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Abstract

This paper treats the problem of setting the inventory level of closed-loop flow

lines operating under the constant-work-in-process (CONWIP) protocol. We solve a

huge but simple linear program that models an entire simulation run of a closed-loop

flow line in discrete time to determine a production rate estimate of the system. This

new approach has been introduced in Helber et al. (2008) for open flow lines with

limited buffer capacities. In this paper we present numerical results of the method

for closed-loop CONWIP flow lines. The first part of the numerical study deals

with the accuracy of the method. In the second part, we focus on the relationship
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between the CONWIP inventory level and the short-term profit. In our numerical

investigation we consider both limited and unlimited local buffer capacities between

the machines.

1 Flow lines with stochastic processing times under

CONWIP control

A flow line with CONstant Work In Process (CONWIP) is characterized by a constant

number of work pieces (the CONWIP level) circulating in the line. This constant number

can be due to a fixed number of pallets or production authorization cards (PACs), see

Buzacott and Shanthikumar (1993, pp. 490).

1 1 2 2 3 3 4 4 5 5

Figure 1: Example of a CONWIP system with 5 stations

Such a CONWIP system is specified by k = 1, ..., K serially arranged work stations

M1, . . . ,MK , each followed by a corresponding (downstream) buffer of size bk. See as

an example in Figure 1 a system with K = 5 stations depicted as squares and buffers

represented by circles. It is assumed that in front of the first station an unlimited amount

of raw material is available. Each work piece on a machine or in a buffer is attached to

a pallet so that the total number of work pieces in the system is constant and equals the

CONWIP level. When finished work pieces reach the buffer behind the last machine MK ,

they are unloaded from the pallets. Then new work pieces are immediately loaded on the

pallets to be next processed at the first machine M1. The transportation times between

the work stations as well as the times for (un)loading the pallets are negligible and are

assumed to be zero.

In this paper we assume random effective processing times at each station, for example

due to manual operations or machine failures. This can lead to blocking and starving and

a production rate of the line below the capacity of the bottleneck station if it would

operate in isolation. It is both economically important and scientifically challenging to
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quantify the impact of local buffer sizes and the global CONWIP inventory level on the

production rate of the line.

Good surveys about methods for the analysis of flow lines are found in Dallery and

Gershwin (1992) and Li et al. (2008). Recent literature surveys of closed loop systems

are given in Gershwin and Werner (2007) and Resano and Luis (2008). There is a wide

range of applications of closed loop flow lines in manufacturing. For example, Resano and

Luis (2008) analyze real automobile assembly lines and preassembly lines as a network of

closed loops. Li et al. (2008) give examples of different applications of closed-loop lines

with a constant number of carriers for the automotive industry. Hopp and Roof (1998)

review different methods of setting the work-in-process (WIP) level in pull systems and

analyze a dynamic control of the WIP level to reach a target production rate within a

given bound on the cycle-time. Onvural and Perros (1989) approximate the throughput

of a CONWIP system numerically and present methods to optimize the CONWIP level.

In general, three approaches for the analysis of stochastic flow lines have been widely

established: exact probabilistic analysis, decomposition methods, and discrete-event sim-

ulation (DES). Both exact methods and (approximate) decomposition approaches are

typically very fast, but also inflexible as they rely on quite specific assumptions about

the stochastic behavior of the production system. DES, on the other hand, is extremely

flexible, but often requires a substantial computational effort to evaluate a single config-

uration precisely. Neither method can be easily combined with the powerful optimization

methodology of linear programming, see Helber et al. (2008). Our objective in this paper

is therefore to close this gap for the particular case of CONWIP flow lines.

The basic idea of our approach originally introduced in Helber et al. (2008) is to

approximate the stochastic behavior of a discrete-material flow line operating in con-

tinuous time within a large discrete-time linear program (LP). An attractive feature of

this approach is the possibility to combine simulation and optimization within a single

linear optimization framework. Previous LP-based models of stochastic flow lines were

formulated in continuous time, see Abdul-Kader (2006), Johri (1987), Matta and Chefson

(2005) and Schruben (2000). Due to the continuous time modeling approach, they could

not easily model buffer sizes as decision variables, which is possible in our approach and
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important in the context of flow line optimization.

The remainder of the paper is organized as follows. In Section 2, a discrete time

linear program is developed to evaluate CONWIP systems with a given CONWIP level

and either finite or infinite buffer capacities. This evaluation model is extended to an

optimization model, where both the CONWIP level and the buffer spaces are decision

variables. In both models, the objective is to maximize the respective production rate

estimate. Another extension deals with an economic objective function, which is based

on gross margins and holding cost per product unit. The numerical studies in Section 3

present results on the accuracy of the method as well as results for the economic opti-

mization of CONWIP lines. In Section 4, we summarize the most important findings of

the paper and give an outlook on further research topics.

2 Linear programming modeling of CONWIP flow

lines

2.1 Outline of the approach

In our approach the behavior of a discrete-material flow line operating in continuous

time is approximated by a linear program (LP) that includes a discrete-time dynamic

production-inventory model with continuous production quantities. The number of work

pieces that can be processed at a work station of the line during a period (i.e., the

production capacity) results from a hypothetical simulation run in continuous time. In

this hypothetical run we assume that the work station operates in isolation so that it can

neither be blocked nor starved. The realizations of the stochastic processing times are

transferred via sampling to realizations of maximum production capacities ckt for each

work station k and period t. If one considers a sequence of simulated processing times

or durations dkw to process an ordered set of work pieces w at a work station k, one just

has to count the number of finished work pieces within period t. An example is shown in

Figure 2, see Helber et al. (2008). In the upper part of Figure 2, three discrete time periods

1 to 3 are depicted. In the lower part the durations of seven consecutively processed work
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pieces are shown. Three work pieces are finished during period 1, one during period 2 and

two during period 3. This procedure yields the capacity of the considered work station

ckt for the periods 1 to 3 as the realization of a stochastic count process.

Period 1 Period 2 Period 3

dk1 dk2 dk3 dk4 dk5 dk6 dk7

ck1=3 ck2=1 ck3=2

Figure 2: Sampling of discrete-time processing rates

Two conditions must hold so that this discrete-time modeling approach based on

production capacities ckt can provide a reasonable picture of the production process in

continuous time. Firstly, the sampling frequency must be high enough, i.e., the time

periods must be short enough to yield a reasonable representation of the individual pro-

cessing times. Secondly, the simulation run must be long enough and represent processing

of enough work pieces to get a stochastically valid picture of the randomness of the pro-

cessing times. That means that a substantial number of periods is required within the

linear program, each with a specific sampled production capacity ckt.

To explore the accuracy of that approach for flow lines with limited buffer capacity

(but without CONWIP control), Helber et al. (2008) analyzed a large and systematically

created set of flow lines both via DES and the LP approach. That earlier paper also

presents a detailed discussion of the errors induced by simulating a flow line that operates

in continuous time within a discrete-time linear program, see Helber et al. (2008). The

results showed that the method has a reasonable degree of accuracy unless buffers are

very small and/or effective processing times (including possible repair times of unreliable

machines) exhibit a high degree of variability of the processing times with a coefficient of

variation greater than 1.
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2.2 Performance evaluation of CONWIP systems via linear pro-

gramming

To model a CONWIP flow line system within a linear program, the following assumptions

are made:

• A single product type is produced by the flow line.

• The production system contains a cyclic transportation system.

• There is a constant number pal of work pieces in the system due to a fixed number

of pallets or PACs.

• The production capacity ckt for each station k and period t is a realization of a

stochastic count process.

• A production quantity Qkt at a station during a period can either be further pro-

cessed at the next work station during the next period or be stored in the down-

stream buffer.

• The buffer behind work station k can hold up to bk work pieces.

• Transportation times as well as (un)loading times of pallets are negligible.

Note that a CONWIP flow line with limited buffer capacities behaves exactly like one

with unlimited buffer capacities if the smallest buffer in the line is large enough to hold

all work pieces circulating in the line.

A simple approach to evaluate the performance of such a system using linear program-

ming is to maximize the production rate estimate for a given number of work pieces in

the system. The constraints which have to be respected concern the inventory stored in

the system, the production quantity (capacity given by the production system), the buffer

space, and the number of work pieces used in the system.

Given the notation in Table 1 and the indicator function
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Table 1: Notation for the linear program

Indices
k = 1, .., K Workstations
t = 1, .., T Periods

Input data
bk Number of buffer spaces available behind station k
ckt Capacity, maximum number of work pieces that can be processed at sta-

tion k in period t, provided that station k is neither blocked nor starved
pal Fixed number of work pieces in the system (pallets or PACs)
T0 Number of warm-up periods

Non-negative decision variables
PR Production rate estimate
Qkt Production quantity of station k in period t
Y 0k Initial inventory behind station k
Ykt End-of-period inventory behind station k in period t

1{x} =


1, if x is true

0, otherwise,

(1)

the linear programming model can be stated as follows:

Maximize PR =
1

T − T0

·
T∑

t=T0+1

QKt (2)

with respect to

Y 0k · 1{t=1} + Yk,t−1 · 1{1<t≤T} +Qkt =

Ykt +Qk+1,t+1 · 1{k<K,t<T} +Q1,t+1 · 1{k=K,t<T} k = 1, .., K; t = 1, .., T (3)

Qkt ≤ ckt k = 1, .., K; t = 1, .., T (4)

Ykt ≤ bk k = 1, .., K; t = 1, .., T (5)

Y 0k ≤ bk k = 1, .., K (6)
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∑
k∈K

(Y 0k +Qk,1) = pal (7)

∑
k∈K

(Ykt +Qk,t+1) = pal t = 1, .., T − 1 (8)

Ykt, Y 0k, Qk,t ≥ 0 k = 1, .., K; t = 1, .., T (9)

PR ≥ 0 (10)

The objective function (2) maximizes the production rate estimate at the last work

station K. The production rate PR is determined by dividing the total production of the

last work station K in periods T0 + 1 to T by the length of that time span. Equations

(3) are classical inventory balance equations. For each work station k and period t, the

end-of-period inventory of the previous period t − 1 plus the production quantity of the

current period equals the current end-of-period inventory plus the production quantity of

the following period t+ 1 at the next work station. Note that this “next” work station of

the last work station K is station 1. Restrictions (4) state that the number of work pieces

processed at station k must not exceed the maximum period-specific capacity ckt from the

count process described in Section 2.1. The inventory to be stored behind station k must

not exceed the number of buffer spaces bk as stated in Restrictions (5) and (6). Equations

(7) and (8) ensure that the number of work pieces within the system meets the given total

CONWIP level pal during each period. From a mathematical point of view Equations

(8) are redundant because there are already implied by Equations (3) in combination

with Equation (7). Considering the case of k = K and t > 1, Equations (3) turn to

YK,t−1 +QK,t = YK,t +Q1,t+1. This is equivalent to YK,t−1−YK,t +QK,t = Q1,t+1. The left

hand side represents the number of finished work pieces which leave the CONWIP line in

period t. According to the CONWIP protocol, the same number of work pieces has to be

sent to machine 1 in period t + 1. As we already guarantee the proper initial inventory

with Equations (7), Equations (8) are redundant, but help to explain the logic of the

model. Last but not least all decision variables must be non-negative, see Restrictions (9)

and (10).
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2.3 Optimization-oriented models

The basic (evaluation) model presented in Subsection 2.2 can be extended in different

ways.

1. In the formulation given above, the number of work pieces pal in the system is

assumed to be a parameter, determined by the number of pallets or PACs. To be

able to optimize this number, the parameter pal has to be replaced by a non-negative

decision variable PAL in Equations (7) and (8). The resulting new constraints are

given in Restrictions (11) to (13).

∑
k∈K

(Y 0k +Qk,1) = PAL (11)

∑
k∈K

(Ykt +Qk,t+1) = PAL t = 1, .., T (12)

PAL ≥ 0 (13)

Note that with this modeling approach, a single discrete time simulation run within

a linear program can be used to optimize a stochastic CONWIP flow line, here with

respect to the production rate.

2. The model presented so far yields a production rate estimate for the system char-

acterized by a given CONWIP level pal or a production rate maximizing CONWIP

level PAL. In a more economic perspective, it is interesting to find the profit-

maximizing number of work pieces in the system. The solution of such a model

depends on the cost of capital tied up in the work-in-process and the value of the

produced work pieces. Let hc denote the holding cost per product unit and time

period and gm the gross margin per product unit. Now the objective is to max-

imize the profit per time unit which depends on the gross margin of the finished

work pieces and the holding cost of all work pieces in the system:
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Maximize Profit = gm · ( 1

T − T0

·
T∑

t=T0+1

QKt)− hc · PAL (14)

The Restrictions (3) to (6) and (9) to (13) remain the same.

3. Similar to the first extension, the model can be used to optimize the distribution

of buffers for a given total buffer capacity btot. The parameter bk for local buffer

capacities in Restrictions (5) and (6) has to be replaced by non-negative decision

variables Xk as shown in Restrictions (15), (16) and (18):

Ykt ≤ Xk k = 1, .., K; t = 1, .., T (15)

Y 0k ≤ Xk k = 1, .., K (16)∑
k∈K

Xk = btot (17)

Xk ≥ 0 (18)

Furthermore, Constraint (17) has to be added to guarantee that the total number

of buffers allocated behind the different stations k in the system meets the total

number of buffers available btot

Other modifications of this generic model are possible as well.

3 Numerical results

3.1 Accuracy of production rate estimates

3.1.1 Outline of the numerical study

In order to evaluate the accuracy and the numerical effort of our method, we performed

a numerical study considering CONWIP lines. The design of this study is based on the

results presented by Helber et al. (2008). One result of that paper is that an average

processing rate of about 1.0 work pieces per (discrete) time unit combined with a length
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of a “simulation run” of 10,000 discrete time units yields a reasonable balance between

the sampling frequency, the number of sampled events and the size of the linear program

embedding such a “simulation run”. A further result of that paper is that the method

is not accurate for very small buffer sizes and/or coefficients of variation of the effective

processing times greater than 1.

As the measure of accuracy in this current study we again use the relative deviation of

the production rate estimates of the discrete-time linear program from the “true value”

(gained by an extremely long and very precise discrete-event simulation). We compare the

results of our method to those obtained from a discrete-event simulation model originally

coded in C (Helber (1999)). The LP models were implemented in GAMS and Cplex 11.0.0

was used on a Dual Core Pentium IV machine with 2.8 GHz and 2 GB RAM to solve the

models.

We investigate the impact of the following aspects of the problem instances on the

accuracy of our method:

• Number of stations

• Number of buffer spaces for each buffer between the machines in the flow line

• Average processing rates at the machines

• Location of the bottleneck (if any) in the line

• Variability of the processing times

• Number of pallets (relative to the number of spaces for pallets in the system)

• Exogenously given even distribution of buffer spaces vs. endogenously determined

(production rate maximizing) allocation of buffer spaces.

For reasons of transparency we first discuss these aspects briefly: We expect to find

larger deviations for increasing numbers of stations, given the results for open lines

in Helber et al. (2008). As buffers reduce blocking and starving and our method only

approximates the true movement of finished work pieces in Equations (3), we expect to

achieve more precise results for problem instances with larger numbers of buffers.
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The number of periods of the machines in the discrete-time linear program and the

processing rates determine the total production quantity. To create comparable condi-

tions in our experiments, we set the number of simulated periods (after a warm-up period)

and the processing rate of the machines in such a way that comparable expected numbers

of approximately 10,000 work pieces could be processed by the line after an initial warm-

up period of T0 = 500 periods. Let µ∗ denote the rate at which the bottleneck machine

of the line operates. Then the number of periods in the discrete time linear program was

determined as follows:

T = T0 + T1 = 500 + d10, 000
1

µ∗
e (19)

Given the circular structure of CONWIP flow lines, we expect that the accuracy of

the method does not depend on the location of a bottleneck in such a line.

With respect to the variability of processing times, we conjecture to find an

increasing accuracy with decreasing variability as we did in the study for open flow lines.

As the number of work pieces in a CONWIP line is restricted by the number of pallets,

we investigate their influence controlled by a so-called pallets factor. It represents the

number of pallets related to the number of buffer spaces plus the number of spaces at

the work stations. For a given pallets factor pf , the number of pallets in the system is

therefore computed as follows:

pal = pf ·

(
K +

K∑
k=1

bk

)
(20)

The previous experiments presented in Helber et al. (2008) revealed that the accuracy

of the production rate estimates for open flow lines is similar for an exogenously given

(even) buffer allocation and an endogenously determined (uneven) buffer allocation.

We wanted to check if this holds for CONWIP lines as well.

For all the parameter types described, we systematically explored a range of parameter

values which we consider to be relevant, to find out under which conditions the method

yields reasonably precise production rate estimates.
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Table 2: Test Bed for the analysis of CONWIP lines (2430 cases); “f. m.” means “first
machine”, “l. m.” means “last machine”,“o. m.” means “other machines”

Parameter type Number of Parameter value per case
cases

Number of stations 3 5, 7, 9
Buffer spaces per buffer 3 4, 8, 16
Base processing rates 3 0.5, 1.0, 2.0
Bottleneck factor 3 (f. m.: 0.9; o. m.: 1.0),

(balanced line, all machines 1.0),
(l. m.: 0.9; o. m.: 1.0)

Processing time 3 0.25, 0.5, 1.0
variability (SCV)
Pallets factor 5 0.2, 0.35, 0.5, 0.65, 0.8
Buffer allocation 2 even vs. production-rate maximizing

3.1.2 Comparison with continuous time simulation results

To evaluate the performance of our method for CONWIP lines, we used a test bed con-

sisting of all possible combinations of the parameters described in Table 2. We compared

the results of our method to those computed with a discrete-event simulation for the test

bed consisting of 2430 (= 3 · 3 · 3 · 3 · 3 · 5 · 2) cases. Given the results of the method

for open flow lines, we considered in this paper minimum buffer sizes of 4 and maximum

squared coefficients of variation (SCV) of processing times of 1.0. The last line in Table 2

indicates that for each line we first evaluated a given even distribution of the buffer spaces

in the line and then sought the production-rate maximizing buffer allocation as described

in Sections 2.2 and 2.3.

Figure 3 shows a diagram with the frequencies of absolute values of relative deviations

of production rate estimates obtained by the LP approach from those of the DES. The

maximum relative deviation is about 60%, the mean value of the relative deviation is

about 5.7%. It also reveals that in 70.78% of the cases there is a deviation of less than

5%. Considering the average of the relative deviation of the production rate estimate as

shown in Tables 3 to 8 our method tends to underestimate the production rate. This is

a consequence of our discrete time approach which assumes in Equations (3) that work

pieces always have to wait for the end of a period to move to the next work station.

To lay open the impact of the parameters listed in Table 2, their effect on the results

is shown in the following Tables 3 to 8. We always report
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Figure 3: Percentage of cases over relative deviations for all 2430 cases of CONWIP lines

• RelDev, the average of the relative deviation of the production rate estimate,

• AbsRelDev, the associated average over absolute values of relative deviations, and

• CPU , the time (in seconds) to solve the linear program.

The upper part of the Tables is dedicated to the situation in which the buffer allocation

is exogenously given and buffer spaces are evenly distributed. The lower part includes the

results for the optimized (production rate maximizing) buffer allocation.

Table 3: Impact of the number of stations in the line

Stations 5 7 9
Even buffer allocation:
RelDev [%] -5.0 -5.0 -5.3
AbsRelDev [%] 5.4 5.7 5.9
CPU [sec.] 18.7 32.4 49.8
Optimized buffer allocation:
RelDev [%] -4.7 -4.8 -5.3
AbsRelDev [%] 5.7 5.9 5.8
CPU [sec.] 30.7 52.2 80.9

Against our expectations the impact of the number of stations in the CONWIP line

does not appear to have a strong impact on the accuracy of the production rate estimate.

Here the results differ from those for open flow lines in Helber et al. (2008). The results

in Table 3 indicate that the CPU time rises as the size of the LP grows with the number

of stations.

14



Table 4: Impact of the number of buffer spaces per buffer

Buffer spaces per buffer 4 8 16
Even buffer allocation:
RelDev [%] -10.9 -3.5 -1.0
AbsRelDev [%] 11.7 4.1 1.3
CPU [sec.] 31.4 33.6 35.9
Optimized buffer allocation:
RelDev [%] -10.7 -3.5 -0.6
AbsRelDev [%] 11.8 4.0 1.5
CPU [sec.] 53.5 53.7 56.6

The results in Table 4 reveal that the accuracy of the method increases with an

increasing number of buffer spaces. The range of chosen parameter values does not seem

to have a strong influence on the CPU times.

Table 5: Impact of the base processing rate

Base processing rate 0.5 1.0 2.0
Even buffer allocation:
RelDev [%] -6.1 -3.7 -5.5
AbsRelDev [%] 6.5 4.0 6.6
CPU [sec.] 53.0 32.1 15.8
Optimized buffer allocation:
RelDev [%] -6.0 -3.3 -5.5
AbsRelDev [%] 6.5 4.3 6.6
CPU [sec.] 92.3 48.4 23.1

Table 5 shows the impact of the base processing rate. For the production of one work

piece per time unit, the method appears to yield the best results. The CPU time decreases

with increasing base processing rates because the number of periods (T −T0) after the T0

warm-up periods decreases (see Section 3.1.1).

Table 6: Impact of the bottleneck location

Bottleneck location first machine balanced line last machine
Even buffer allocation:
RelDev [%] -5.0 -5.3 -5.0
AbsRelDev [%] 5.7 5.8 5.7
CPU [sec.] 35.3 30.4 35.2
Optimized buffer allocation:
RelDev [%] -4.8 -4.9 -5.1
AbsRelDev [%] 5.8 6.1 5.6
CPU [sec.] 56.8 48.0 59.0

As expected, the location of a bottleneck in a CONWIP line does not seem to have a
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strong influence on the accuracy of the results, see Table 6.

Table 7: Impact of the squared coefficient of variation

SCV 0.25 0.5 1.0
Even buffer allocation:
RelDev [%] -2.9 -4.6 -7.8
AbsRelDev [%] 3.8 5.1 8.3
CPU [sec.] 37.6 33.8 29.5
Optimized buffer allocation:
RelDev [%] -2.8 -4.1 -7.9
AbsRelDev [%] 3.7 5.5 8.1
CPU [sec.] 58.2 54.2 51.4

Table 7 reveals the strong impact of the variability of the effective processing times.

The lower the SCV, the more accurate the production rate estimates are. The CPU times

decrease as the SCV increases. We conjecture that a higher volatility of the sampled

production capacities ckt leads to more “extreme” restrictions of the solution space so

that the optimum of the LP can be found more quickly.

Table 8: Impact of the pallets factor

Pallets factor pf 0.2 0.35 0.5 0.65 0.8
Even buffer allocation:
RelDev [%] -7.7 -3.8 -2.3 -2.6 -9.2
AbsRelDev [%] 8.5 4.0 2.4 3.0 10.5
CPU [sec.] 33.7 34.9 34.9 34.4 30.2
Optimized buffer allocation:
RelDev [%] -7.9 -3.8 -2.2 -2.3 -8.4
AbsRelDev [%] 8.4 3.9 2.4 3.3 10.9
CPU [sec.] 49.1 53.8 62.3 56.0 51.8

Table 8 indicates that the relative number of pallets in the system (related to the

number of buffers and stations) is very important. In cases with a low (0.2) or a high

pallets factor (0.8), the results are less accurate than in the other cases. As this seems to be

a major finding of the study we used the method again for a subset of the test bed shown

in Table 2. We created this subset by eliminating the two parameter values 0.2 and 0.8 of

the pallets factor. The results obtained for the remaining 1458 cases (= 3 · 3 · 3 · 3 · 3 · 3 · 2)

are shown in Figure 4. The method yields much more accurate results for this subset of

the test bed. Now the maximum relative deviation is about 20%, the mean value of the

relative deviation is 3.18%. In 79.7% of the cases, there is a deviation of less than 5%.
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Figure 4: Percentage of cases over relative deviations for the subset of 1458 cases

The results show that our method works well for a wide range of relevant parameter

settings.

3.2 Optimizing CONWIP levels via the linear programming ap-

proach

To study the problem of optimizing inventory levels with respect to the production rate

or the profit, we consider a balanced five-machine CONWIP line as depicted in Figure 1.

The gross margin gm per work piece is 100 monetary units and the holding cost hc per

unit and (discrete) time period is 1.0 monetary units. The average processing rates of

the machines are 1.0 work pieces per time unit and the squared coefficients of variation

of the processing times at all machines in the line are either 0.1, 0.5 or 1.0, respectively.

With respect to buffer sizes, we consider two cases: In the first case, we assume a buffer

capacity of 10 work pieces behind each machine. In the second case, we set all the buffer

capacities to 100. The CONWIP level varies from 1 to 50.

If each buffer can hold up to 10 work pieces, blocking can occur for CONWIP levels

above 10 work pieces. However, deadlock cannot occur for the assumed maximum CON-

WIP level of 50 work pieces as machines and buffers can (together) hold up to 55 work

pieces. The other case with buffer capacities of 100 work pieces behind each machine and

a maximum CONWIP level of 50 work pieces models the infinite buffer capacity case as

blocking cannot occur.
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For each buffer capacity case and CONWIP level, we determine a production rate

estimate via our LP method and via the discrete-event simulation (DES) in continuous

time. Based on these production rate estimates for different CONWIP levels, the short-

term profit is computed as specified in Equation (14).

Now we first vary the CONWIP level from 1 to 50 to show the production rate and the

profit as a function of the number of pallets. Then we ask how reliably our LP approach

can find the number of pallets that maximizes the production rate or the profit. For

that purpose, we repeatedly solved the models for different realizations of the simulated

processing times.

The graphs for the production rate estimates as determined via our method and via

a discrete-event simulation are depicted in Figures 5 to 7. They show that the produc-

tion rate decreases as processing time variability increases and that CONWIP lines with

unlimited buffer capacities are more productive than those with limited buffer capacities.

They also show that for peak production rates, the results of the discrete time model (LP)

are very close to those of the continuous time simulation (Sim).

The results for the profit in Figures 8 to 10 show a very similar picture. The CONWIP

line reaches its peak profitability in situations where blocking and starving rarely occur.

Under these conditions, however, our method is apparently relatively accurate.

Note that the profit functions in Figures 8 to 10 exhibit a (from a practical point of

view) extremely nice feature: As the variability of the effective processing time increases,

the profit function becomes flatter around its maximum. While our method yields less

accurate production rate estimates as the variability increases, the profit estimates are

therefore still relatively exact and the solutions can be expected to be close to optimal. It

should also be noted that our method always slightly underestimates the profit associated

with a given CONWIP level as it tends to underestimate the production rate, see above.

In the last part of the numerical experiment we address the question how reliably our

method can find the number of pallets that maximizes the production rate or the profit

for a given line without enumerating all pallet levels as shown in Figures 5 to 10. We also

want to quantify how precise the production rate or profit estimate is around the “true

optimum”. For that purpose we studied the same cases that led to the results presented
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Figure 5: Production rate for small resp. infinite buffers and low variability
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Figure 6: Production rate for small resp. infinite buffers and moderate variability
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Figure 7: Production rate for small resp. infinite buffers and high variability
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Figure 8: Profit for small resp. infinite buffers and low variability
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Figure 9: Profit for small resp. infinite buffers and moderate variability
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Figure 10: Profit for small resp. infinite buffers and high variability
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Table 9: Production rate maximization for finite buffer cases: Accuracy of the estimated
optimal number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:

PRSim(PALSim) 0.982 0.922 0.861
PALSim 30 30 30
LP-Approach:

PRLP (PALLP ) 0.980 · · · 0.983 0.912 · · · 0.925 0.841 · · · 0.854
RelDev1 -0.2% · · · 0.1% -1.1% · · · 0.3% -2.3% · · · -0.8%

PALLP 29 · · · 31 28· · · 30 28· · · 30

PRSim(PALLP ) 0.982 · · · 0.982 0.920 · · · 0.922 0.860 · · · 0.861
RelDev2 ≈ 0% -0.2% · · · 0% -0.1% · · · 0%

in Figures 5 to 10 and now make the number of pallets PAL a decision variable.

Remember that each single optimization for the linear program is based on different

realizations of random variables for production capacities. Therefore, each optimization

run leads to different estimates of the production rate and/or profit associated with a

particular line. It also leads to different estimates of the respective optimal number of

pallets. For this reason, we performed 10 independent optimization runs for each of the six

systems and both objectives (production rate or profit maximization), leading to specific

estimates of the optimal number of pallets. We then asked

• how strongly the estimated optimum objective function value (from the discrete

time LP) deviates from the “true” optimum as obtained via the DES and

• how close the “optimal” number of pallets PAL as determined via the LP comes to

the “true” production rate or profit-maximizing number of pallets and

• how much of the true optimum of the respective objective function is sacrificed if

the pallet numbers as determined via the LP are implemented.

The results are presented in Tables 9 to 11. Note that maximizing the production rate

as a function of the number of pallets is only a reasonable objective for the case of limited

buffer capacities. Therefore we don’t report results for unlimited buffer capacity.
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Table 10: Profit maximization for finite buffer cases: Accuracy of the estimated optimal
number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:

ProfitSim(PALSim) 84.1 72.0 64.0
PALSim 10 14 16
LP-Approach:

ProfitLP (PALLP ) 82.7 · · · 83.4 70.3 · · · 71.5 61.5 · · · 62.4
RelDev1 -1.7% · · · -0.8% -2.4% · · · -0.7% -0.2% · · · -2.5%

PALLP 10 · · · 11 15 · · · 16 17 · · · 18

ProfitSim(PALLP ) 84.1 · · · 83.8 71.9 · · · 71.7 63.9 · · · 63.7
RelDev2 0% · · · -0.4% -0.1% · · · -0.4% -0.2% · · · -0.5%

Table 11: Profit maximization for infinite buffer cases: Accuracy of the estimated optimal
number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:

ProfitSim(PALSim) 84.1 72.0 64.0
PALSim 9 13 15
LP-Approach:

ProfitLP (PALLP ) 82.9 · · · 83.3 69.9 · · · 71.1 60.8 · · · 63.2
RelDev1 -1.4% · · · -1.0% -2.9% · · · -1.3% -5.0% · · · -1.3%

PALLP 10 · · · 11 all 15 17 · · · 18

ProfitSim(PALLP ) 84.1 · · · 83.8 all 71.9 63.9 · · · 63.8
RelDev2 0% · · · -0.4% all -0.1% -0.2% · · · -0.3%
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For each squared coefficient of variation we first report the maximum of the considered

objective value from the continuous time simulation, i.e., in Table 9 the production rate

maximum PRSim from the continuous time simulation and the corresponding “true” opti-

mal number of pallets PALSim. The lower part of the table reports results from our linear

programming approach. We start with the range of production rate estimates PRLP over

the 10 independent replications of the LP optimization. The respective range of relative

deviations from the true optimum is labeled RelDev1. We next present the range of pallet

numbers PALLP that were considered to be “optimal” within the 10 replications of the

optimization. In the bottom part of the table we finally report for that range of pallet

numbers the corresponding range of production rates PRSim(PALLP ) from the DES and

the respective range of relative deviations from the true optimum PRSim(PALSim). This

last number RelDev2 indicates by how many percent we actually miss the optimum value

by setting the inventory level PAL via our LP method. The structure of Tables 10 and

11 related to profit maximization is identical. Tables 9 to 11 show that in our examples

we never miss the optimum objective function value by more than about 0.5%. This is

due to the fact that both the production rate and the profit are flat around the optimum

number of pallets, see Hopp and Spearman (2000, p. 358).

Some results from these tables deserve a more detailed discussion. Note that in Table 9,

the number of pallets that maximizes the production rate is always 30, for any variability

of the effective processing times. This is plausible as in the balanced five-machine line with

identical buffer sizes, five work pieces are required at the machines and the remaining 25

work pieces use exactly 50% of the 5 · 10 = 50 buffer spaces in the line and make blocking

and starving of machines equally likely, and hence maximize the production rate.

As we expected, maximum production rates and profit levels decrease as the variability

of processing times increases. It is also interesting to note that both the maximum profit

and the corresponding number of pallets in Tables 10 and 11 are almost identical. This

has a potentially important managerial implication. If pallets are expensive and one

seeks a profit-maximizing configuration of a flow line, it might be worthwhile to study

the infinite buffer case first and determine an estimate of the optimal number of pallets.

This helps to set an upper bound on the number of buffer spaces that may be required
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between any two adjacent machines and thus speed up the search process for a good buffer

allocation.

4 Conclusion and further research

In this paper we analyzed the performance evaluation and optimization of stochastic flow

lines under the CONWIP protocol. We used a simple linear program that models an

entire simulation run of the closed loop system in discrete time. This way, it is possible

to evaluate and optimize the production rate and/or short-term profit of the CONWIP

system.

Our approach offers the optimization power of (mixed-integer) linear programming in

combination with the flexibility of stochastic simulation with respect to probability dis-

tributions of stochastic processing times. It avoids the disadvantages of the established

approaches (e.g. time-consuming computation times within DES, special knowledge re-

quirements and restrictive assumptions within queueing models). The accuracy of the

method depends especially on the variability of the processing times and the number of

pallets in the CONWIP line.

In particular for profit-maximizing CONWIP levels, the approach appears to be re-

markably accurate unless buffers are very small and/or effective processing times are

highly variably. As hard- and software continue to become more and more powerful, it

will be possible to study longer lines and systems with higher degrees of variability of

the effective processing times using our method. Our future work will address flow line

configuration and design problems from an investment perspective.
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