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Abstract. This study provides a unified growth theory to correctly predict

the initially negative and subsequently positive relationship between child mor-

tality and net reproduction observed in industrialized countries over the course

of their demographic transitions. The model captures the intricate interplay

between technological progress, mortality, fertility and economic growth in

the transition from Malthusian stagnation to modern growth. Not only does

it provide an explanation for the demographic observation that fertility rates

response with a delay to lower child mortality. It also identifies a number of
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1. Introduction

In recent years, several so-called unified growth theories have been forwarded to try to motivate the

historical shift from economic stagnation to modern growth. Following seminal work by Galor and

Weil (2000), these include Boucekkine et al. (2002), Doepke (2004), Galor and Moav (2002), Galor

and Mountford (2008), Jones (2001), Kögel and Prskawetz (2001), Lucas (2002), Strulik and Weisdorf

(2008), Cervellati and Sunde (2005, 2007) and Tamura (2002). A part of this exercise consists of

providing a micro foundation for the fundamental links between economic and demographic variables,

from pre-industrial times to the present day. One particular issue that scholars have been struggling

with for a long time (although not only in the context of unified growth theory) is the impact of lower

child mortality on fertility and net reproduction.1 Most macroeconomic models can replicate the fact

that a lower death risk of children leads to fewer births. However, since falling child mortality reduces

the cost of producing surviving children, which means that surviving children become cheaper, net

reproduction in these models ends up increasing in response to lower child mortality. This consists

of a contrast to the experience of most industrialized countries in the later part of their demographic

transitions (Doepke 2005).

This study provides a model where the relationship between child mortality and net reproduction

is positive during early stages of development, but turns negative during later, more advanced

stages. This result relies on the notion that fertility, and thus net reproduction, is affected not

only by child mortality, but also by the cost of raising children. The theory arises from combining

two existing contributions: Strulik (2008) and Weisdorf (2008). Like in Strulik (2008), we assume

that parents care, not only about surviving offspring, but also their nutritional status. For a given

level of nutritional input, a drop in child mortality brings parents to reduce their fertility, as more

children now survive. At the same time, higher survival probability causes parents to nourish their

children more (a quantity-quality substitution effect). That further improves the offsprings’ survival

probability, which again lowers fertility, and so on and so forth.2

Second, as in Weisdorf (2008), we use the fact that in a closed economy the real cost of food—

and thus the cost of raising children—is affected by productivity growth in agriculture as well as

industry. The effect from industry works though the labor market equilibrium condition: when

1Net reproduction measures the number of offspring (normally women) living through to the end of their fertile age.
2This is consistent with empirical evidence which suggests that nutrition played a key role in Britain’s mortality
transition (Harris 2004), and that malnutrition has severe effects on child mortality (see Rice et al., 2000, Pelletier et
al., 2003, and Caulfield et al., 2004)
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productivity in industry grows, industrial workers receive higher wages. In a closed economy with

free labor mobility, agricultural terms of trade (the relative cost of food) will then have to adjust

to insure that laborers remain in agriculture. Therefore, if the relative costs of food is decisive for

fertility, productivity growth in agriculture and industry both impact on the number of offspring

that parents choose to have.

Hence, the key to understanding why the relationship between mortality and net reproduction

changes over time lies in the fact that fertility is determined both by changes in mortality and by

technological advancements in agriculture and industry. Below, we use these features to build a

unified growth theory that correctly predicts the relationship between child mortality and net re-

production over the course of the demographic transition. The theory accounts for the intricate

interplay between technology, mortality, fertility and income per capita in the process from stag-

nation to growth. The theory is also in line with Engel’s law, replicating the stylized fact that,

when income rises, total food expenditures increase while the share of food expenditures to income

falls. When calibrated, the model points to several structural breaks, i.e. incidents where the corre-

lation between various variables, such as fertility and population growth, or population growth and

TFP growth shifts sign. This explains why empirical scholars may have a hard time identifying the

relationship between economic and demographic variables over the long run.

The paper continues as follows. Section 2 provides a brief introduction to the stylized facts

for Western Europe (particularly England) regarding the evolution of mortality, fertility and net

reproduction over the long run. It also offers a summary of the theoretical literature related to the

present work. Section 3 details the theoretical framework, and Section 4 explores the its balanced

growth dynamics. Section 5 calibrates the model to analyze its adjustment dynamics, while Section

6 concludes.

2. Empirical evidence and the related literature

In most Western Europe countries, the demographic transition occurred in the later half of the

19th century.3 After a peak in the 1870s, birth rates drop roughly one-third over the subsequent 50

years. In England, total fertility rates decline by close to 50 percent, from nearly five children per

women in 1875 to 2.4 children by 1920. Crude birth rates follow a similar pattern, declining by 44

percent from 36 per thousand inhabitants in 1875 to 20 in 1920 (Figure 1).

3 For a more detailed description of the Western Europe’s economic and demographic patterns, see Galor (2005).
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With the exception of France and the US, substantial mortality decline precedes the fall in fertility.

In England, mortality rates begin to fall roughly one and a half century prior to the drop in fertility.

During early phases of England’s so-called mortality revolution, it was primarily lower child mortality

that gave momentum to the drop in death rates. As the fall in child mortality appeared before the

fertility decline set in, falling mortality initially gave rise to an increase in net reproduction. After

the onset of the fertility decline, however, the relationship changes. From then on, falling birth

rates go hand in hand with declining rates of net reproduction. Eventually, falling child mortality

is outpaced by the decline in fertility, as reflected in a reduction in the net rate of reproduction.4

Figure 1: Crude Birth Rates, Crude Death rates,
and Net Reproduction Rates for England, 1721-1931

CDR

NRR

CBR

Sources: Wrigley and Schofield (1984), Wrigley (1969) and Reher
(2004).

A unified growth theory that wants to capture the long-run evolution of mortality, fertility and

net reproduction must thus account not only for the increase of net reproduction and the spike in

4 Estimating the demo-economic interaction for Sweden, Eckstein et al. (1999) find that declining child mortality
explains about 80% of the historical fertility decline while increasing real wages explain less than one-third.
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birth rates observed prior to the fertility decline. It must also be able to predict the subsequent

decrease of fertility and net reproduction once the fertility transition is running it course.

Studies on the relationship between child mortality and fertility goes back at least to Becker

and Barro (1988, 1989). In the Barro-Becker model, parents derive utility from surviving offspring.

Their fertility decision is affected by the costs of producing surviving offspring. Lower child mortality

reduces the costs of surviving offspring. So when child mortality falls, parents give birth to more

children. Jointly, falling child mortality and rising fertility lead to higher net reproduction. But

evidence points in the other direction: at the onset of the demographic transition, net reproduction

was falling. The Barro-Becker type models, therefore, search for other explanations behind the

fertility decline than falling mortality (Doepke, 2005). Among recent studies, where mortality plays

a role in the process of development, a shift from child quality to child quantity is thus generated

through parents’ investments in education and human capital accumulation (Azarnert 2006; Ehrlich

and Kim 2005; Kalemli-Ozcan, Ryder, and Weil 2000; Soares 2005).

A refinement of these models, a shift from exogenous to endogenous mortality has been invoked

to capture the long run trends in economic and demographic variables (Doepke 2005; Jones 2001;

Kalemli-Ozcan 2002; Lagerlöf 2003; Weisdorf 2004). Jones (2001), Lagerlöf (2003) and Weisdorf

(2004) compare directly to our work in that they analyze the effect of mortality on fertility in the

context of unified growth theory. Remarkably, they all share the common feature that falling death

rates have no impact on parents’ fertility decision. In Jones (2001), parents’ preferences imply

that the elasticity of substitution between consumption and children is always greater than one, an

assumption that ultimately generates a drop in fertility as income grows. In Lagerlöf (2003) and

Weisdorf (2004), the decline of fertility is a result of human capital accumulation and a parental

trade off between child quantity and quality.

Here, we set out to explore the direct role of child mortality for parents’ fertility decision, extending

the model offered by Strulik and Weisdorf (2008). While the previous work neglects the role of death

in development, mortality in the present setup is made endogenous, partly to child nutrition, provided

by the parents, partly to general health factors (availability of medicine, provision of sewage etc),

which are exogenous to parents. When general health factors improve, made possibly in the model

by technological progress in industry, parents find it advantageous to spend more on nutrition of

their children. This, in turn, induces a child quantity-quality trade-off, and explains how changes in

economic conditions shape demographic patterns (Lee 2002).
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This result compares to Cervellati and Sunde (2007), who also investigate the link between mor-

tality and fertility over the very long run. They focus on the interaction between education and

adult longevity as a driver of growth, emphasizing the skill premium (as opposed to agricultural

terms of trade in the present study) as a key factor in the transition from stagnation to growth. It is

particularly comparable to the current work in the sense that it highlights the role of relative prices

in development.

3. The Model

3.1. Fertility, mortality, and net reproduction. We consider a two-period overlapping gener-

ations economy with children and adults. Let Lt denote the number of adults in period t, and nt

the number of births per adult.5 The birth rate (referred to also as total fertility) is determined

endogenously below. The variable πt ∈ [0, 1] measures a child’s survival probability (implicitly, its

mortality), and is synonymous to the fraction of children, born in period t, who are still alive at

period t+ 1. It follows that the net reproduction rate – the number of offspring living through their

fertile age – is πtnt. Changes in the size of the labor force (the adult population) between any two

periods can thus be expressed as

Lt+1 = πtntLt. (1)

We consider two types of child survival probabilities: an extrinsic and an intrinsic survival rate. The

extrinsic rate, denoted π̄t ∈ [0, 1], is exogenous to a parent, but is affected by general-purpose hygiene

or health improving factors, such as sewerage, water toilets, central heating, clinical devices, vaccines,

pharmaceuticals and medical knowledge in general. We take advances in industrial knowledge,

measured by Mt, to be a good proxy for this. Specifically, it is assumed that π̄t = π̄ (Mt) , where

π̄′M > 0 with limMt→∞ π̄t = a < 1. The variable Mt, and thus π̄t, are determined endogenously

below.

By contrast to the extrinsic child survival probability, the intrinsic survival rate is affected by

parents’ nutritional investment in their offspring. We allow for diminishing marginal productivity

to nutritional investments, so that an additional unit of nutrition is more effectively hedging against

child mortality at low levels of extrinsic survival rates than at high ones. More specifically, we

assume that the overall child survival probability (intrinsic as well as extrinsic) is given by

πt = π̄t + [1− π̄t] · λ · ht, λ > 0, (2)

5 To keep the model tractable, we assume that nt is continuous, and that reproduction is asexual.
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where λ is a productivity parameter and where ht measures the nutritional status of an offspring,

the level of which is determined endogenously below.6

3.2. Preferences and optimization. Adult individuals (parents) maximize utility, which they

derive from three sources: surviving offspring, πtnt, the nutritional status of their offspring, ht,

and number of manufactured goods consumed, measured by mt. We assume that preferences are

described by a utility function where the elasticity of marginal utility is higher for ht and nt than

for qt. This is to capture the fact that, in times of crisis, parents will try to smooth fertility and

nutritional status of their offsprings more than their consumption other, less vital (i.e. manufactured)

goods (Livi-Bacci, 2006). The simplest utility function that captures such a ‘hierarchy of needs’ is

of quasi-linear form:

ut = mt + β log(ht) + γ log(πtnt), β, γ > 0. (3)

Similar to Andreoni (1989) and Becker (1960), the parameter β measures the extent to which

parents care about the nutritional status of their offspring. We assume that γ > β, implying that

parents without children do not allocate income to child nutrition.

To make the model tractable, we assume that nutritional goods are demanded only during child-

hood, and some of it then stored for adulthood.7 The price of manufactured goods is set to one,

so that we can let pt denote the price of one unit of nutrition (food), measured in terms of manu-

factured goods. Each offspring consumes ht units of nutrition. This means that the total costs of

raising nt children, measured in terms of manufactured goods, is pthtnt. The budget constraint of

an individual adult thus reads

wt = pthtnt +mt, (4)

where wt is parental income, also measured in terms of manufactured goods.

The optimization problem of an adult individual involves maximizing (3) subject to (2) and (4).

The solutions—the optimal number of births and the level of nutritional input per children—are

6 We furthermore assume that a ≤ β/γ. This ensures, as will become obvious below – when (6) is inserted in (2) –
that π ∈ (0, 1).
7 It will not affect the qualitative nature of the results if, instead, the individual’s nutritional demand were to be
divided over two periods.
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given by

nt =
βγλ(1− π̄t)
ptπ̄t(γ − β)

, (5)

ht =
(γ − β)π̄t
βλ(1− π̄t)

. (6)

Based on (5) and (6) the following should be noted. First, children are normal goods, so when the

price of children rises, demand (fertility) falls. Second, due to the specific preference function, there

is no direct income-effect on the demand for children. However, as will become apparent below,

an indirect income-effect will enter through the price of nutrition (pt). Third, it follows from (5)

that an improvement of the child survival probability reduces fertility (∂nt/∂π̄t < 0), meaning that

lower child mortality reduces birth rates, a conclusion perfectly consistent with evidence (Galloway

et al., 1998, Eckstein et al., 1999). Fourth, equation (6) reveals that a higher extrinsic probability of

child survival leads to a higher nutritional status of the offspring (∂ht/∂π̄t > 0). This follows from

quantity-quality substitution. As more children survive, parents reduce fertility, putting emphasis on

nutrition instead. In turn, more nutrition improves the intrinsic survival probability. This generates

a feedback mechanism, running from higher (extrinsic) child survival over more nutrition per child

to higher (intrinsic) child survival.

By combining (5) and (6) with (2), we get the net rate of reproduction, which is given by

πtnt = π̄tnt + (1− π̄t)λhtnt =
λγ2(1− π̄t)
pt(γ − β)

(7)

Equation (7) captures a main feature of the current framework: that higher child survival probability—

corresponding to lower child mortality—reduces net fertility, an empirical regularity lacking in pre-

vious contributions (cf. the discussion in Doepke 2005).

3.3. Production. We consider a dual-sector economy with agriculture and industry. In both sec-

tors, new technology arises from learning-by-doing. More specifically, output, as well as new knowl-

edge, occurs according to the following production functions:

Y A
t = µAεt (L

A
t )α = At+1 −At, 0 < α, ε < 1 (8)

YM
t = δMφ

t L
M
t = Mt+1 −Mt, 0 < φ < 1. (9)

The variable At measures TFP in agriculture, whereas Mt measures TFP in industry (manufac-

turing). We allow for diminishing returns to new knowledge in both sectors by assuming that

7



0 < ε, φ < 1. Agricultural production is subject to constant returns to labor and land. Land is

assumed to be in fixed supply, and the total amount is normalized to one. With 0 < α < 1 there

is thus diminishing returns to labor in agriculture. Industrial production, by contrast, is subject to

constant returns to labor, implying that land is not an important factor in industrial production.

As is standard in the related literature, we abstract throughout from the use of physical capital in

production.

3.4. Equilibrium. The variables LAt and LMt measure total labor input in agriculture and industry,

respectively. Together, they make up the entire labor force, i.e.

LAt + LMt = Lt. (10)

The share of total labor devoted to agriculture, LAt /Lt, is determined by the market equilibrium

condition for nutritional (i.e. food or agricultural) goods. This condition says that the total supply

of nutrition, Y A
t , equals total demand, which—given that each child demands ht units of food—is

htntLt. Using (8), the market equilibrium condition for nutrition thus implies that the fraction of

workers engaged in agriculture is given by

θt ≡
LAt
Lt

=

(
htntL

1−α
t

µAεt

) 1
α

. (11)

Note that agricultural TFP growth releases labor from agriculture, whereas population growth and

higher levels of child nutrition has the opposite effect.

Suppose that there are no property rights over land, meaning that the land rent is zero, and

thus that a representative adult individual receives the average product of the sector in which it

is employed. The labor market equilibrium condition then implies that the real price of nutrition

adjusts, so that farmers and manufacturers earn the same income, i.e. so that wt = ptY
A
t /L

A
t =

YM
t /LMt . By the use of (5)-(6) and (7)-(11), this means that the price of one unit of nutrition,

measured in terms of manufactured goods, is

pt =

(
δMφ

t

)α
(γLt)

1−α

µAεt
. (12)

It follows that the price of nutrition increases with TFP growth in industry, as well as with the size

of the population, whereas TFP growth in agriculture has the opposite effect.
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Inserting (12) into (7) gives us the net reproduction rate in a general equilibrium, which reads

πtnt =
µAεt(

δMφ
t

)α
(γLt)

1−α
· γ

2λ(1− π̄t)
(γ − β)

. (13)

The two main forces affecting net reproduction are clearly visible in (13). The first term captures

the negative effect of a higher price of nutrition. The second term contains the negative effect of

lower child mortality.

4. Balanced and Unbalanced Growth in the Long Run

In the following, we explore the balanced growth dynamics of the model. Along a balanced growth

path, all variables are constant or grow at constant rates. Let a balanced growth rate of a variable

x be denoted by gx (to be identified by a missing time index). According to (8), the gross rate

of TFP growth in agriculture is gAt = (At+1 − At)/At = µ(LAt)
α/A1−ε

t . Along a balanced growth

path, the left hand side is constant by definition, so that the right hand side must be constant as

well. Furthermore, the share of labor in agriculture must be constant, implying that LA grows at

the same rate as L. Thus, constant TFP growth in agriculture requires that

1 + gA = (1 + gL)α/(1−ε). (14)

Similarly, we get from (9) that a constant rate of growth of TFP in industry requires that

1 + gM = (1 + gL)1/(1−φ). (15)

Combining (13) with (14) and (15), the gross rate of growth of net reproduction can then be written

as

1 + gLt+1 =
πtnt

πt+1nt+1
=

1− π̄t+1

1− π̄t
· (1 + gAt )ε(1 + gLt )α

(1 + gMt )αφ
. (16)

Along a balanced growth path, the level of TFP in industry is either constant, or is growing at

a constant rate. In either case, π̄ will eventually assume a constant value, meaning that, along a

balanced growth path, the first term on the right-hand side is equal to one. Using this information,

and inserting (14) and (15) into (16), we find that the equilibrium law of motion for population

growth is given by

1 + gLt+1 = (1 + gLt )η, η ≡ α+
αε

1− ε
− φα

1− φ
. (17)
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Along a balanced growth path, the population level grows at constant rate meaning that gLt+1 =

gLt = gL. This leaves two possibilities for balanced growth. Either there is no population growth

(gL = 0) or – assuming the knife-edge condition that η = 1 – the population level is growing or

shrinking at a constant rate. However, it follows from (14) that |η| < 1 is required for stability

reasons. Therefore, growth on the knife-edge not only demands a very specific parameter constel-

lation; it also implies that the economy starts off on a balanced growth path (with suitable initial

values) and remains there forever. This essentially eliminates the possibility of having balanced

growth together with population growth. The implication—that there is no population growth on a

balanced growth path—means that there is also no TFP growth in steady state (as can be verified

by looking at (14) and (15)). This conclusion is summarized in the following proposition.

Proposition 1. There exists a unique balanced growth path with zero population growth and zero

(exponential) economic growth. A sufficiently small knowledge elasticity in agriculture,

ε <
1− φ− α+ 2αφ

1− φ+ αφ
, (18)

prevents unbalanced growth in the long-run.

Proof. The proof is found in the Appendix.8 �

5. Adjustment Dynamics and Calibration

The aim of this section is to see whether the model can replicate the stylized development pattern

observed among industrialized countries from their pre-industrial era to the present-day and beyond.9

Therefore, in the following, we explore the model’s adjustment dynamics towards balanced growth.

Suppose we start off with an economy in which the population level is relatively small; the share

of labor employed in agriculture is relatively high; and the level of income per capita is relatively

close to subsistence. Furthermore, suppose that birth rates, as well as rates of child mortality, are

relatively high, meaning that the net rate of reproduction is close to that of replacement. Roughly

speaking, these are the characteristics of a pre-industrial, agricultural society.

As explained in the model section, there are economies-of-scale to population. Since the initial

population level is low, learning-by-doing effects, to begin with, are relatively modest. Hence, TFP

8 Note that the term ‘unbalanced growth’ refers to an equilibrium growth path along which growth rates are exploding
or imploding (and should not be confused with ‘unstable’, i.e. off-equilibrium growth.
9 For a detailed description of the development course of industrialized countries, see Galor (2005).
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growth in agriculture is slow, yet faster than in industry, where labor resources, and thus learning-

by-doing effects, are even smaller.

TFP growth in agriculture has two effects on development. On the one hand, because it releases

labor from agriculture, agricultural TFP growth increases the share of labor allocated to industrial

activities. On the other hand, higher TFP growth in agriculture relative to industry makes nutrition,

and therefore children, relatively less expensive. According to (5), this raises fertility, which tends

to increase the net reproduction rate.

At the same time, with economies-of-scale at work in both agriculture and industry, the transfer

of labor out of agriculture gradually speeds up TFP growth in industry. As industrial knowledge

gains momentum, extrinsic child survival begins to increase. This leads parents to spend more on

nutrition per child, which further improves the survival probability of offspring through a reduction

in intrinsic child mortality. As follows from (13 ), this drop in mortality lowers fertility, which tends

to slow down the net reproduction rate.

When advances in industrial knowledge, and thus child mortality decline, are relatively slow, the

’cheaper nutrition’ effect dominates the ’mortality decline’ effect. Hence, during early stages of

development, the net reproduction rate goes up. In this period, therefore, declining child mortality

is accompanied by rising rates of birth and net reproduction.

Since the transfer of labor out of agriculture gradually accelerates TFP growth in industry, the

industrial sector’s TFP growth rate eventually surpasses that of agriculture. Henceforth, the price

of nutrition gradually increases, and children thus become relatively more expensive. All else equal,

this leads to lower birth rates and therefore falling net reproduction. At the same time, advances in

industrial knowledge creates further decline in extrinsic child mortality, leading to more investment

in children’s nutritional status, and therefore to lower intrinsic mortality. Hence, by contrast to

previous periods, declining child mortality is now accompanied by falling rates of birth and net

reproduction.

Eventually, the child survival rate reaches its maximum. Due to rising prices of nutrition, however,

birth rates are still falling. Sooner or later, therefore, the net rate of reproduction reaches that of

replacement, and population growth ultimately (and endogenously) comes to a halt.

5.1. Calibration. In order to investigate adjustment dynamics quantitatively, we now calibrate the

model. Parameter values are chosen, so that the peak of the demographic transition matches that

of 19th-century England and so that the maximum rate of industrial TFP growth (and subsequent

11



Figure 2: Long-Run Dynamics
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slowdown) appears in the late 20th century. Specifically, the rate of net reproduction reaches a peak

of 1.5 percent per year in 1875, and industrial TFP growth begins to slow down around 1975, after

a maximum of 2 percent per year.

For comparative purposes, we use as many parameter values as possible from the benchmark run

calibrated in Strulik and Weisdorf (2008). Hence, the following parameters are chosen: α = 0.8,

ε = 0.45, φ = 0.3 , µ = 0.5, δ = 0.32, and γ = 3.4. Start values are θ0 = LA0 /L0 = 0.8, A0 = 100,

and L(0) = 100. The value for M0 is obtained endogenously, and is given by (γ/(δθ0)
1/φ. Extrinsic

child mortality is parameterized by the logistic function π̄t = a(1 − e−bMt). The parameters a, b,

λ and β are chosen, so that the child survival probability is 70 percent in the High Middle Ages,

and its maximum is set just below one hundred percent. The parameter values are thus a = 0.35,

b = 0.28, β = 1.2, and λ = 0.14. For better readability of the results, one generation is set to 25

years, or approximately the length of the fecundity period.

Figure 2 shows the calibrated adjustment path. The period analyzed runs from year 1200 to year

2200. Solid lines show the path of the benchmark economy; dashed lines concern an alternative

economy to be discussed further below. Initially, labor is predominately allocated to agriculture. In

line with numbers provided by Galor (2005), industrial TFP growth is almost absent during early

stages of development. Productivity growth in agriculture is around 0.2 percent per year during the

high middle ages, supporting a population growth rate of 0.2 percent per year.

Increasing knowledge in agriculture, which to begin with manifests itself in a slowly decreasing

price of nutrition, translates almost entirely into population growth, meaning that standards of

living are hardly affected by technological progress. A slow growth of population slowly furthers

agricultural development, and little by little agricultural TFP growth builds up to reach 1.4 percent

at the end of the 19th century. By then, agriculture TFP growth has made possible a substantial

transfer of labor into industry, causing an upsurge in industrial TFP growth. This substantiates

significant decline in extrinsic mortality, leading parents to increase their spending on child nutrition.

With decreasing rates of extrinsic and intrinsic mortality, child survival probability is on a fast rise.

During the mid 18th century TFP growth in manufacturing surpasses TFP growth in agriculture

and the growth rate of food prices begins to rise ∂gP /∂t > 0. The sign of the growth rate, however,

remains negative for almost another century, indicating that the economic system has enough mo-

mentum for food prices to continue to fall. Around 1825 the relative price of food begins to increase,

inducing people to spend more on industrial goods and reduce fertility. Because of declining child
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mortality, population growth continues to grow for another 2 generations peaking in 1875. From

then on, falling child mortality and higher costs of nutrition work in the same direction, leading to

substantial fertility decline.

By the end of the 20th century, the demographic transition is almost complete. The child survival

probability assumes its maximum value close to one hundred percent, and net reproduction is close

to its replacement level. TFP growth in industry reaches its peak around 1975, and then begins to

slow down. This decline, however, is a gradual process, leaving enough momentum for industrial

TFP growth to exceed one percent per year far into the 22st century.

Note how the introduction of endogenous child mortality modifies the results obtained in Strulik

and Weisdorf (2008). In the latter study, the peak of population growth coincides with that of fertil-

ity, which in turn takes place after agricultural TFP growth is surpassed by TFP growth in industry.

Here, by contrast, the breakup of the population growth rate into a fertility and a mortality rate per-

mits us to track down separately the occurrence of important economic and demographic events. For

example, in the present calibration exercise, fertility peaks around 1825, whereas population growth

reaches its maximum in 1875. Agricultural TFP growth peaks around 1850, whereas industrial TFP

growth in manufacturing arrives at its summit in 1975. What is more, consistent with empirical

evidence (with the exception of France), falling child mortality in the present framework precedes

the drop in fertility. The current model thus correctly predicts the positive relationship between

child mortality and net reproduction observed during most industrialized countries’ demographic

transitions, a feature that seems to be missing in previous contributions.

The model predicts that demographic transition and economic take-off are accompanied by a com-

plete structural change (θ → 0 for t→∞). The speed of structural change during industrialization,

however, is underestimated for the basic set of parameters. Since in the present model everything is

fully endogenous (i.e. no time series is imputed, as in some of the related literature), it is impossible

to correct this result without accepting a less good approximation of the data elsewhere. In order to

demonstrate this trade-off by example, we set µ = 0.6 instead of 0.5 for an alternative economy, indi-

cating that at any level of economy activity, agricultural productivity is higher. All other parameters

are taken from the basic run. For comparison, A(0) has been adjusted such that the alternative run

also predicts population growth to peak in 1875. Adjustment dynamics are represented by dotted

lines in Figure 2.
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In line with standard Malthusian reasoning the model predicts that higher agricultural produc-

tivity is chiefly translated in higher population growth. With respect to income, structural change,

and child survival both economies behave almost equally, i.e. all these variables show almost no

improvement during the Middle Ages. Yet when industrialization sets in and the agricultural sector

visibly sets free labor for manufacturing, the population dividend (Bloom et al. 2001) pays off. The

high-µ-economy where population was growing at higher rate in the past is able to shift an abso-

lutely larger number of worker to the production of non-food goods. Because there are economies

of scale at work, the larger economy learns faster and generates higher growth of productivity in

manufacturing and in agriculture so that structural change happens more quickly. Because of higher

productivity growth in agriculture, the larger economy can sustain a higher fertility rate before food

prices start to rise. While the alternative model specification outperforms the basic run by gen-

erating more momentum of structural change, it also predicts, counterfactually for England, that

population growth peaks at a higher rate of about 2 percent annually. Naturally, by highlighting

the dynamics between demographic change and economic growth, the model has neglected other

important drivers of structural change as, for example, capital accumulation, international trade

(globalization) and R&D-based growth.

The model also generates some interesting non-linearities along the adjustment path analyzed

above. Based on Figure 3, which shows some of the relevant non-monotonous relationships (for the

benchmark economy), the following observations can be made. First, during early stages of devel-

opment, the model predicts a positive correlation between child survival probability and fertility,

while, during later stages, the sign of the correlation is reversed (panel 1). Specifically, lower mor-

tality goes together with rising fertility when the effect of falling food prices on fertility dominates

the quantity-quality substitution effect. By contrast, lower mortality appears together with lower

fertility when quantity-quality substitution effect dominates that of falling food prices.

Second, due to a strong preventive-check mechanism during early phases of development, there

is almost no correlation between wages and population growth in the beginning of the analyzed

period. At later stages, however, such as during the demographic transition, there is a strong

negative relationship between the two, followed by a weaker negative correlation after the ending of

the transition (panel 2).

Third, the overall relationship between birth rates (total fertility) and net reproduction (net

fertility) is a slightly positive one (panel 3). That is, during early stages of development, birth rates
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Figure 3: Correlations Along the Transition: 1200 to 2200
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and net reproduction are both rising, while, during late stages, both are falling. For a short period

in between, however, the birth rate is declining while net reproduction still grows.

Finally, the relationship between net reproduction and industrial TFP growth forms an almost

perfect orbit (panel 4). During early stages of development, there is a positive relationship between

TFP growth and growth of population. However, during the ’industrial revolution’, i.e. the sharp

rise in industrial TFP growth rates, the sign of the correlation turns negative. In the post-industrial

period, i.e. after the peak in industrial TFP growth, the sign turns positive once again, as rates of

productivity and population growth are both decreasing. The non-monotonic relationships depicted

in Figure 3 should give some ideas as to why empirical studies are having a hard time reaching
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consensus regarding the correlation between economic and demographic variables (e.g. Brander and

Dowrick, 1994).

Figure 4: Engel’s Law and Expenditure per Child
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A final observation to be made based on the model’s predictions concerns its consistency with En-

gel’s Law. Engel’s Law states that nutrition expenditure’s share of income, measured by (ptntht)/wt,

will decline along with the process of growth. This is illustrated in Figure 4, which also shows that

nutritional expenditure per child, measured by ptht, gradually drop until the mid-19th century, then

increase steeply throughout the 20th century, after which if continues to increase, but at a somewhat

slower pace (for comparison, results are shown relative to initial expenditure, i.e. expenditure in 1200

has been normalized to one). These results reveal another important role for endogenous mortality.

Because more children survive at high levels of M , parents are more inclined to spend much on child

nutrition irrespective of the rising relative price for food.

6. Conclusion

This study provides the first unified growth model to endogenize mortality, fertility and growth,

while not relying on human capital accumulation to generate a demographic transition. The result

is based on the insight that parents care not only about surviving offspring, but also about their

offspring’s nutritional status, and that the price of nutritional goods, on which parents’ fertility

decision depends, responds to structural transformation in productive sectors. The model provides

an economic rationale for the observable demographic fact of delayed fertility decline in response to
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improving child survival. Another major implication of the study, as demonstrated by the use of

calibration, is the predicted non-monotonic correlations between various economic and demographic

variables, a heads-up for empirical scholars who try to make sense of such relationships.

The model is robust to three important modifications. First, constant returns-to-labor in indus-

trial production can be replaced by diminishing returns without affecting the model’s qualitative

conclusions. Second, the current preference function implies that the income-effect on the demand

for children is zero. It is possible to show, however, that adding a positive (and direct) effect of in-

come on children will not affect the qualitative results of the model. Finally, the long-run predictions

of the model—that there is no economic growth in steady state—can be modified without damage

to the qualitative results if we permit a positive rate of growth of population on the balanced growth

path. All three modifications, however, come at a cost to simplicity.
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Appendix: Proof of Proposition 1 While a balanced growth path involves stagnant levels of

population and income, an unbalanced growth path, characterized by imploding or exploding growth,

may in principle exist. In the following, we explore the two cases of unbalanced growth, starting with

the case of imploding growth. Imploding growth implies perpetually negative population growth, i.e.

nt is smaller than one and Lt is decreasing. It is easy to see that imploding growth is not an option

since gAt and gMt are bound to be non-negative. There is no forgetting-by-doing. With limL→0 g
A = 0

and limL→0 g
M = 0, we have limL→0 n = const./L1−α from (11). As Lt converges to zero, nt goes

to infinity. A contradiction to the initial assumption of nt being smaller than one. There is no

imploding growth. Intuitively, decreasing marginal returns of labor in agriculture (α < 1) prevent

implosion. As population size decreases agricultural productivity goes up and prices go down so

that fertility and thus next period’s population increases.

Explosive growth, on the other hand, cannot be ruled out if η > 1, In this case the relative

price of food ultimately goes to zero and fertility to infinity. With growing population growth,

productivity growth in both sectors grows hyper-exponentially until the economy reaches infinite

fertility in finite time. We can solve the stability condition η < 1 for the critical ε. A sufficient

condition for stability of balanced growth is (18). Thus, the learning elasticity in agriculture must

not be too large. Otherwise agricultural productivity rises so steeply with population growth that

it can sustain further falling food and triggers further population growth. Inspection of (14) shows

that the critical ε is decreasing in α and increasing in φ. Intuitively, the larger the counterbalancing

forces of limited land (i.e. the lower α) and of learning in the manufacturing sector (the larger φ)

are, the higher can learning in the agricultural sector be without leading to explosion. The following

proposition summarizes the considerations made above about balanced and unbalanced growth.

Note that ε < εcrit is a sufficient condition of stability since it holds for any path along which

there is constant population growth. It could be relaxed for the only existing balanced growth path

according to which, as shown, population growth is not only constant but also zero. For an intuition

of the result inspect (16) again and imagine adjustment dynamics along which an “agricultural

revolution” occurs before an “industrial revolution”, i.e. a path along which gA is – because of

decreasing returns – already declining whereas gM is still on the rise. The fact that gA and thus

gL are faster approaching to zero than gM relaxes the stability condition obtained from analytical

considerations, which implicitly assume that all growth rates are in the neighborhood of a balanced

growth path.
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Kögel, T. and Prskawetz, A., 2001, Agricultural productivity growth and escape from the Malthusian

trap, Journal of Economic Growth 6, 337-357.

Lagerlof, N., 2003, From Malthus to modern growth: The three regimes revisite, International

Economic Review 44, 755-777.

Lee, R., 2002, The demographic transition: three centuries of fundamental change, Journal of Eco-

nomic Perspectives 17(4), 167–190,

Livi-Bacci, M. , 2006, A Concise History of World Population, Wiley-Blackwell.

Lucas, R.E., 2002, The Industrial Revolution: Past and Future, Cambridge: Harvard University

Press.

21



Pelletier, D.L., E.A. Frongillo, and J.P. Habicht, 2003, Epidemiologic evidence for a potentiating

effect of malnutrition on child mortality, American Journal of Public Health 83, 1130-1133.

Reher, D.S., 2004, The demographic transition revisited as a global process, Population, Space and

Place 10, 19-41.

Rice, A.L., L. Sacco, A. Hyder, R.E. Black, 2000, Malnutrition as an underlying cause of childhood

deaths associated with infectious diseases in developing countries, Bulletin of the World Health

Organization 78, 1207-1221.

Soares, R.R., 2005, Mortality reductions, educational attainment, and fertility choice, American

Economic Review 95, 580-601.

Strulik, H., 2008, Geography, health, and the pace of demo-economic development, Journal of De-

velopment Economics 86, 61-75.

Strulik, H. and Weisdorf, J., 2008, Population, food, and knowledge: A simple unified growth theory,

Journal of Economic Growth 13, 169-194.

Weisdorf, J. L., 2004, From stagnation to growth: revisiting three historical regimes, Journal of

Population Economics 17, 455-472.

Weisdorf, J.L., 2008, Malthus revisited: Fertility decision making based on quasi-linear preferences,

Economics Letters 99: 127-130.

Wrigley, E.A. and R.S. Schofield (1981), The Population History of England 1541-1871: A Recon-

struction, Cambridge: Harvard University Press.

Wrigley, E.A. (1969), Population and History, London: World University Library.

22


