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Mean Shift detection under long-range dependencies
with ART

Juliane Willert

Institute of Statistics, Faculty of Economics and Manageime

Leibniz Universitat Hannover, 30167 Hannover, Germany

Abstract

Atheoretical regression trees (ART) are applied to detkahges in the mean of a sta-
tionary long memory time series when location and numbemak@own. It is shown
that the BIC, which is almost always used as a pruning metthoels not operate well in
the long memory framework. A new method is developed to ddtex the number of
mean shifts. A Monte Carlo Study and an application is gieeshow the performance

of the method.
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1 Introduction

It is an ongoing problem to detect changes in the mean. Irotigememory framework it gets
even more difficult to specify number and location corretidcause of the high persistence
in the time series. The long cycles and local trends chadlemgery breakpoint estimator
and make it hard to distinguish between long memory and mie#ts ¢see e.g. Sibbertsen
(2004)). In addition undetected shifts in the mean bias iheastimators e.g. for the memory

parameter and create therefore misleading results.
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Granger and Hyung (1999) as well as Diebold and Inoue (20dWwed that long memory
behavior can be easily confused with mean shifts and that pheperties are very similar.
That’s why standard break detection procedures can be/ easifused and are vulnerable to
fail. There are several methods to specify the presenceuaftatal breaks. Chow (1960) was
the first creating a test on structural changes based on tta¢istis when the breakpoint was
known. There are Brown, Durbin and Evans (1975) who sugddse CUSUM approach
and Ploberger and Kramer (1992) who based a structural eltasgjon the cumulative sums
of recursive residuals. Bai and Perron (1998) modeled their break date estimator and
allowed to have multiple breaks in the mean. Their methodana®ak point estimator based
on OLS regression which works reasonable for short memaorg series. Hence it became
the standard procedure for break point estimation.

The methodology of classification and regression trees einian et al. (1993) was applied
to time series analysis by Cappelli and Reale (2005). Thewst that atheoretical regression
trees (ART) have reasonable performance in detecting avadithg structural breaks in short-
memory time series. In comparison with Bai and Perron (1998)east squares regression
trees did convincingly. In the long-memory framework tha Barron procedure does not
work properly (see Rea (2008)), so ART would be a reasondigmative.

Regression trees operate in two steps. First the growigsgt@ns a tree which is often over-
fitted (see Rea et al. (2008)) and so the second step, thengrusithe much more important
part. The regression trees with the BIC as the common pruteicignique fail in the long
memory framework. A new pruning method called elbow créenill be modeled to over-
come this problem and still maintains the good propertigh@fegression trees to specify the

number of mean shifts.

The rest of the paper is organized as follows. In section 2rtethod of atheoretical regres-
sion trees is introduced and different pruning techniquesdéscussed. The BIC, the most
widespread pruning method, will be replaced by the devel@beow criteria. Section 3 con-
tains an extensive Monte Carlo study to analyze the perfoceaf the elbow criteria and its
advantage in comparison to the BIC. In section 4 an apptindat CPI inflation rates is given.

Section 5 concludes.



2 Atheoretical regression trees

ART is a nonparametric procedure that is used to detect avaddstructural breaks. It does
not require distributional assumptions about the dataerakiduals and hence it is well suited

for a variety of time series. A simple break point model reads

Yo = Hp+é&
p
Hp = i; It <t<t M

wherey; is the value of the time series at tirheg; is the error term which is assumed to be
stationary andl, is the mean of the time series up to the breakppint;cr is an indicator
function which is 1 ift is in the regime and O otherwiset; withi =1, ..., p are the breakpoints
with the mean of the regimg.

Aregression tree fits piecewise constant functions to theeatad determines thereby potential
breakpoints. The tree construction uses a greedy algaritiivat means that at each step the
best split is determined and there is no reconsideratioheet split. The time is the only
exogenous predictor variable for the OLS regression btiitot a true predictor, it is more
like a counter.

To determine the best splita measure of node impurity isegketihe sum of squared residuals
(RSS) is used to determine where the node will be set. Thedéaslute deviation could also
serve as a measure of the deviance of the tree instead of théd&Shat is rather unusual.

The mean squared error is given as a risk function by

where

_ 1
yt)=—= ) Vi
RGP
x; are the predictor variables (time points) which belong te mgime anah(t) is the number

of elements in nodée. The tree construction splits a notleto a leftt, and a righttg child

node for which the sum of the RSS of the left and right node rEmized.

min(R(t.) + R(tg)) = min (i > 0T s 3 O —y‘(tR»Z)

n(tL> X n(tR)

3



This can also be written as a maximization of the improventgmiugh the splitting intd,

andtg.
max(R(t) - R(t.) — R(tr))

ART requires at any nod®(n(t)) steps to identify the best split (see Rea (2008)). The recur-
sive partitioning produces a hierarchical structure ofesoand leaves (terminal nodes). Every
terminal node represents a regime with a shifted mean. Eeegnowth until no improvement
can be made by splitting the time series. So the location antber of breaks in the data are
determined.

An example will be introduced. Considering an ARFIMA(O,dpPocess
(1-L)9% =&,

where L is the lag operatog; are iid random variables with zero mean and the variarfce
and the degree of integration is determinded by the long megmarameted. A stationary
long memory process is characterized by the valwtiofthe interval betweef0,0.5].

Ford = 0.2, a sample size of = 500 and two breaks fromy = 3 to o = 0 andpz = 3 at

t; = 200 and, = 350 an exemplary time series is shown in figure 1.

Figure 1. Exemplary time series with two breaks in the mean

100 200 300 400 500
time

In figure 2 the spanned regression tree is presented. TheefeLarleaves and each is represen-

ting a regime with a different mean. The nodes representrigekipoints which are detected
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att; = 200,t, = 294 andiz = 351. The different estimated mean levels are noted below the

encircled numbers.

Figure 2: Regression tree after growing

t<>351.5
t<>200.5 @)
3.311083
149 obs
@ t<>294.5
3.0897235
200 obs
2 3
0.383134 -0.5493214
94 obs 57 obs

The growing of the tree is literally driven by the data, s@athe growing process a very well
fitted tree is build, because the only stopping rule would [zl of improvement in the sum
of RSS. In fact the tree gets often quite large and is ovedfigee Rea et al. (2008)). That’s
why pruning techniques are needed to determine which of ddesare redundant. There is
the possibility of manual pruning which is a quite reasosafsdy if a priori knowledge can
be used.

A nested hierarchy of regimes was built and can be pruned yaekpruning method. They
work from bottom to top. That means that the first node to cutldde the one which was
grown last, so which gained the weakest node impurity imgmoent. In our example this

would be the node dt= 294. In figure 2 it is easy to see that this branch was built last



Pruning methods are e.g. the cost-complexity pruning (seérn et al. (1993)) or an
information criteria such as the BIC. Rea (2008) showed tihatcost-complexity pruning
is difficult to handle because a complexity parameter (ggrn@rameter) has to be chosen
and that the BIC is the best information criteria over all sidered cases. The penalty term
of the BIC depends on the size of the time seffeand the number of terminal nodgs
Kokoszka and Leipus (2002) show that the Bai Perron pro@dtich is similar to the BIC
information criteria excludes linear sequences with loaigge dependence. Regarding to that
it is not astonishing that the BIC does not handle long memaligble, which can be shown
in section 3.

A new pruning method will be suggested to overcome this bl The idea of thelbow
criteria is that the optimal break number is reached when the imprewnéof the sum of RSS
is highest. A typical shape of the sum of the squared ressdsfabws that there is always
a better fit by including more breaks but some splits downgieerisk function more than

others.

Figure 3: Typical shape of the sum of squared residuals dependingedordak number

RSS

1 3 5 7 9
number of breaks

The largest improvement in the RSS is made where the trenthbdsggest bend. To deter-
mine this bend the slope of the piecewise constant funcaomsonsidered. The last section

of the RSS function gets a slope equal to zero, because thsttopped splitting at that point
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so an improvement of the RSS could only be minimal. Calaudathe difference between
two adjacent slopes provides a measure for the improvenedfib through this splitting.
The highest benefit is defined as the optimal number of breaks.

This procedure is independent of the length of the time seie the number of terminal
nodes. It determines the optimal number of breaks where ititeebt improvement can be
made through splitting at that point. The advantage is thataver fitted tree which was
grown can be counterbalanced because all the small RSS verpemts become irrelevant.
In comparison the BIC does depend on the height of its pemalty and though it can be
irritated by the amount of suggested break points.

The elbow criteria considers an absolute deviation betweetevels of the RSS function and
can so easily respond to different levels of the RSS fundhoough different time series and
persistences respectively. Returning to the example dpeéore the optimal number of breaks
would be 2. In figure 3 you can see that at two breaks the impnew through splitting the

sample is highest which expresses in the biggest bend ofSigef&ction.

3 Monte Carlo study

An extensive Monte Carlo study will demonstrate the perfamoe of the new pruning method
for the long-memory framework in comparison to the BIC. Alhslations are computed
with the open-source programming language R (2008). Thebeuiwf replications is set to
M = 1000 and we consider a sample siz& of 500 in order to illustrate the good performance
in small samples. All results improve when using larger dasp

The data generating process is an ARFIMA (0,d,0) wlith 0.2 andd = 0.4 respectively. The
levels of the mean are chosen relatively small on purposall®tmanges e.g. from; = 1 to

K2 = 3 are harder to determine than large level shifts. Also nitgybreaks (e.gup =1 to
2 = 3 and back tqus = 1) are challenging, because this small peak can be easitiooked.
The position of the mean shift when there is only one meanistafter the 300th observation
and it will be shown that the position does not have a big imib@son the results. Considering

more mean shifts the break locations will be spaced equally.



Comparing the widespread BIC and the elbow criteria undetp findings of Kokoszka and
Leipus (2002). The BIC is not able to handle the long-rangeeddencies because of the
high persistence and dependencies. The tree misspecdadriends and cycles as additional
break points and the penalty term of the BIC is not strong ghda penalize the high persis-
tence. The BIC leads to choose the maximum number of breatgpehich is spanned by the

regression tree, so in most cases no real pruning takes place

Table 1: Performance of BIC and elbow criteria

when there is one mean shift

elbow criteria BIC

d=02| mean s.d. %corregtmean s.d. % correct
m=21uwp=3| 1.00 0.00 100.00 2.51 1.23 22.80
Ml=3;l=1| 1.00 0.00 100.00 2.50 1.20 22.40

b=1p=2| 1.03 0.35 98.60 3.82 1.67 7.40
d=0.4

b=1p=3| 1.04 0.33 97.50 5.39 1.80 0.50

Ww=3mp=1| 1.05 0.41 97.60 5.37 1.79 0.60

bm=1p=2| 1.53 1.28 78.10 6.44 1.86 0.40

The BIC has huge problems to find only one mean shift. It otenages the quantity by
multiple times. The higher the persistence the more medtsshill be detected and the
lower is the quantity of a correct determination. For theowllxriteria it is not very hard

to determine this one mean shift in a stationary long memooggss. The higher the level
of the mean shift and the lower the persistence the more atecig the criteria. Hence the
mean is very close to the correct number of breaks, a veryl staadard deviation is obtained
and the percentage of a correct chosen number of breakshs Tlge direction of the shift

(from a high level to a lower one or vice versa) influenceshsgithe pruning criteria nor the
tree growing process. The following table 2 shows that th@tpm of the mean shift barely

influences the performance of the pruning method.



Table 2: Performance of BIC and elbow criteria

when the position of the break varies and there is one meén shi

break at observation elbow criteria BIC

d=02;u=1;p=3 | mean s.d. %corregtmean s.d. % correct

50| 1.00 0.03 99.90 3.32 1.68 15.40

250| 1.00 0.00 100.00 2.45 1.20 24.60

450| 1.01 0.07 99.50 3.28 1.64 14.00
d=04m=1wp=3

50| 1.37 0.84 76.60 6.25 1.82 0.50

250| 1.04 0.33 98.30 542 181 0.90

450| 1.40 0.99 78.00 6.16 1.84 0.50

The results for multiple mean shifts are reported in table@4. The elbow criteria handles

more breaks much more solid than the BIC and gives good sdsudetecting the mean shifts.

The positions of the break points are spaced equally.

Table 3: Performance of BIC and elbow criteria

when there are two mean shifts

elbow criteria

BIC

d=0.2| mean s.d. %corredtmean s.d. % correct
m=Lw=4u,=1| 2.07 0.26 95.80 2.63 0.76 52.50
m=Lw=3;i3=1| 2.15 0.39 87.20 3.36 1.13 23.90
m=Lw=2;13=1| 2.04 0.64 67.00 452 1.48 7.80

d=04
m=Lw=4u=1| 2.06 0.54 70.60 4.79 1.44 3.40
m=Lw=3;i3=1| 1.92 0.75 55.10 5.85 1.58 1.20
m=Lw=2;3=1| 1.87 1.21 31.20 6.71 1.65 0.00




Table 4: Performance of BIC and elbow criteria for multiple mean hif

elbow criteria BIC
d=0.2 | mean s.d. %corregtmean s.d. % correct
m=Lw=4w=1wm=4| 3.12 0.38 86.90 3.51 0.71 60.2
l=Lwp=3w=1Ku=3| 3.18 0.66 68.10 4.25 0.99 23.60
M=Lw=2;13=4m=1| 253 0.61 52.40 3.80 0.84 40.20
m=Lw=4w=1Lwu=4u=1| 414 052 81.70 4.44 0.61 61.80
m=Lw=3w=Lmu=3;;s=1| 405 1.13 53.00 5.20 1.00 26.50

d=04
lm=Lw=4u=1Lmu=4| 282 1.12 46.30 5.38 1.34 6.10
l=L=3w=1u=3 242 1.22 31.30 6.34 1.42 0.80
m=Lw=2;=4m=1| 2.07 0.75 29.00 5.53 1.8 6.00
m=Lw=4w=Lwm=4up=1| 3.42 1.60 27.20 6.10 1.21 8.20
l=Lw=3w=1Lu=3 k=1 2.7/ 161 16.20 6.82 1.36 2.90

The chosen transitions are quite regular which is much mifieudt to detect for a break
point estimator than extreme breaks. This almost cycli@bien (frompuy, =1 topy, =4 and
back tops = 1 andpy = 4) simulates the most challenging break pattern with logeles and
persistences best. Hence the good behavior in this casesmgréounded results for more

obvious (easier to be detected) breaks.

Finally you can say that the BIC overestimates the numberedks with high standard de-
viations. The percentage of correct chosen breaks is sd #maaleven educated guessing
would be more successful. The ability of the elbow critenalte other hand stays reasonable
even if there is more than one mean shift. When the persist@ceases the criteria tends
to underestimate the number of mean shifts. The elbow i&ites a pruning technique of
the atheoretical regression trees shows very good prepeatien when multiple mean shifts
with small level changes occur in a long memory time seri¢gywill be still detected and

correctly specified with a high probability.
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4  Application on inflation rates

To illustrate the good performance of the atheoreticalaggjpn trees an application to CPI
inflation rates is given. The time series data starts in Jymfal960 (except Australia starts
in 1971) and ends in June 2009. The following table 5 showgdkalts of some OECD

countries when ART with the elbow criteria is applied.

Table 5: Break points in inflation rates

of selected OECD countries

Country 1st break| 2nd break
Australia Jan 91 -
Canada Aug 72 Dec 91

Germany Sep 70 May 83
Japan Dec 81 -
New Zealand Sep 70 Jun 90
Switzerland | Oct 93 -
UK Sep 73 Nov 82
UsS Jul 73 Nov 82

The atheoretical regression trees find one or two breaksimftation rates. Corvoisier and
Mojon (2005) determined three waves where breaks in inflatibes occur. In their opinion
since 1960 most OECD countries had breaks around 1970, 18B2991. This can be very
well encountered by the estimated break points via ART. B60%) identifies the break points
under the assumption of two known breaks and finds for Gerrtir@ngreaks at October 1969
and July 1982 and for the US at January 1973 and September W@8g&r the assumption of
one appearing break he determines for the japanese inftat®the break point at May 1981.
Hence most of his results are very close to the specified bi@akhe elbow criteria, however
Hsu has to know a priori how many breaks will occur.

After demeaning the inflation rates using the specified bpeakts the long memory parame-
ter can be computed by the GPH estimator. In the followin¢gtélihe mean of each regime

and the d parameter after demeaning is displayed.
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Table 6: Mean of each break regime and demeaned d estimation ofegl@&CD countries

mean

Country start to 1st break 1st to 2nd break 2nd (1st) break to end d estimation
Australia 9.2991 - 2.6299 0.68
Canada 2.7330 7.2467 1.8732 0.75
Germany 2.6175 5.1386 2.0153 0.50
Japan 7.0455 - 0.8459 0.58
New Zealand 3.3628 11.8101 2.2907 0.40
Switzerland 3.9000 - 0.9489 0.71

UK 4.7109 14.7415 3.7510 0.26

UsS 2.9175 9.0408 3.0724 0.54

The detected breaks in the inflation rates have quite highl iferences. When there are
two breaks in the inflation rate the mean before the first besakafter the second break is
often almost the same and a large peak between the breake chatdzted. In this situation
(when the transitions are quite regular) ART showed googgnttes (see section 3) and hence
underpin that these break point findings are quite reliaBiter demeaning the data accor-
dingly to the estimated break points long-range dependsrak still present in the data. This

implies that an approach which accounts for long memory aeamshifts is very rational.

5 Conclusion

In this paper a new pruning technique for atheoretical gom trees is invented. When the
data generating process is long memory and has shifts in ¢fa@ fanction it performs much
better than common pruning methods like the BIC. In a statiptong memory framework the
elbow criteria accomplishes the detection of the breaks atbemhow many shifts appear and
where they are situated, even in small samples. With inorgasersistence and decreasing
shift level the determination gets slightly underestirdatés the procedure is well grounded
it can also be extended for smooth transition trees (da Ribah €2008)) and to trend or

volatility shifts.
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