)). A representative example of such an enquiry is the

paper by Berentsen (2002), which analyzes the anti-doping regulations of the IOC in a strategic

two-player game. It gives a fundamental overview of the doping problem and presents a ranking-

based sanction scheme for attaining a no-doping equilibrium that is incentive compatible and less

costly than the actual sanction scheme. However, before embarking on a consideration of anti-

doping measures, a better understanding of the various incentives that motivate athletes and the

mechanisms operating in competition should first be gained. Most sports involve competition

between more than two athletes, very often between teams. An athlete’s performance in a

competition will depend on his form on that day, his talent, the standard of training he has, and

other unpredictable factors. Each athlete has his own strengths and weaknesses. Aspects such

as these have only partially been considered in previous studies.

In this paper we want to investigate the rationale of doping in an n-player game with het-

erogeneous players. Moreover, we take step backwards and abstract from an anti-doping agency

1 Ever since the Festina scandal in 1998, the Tour de France has appeared repeatedly in the headlines because
of new doping scandals. In addition to doped favorites also large-scale police raids seizing needles and doping
substances covered the media. See Dilger et al. (2007).
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that punishes positively tested athletes.2 We analyze the influence of the number of competitors

on optimal doping behavior. A further aspect is that nowadays better and stronger doping sub-

stances are being developed. The pharmaceutical industry facilitates this by continually releasing

new medications onto the market that extend the limits of performance. Then, the relation be-

tween the cost of the doping substances and the winners’ bonuses is decisive. Moreover, the

opponents’ performances are a determining factor in the optimal choice of behavior that an ath-

lete will make. The aim of the paper is to gain a more comprehensive understanding of doping

behavior where the number of competitors is larger than two and the players possess different

talents.

We show that even in an environment where doping is not prohibited not all players take

performance-enhancing drugs. It can be shown that the prisoner’s dilemma in two-player doping

games (e.g.,Daumann (2003)) only partly applies in an n-player game. The main finding of the

paper is that for the majority of underlying parameter values a doping threshold exists, which

depends on the number of players, the costs of doping and the distribution of players’ talents. In

the standard case there are two categories of behavior. Strong players dope, and players beneath

the doping threshold have no incentive to dope. Furthermore, in our model the optimal level of

doping increases with the athlete’s talent. The most talented athlete will dope the most because

the optimal doping behavior of his competitors forces him to dope more to defend his advantage.

Another finding is that the most talented athlete will win the competition. Doping does not

change the rank order of the competition. At the same time, however, doping imposes huge

costs on athletes above the doping threshold. This would speak in favor of the introduction of

a control mechanism that would inhibit athletes from doping. A doping free environment would

increase an athlete’s utility, and not simply incur expenses in monitoring costs.

Our model and the results shed new light on the behavior of athletes. An athlete will not

abstain from doping on purely ethical grounds, but rather because this behavior maximizes his

expected return. The results of our model should be taken into account when agencies like the

WADA3 implement new anti-doping regulations. Designing optimal control mechanisms is not

a simple task since controls and punishments change the incentives of the athletes.

The paper is structured as follows: In Section 2 we develop the doping model and formally

derive the doping threshold, which describes the level of talent at which an athlete resorts to

doping. In Section 3 we discuss the results of the doping model. Here, we show in a first step how

the doping threshold is dependent on the number of athletes and on the costs of doping. Finally,

the influence of the distribution of talents is analyzed. Section 4 summarizes and concludes.

2This is comparable to a situation with toothless anti-doping regulations. For example, in situations where athletes
can easily manipulate their test results.

3WADA is the abbreviation of World Anti-Doping Agency. For further informations about the anti-doping program
see http://www.wada-ama.org.
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2 The model

In a competition n athletes compete against each another. The winner receives prize money

v. All athletes are risk-neutral and maximize the expected utility of the payoff. Players have

private information about their talent ti, for i = 1, ..., n. The talent ti is drawn from a given

distribution F . The talents ti are independent and identically distributed (i.i.d.). Where there

is no doping, the most talented athlete wins the competition. The distribution of the talents is

normalized to lie between 0 and 1. We assume a power function distribution F (t) = tα, where

t ∈ [0, 1]. If α = 1 is chosen, then talent ti is uniformly distributed between 0 and 1. For α < 1

the density of the talent distribution is the largest for small t’s. Where on the other hand for

α > 1 there are relatively more talented players than untalented.

In the competition athletes have the possibility of improving their performance by doping.

In contrast to other contributions, this paper investigates athletes’ doping behavior when doping

is permitted. Every athlete can dope to improve his performance capability in the competition.

The athlete’s performance pi is thus a linear combination of his talent ti and the amount of

doping di he chooses to take: pi = ti + di. Doping substances are not free of charge and the

athlete has to pay for his doping substances before the game begins. Since the amount of doping

d is arbitrary, it is possible for a weaker athlete to beat a more talented athlete. Each player

thus faces a trade-off between gaining a higher likelihood of winning through doping and the cost

that this incurs. Each athlete is free to choose his personal doping amount and is not limited

to the two discrete options of ‘doping’ or ‘not doping’. This general assumption of the model is

superior to a model with only two discrete decision possibilities because it also determines the

optimal doping amount.4

The doping amount is equal to his performance pi minus his talent ti. If his performance

corresponds to his talent, then the costs of doping are zero. This is reasonable, as the athlete

in this case does not dope. Every athlete’s doping cost function will therefore be a function of

the difference pi − ti. The cost function is k(p, ti) = c(p− ti), with marginal costs k′(p, ti) = c.

The linearity of the function ensures a closed-form solution. We assume that the costs of doping

substances are the same for all athletes.

Since we are interested in n player contests, it is convenient to refer to the tools of auction

theory. The doping game is similar to an all-pay auction where every player has to pay for

their personal doping amounts. But in contrast to this kind of auction, it is the talent that the

players possess that is variable, while the prize that they receive for winning (e.g., the personal

valuation of winning) is constant for all players. The athlete’s probability of winning depends on

his chosen performance p and on the performance of the other athletes. The player only wins the

competition if his p is greater than the p of all other players. We gain the probability of winning

4The model can readily be adapted to apply to a binary decision between ‘doping’ and ‘not doping’. This simpli-
fication does not change the qualitative results.
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G(x) from the first order statistic Y(1:n−1) of the remaining players.5 Given the assumed power

function distribution the probability of having the largest talent is G(t) = F (t)n−1 = tα(n−1).

2.1 The symmetric Nash equilibrium

In order to find the symmetric Nash equilibrium in the doping game, we apply the usual approach

used in auction theory. First, we assume that in a symmetric Nash equilibrium a player with

talent t chooses the performance p(t) and then formulate the expected return for this player

(using the first order statistic). Every player can deviate from this equilibrium strategy by

choosing another performance. Moreover, we assume that the equilibrium performance function

is increasing in t. If this is the case, then it does not make sense to choose a performance lower

than p(0) or higher than p(1). In the first instance, one would never win, and, in the second

instance, one would always win but have to pay too much. For this reason, deviations from

the equilibrium performance function can be modeled as follows: An athlete with talent t who

pretends to have a different talent x chooses the associated performance p(x) in the competition.

The utility function of an athlete with talent t who pretends to have talent x is the product

of the prize v multiplied by the probability of winning of a player with talent x, minus the

cost of doping in order to achieve the performance p(x). His utility function is thus: u(t, x) =

vG(x) − k(p(x), t). The athlete will choose the x, which maximizes his utility. To receive the

optimum we differentiate the utility function with respect to x and set this equal to zero. We

obtain the FOC: vG′(x) − k′p(p(x), t)p′(x)
!
= 0. The optimal behavior of an athlete with talent

ti is to imitate the strategy of an athlete with talent x so that the FOC holds.

In the Nash equilibrium, the incentive compatibility (IC) constraint has to be satisfied for

every possible t. There must be no gain in deviating from the equilibrium strategy. The IC

constraint is satisfied if u(t, t) > u(t, x) for all t, x. We assume that when the athlete is indifferent

between u(t, t) and u(t, x), the athlete will undertake the equilibrium strategy t. In a symmetric

equilibrium, the optimal x corresponds to the athlete’s true talent t. Therefore, we insert x = t

and p(x) = p(t) into the FOC and get vG′(t) − k′p(p(t), t)p′(t) = 0. This condition states that

the expected marginal return (vG′(t)) has to be equal to the marginal costs of increasing the

winning probability (k′p(p(t), t)p
′(t)). Our assumption of a linear doping cost function implies

that an athlete with talent ti is indifferent between his equilibrium performance p(ti) and all

other p(t)’s for which the nonnegativity constraint of doping is not binding.6

5For further information on order statistics see David and Nagaraja (2003).
6This are particular circumstances and have to be kept in mind when investigating the equilibrium. If we would
instead use a doping cost function with slightly decreasing marginal costs or even a quadratic doping cost func-
tion then the single crossing property is guaranteed. For example, assume that the marginal cost function is:
c(t) = c exp(−at), where a is very small. As a goes to zero the marginal costs go to c (lima→0 c(t) = c). The
eventual performance function is a continuous function of c(t). This implies that the limit of the equilibrium
performance function is equal to the performance function under constant marginal costs using the continuous
mapping theorem.
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Solving for p′(t) gives us Equation (1) for the assumed linear cost function k(·).

p′(t) =
vG′(t)

k′p(p(t), t)
=
vG′(t)

c
. (1)

From Equation (1) we see that only the ratio of the prize money and marginal costs matters

and not the absolute values. Therefore, we define w as the ratio (w ≡ v/c), and we get p′(t) =

wG′(t).

So far we have not taken into account the nonnegativity constraint on the amount of doping

an athlete can choose. In equilibrium the constraint p(t) ≥ t has to hold for every possible t.

Solving Equation (1) with respect to the performance function p(t) without taking account of

the constraint can result in a performance function that runs partly below the underlying talent.

Figure 1 depicts the performance function when the constraint would be ignored (α = 1, n =

10, w = 2).7 For athletes with a talent less than 0.917 the performance function (red) is smaller

than the underlying talent. Hence, the constraint is violated. One could argue that augmenting

the performance function of the red part to the talent solves the problem. It is important to

understand why the proposed solution (thick dark blue line) in the figure is not an equilibrium.
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Figure 1: The nonnegative doping constraint

The reason is that all athletes optimize their behavior given the behavior of all other athletes.

Augmenting the performance function to the 45-degree line increases competition for athletes

just to the left of the former intersection. This athletes will increase their performance by doping

so that it is no more profitable for athletes with lower talents to imitate their performance. This

will also change the behavior of the athletes on the right side of the intersection. Hence, the

nonnegativity constraint plays an important role in the doping game.

7The formula of the performance function not taking into account the nonnegativity constraint is: p(t) = wtα(n−1).
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To ensure that a player’s performance is equal to or greater than his talent, we borrow the

concept of the reserve price, which is used in auctions.8 In our model we refer to the reserve

price as the reserve talent. The introduction of a reserve talent ensures that the athletes with

t < t?, show their true talent, such that p(t) is no longer smaller than t. In contrast to an auction

with a reserve price9, weaker athletes can still win, since their bid is the sum of their chosen

doping quantity and their given talent. The introduction of the reserve talent thus ensures that

weak athletes demonstrate their true talent in competition; that is, that their performance is not

lower than their talent. The reserve talent must not become effective, where performance would

outstrip talent.

In order to gain the performance function p(t) of an athlete with talent t, Equation (1) is

then integrated from a not yet specified reserve talent t? to t.

∫ t

t?
p′(z)dz = w

∫ t

t?
G′(z)dz = w[F (t)n−1 − F (t?)n−1].

We solve the integral on the left-hand side of the last equation and take p(t?) over to the

right-hand side. Finally, we substitute the power distribution function and replace p(t?) by t?.

Since the performance function at position t? must exactly correspond to t? (p(t?) = t?). We

thus gain the performance function of the athletes, given the underlying distribution of talents

and there exists a reserve talent t?. Additionally, we state the derivative with respect to t.

p(t) = t? + w[F (t)n−1 − F (t?)n−1] = t? + w[tα(n−1) − t?α(n−1)] for t? ≤ t ≤ 1, (2a)

p′t(t) = α(n− 1)wtα(n−1)−1. (2b)

The next step is to determine whether there exists a positive reserve talent or not. If there

exists a reserve talent we have to compute the exact value to obtain the doping behavior of the

athletes. Therefore, the characteristic of the derivative (2b) of Equation (2a) is of importance.

The derivative is the expected marginal gain divided by the marginal costs of doping. Taking

the second derivative of Equation (2a) shows that the first derivative is increasing if α(n−1) > 1

and decreasing if α(n− 1) < 1 for every t ∈ (0, 1]. This critical value is important to distinguish

between different doping behaviors. The following cases exist.

8For a good overview on auctions and the concept of the reserve price see Krishna (2002).
9The reserve price is used in auction theory in order to close out bid valuations that are too low. The bids have
to at least meet the reserve price, which prevents bidders with valuations lower than r from placing a bid. Since
they have to bid r or more and therefore would suffer a loss in case that they win the auction. The existence of
the reserve price has the consequence of shifting the bid function upwards, because the bid function for the value
r must at least equate to r (β(r) = r).
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The four doping cases:

(i) Strong athletes dope

(ii) Weak athletes dope

(iii) Nobody dopes

(iv) Everybody dopes

In which situation we actually are depends on the underlying parameter values of α, n,w.

In section A of the appendix the inequalities which have to hold under each of the four cases

are displayed. Case (i) is the standard case which arises in the majority of possible underlying

parameter values. The other three cases are special cases that emerge only under exceptional

circumstances like very high/low costs of doping or an extreme skewed distribution of talents.

Therefore, we will first center our investigations on case (i) and derive the proper reserve talent.

At the end of Section 2 we will refer to the other cases.

We will show in Claim 1 for what parameter values athletes behave like in case (i). Moreover,

we will show that for this values weak athletes have no incentive to dope in equilibrium. This

means that the nonnegativity constraint of the doping behavior is binding for weak talents.

Under the circumstances that the derivative (2b) is increasing in t the approach with the reserve

talent can be applied. This is the case if α(n − 1) > 1. To make clear how to determine the

optimal reserve talent we give the intuition of the proper reserve talent. The reserve talent t? has

to be chosen such that the performance function p(t) of athletes with talent above the reserve

talent does not sink below the 45-degree line (p(t) > t for t ∈ [t?, 1]). Moreover, t? must not be

chosen too large, so that p(t) does not have a kink at position t?. Therefore, the performance

function must have the same slope like the 45-degree line at position t?. This is the case if the

slope of the performance function is equal to 1 at the proper reserve talent, which will be the

doping threshold. The proof that this is a Nash equilibrium follows after we have derived the

performance function in equilibrium.

To determine the optimal reserve talent t? we set the derivative (2b) of the performance

function equal to one. By solving the equation for t we gain the formula for the doping threshold

t?(α,n,w). In Claim 1 we show under what parameter values the doping threshold exists. The

resulting doping threshold is:

t?(α,n,w) = [αw(n− 1)]
1

1−α(n−1) . (3)

Lemma 1. The doping threshold t∗(α,n,w) defines the talent where the athlete is indifferent

between doping or not doping. Athletes with talent beneath the threshold do not dope, and athletes

with talent above this value take performance-enhancing drugs. The doping threshold depends on

the distribution of talents, the number of competing athletes and the ratio of the prize money to

the marginal cost of doping.
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Claim 1. We can differentiate between two cases if α(n− 1) > 1. The first one is case (i) where

only strong athletes dope. If α(n−1)w > 1 then there exists a unique doping threshold t? ∈ (0, 1)

and athletes behave like in case (i).

The second one is case (iii) where nobody dopes. If α(n − 1)w < 1 then there exists no doping

threshold over the support t ∈ [0, 1] and athletes behave like in case (iii).

The proof of Claim 1:

When α(n−1) > 1 then p(t) is strictly increasing in t. Moreover, the derivative (2b) is continuous

and strictly increasing. The derivative at t = 0 is zero and if the derivative at t = 1 p′t(1) =

α(n− 1)w > 1. Then, it follows that there must exist a unique solution of the doping threshold

t? over the support ∈ (0, 1). Using the same reasoning, there exists no doping threshold over the

support t ∈ [0, 1] if p′t(1) = α(n− 1)w < 1.

The next step is to derive the performance function and the doping function of the athletes.

The athlete’s performance function is gained by inserting Equation (3) in Equation (2a). The

performance function is

p(t) =

{
t if t < t?

t? + w[tα(n−1) − t?α(n−1)

] if t ≥ t?,
(4)

with the doping threshold: t?(α,n,w) = [αw(n− 1)]
1

1−α(n−1) .

The applied approach with the reserve talent to ensure the nonnegativity constraint is non-

standard in the auction literature. Therefore, it remains to be shown that the performance

function is a Nash equilibrium over the whole support of t. The equilibrium performance function

with the doping threshold derived in Equation (3) is a Nash equilibrium if no athlete with talent

ti for all ti ∈ [0, 1] is better off by unilaterally deviating from the equilibrium strategy. Note

that the performance function is strictly increasing in t. It follows that if an athlete imitates

the strategy of an athlete with talent tj his winning probability is the first order statistic G(tj).

Moreover, note that an athlete with talent ti can only imitate athletes with a performance greater

than his talent (p(tj) ≥ ti). Hence, we can limit the verification on the range p(tj) ≥ ti, for all

ti ∈ [0, 1].

For the proof we introduce the auxiliary function ρ(G(t), ti). To derive the auxiliary function

we take advantage of the indifference property of Equation (2a) resulting from the assumed linear

doping cost function. We can derive ρ(G(t), ti) by substituting ti for t? in Equation (2a).

9



Definition 1. The function ρ(G(t), ti) indicates the performance level at which a player with

talent ti and winning probability G(t) would be indifferent to his equilibrium strategy p(ti).

Function ρ(G(t), ti) is defined for ti < t? and t ∈ [ti, 1]. It intersects with the performance

function at t = ti. More formally the function is

ρ(G(t), ti) = [ti − wtα(n−1)i ] + wG(t) = [ti − wtα(n−1)i ] + wtα(n−1) for t ≥ ti.

Function ρ(G(t), ti) allows to compare the expected revenue of an athlete at his equilibrium

performance directly with the performance function p(t). If the performance function p(t) runs

below (above) ρ(G(t), ti) then the athlete is better off (worse off) by deviating. Comparing the

functional form of ρ(G(t), ti) and p(t) unveils that both have the same slope within the range of

t ∈ [t?, 1].

Proof. Remember the implication of the linear doping cost function. An athlete with talent ti

above the doping threshold is indifferent between his equilibrium performance and all other p(t)’s

in the range where the nonnegativity constraint is not binding.

(1) From this indifference property it follows directly that for all ti ∈ [t?, 1] no athlete can be

better off by imitating another performance (p(tj) ≥ ti).

For athletes with talents ti < t? we make use of the function ρ(G(t), ti). Note that the

derivative with respect to t of ρ(G(t), ti) is equal to Equation (2b). Given that case (i) applies,

then it follows that the derivative ρt(G(t), ti) at t = ti is strictly increasing in ti. Note that

by construction ρ(G(t), ti) at ti = t? is identical to the performance function. Therefore, the

derivative of ρ(G(t), ti) at t = t? is equal to 1.

(2) It follows that ρ(G(t), ti) runs below the performance function p(t) in the range of t ∈ [ti, 1]

for all ti ∈ [0, t?). Hence, an athlete with talent ti is worse off by imitating the strategy of a

talent t > ti.

It rests to prove that the doping threshold t? is optimally chosen. Suppose that the optimal

threshold t̃? is smaller than t?. Then, the performance function would violate the nonnegativity

constraint since the derivative (2b) of the performance function is smaller than 1 for all t̃? ∈ [0, t?).

Now suppose that the optimal threshold t̃? is greater than t?. Then, ρ(G(t), t̃?− ε) of an athlete

with talent slightly smaller than t̃? would run above the performance function since the derivative

of ρ(G(t), t̃? − ε) for t ∈ (t?, 1] is greater than 1. Hence, the athlete with talent t̃? − ε would be

better off by deviating from his equilibrium strategy. It follows that the doping threshold t? is

optimally chosen and therefore the performance function is a Nash equilibrium.
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Beside the performance function the formula for the doping behavior of the athlete is certainly

important. As the performance function p(t) is the sum of talent t and the doping quantity d, the

doping function can be simply derived from the performance function. The doping quantity is an

athlete’s performance minus his talent. From this, we get the equation for the doping function

d(t):

d(t) =

{
0 if t < t?

t? + w[tα(n−1) − t?α(n−1)

]− t if t ≥ t?,
(5)

with the doping threshold: t?(α,n,w) = [αw(n− 1)]
1

1−α(n−1) .

Having gained the doping threshold, the performance function and the doping function, we

now have the necessary equations needed for describing the equilibrium behavior of the athletes

in the doping model. Section 3 will go into the doping behavior of the athletes in case (i) in

more detail. With comparative statics and figures we will show how different values of α, n and

w influence the doping threshold, the performance function and the doping function.

Beforehand, we will address the doping behavior of athletes in case (ii) and case (iv). This

behavior arises when the distribution of talents is highly skewed to the left. The derivative

(2b) of the performance function is negative. Moreover, p′(0) is not defined. It is the case that

limt→0 p
′(t) =∞. Therefore, the nonnegativity constraint is not binding for small t’s and we do

not apply the approach with the reserve talent. To derive the performance function we integrate

Equation (1) from 0 to t. Note that the performance function p(t) has to be equal or greater

than t over the whole support t ∈ [0, 1]. The performance function is

p(t) = max{wtα(n−1), t}. (6)

Like before, the doping quantity is an athlete’s performance minus his talent. Then, the

equation for the doping function d(t) is:

d(t) = max{wtα(n−1) − t, 0}. (7)

Figure A.1 in the appendix gives an example of the doping behavior in case (ii). Only weak

athletes takes performance enhancing drugs. The reason that strong athletes do not dope is that

the probability to encounter a stronger athlete and the ratio of the prize money and the doping

costs are so small that it is not optimal to increase once performance over the talent level. In

Claim 2 we show under what parameter values case (ii) and (iv) exist. The formula of the doping

threshold in case (ii) is stated in Equation (A.1) in the appendix.
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Claim 2. We can differentiate between two cases if α(n− 1) < 1. The first one is case (ii) where

only weak athletes dope. If w < 1 then there exists a unique doping threshold t? ∈ (0, 1) and

athletes behave like in case (ii).

The second one is case (iv) where everybody dopes. If w > 1 then there exists no doping

threshold over the support t ∈ [0, 1] and athletes behaves like in case (iv).

The proof of Claim 2:

When α(n− 1) < 1 then the derivative (2b) of the performance function is strictly decreasing in

t. Furthermore the derivative p′(0) is not defined. It can be shown that limt→0 p
′(t) =∞. The

performance function in case (ii) for t = 1 not considering the doping nonnegativity constraint

would be p(1) = w1α(n−1) = w < 1. Therefore, there must exist a unique intersection point with

the 45-degree line. Hence, there exists a doping threshold t? over the support ∈ (0, 1). Using the

same reasoning, there exists no doping threshold over the support t ∈ [0, 1] if w > 1.

3 Implications

A competition is held between n athletes, where each athlete may make use of performance-

enhancing drugs. Each athlete knows how many competitors are participating in the game and

his own talent. The distribution of talents is common knowledge. In such a game, it is not always

an optimal strategy for all athletes to dope. As each athlete maximizes his utility, all competitors

have to choose an amount of doping for which the marginal cost of doping is exactly equal to the

marginal expected increase in prize revenue. Given the assumed distribution of talents in case

(i), for low t’s the expected marginal profit to be gained by doping is smaller than the marginal

cost of doping. The reason is that the probability of confronting a stronger adversary is more

likely. Therefore, there is no advantage in doping for weak athletes. The winning probability

function has a convex form owing to the first order statistic. It becomes more convex, the more

competitors there are. This is why there is a threshold value for almost all parameter values of

α, n and w, beyond which it makes sense to dope.

3.1 The number of athletes and the costs of doping

Athletes with a talent below the doping threshold value do not dope. While athletes with a talent

above this threshold do dope. In discussing the results, we shall first investigate the effects of n

and w. For this, we will assume that α = 1. The talents are uniformly distributed between 0

and 1. In Section 3.1 we will investigate the effects of different talent distributions (α 6= 1) on

doping behavior. Now, we will consider the doping threshold. With an uniform distribution of

talents, Equation (3) becomes
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t?(α=1,n,w) = [w(n− 1)]
1

2−n . (8)

The number of competitors is decisive for the size of the doping threshold. If only two

athletes compete, then the formula of the doping threshold is not defined. The performance

function consequently has the following appearance: p(t) = wt for w > 1. The doping quantity

p(t) = wt for w > 1 increases linearly in line with talent. If w ≤ 1, the two athletes do not dope

because doping is too expensive. Hence, either all athletes dope or none dopes. If the number

of athletes competing is larger than two, then two classes of athletes form, one dopes and the

other not. The indifferent talent is situated exactly on the doping threshold. The more athletes

participate, the larger the doping threshold becomes. A larger field of participants makes it

increasingly unattractive for weak athletes to dope.

Furthermore, the relationship between the prize money and the marginal cost w determines

the level of the doping threshold. If w is large, then the participants can win a large sum of

prize money and the doping costs are relatively low. If w becomes smaller, that is, the relative

doping costs increase, then the doping threshold rises. For the case that doping is very expensive

(tiny w) and only a few athletes participate, then the doping threshold formula would produces

values that are greater than 1. But since the assumption is that an athlete’s talent can take a

maximum value of 1, this entails that we are in case (iii) where nobody will dope.

Figure 1 shows the performance function and the doping function for a competition between

10 athletes and a ratio of prize money to marginal cost of 2 to 1. The performance function is

shown in the upper chart (the dark blue line) of Figure 1. It represents an athlete’s doping talent

up to the threshold. Beyond this point, the athlete’s performance is greater that his talent. The

doping threshold lies at approximately 0.7. On the lower graph, one sees the athlete’s doping

function d(t). The calculated doping function indicates the amount of doping that a player with

talent t will buy. Up to the doping threshold, the doping function is equal to zero, as it is not

worth to dope in this array, and the athletes let their true talent determine the outcome. For

talents above the doping threshold, the doping function has a positive value. From the threshold

on, athletes will dope, and dope all the more, the more talented they are. The player with the

greatest talent dopes the most. This result is in line with evidence from positive doping cases.
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Figure 2: The doping threshold
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The extreme difference between an athlete’s performance and talent in this example is striking.

The performance function of an athlete with the talent t = 1 is 2.5 times greater than his talent.

The amount of doping substances d(t) chosen is a much more crucial determinant of the outcome

of the competition than the natural differences in talent for this underlying parameter values. The

larger the ratio of prize money to doping costs w becomes, the more discrepant is the difference

between them. If one follows the developments in competition sports, one sees how marketing

has catapulted prize money in certain sports and how successful athletes’ public images are used

for corporate sponsoring events. Thus the ratio w has been seen to increase rather than decrease.

A larger w leads to a smaller doping threshold and raises the amount of doping substances used.

An athlete will thus always have difficulty winning without resorting to doping. In order to

illustrate this, we will use the example of a player with talent t = 1. This athlete always wins

in a world where no athletes resort to doping. However, where he is the only athlete not to

dope, his chance of winning falls dramatically. In order to calculate his chance of winning in

this competition, we need talent t′, for which the performance function p(t′) is exactly 1.10 Our

best athlete, who is also honest, is only able to win against athletes whose t < t′. His likelihood

of winning corresponds to the first order statistic of t′. G(t = 1fair) = t′ n−1 = 0.19 . In a

doping environment, his chance of winning thus falls from 100% to just 20%. This low winning

probability is due to the fact that he has to compete against not simply one competitor, whose

talent should be smaller than his (ti < t′). No, he has to win against all nine other competitors.

3.2 The distribution of talents

The nature of the distribution has a direct influence on the doping threshold and the optimal

amount of doping substances used. The power distribution with an arbitrary α can illustrate

different distributions of talents and possesses a closed-form solution for the doping threshold.

With such a distribution the variations in the doping threshold can also be studied when applied

to competitions of numerous talented athletes or numerous untalented athletes.

Figure 2 compares two different distributions of talents. In both cases, 10 athletes compete

against each other, and the relationship between prize money and the marginal cost of doping is

equal to 2. The dashed line is the density of athletes’ talents. In the upper graph, there are a

large number of untalented athletes and only a few talented athletes. The density of the power

function distribution has a parameter value of α = 0.3. The light-blue line is the performance of

the athletes when they do not dope. The athlete’s optimal behavior, when doping takes place,

is illustrated by the dark-blue performance function.

10We set the performance function equal to 1 and then solve for t. For the competition with n = 10 and w = 2 we
get: t′ = 0.832.
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This comparison of athletes’ doping behavior illustrates how important the distribution of

talents is. For the upper case, with a large number of untalented athletes, the doping threshold

is very low. As there are only a few talented athletes, even relatively weak athletes make use of

doping, as the probability of coming up against a stronger athlete in a match is relatively small.

The performance function of the athletes increases gradually.

The second case is quite different. The doping threshold is higher. This is because a weaker

athlete can expect to come up against a stronger competitor, given the probability of the talent

distribution. The performance function of the athletes increases much more sharply than it did

in the upper case. Because there are many more talented athletes, competition pressure increases

between the strong athletes. This leads the strongest athlete to take more doping substances

than he would have in the upper case. Although the doping threshold is further to the right,

the actual performance of an athlete with t = 1 is higher than it would be in a competition with

numerous weak athletes. In the upper graph, the performance of the strongest athlete lies at

2.2, while it lies above 2.6 in the lower graph.

In addition to the number of athletes that compete and the ratio of prize money and the

marginal cost of doping, the distribution of talents also plays an important role. A high doping

threshold does not always imply that the doping function increases less strongly. Competitive

pressure plays a decisive role in an athlete’s choice of the optimal doping quantity.

4 Conclusions

Performance enhancing drug scandals resulting in the conviction of the Festina cycling team

in the nineties or the Fuentes affair in the year 2006 are just the tip of the iceberg. Doping

is a phenomenon with a long history. During antiquity, Greek athletes already used dubious

mixtures to enhance their strength and endurance. However, due to the commercialization of

sports within the last century the incentive to use such substances increased drastically. But

doping is not limited to sport competitions only. A form of doping is also prevalent in modern

economics, where some companies, institutions and even countries revert to illegal acts. For

instance companies cook their books with the intention to receive better ratings. In March 2009,

Bernard Madoff, a renown public figure at Wall Street, was pleaded guilty of several felonies,

including securities fraud. Based on a large Ponzi scheme he deceived his investors, thus gaining

access to monetary assets of about 65 billion dollars (FinancialTimes (2009)).

Another example is Greece which falsified their statistics for years. In environments where the

costs to camouflage such acts are smaller, the incentives to cheat are higher. In October 2009

the newly elected socialist government revealed that the country’s deficit was far larger than

the previous government disclosed. As a result rating agencies downgraded Greece’s debt and
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increased the risk premiums on Greek bonds. The acknowledgment of Greece’s prime minister

that ”corruption was a national disease” shows that doping is a social problem (FinancialTimes

(2010)).

The goal of this paper is to highlight how the doping behavior depends on the general con-

ditions and regulations that prevail. The cultural environment and the existing framework are

crucial determinants for the unfair behavior of athletes in a sport competition or companies in

the economic system. Therefore we developed a doping model to shed more light on the doping

problematic.

The model can be applied to other areas where the competitor with the best composed bid

receives a prize. All-pay auctions are often used to model bribery (Milgrom, 2004). A direct

application of the model would be to model public building contract requests in rather corrupt

governments. Building contractors have to submit project designs and cost estimates. The best

project will receive the contract. The contractors can improve their chance of winning with

illegal gifts and bribery. This would be a straightforward application to our model. Moreover,

the method with the reserve talent could be used in other theoretical applications. Especially,

in situations with a constraint.

Sport competitions are most often held between more than two athletes. For example, every

year approximately 200 cyclists participate in the well-known cycling event, the Tour de France.

The participating cyclists differ much in strength, talent, technical or financial support. However,

all have the same dream to win for their team and to ’sport’ the winner’s coveted jersey. Models

that investigated the doping behavior of athletes in a two-player setting have led to interesting

findings, but in some ways they abstract away too many details from reality. That was our

stimulus to develop a doping model with heterogeneous agents in an n-player setting. We asked

ourselves what are the important determinants for an athlete to use performance enhancing

drugs? Obviously the size of the prize money and the costs of doping are crucial. But other

determinants like the number of competitors and their strengths are important, too. In order

to develop a monitoring mechanism, it is important to first analyze the optimal behavior of an

athlete where doping is allowed.

In particular, the paper investigated how the number of athletes competing and the distri-

bution of the talents affect doping behavior. In the standard case this led to a very interesting

result. If more than two athletes compete, doping is only profitable above a certain talent level.

In a competition, there will be a group of athletes who do not dope. Only when the athlete’s

talent is above this doping threshold he resorts to doping substances. Athletes can therefore be

divided into two groups: Weak athletes playing fairly and strong athletes resorting to stronger

and stronger amounts of doping.11

11If doping is modeled as a binary choice between ’doping’ and ’not doping’, then a doping threshold will also exist.
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Our doping model, where every player is free to use performance-enhancing drugs, produced

interesting results. Below we recap our main findings. The symmetric Nash equilibrium of

the competition shows that it is not always optimal for every player to dope. We distinguish

between four cases. In the standard case the expected marginal revenue from taking drugs for

weak players is smaller than the marginal costs of doping. We receive a doping threshold, which

divides between doped and non-doped athletes. The height of the threshold in our model depends

on three things. First, it depends on the number of competing athletes. The more athletes

participate, the higher is the doping threshold. If there are more competitors the probability

that there is a stronger competitor increases. Therefore, it only makes sense to dope if the athlete

belongs to the superior part of the field. Due to the fact that the chances to win are higher and

the expected profit of doping is bigger than its cost.

Secondly, the threshold depends on the prize-cost ratio of the competition. By prize-cost ratio

we are referring to the relation of prize money and the marginal doping costs. If the relative

doping costs increase, the doping threshold does, too. Recent developments in competitive

sports affected the prize-cost ratio. Prize money and sponsoring contracts are more lucrative

nowadays due to the growing media interest in some widely known sports. At the same time,

more effective substances are available on the market for more or less the same price. If offenders

are not penalized appropriately the doping threshold will decrease.

And last, the threshold depends on the distribution of talents. In our doping model we chose

a power function distribution for the talents. This allows us to take a closer look at the influence

of the distribution of talents on doping behavior by varying the factor α of the probability density

function. If this factor is small, then there are many untalented players. In such a game the

doping threshold is low. For high values of this factor the game has many talented players.

Here the doping threshold is higher than in the former case. Even though fewer athletes take

performance-enhancing drugs, the doping amount of the most talented participant may be higher

than in the former case.

The results of the n-player doping game have shown that a doping threshold exists for the

majority of cases. Hence, in most circumstances talented players take performance-enhancing

drugs. The size of the doping threshold depends positively on the number of players, and

negatively on the prize-cost ratio of doping. Moreover, the distribution of talents influences the

value of the threshold. The most talented player is also the player who takes the largest doping

amounts. On the one hand he already has a higher chance to win and therefore can invest more

money into doping. On the other hand he needs to defend his role as a leader. Hence, he is

forced to dope more than the others. In the end doping has no effect on the rankings of the

game. The same person who would win in a doping-free environment also wins the doping game.

These findings are not only of theoretical interest but should also be considered in the context of

establishing optimal anti-doping regulations. Future extensions of the model could include such

regulations.
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Despite many differences between a standard auction and our doping model, there are some

major similarities. Doping does not influence the ranking aspect of the game; the most talented

athlete will win nonetheless. The performance function is increasing in the talent. Hence, the

ranking position of the athletes stays the same, except that some costs for illegal substances ac-

crue. Altogether the prevention of these practices would not harm the players since the additional

expenses would vanish.

Unfortunately the banishment of doping may not be free of costs for competitive sport events.

The detection of drug consumption can be quite difficult or even impossible. A good mechanism

to fight doping consists of rigorous, independent control bodies and appropriate penalties laid

upon offenders. One result of our model indicates that not every athlete has the same incentives

to enhance his performance that way. Usually, athletes being weak compared to their competi-

tors, do not profit of using such products. The anti-doping agencies need to pay attention to this.

Otherwise penalties or inaccurate tests could actually lead to unintentional outcomes. Nonethe-

less, it makes sense to focus those tests on the top athletes. An extension of our model would

consist of the inclusion of a doping controller, who checks the pool of players and tries to keep

doping out of the sport completely. A doping model with heterogeneous athletes that can cope

with flawed test results and takes windfall-profit effects12 into account is demanding. Possible

disqualifications imply that the winning probability of the runner-up is greater than zero. To

account for these possibilities in the optimization problem of the athlete further order statistics

need to be included. Reasonable extensions of our doping model wait for implementation to give

a better understanding of the doping problem.

12We speak of windfall-profit effects when the alleged winner is tested positive and the prize goes to the runner-up.
Windfall-profit effects have been investigated by Kräkel (2005) beforehand.
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Appendix

A The four cases of doping behavior

The following distinction of cases can be made:

(A) Existence of the doping threshold

(i) Strong athletes dope

α ≥ 1/(n− 1) ∩ wα(n− 1) > 1.

(ii) Weak athletes dope

α < 1/(n− 1) ∩ w < 1.

(B) Nonexistence of the doping threshold

(iii) Nobody dopes

α ≥ 1/(n− 1) ∩ wα(n− 1) ≤ 1.

(iv) Everybody dopes

w ≥ 1 ∩ α < 1/(n− 1).

21



A.1 The doping behavior in case (ii)

In case (ii) only weak athletes dope. The formula of the doping threshold differs from Equation

(3) of the doping threshold in case (i). If only weak athletes dope the equation of the doping

threshold is the following one:

t?α,n,w = w
1

1−α(n−1) . (A.1)

Figure A.1 displays the performance function p(t) in case (ii). At the doping threshold the

performance function has a kink. Having argued in case (i) that there can be no kink at the

doping threshold, in case (ii) this is different. Given that all other athletes play the symmetric

equilibrium of the performance function in Equation (6) it can be shown that an athlete with a

talent ti below the doping threshold is indifferent to imitating the performance of an athlete with

a talent tj < t? and would decrease his expected return by imitating an athlete with a talent

tj > t?. For athletes with a talent above the doping threshold the nonnegativity constraint is

binding. That implies that the marginal return of increasing the performance is lower than the

marginal costs of doping.
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Case HiiL: Only weak athletes dope

Figure A.1: The weak athletes dope
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