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Testing for a break in persistence under long-range

dependencies and mean sHifts

Philipp Sibbertsehand Juliane Willert

Institute of Statistics, Faculty of Economics and Manageime

Leibniz Universitat Hannover, 30167 Hannover, Germany

Abstract

We show that the CUSUM-squared based test for a change iisteeice by Leybourne
et al. (2007) is not robust against shifts in the mean. A médhlsads to serious size
distortions. Therefore, adjusted critical values are erdashen it is known that the data
generating process has a mean shift. These are given foa#igeat one mean break.
Response curves for the critical values are derived and aeMoarlo study showing the

size and power properties under this general de-trendigiyes.

Keywords: Break in persistence, long memory, structural break,| lefvit.

JEL-Codes: C12, C22

1 Introduction

It is well known that structural breaks in the mean of a timeesecan easily be confused
with long-range dependence. Shifts in the mean can heanalydstimators for the memory
parameter and therefore create misleading results. Foreamiew about the problem of spu-
rious long memory due to mean shifts see Sibbertsen (2004helrecent years a change of

the persistence of a time series, this is a change of the ofdategration, has come more
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Statistical Society in Merseburg for their helpful comnseahd suggestions.
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and more into the focus of empirical and theoretical reseasc Beginning with Banerjee et
al. (1992) several authors proposed tests for a changesisfeice in the classich|0) /1 (1)
framework. A popular stationarity test against a break irsiggence was introduced by Kim
(2000). Kim's test has the disadvantage to reject the nuhefdata generating process is
constantlyl (1) during the whole sample what is theoretically correct butdesirable. Ley-
bourne et al. (2007) suggest a CUSUM-squares based tedveoteis problem. Sibbertsen
and Kruse (2009) generalized this test to the long memomédreork by allowing for frac-

tional degrees of integration.

Belaire-Franch (2005) proved that Kim’s test is not robgstiast mean shifts in the sense that
it has an asymptotic size of one when the data generatinggsasl (0) with a break in the
mean. Unfortunately, we show that the Leybourne et al. tess ot overcome this problem
as it is not robust against mean shifts either. We thereferivel adjusted critical values for

the test under a generalized de-trending allowing for onamsift.

The rest of the paper is organized as follows. In section 2dkefor changes in persistence
is briefly described. Section 3 derives its properties unaean shifts and section 4 contains
some Monte Carlo studies. Section 5 gives critical valuetheftest under a generalized

de-trending procedure. Size and power results are giverebhsSection 6 concludes.

2 Testing for abreak in persistence under long memory

We assume that the data generating process follows an ARFOMAO) process. Sibbertsen
and Kruse (2009) generalized a CUSUM of squares-baseddagpproposed by Leybourne et
al. (2007) to test in this model framework the hypothesisooistant long-range dependencies
versus a change in persistence. The alternative can be aittigange in persistence from

stationary to non-stationary long memory or vice versa. fililehypothesis tested is

Ho:d=dyp for t=1,....T,



where we assume/2 < dg < 3/2. The alternative hypothesis is either

Hot { d=d; €(0,1/2) fort=1,...[tT]
d=dye(1/2,3/2) fort=[1T]+1,...,T
or
e { d=dyc(1/2,3/2) fort=1,...,[tT]
d=d; €(0,1/2) for t=[tT]+1,...,T.
The CUSUM of squares-based test statiRticsed in Sibbertsen and Kruse (2009) is given by

- |nf'[€/\ Kr (T)

with the forward statistic
TT]

[
KT (1) = [tT] 2 ZV&
t=
and the reversed statistic of the data generating process
T—[tT]
KO =(T-pT)™ 5 &
t=
Heret is the relative breakpoint where we assume thatA and/A C (0,1) and is symmetric
around 0.5. For now we assuméo be fixed though unknowr(x] is the ceiling function of
x andVy ¢ is the residual from the OLS regressionXgfon a constant = 1Vt based on the

observations up tixT]. This is

Gor = X — X(1)

with )Z(T) =[T] ™t zt[T:Tl] X:. Similarly % ¢ is defined for the reversed serigs= X7 1. Thus,

it is given by

Gr=y%—y(l-1)

with Y(1—1) = (T — 1T 15 7w

Sibbertsen and Kruse (2009) derive the limiting distribatof this test statistic and provide
response curves in order to compute critical values foebfiit hypothetical memory param-

etersdp.



3 Behavior of Test under mean shifts

In order to analyze how the CUSUM of squares-based test kshawder mean shifts let us
introduce some notation first. In what followslenotes the relative breakpoint in the memory
parameted andA denotes the relative position of the mean shift. For the séketational
simplicity we only consider the easiest break in mean madételang only for abrupt changes.

Our model is given by
Yt = 0 + 3D + & 1)

with Dy = 1(t > [AT] + 1) with 1(-) being the indicator function. In this model a level shift
from a to & occurs at some unknown breakpojnT]. We further assume that ~ | (d) with
0<d<15. Thus, a possible choice feris anARFIMA(p,d,q) model. Let furthermore

denote convergence in probability.
Theorem 1.  Given model (1) with the assumptions given above. Then:

1. for 1/2 < d < 3/2 the value of the test statisticis

- iNfren Kf(T> - inng;\ Kf(T>_
N |nf'[€/\ Kr(T> N |nf-[2)\ Kr(T>’

2. for0<d< 1/2wehaveR3> 1.

The results can also be derived for a general de-trending. idémas are the same. It only
introduces more notational difficulties and is therefofedet here.

The result means that the minimization takes place overtaatesl interval up to the point
where the mean shift occurs or beginning from this point. flinther the mean shift is on the
limits of A the smaller is this interval either for the forward or rewetstatistic. Therefore,
the occurrence of the minimum in this interval becomes lig®dyl This can be seen when
considering a typical shape of the forward and reversetsstads given in Figure 1. Ak =
0.7 the forward statistic increases immediately and so thénmim can only be found before
the mean shift distorts the forward statistic. This distoris big enough for the test statistic
to reject the null in most cases. It should be mentioned tieatannot prove inconsistency of

the test in the sense that the test statistic diverges whesaa shift occurs. This is not the
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case and thus allows us to readjust the critical values indke of mean shifts as it is done in

section 5.

Figure 1: Forward and backward statistic with=0.7,a = 0,6 =5 andd = 0.8

Forward statistic Backward statistic

0.030 0.035
1 1
1

0.025
1

0.015
1
1

0.010
1

0.020
1

0.020 0.025 0.030 0.035 0.040 0.045 0.050
1

T T T T T T T T T T T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

A A

The size distortions are smallest for a mean shik at 0.5 considering that the interval for
the forward and backward statistic have the same lengthretdre, it is less likely that both

minima findings are distorted. Interestingly, these resdt not hold for a stationary data
generating process. In this case the test statistic icstilservative.

Some Monte Carlo underpinning these findings is given in the section.

4 Monte Carlo study

Our theoretical findings in section 3 can be backed up with td@arlo studies. All simu-
lations are computed with the open-source programminguiagg R (2008). The number of
replications is set td1 = 2000 and we consider a sample sizeTof 1000, set so high in
order to illustrate the asymptotic results. When there issamshift froma =0tod=5in

model (1), the size varies with the relative position of theam shiftA as follows.

As shown in section 3 it leads to distorted size results f@& <4 d < 3/2 no matter what shift
size is used. Fad < 1 it remains most likely above the significance level. The sistortion

increases by getting closer to the limits of thanterval. Ford = 1 as well as foiA = 0.5

5



Table 1. Empirical size when there is a mean shift using estimatqubrese curves

d=0.6 d=0.8
Al 010 025 050 075 090 010 0.25 050 0.75 0.90
1L| 0.15 0.00 3.75 4395 3430035 060 100 260 290
5L 0.70 0.65 11.75 67.45 57.20 240 3.05 515 10.00 11.60
oL| 1.20 1.05 1945 77.15 7135535 7.00 1055 17.95 19.90
10U | 70.40 74.80 15.80 0.50 0.7519.20 18.45 10.05 6.75 6.60
S5U | 55.25 6245 840 0.10 0.412.00 11.70 560 3.30 3.05
lU | 3045 3830 265 0.00 0.10340 270 080 0.60 0.50

d=10 d=14
Al 010 025 050 075 090 010 0.25 050 0.75 0.90
iL| 075 155 120 120 0.8p 0.15 0.20 0.15 0.1 0.15
50| 410 6.00 510 490 490 225 270 215 170 200
10L| 930 1195 9.60 10.05 10.45 6.55 5.65 5.50 43 525
10U| 945 865 9.65 1035 1040 555 7.00 6.55 6.45 6.1
D
D

50| 460 485 540 500 6.3p 200 255 245 255 2.4
lu, 100 130 120 100 10p 000 030 0.10 0.15 0.05

the smallest size distortion can be observed. d~orl the test statistic tends to conservative
size results. The test statistic does not diverge becausenafan shift and tends to reject not
properly. Because of the missing mean reverting charatiefor long memory withd > 1
and the thereby explosive performance of the time seriegnan shift no matter what size

has no such strong impact on the test statistic and henceeaizid results.

For this onesided test depending on whethisrsmaller or greater than the intervglelevated
size values appear at the upper and lower bound respeciisslyown in Figures 2 and 3. Due
to the fact, that the true position of the break is unknowstatted size results can always

appear.



Figure 2: Behavior of the size at the lower 5% tail
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The smaller the long memory parameter, the more distinditieis size behavior. Hence at

the boundaries of the time series the test decision is dirbimsed by the mean shift and leads
to a false rejection of the null. The following graphic shdwe distribution of the minima of
the forward and backward statistics #for= 0.7 andd = 0.8. It shows that the minima of the
forward statistic cumulate at the boundary of 0.8 and arouad0.7. The reversed statistic

shows similar findings with a cumulation at 0.2.
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Figure 4: Empirical minima of the forward and backward statistics
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5 Adjustment of critical values

Due to the size distortion at the boundaries it is reasont@béaljust the critical values and
take the mean shifts into account. The adjustment of thieakitalues takes place under the
allowance for one break in the mean. It should be mentionatftin our adjustment proce-
dure the existence of the mean shift has to be known. Estignatiean shifts within a long
memory model with breaking persistence is a difficult tastt bayond the scope of this pa-
per. It should be mentioned that the response curves givisichapter and thus the critical
values of the test depend @n However, as in most applications there are at least rough if
not exact ideas about mean shifts in the data, we considgaroaedure still as useful for the

practitioner.

We simulate the asymptotic distribution of the test statidepending ord for the casesl =
0.51 tod = 1.49 withA = 0.5. Due to the wide range of possible valuesl@fe fit polynomial
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functions to the sequence of critical values depending.ohhe adjusted critical values can

be displayed in response curves given by

Gu(d) = iisidi.

Ja denotes ther-quantile of the asymptotic distribution and s the maxinaypomial order

which is set to nine. The parametg¥sare estimated with OLS. For different valueshathe

response curves are parallel so the functional form remainkanged for different values of

A though the parameters change.

Table 2: Estimated response curve when a mean shift occurs

Bo B B2 Bs Ba Bs
1L 0.965 0 0 0 -21.507 66.386
5L | -162.657 1700.856 -7729.333 20149.046 -33212.416
10L 0.931 0 0 0 -2.550 2.475
10U 1.132 0 0 0 0 0
5U 1.161 0 0 0 0 0
1U 0.975 0 0 0 18.784 -41.418

Be
-89.993

35896.2-25444.859

0
10.268
16.821

39.564

B
65.334
11411.826
0
-18.031
-30.738
-13.136

Bs
-24.904
-2940.170
-0.675
11.346
20.506
0

Bo
3.927
331.773
0.283
-2.557
-4.932
0

OLS estimates fop; (i =0,1,...9) are reported in column$; = 0 means that the parameter is set equal to zero.

The size and power properties of the test using the estimaspdnse curves for one break

in the mean are reported in Tables 3 and 4, respectively.

Table 3: Empirical size

d| 055 070 0.85 1.25
L | 04 1.0 0.7 2.2
5L | 3.3 53 3.9 3.4

10L | 8.5 9.7 9.8 8.1
10U | 104 9.3 11.1 10.2
5U | 5.6 50 538 5.8
U | 1.0 12 13 1.2

The size experiments with the adjusted critical values stawit is useful to correct for

the effect of the mean shift. When it is known or likely tha¢ time series contains a mean

shift the test gains good size properties and appropriatepesults. This is very helpful to

know when you consider the additional size distortion if ikean shift is neglected.



Table 4: Power Experiment for one break at the 5% level

d 08—04 04-08|06—00 00—-06|06—04 04—0.6
83.7 96.2| 96.0 77.0| 58.5 549

The mean shift model can be extended to a more general mdamsigel allowing for a
smooth transition. It can be driven by a logistic transifiemction which is modeling a smooth
mean shift between the regimes. All results for the abrupmshift stay valid. It is just a
special case of the general mean shift model. The model sarnbal extended to more than

one break.

6 Conclusion

In this paper we show that the Leybourne et al. (2007) testlmeak in persistence becomes
biased when the data generating process has a shift in thefonmeaion. The test is therefore

not robust against mean shifts. The size of the test is maayleven higher than the chosen
significance level. Therefore, the null of no change in [Besice is falsely rejected by the
test due to mean shifts. Mean shifts do effect the test adetesren more when they occur at

the extreme ends of the sampling period.

As the test is distorted when a mean shift occurs, it is ugefabrrect for this effect when it
is known or likely to have mean shifts in the data. We give ai#jd critical values for the case
of one mean shift and provide response curves for them. o s that the test has good size

and reasonable power properties.
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Appendix

Pr oof

Proof of Theorem 1:

1. Let us first assume that®< d < 1.5. Let us furthermore assume thiat A. The case

T > A is analogous with an interchange of the forward and reveesisiscs.

The main advantage of our simple break point model is that mie lsave to consider
the case of a de-meaning of the time series. Due to the facatleael shift occurs we
consider the case of de-meaning instead of de-trendingwixzild be appropriate in
the case of a broken trend. For the residuals of (1) we hawedd#ie persistence break

[tT]

& =g — [T ! Zet

=

respectively afterwards
T T

& =¢—[(1-0T]* zl g—[(1-1)T] 15 Dt +8Dj.
[TT]+1 t=[TT]+1

Assumet < b < A andt = [bT]. For a fixedt the mean shift is behind the assumed
persistence shift and thus the forward statistics remaickanged:
[TT] .
KIO =[] 5 &= Lg(0),
=

Have in mind that the test always works under the alternatieketherefore the existence

of a persistence shift is assumed.

For the reversed statistig; we obtain:

VT r = ~[mr+\7[AT]+1r
AT] T[T —[AT]
= Z g— > &— 6 Z D
=1
T [bT] T [bT] T-bT] T [bT]
+ gj— e85 Yy D+ 3D
j ((AT]+1) j=T—(AT]+D) j=T—(AT]+D) j ((AT]+1)



with € andD being the mean af andD over the respective time interval.

If A <1 the reversed statistic remains unchanged and we have ftorthiard statistic:

Vptix = VpT ] 1+ VpT)+ 1
AT (AT] AT]
= Zs, Zs GZD
=1
[bT] [bT] bt} [bT]
+ Z €j— -9 D+ Z o
j=[AT]+1 J=AT]+1 J=[AT]+1 =AT]+1

The statistic is minimized over atle A up toA in the first situation and afterwards in
the second. This means that uptte- A the forward statistic remains unchanged and
afterwards the mean shift will effect the residuals by reabat the de-meaning has to
consider the mean shift. Thus, for- A the square of the forward statistic increases and
therefore the minimum is in the interval< A and it is greater or equal the minimum

which is obtained without a mean shift.

We have a similar argument for the reversed statistic.TtEen it remains unchanged.
The changing mean does not affect the recursive de-meanithghais the residuals
remain unchanged. Far< A the reversed statistic increases and the minimum is thus

in the intervalt > A. This proves the first part of the theorem.

. Let us finally consider the case where<@ < 0.5. Because of the arguments used
before, the minimum of the forward statistic is located ieatthanA and that of the
backward statistic later than Therefore, we are in a similar situation as in Sibbertsen
and Kruse (2009), Theorem 4, and can therefore adopt the asguments as in their

proof. &
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