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Abstract

This paper aims to investigate the effect of knowledge characteristics on
the total factor productivity of firms developing drugs in the pharmaceuti-
cal industry. We decompose knowledge into knowledge associated with the
technological firm portfolio and knowledge related to R&D projects, which
represent drug development at the clinical testing stage. The latter is at-
tributed to the knowledge of relevant markets where the drugs will be sold.
The results show that the effect of technological coherence vs. market co-
herence and of accumulated knowledge on the productivity of firms differs.
Productivity increases with the number of patents and decreases with the
patent diversity and project portfolio coherence. When considering only the
project knowledge, the diversity of the project portfolio positively affects
productivity.
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1 Introduction

Extensive empirical studies have focused on the significant heterogeneity among

firms in terms of productivity. Furthermore, as demonstrated by the survey of the

literature in Bartelsman and Doms (2000), productivity differences can be very

large, while other important finding of these studies is that the differences in the

productivity of firms can persist over time. One explanation for this persistent het-

erogeneity could be that firms have different knowledge sets, which determine their

relative abilities to efficiently produce output from their given inputs. Specifically,

knowledge in the form of R&D (Lichtenberg and Siegel, 1991; Hall and Mairesse,

1995), as well as advanced technology application (McGuckin et al., 1998; Chennells

and Van Reenen, 1998) or computerization (Brynjolfsson and Hitt, 1995, 2003), has

been found to explain the heterogeneous productivity of various firms.

Most studies have connected productivity with the amount of knowledge. In

doing so, it is usually assumed that knowledge enters into the productivity func-

tion as an additional factor (e.g. Grilliches (1979); Hall and Mairesse (1995)).

Furthermore, there is a broad research, which arguing that the relation between

the amount of knowledge, usually approximated by accumulated R&D, and pro-

ductivity or output growth is positive (see Nadiri (1994) for a survey).

What the majority of research on the relation between productivity and knowl-

edge does not consider, however, is that knowledge might be heterogeneous. The

knowledge of one firm could be considered as being comprised of different com-

ponents, such as varying technologies and experiences across different areas. Ac-

cordingly, one of the necessary functions of a firm would be knowledge integration

(Grant, 1996), in order to achieve efficient production. In other words, depend-

ing on a firm’s success in knowledge integration, the firm could experience either

an increase or decrease in productivity. The successful integration of new knowl-

edge into an already existing pool thus depends on the cognitive distance between

various types of knowledge (Nooteboom, 2000). Therefore, we argue that charac-

teristics of knowledge portfolio, such as diversity and coherence, affect productivity

by reflecting synergies among pieces of heterogeneous knowledge.

Within the relevant literature, some evidence of firm behavior aimed at the

exploitation of knowledge synergies has been highlighted. For example, Scott and

Pascoe (1987); Montgomery and Hariharan (1991); Teece et al. (1994), among

others, find that the distribution of a firm’s activities is not random. In fact, firms

tend to distribute their activities into areas where they can apply their knowledge

(Nerkar and Roberts, 2004; Cantner and Plotnikova, 2009). This intuition has

proved to hold for technological relations (Breschi et al., 2003) as well as in relation
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to the firm’s previous experience in technology and product markets (Nerkar and

Roberts, 2004). The existence of these synergies suggests that there might be a

potential spillover effect between different types and groups of knowledge which

would make any firm which expands its knowledge into related areas more efficient

compared to other firms.

Consequently, this paper empirically investigates how the coherence and di-

versity of knowledge stock affects firm productivity using a data set of firms in

the pharmaceutical industry. We develop a model which relates the total factor

productivity of a firm to the characteristics of its heterogeneous knowledge. In

addition, we also test whether the contribution of different types of knowledge (in

our case technological and project development knowledge) varies in relation to

productivity.

The rest of the paper is organized as follows: Section 2 describes our view on

how characteristics of knowledge such as diversity and coherence may affect firm

productivity; Section 3 describes the data set; Section 4 explains how our model can

be tested empirically; Section 5 reports the results of the empirical investigation;

Section 6 summarizes and concludes.

2 Knowledge valuation function

In this section, we try to sketch some possible approaches construct econometric

specifications in order to assess the economic value of a firm’s knowledge structure.

The discussion is not meant, however, to derive a strict functional form for the

valuation of knowledge portfolios. Rather, we are interested in identifying a small

set of indicators which are able to capture independent and complementary effects.

The obtained indicators will be used in the next sections, inside flexible parametric

specifications, to measure the relative strength of these effects. The advantage

of deriving a set of statistical indicators through formal analysis is that, in this

manner, their relative meaning becomes more apparent and, consequently, the

interpretation of the results becomes more straightforward.

Consider the problem from an abstract perspective. Assume a firm exists that

is active in L “technological classes”. These classes can represent different domains

of technical or scientific knowledge, in principle associated with different designs

and productive capabilities. Let k1, . . . , kL be the degrees of “knowledge” a given

firm possesses in the different classes, with kl ≥ 0 for l ∈ {1, . . . , L}. Even if how it

is measured is unspecified, the important concept is that the degree of knowledge,

kl, is a (continuous or discrete) variable having a cardinal character, so that 2kl
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represents two times the knowledge kl. Thus, the spread of a firm’s knowledge,

at a certain point in time, is captured by a “knowledge portfolio” (k1, . . . , kL).

Let’s denote the economic value of this portfolio by V (k1, . . . , kL) . In principle,

many possible functional forms could be utilized for V . We will restrict the set of

possibilities by requiring that all classes have the same “intrinsic” value; that is,

that a technical advancement in one class, captured by an increase in the level of

a specific k, is not intrinsically more valuable than an improvement in a different

class. This amounts to assuming that the function V is completely symmetric in

its arguments, so that

V (k1, . . . , ki, . . . , kj, . . . , kL) = V (k1, . . . , kj, . . . , ki, . . . , kL) , ∀1 ≤ j ≤ L . (1)

Another reasonable assumption is that the addition of a new class may not decrease

the overall value of a firm’s knowledge portfolio. Furthermore, if the firm expands

its activity in a new class L + 1 by any amount kL+1, the portfolio value is not

reduced, i.e.

V (k1, . . . , kL, kL+1) ≥ V (k1, . . . , kL) . (2)

At the same time, the value of a portfolio is non decreasing in any knowledge level,

so that
∂V

∂kl
≥ 0 , ∀1 ≤ j ≤ L .

It cab be immediately verified that the above conditions are fulfilled by using

the simple additive linear form

V (k1, . . . , kL) ∼
L∑
l=1

kl , (3)

where the total value of the portfolio is proportional to the sum of the knowledge

level in all the classes. Notice that this specification is equivalent to assuming

that there are no economies of scope from technical capabilities. Indeed, under

the previous functional form, the value of the knowledge portfolio (k1, . . . , kL) is

equivalent to a portfolio made up of a single class, but in which the knowledge level

is the sum of the knowledge levels in the L different classes

V (k1, . . . , kL) = V (
L∑
l=1

kl) .

Therefore, the linear specification in (3) implies a lack of scope economies.

4
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Figure 1: Hierarchical structure of the knowledge portfolio
In the right-hand panel two new classes stem from an original“branch”, creating additional

value for the firm.

Accordingly, assume instead that the contribution of a newly added knowledge

class increases the total value of the portfolio, not by an amount proportional

to its level, but rather so that the value of the new portfolio includes both the

knowledge in the new class and the sum of all previous knowledge levels

V (k1, . . . , kL, kL+1) = V (k1, . . . , kL) + V (k1 + . . .+ kL, kL+1) . (4)

Notice that (4) provides a recursive definition of the valuation function V : the

L-dimensional function is defined in terms of a mixture of (L − 1)-dimensional

and 2-dimensional functions. Therefore, knowing the function V for two classes is

enough to provide the valuation of any portfolio with a generic number of classes L.

In fact, the fulfillment of (4) restricts the possible functional form of V according

to the following proposition:

Proposition 2.1. Consider a positive, continuous and symmetric valuation func-

tion V , which satisfies (2) and (4). Then, for any portfolio (k1, . . . , kL), its expres-

sion would be

V (k1, . . . , kL) = −
L∑
l=1

kl log
kl
k
, (5)

where k =
∑L

l=1 kl is the total amount knowledge.

Proof. Define the function

S(k1, . . . , kL) = V (k1, . . . , kL)/k .

5
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Property (4), rewritten in terms of S, reads

S(k1, . . . , kL, kL+1) = S(k1, . . . , kj + kL+1, . . . , kL) +

∑L
l=1 kl∑L+1
l=1 kl

S(k1, . . . , kL) .

The equation above, together with the desired continuity and symmetry, is equiv-

alent of Theorem 2 in Shannon (1948). Consequently, S is proportional to the

entropy function and expression (5) immediately follows.

Equation (4) implies that the value added to the portfolio by the development

of knowledge kl+1 in a new class is not proportional to the knowledge level by itself,

but is achieved by the interaction of the new class with the previously existing ones.

Indeed, the value added to the portfolio by the inclusion of a new class is equal

to a portfolio comprised of the new knowledge level and all previous knowledge

as if it belonged to a single class. In other words, previously existing knowledge

seems to have the potential to interact with newly generated knowledge to create

an additional value. This feature, which directly introduces economies of scope into

the technology valuation function, is consistent with the presence of a “hierarchical”

structure which connects knowledge in different classes to each other. Indeed, it

immediately follows from (5) that

V (k1, . . . , kL, kL+1) = V (k1, . . . , kj+kL+1, . . . , kL)+V (kj, kL+1) , ∀j , 1 ≤ j ≤ L .

(6)

To understand the meaning of the previous relation, look at the picture in Fig. 1.

Let us consider a firm having developed knowledge in two classes (k1, k2). Let

V (k1, k2) denote the value of its portfolio. This situation is similar to the left panel

if Fig. 1. Now, assume the same firm develops a new knowledge level, k3, in a third

class. This new class can be thought as a new field branching out from an existing

one, as in the right panel of Fig. 1. The effect on the value of the portfolio is then

twofold: the previous value is increased by the addition of the new knowledge to

the original “branch”, so that its level increases from k2 to k2 + k3. This would

amount to a term equal to V (k1, k2 + k3). In addition, we assume that the two

branches stemming from the original one do in fact “interact”, to create a new

value for the firm equal to that it would have if it possessed only those branches.

This generates an additional value equal to V (k2, k3) so that the total value of the

portfolio becomes

V (k1, k2, k3) = V (k1, k2 + k3) + V (k2, k3) .
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The “branching” that caused the amount of knowledge k2 + k3 to be spread across

two different classes is actually generating value for the firm portfolio.

To summarize, from a novel approach to the way in which newly developed

knowledge classes impact the value of knowledge portfolio, we have found new and

interesting expressions for the knowledge valuation function. Under the approach

which implies of absence of economies of scope and an equality between all possible

distributions of knowledge, the linear expression (3) immediately follows. However,

if instead we assume that the new value is not merely produced by an increase in

the knowledge level of one specific class, but rather derived from the interaction of

the knowledge in this class with the other classes, we are quite naturally led to the

expression (5). Factorizing by a term proportional to the total knowledge in the

portfolio k, (5) can be rewritten as

V (k1, . . . , kL) = kS(k1/k, . . . , kL/k) , (7)

where S represents the Shannon entropy of the distribution of knowledge levels

across different classes.

2.1 Introducing relatedness

The formal expressions above have been obtained by the assumption of equiva-

lent and symmetric classes of knowledge. In practice, however, empirical data

used to measure a firm’s knowledge portfolio (patents, projects, R&D expenditure,

products, etc.), generally, refers to classifications where the elements van rarely be

considered independent. A good example is that of chemical classifications, where

a given compound can in principle be related to very different industrial processes

or chemical products. Furthermore, the same is true for the pharmaceutical sec-

tor, in which classifications based on either therapeutic or chemical properties can

overlap in complex ways. Knowledge used in the production of a given molecule or

chemical entity could be relevant in producing very different final compounds and

drugs and, consequently, affect the ability of the firm to participate in seemingly

distant markets.

This assumption of symmetry and equivalence can be relaxed by introducing a

measure of “relatedness” in the conceptualization of the knowledge classes. Various

measures have been suggested in the literature, most notably the coefficient of

variation, measuring the departure from a theoretical hypergeometric distribution

in Teece et al. (1994), and the correlation coefficient measure in Breschi et al.

(2003). The common idea within this approach is to have, for any pair of classes l

7
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and m, a number τl,m, which measures how important the knowledge developed in

class l is for the activities related to class m.

Assume again to have L classes and let (e1, . . . , eL) be the empirically observed

activities (number of patents or projects, R&D expenses, etc.) that a given firm

pursues in the different classes. However, the actual knowledge level in class l,

kl, is not only measured by the activities directly classified in this class, el, but

also depends on the empirically observed activities in other classes, illustrated

by the relatedness indices, τ ’s. Using a simple linear additive expression for the

contribution of the different classes, this relationship can be written

kl = el +
L∑

m=1,m6=l

τl,mem . (8)

Recall that what is directly observed is not the knowledge levels ,k’s, but the

activity levels of the firm, e’s. Therefore, in order to have a directly testable

specification, the valuation function needs to be rewritten in terms of the latter.

Substituting (8) into the linear specification of the knowledge value (3) gives

V (e1, . . . , eL) ∼
∑
l

kl = e (1 + (L− 1)R) , (9)

where e =
∑L

m=1 el represents the total level of activity for the firm and R is the

average relatedness level of the firm portfolio, obtained as a relatedness-weighted

average of portfolio shares

R =
1

L− 1

L∑
l=1

L∑
m=1,m6=l

τl.m
em
e
. (10)

In accordance with our hypothesis of a hierarchical structure, the substitution of

(8) into (5) yields

V (e1, . . . , eL) ∼ e (1 + (L− 1)R) S(φ1, . . . , φL) , (11)

where

φl =
kl
k

=
el +

∑
m6=l τl,mem

e(1 + (L− 1)R)

are the knowledge shares computed by taking into account the relatedness matrix

τl,m.

8
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2.2 Empirical estimation

When using the above functional form in empirical analysis, it is important to

remember that neither the linear nor the hierarchical hypothesis of the structure

of the valuation function are exactly replicated in reality. For this reason, some

degree of variability between the different expressions has to be taken into account.

For instance, a linear combination of (3) and (5) could be considered. For this

linear combination, in the case in which the relatedness among the different classes

is weak, i.e. (L − 1)R << 1, the correction 11 of the previous section can be

ignored and observed e’s can be simply considered as proxies for the knowledge

levels. Taking a linear combination in terms of the activity levels of (3) and (7)

the expression

V (e1, . . . , eL) ∼ c1 e+ c2 eS(e1, . . . , eL)

can be directly estimated. After taking the logarithms and adding a scale factor

(as a further generalization) the equation becomes

log V (e1, . . . , eL) ∼ α1 log e+ α2S(e1, . . . , eL) , (12)

where we consider S(e1, . . . , eL) >> 1.1

If (L−1)R >> 12, or when the average degree of relatedness in firms portfolios

is large, the above approximation cannot be applied and one has to consider a

relatedness-corrected valuation function. In particular, the entropy of the portfolio

should be computed according to 11. Ignoring sub-leading corrections, this reduces

to the log-linear approximation

log V (e1, . . . , eL) ∼ log e+ logL+ logR + logS(φ1, . . . , φL) . (13)

This approximation contains a term corresponding to the total amount of activity,

e; a term corresponding to the number of active sectors, L; a term corresponding

to the overall degree of portfolio relatedness R; and a term corresponding to the

entropy of the portfolio.

3 Data sources

In order to empirically test the effect of knowledge characteristics on firm produc-

tivity, we choose to use data from firms developing medicine. The motivation for

1The entropy spins the support [0, logL]. As long as L is large and firms are sufficiently
diversified, the assumption of large entropy remains safe.

2This case is applicable to our data, with respect to both patent and project knowledge
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this choice is that, due to the availability of the information related to develop-

ment of drug projects we can easily refer to the knowledge related to these projects.

This feature of the data set contributes to the novelty of this research, compared

to similar research where only the patent data is analyzed (Nesta, 2008).

The information on drug development projects originates from the BioPharmIn-

sight3 website, which provides publicly available information on new drug de-

velopment projects worldwide. Each project in the data represents a drug-in-

development at the stage of clinical testing.

The feature of drug development projects which makes it possible to estimate

the characteristics of knowledge heterogeneity such as diversity and coherence,

is the classification of them into 225 Indications. Each indication represents a

condition (i.e. a disease, or a symptom), which causes a particular procedure or

treatment to be advisable4. An example of an indication would be ”Breast Cancer”,

”Influenza” or ”Heart Stroke”. The assignment of indications according to diseases

to be treated makes it reasonable to assume that each indication represents a

particular market niche within the general drug market. Consequently, we treat this

piece of information as a reflection of the knowledge related to project development.

An example of the raw project data used is given in Table 1. In the table, dif-

ferent projects of the company Bayer AG are represented. In our analysis, projects

belonging to a similar indication can be recorded for different years. For example,

Bayer AG had two projects in the indication ”Kidney Cancer” in 2005 and 2003.

Additionally, in 2005, it had projects both in liver cancer and arterial/vascular

disease.

Table 1: Example of Project Data.

Company Indicator Year
BAYER AG Kidney Cancer 2005
BAYER AG Kidney Cancer 2003
BAYER AG Liver Cancer 2005
BAYER AG Liver Cancer 2005
BAYER AG Lung Cancer 2006
BAYER AG Melanoma 2006
BAYER AG Arterial / Vascular Disease 2006
BAYER AG Arterial / Vascular Disease 2005

In order to provide a comparison between different classes of knowledge and

their effect on productivity, the project data have been enriched by adding data

3http://www.infinata5.com/biopharm/
4This definition is from the online medical dictionary: http://www.medterms.com
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on patent applications at the firm level. As the unit of analysis is a single firm,

patent applications to the US Patent Office by the firms in our data set on drug

development were assigned to the respective firm.

Each patent is then classified according to the International Patent Classifica-

tion, which provides the classification of patents according to the different areas of

technology where they belong. IPC, that is a 4-digit classification, was chosen to

represent each technology. For each patent, the information included in the data is

the time of application, company name (applicant), and IPC4 classification codes.

We suggest that the patent data represents technological knowledge, as opposed to

project knowledge.

Firm-level data, in the form of balance sheet information, have been acquired

from the compustat database for each firm. As better explained in the next section,

we only use some information from the compustat data base, specifically that which

is relevant for productivity estimation. Moreover, as stated previously, only firms

that appear in project-in-development data have been selected for the analysis.

Before combining these three data sets5, the variables characterizing the patent

and the project portfolios have been calculated as described below. These variables

correspond to the model in section 2.

Since the data set was formed by selecting firms operating in a certain mar-

ket, we expect to observe fewer inter-firm differences in terms of the variability of

productivity, capital, labor and knowledge than there would be in a inter-industry

study (e.g. Nesta (2008)). Even though the number of estimated units and obser-

vations might be reduced, the more focused data set should provide more reliable

and precise estimation results, due to removing the problem of industry specific

effects at the high aggregation level.

4 Methodology

In our empirical estimation, we follow a two-step procedure. In the first step, we

estimate productivity. In the second step, the derived productivity is assumed to

be a function of knowledge characteristics, as described in section 2.

We chose to measure productivity as a Solow residual (or total factor produc-

tivity), due to our belief that knowledge should affect the overall efficiency the firm.

Although knowledge may be considered as an additional factor of production, we

think that it is different from other factors, such as labor and capital. Moreover,

total factor productivity allows for more flexibility in econometric estimation, due

5The overall time span of the combined data is 1985-2004.
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to the absence of any complex relationship with other production factors.

Total factor productivity is factor A in the standard Cobb-Douglas representa-

tion of the production function:

Q = AKβKLβL (14)

Taking the log of both sides of this equation results in:

q = a+ βKk + βLl (15)

The lowercase letters represent the logs of the corresponding variables in the

equation (14).

The logarithm of total factor productivity can be derived from equation (15)

using the following specification:

a = q − βKk − βLl (16)

The term a captures differences in output across firms that are not accounted for

by changes in the input use. It is typically referred to as total factor productivity or

multi-factor productivity. As we do not include knowledge characteristics explicitly

as inputs in the production function (like we do with labor or capital), a will be

our dependent variable in second step of the empirical estimation.

As a second step, we assume that the total factor productivity derived in equa-

tion (16) is a function of knowledge characteristics such as entropy, diversity, co-

herence and the total accumulated knowledge. Generally speaking, the dependence

of productivity on knowledge can be expressed by equation (13) in section 2, where

the logarithmic value of knowledge, log(V ), is assumed to be proportional to total

factor productivity 6.

a ∼ log(e) + log(L) + log(R) + log(S) (17)

6Two estimation strategies have been proposed depending on the size of (L − 1)R. Since
(L − 1)R >> 1 is true for our data, we apply only the second proposed specification (equation
(13)).
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4.1 Productivity estimation using compustat data7 8.

In our estimation of productivity using compustat data, we follow the methodology

for measuring capital and labor proposed by Brynjolfsson and Hitt (2003).

Output

Value added is used as a proxy for output Q. Value added allows us to use

only labor and capital on the right-hand side of the production function without

controlling for materials. In other words, using value added in the productivity

estimation should produce less biased results. Value added (V A) is calculated

according to the formula:

V A = (operating income) + (labor cost) (18)

Operating income corresponds to the compustat item ”operating income before

depreciation”. Operating income is equal to operating revenue minus operating

expenses. Therefore, the cost of materials is not present in value added and thus

should not be controlled for in the further estimation.

As we utilize data from different years, our measures for output, labor and

capital must be deflated. The deflated version of value added (in year 2000 dollars)

is obtained applying the output deflator, vapi 9.

dV A(t) = V A(t) ∗ 100/vapi(t). (19)

Labor

Labor cost (LC) is computed as the number of employees (EMPL) multiplied

by the average labor cost per person per year (ALC).

LC = EMPL ∗ ALC. (20)

The deflated version of labor costs (in year 2000 dollars) uses the employee cost

index (eci) for US manufacturing

dLC(t) = LC(t) ∗ eci(2000)/eci(t). (21)

7In the estimation, we also applied a different approach to derive productivity measurements
from our data. This other productivity measure produced largely similar results to those reported
in the paper. See Appendix, section B for the alternative estimation of TFP.

8In this section, we describe the construction of the variables through available data. For
all additional sources of data, as well as a description of the variables go to section A of the
Appendix.

9Since the vapi deflator is available only for NAICS classification, in order to apply it to SIC,
we use the nearest industry or, if necessary, a lower disaggregation level.
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Capital

The definition of capital, K, which enters into the total factor productivity

estimate is gross capital stock.

K(t) = GK(t). (22)

The deflated version of capital (in year 2000 dollars) is computed by applying

the deflator relative to the average age (average vintage) of the capital stock. The

average age of the capital stock is calculated by dividing total amortization by

annual amortization (Hall, 1990; Brynjolfsson and Hitt, 2003). This method is

generally believed to be more precise in estimating the accumulated capital stock:

dK(t) = GK(t) ∗ ppi(2000)/ppi(t− int((GK(t)−NK(t))/DEP (t))), (23)

where int() is the nearest integer function; NK is net capital stock, DEP is

depreciation and ppi is producer price index.

Productivity

After deflating the value added, capital and labor proxies, the estimate of pro-

ductivity is:

a = log(dV A(t))− log(dK(t))− log(dLC(t)) (24)

4.2 Knowledge variables

We employ two different sources of knowledge (patents and projects) in our estima-

tion. Therefore, each knowledge variable has two variants: one which is calculated

on patent and the other using project data. The corresponding variables have a

subscript t and p respectively (for a description of variables, see table 7 in Ap-

pendix).

Considering project and patent knowledge separately is motivated by the idea

that there may be differences in the effect of these types of knowledge on produc-

tivity. Previous research points at the difference between creating new technologies

and developing R&D projects aimed at certain market niches (Cantner and Plot-

nikova, 2009; Plotnikova, 2009). Since knowledge in our view is acquired through

learning-by-doing (which is reflected in the model in section 2), different activities

should generate different types of knowledge. In the case of projects, knowledge

is generated not only through the creation of a drug, but also through its testing,

development and market introduction. Conversely, knowledge generated through
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patenting is more probable to contain rather technical know-how.

It is common to assume that the rate of knowledge depreciation is 20% (Pakes

and Schankerman, 1979; Henderson and Cockburn, 1996). We follow this assump-

tion, however we also assume a linear depreciation of knowledge. This last assump-

tion is made in order to avoid complications in the calculation of the diversity and

coherence measures. Consequently, accumulated knowledge and its characteristics

are measured over five-year periods.

Accumulated knowledge (e)

Accumulated technological knowledge is measured as the number of patents over

a five-year period. Similarly, accumulated project knowledge is the total number

of projects a firm was developing over the last five years.

Diversity (L)

Diversity is the number of different groups of technologies or projects. Techno-

logical knowledge diversity reflects the number of different IPC classes in the firm

patent portfolio over a five-year periods. Project knowledge diversity is the number

of different indications in the firm’s project portfolio over the same five years.

Entropy (S)

Knowledge entropy is a measure of the stock of technologies (projects) accumu-

lated by a firm over the last five years. Technology is defined on the 4-digit level

according to the International Patent Classification (IPC). A project is defined

by its relevant indication (the condition or disease to be treated by a potential

product/medicine). Accordingly, the portfolio of technologies consists of differ-

ent groups, as defined by IPC. Meanwhile, a project portfolio consists of several

potential products grouped by indication.

If xk is the fraction of projects (technologies) of type k within the the total

number of projects (technologies) in the firm portfolio, then the knowledge entropy

can be calculated by the following equation:

S = Entropy = −
∑
k

xkln(xk) (25)

In our estimation, we distinguish between the entropy of the project portfolio,

Sp, calculated using project data, and the entropy of the technology portfolio, St,

calculated using patent data. As a reminder, the calculation of entropy controls for

the relatedness between knowledge pieces so that we can be sure that our entropy

is not affected by the relationship between various knowledge (see formula for φl in
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equation (11) in section 2). By doing so, we prevent possible multicellularity due

to correlation between relatedness and entropy in the further estimation.

It is also worth mentioning that our entropy measurement captures the de-

gree of evenness of the distribution of different projects or technologies within the

firm portfolio. Therefore, the measure increases for a more uneven distribution of

projects (technologies) across different indications (IPC codes).

Coherence (R)

In order to measure the relatedness between different pieces of knowledge (IPC

classes for technological knowledge and indications for projects), we employ the

cosine index as introduced in Jaffe (1986) and later used in Breschi et al. (2003).

The cosine index in Breschi et al. (2003) measures ”the angular separation between

the vectors representing co-occurrences of technological fields i and j with all other

fields”, as shown in equation (26). The intuition behind this index is that the

degree of relatedness captures the inverted distance between different projects or

technologies. This index varies from zero to one, one representing the maximum

possible relatedness; therefore, one represents the closest possible distance and zero

represents the longest potential distance between two projects or technologies.

Cosineij =

∑
k CikCjk√∑

k C
2
ik

√∑
k C

2
jk

, (26)

where Cij is the number of patent documents classified in both technological

fields i and j.

We followed a similar procedure to estimate the relatedness of project areas

(defined by indications). To calculate the cosine index for projects, we considered

Cij to be the number of firm portfolios which contain both projects i and j.

The cosine index is then used to calculate the knowledge portfolio coherence for

each firm. The knowledge portfolio coherence was calculated in accordance with

Teece et al. (1994). However, instead of the relatedness index in Teece et al. (1994),

we utilize the cosine index here:

R =
∑
j

(
Pj∑
j Pj

(∑
i6=j CosineijPj∑

i6=j Pj

))
(27)

In this equation, Pj is the number of products (technologies) j in a firm’s

portfolio; Cosine is the cosine index, which acts as our measure of relatedness.

All portfolios containing exactly one technology (project), meaning all specialized

portfolios, were assigned a coherence value equal to one.

In order to separate technological knowledge from project knowledge, as well as
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to account for a possible bias in relatedness estimation, technological relatedness

was calculated via the number of co-occurrences of technologies (IPC codes) in

patents.

Relatedness matrices were then calculated for the whole sample of projects and

patents, a much wider sample than that used for the empirical analysis, since it

also includes firms which are not listed in the compustat database. For this reason,

relatedness and coherence measures are not expected to be biased due to a small

sample size.

4.3 Econometric specification

As described earlier, the first part of our estimation follows equation (24). There-

fore, the productivity estimator is derived as a residual after regressing the log-

arithm of value added on the logarithms of labor and capital, each variable is

deflated to account for annual inflation. Next, we use this productivity measure

as the dependent variable in the regression conducted in accordance with equation

(17).

In the second part of our estimation, there are two main concerns when regress-

ing productivity on knowledge characteristics: autocorrelation of residuals and

unit heterogeneity. Autocorrelation generally arises from path dependency in the

productivity development, as well as the knowledge variables. Since the sample

represents an unbalanced panel of firms, we want to exploit this panel structure of

our data in order to control for unobserved firm characteristics. Therefore, given

these considerations, any econometric specification utilized would need to control

for firm heterogeneity, at the same time accounting for the time structure of resid-

uals.

Firstly, we apply an ordinary least squares (OLS) model to estimate equation

(17), and then test for the presence of autocorrelation in the residuals. Secondly,

we test the relevance of a least squares with unit dummy variables (LSDV) spec-

ification. For this specification, we use both firm and industry panel data as we

expected that there might be both unobserved industry (4-digit SIC classifica-

tion) and firm-level effects. Since our sample of firms deals with firms developing

products in a single market (drug market), firm-level effects would seem to be more

important, and therefore we report only those results where the firm specific effects

are controlled for.

As a next step, we apply a model that accounts for potential autocorrelation

in the residuals. More precisely, we apply a generalized least squares method with

a Prais-Winsten transformation of residuals (Prais and Winsten, 1954). Finally,
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fixed effects and random effects specifications, assuming no autocorrelation and

controlling for panel autocorrelation in the residuals, are also considered. In the

first method, the main purpose is to choose the correct specification which then

allows us to control for any unobserved unit heterogeneity in the sample. The

second method, however, is more concerned with capturing any existing panel

autocorrelation, implying that autocorrelation patterns vary in different panels

(i.e. for different firms).

This estimation strategy was applied to three samples: patent data, project

data, and pooled patent and project data. This method of sampling is helpful

for better understanding of the sample, because patent and project information is

available for overlapping, but not always matching, observations. By estimating

these types of information separately, more observations are available for each

sample. Moreover, by separating the patent and project data, our estimation is able

to distinguish between the effects of different types of knowledge on the dependent

variable, firm productivity.

The dispersion of firms in the data across industries, according to SIC 4-digit

industrial classification, is quite broad (note that our selection of firms depends on

whether or not they were developing pharmaceutical products). Therefore, in order

to test whether our results hold for a smaller sample, we restricted our estimation

to the sample of firms belonging to the industry ”Chemicals and allied products”

(SIC28). However, since the results of this estimation proved to be similar to those

for the whole sample, they are not reported in the paper.

Consequently, we do not report the results of every estimation performed. In-

stead, we only list those tables which we think best demonstrate the effect of

knowledge characteristics on productivity. The correlation of variables is reported

in table 9 of the Appendix. Moreover, a short description of variables is given

in table 7 in section C of Appendix. The next section reports the results of our

empirical estimation.

5 Results

This section describes the results of applying the estimation strategy described in

the previous section. Three sets of estimations have been conducted in order to ex-

plore the relationship between productivity and knowledge heterogeneity separately

for two different types of knowledge: technological knowledge (measured based on

patent data) and development knowledge (measured via project data). Afterward,

the characteristics of both technological and development knowledge have been
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pooled into single estimation equation in order to further explain productivity.

5.1 Patents

We first report the results where only technological knowledge from the patent

statistics, is taken into consideration. The following table (table 2) contains the

estimated coefficients.

This table contains the results from the estimation of five distinct models. Au-

tocorrelation has been detected in the ordinary least squares model (model 1) and

the least squares dummy variable model (model 2). Consequently, the general least

squares estimation (model 3) was applied in order to correct for the first-order au-

tocorrelation. Lastly, model 4 and 5 assume a random effects specification. In

accordance with the result of a Hausman specification test (Hausman, 1978), ran-

dom effects specification is preferred to a fixed effects specification.

Table 2: Estimation Results for Patents

(1) (2) (3) (4) (5)
Productivity OLS LSDV GLS RE RE AR1

log(et) 0.400*** 0.243*** 0.214*** 0.258*** 0.192***
(0.0535) (0.0699) (0.0816) (0.0600) (0.0736)

log(Lt) -0.660*** -0.230* -0.163 -0.289** -0.212
(0.0867) (0.129) (0.148) (0.114) (0.130)

log(Rt) 0.0449 -0.0417 -0.0605 -0.0335 -0.0600
(0.0428) (0.0556) (0.0400) (0.0453) (0.0392)

log(St) 0.0322 -0.213* -0.311** -0.163 -0.279
(0.127) (0.121) (0.141) (0.137) (0.178)

Firm dummies yes yes

Constant 0.408*** -1.062*** -1.442*** -0.161 -0.204
(0.135) (0.169) (0.166) (0.175) (0.172)

Observations 439 439 439 439 439
R-squared 0.149 0.684 0.549
Number of firm 54 54
Autocorrelation† yes yes yes
Durbin-Watson‡ 1.208261 0.877297
Hausman RE RE,10%
Baltagi-Wu LBI 1.555463

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
† Wooldridge test for panel autocorrelation

‡ modified Durbin-Watson (Bhargava et al., 1982)

Autocorrelation in the panel data has been tested for through a Wooldridge

test (Wooldridge, 2002), a modified Durbin-Watson (Bhargava et al., 1982) and

the test for autocorrelation in unequally spaced panel data developed by Baltagi

and Wu (1999). Since our panel of firms is not balanced, we hypothesize that

the Baltagi and Wu (1999) test should be the most reliable to reveal whether
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autocorrelation is present in our sample. In the model 4, the test statistic for

Baltagi-Wu test is not very close to two10, therefore it is safe to assume some

(although not very pronounced) autocorrelation in our panel data. Consequently,

the last model, which allows for random panel effects and first order autocorrelation

(model 5), is considered to be the most robust specification for the estimation for

the current data.

The results of the application of models 1-5 suggest that, in the case of patents,

accumulated knowledge (log(et)) positively affects productivity, since the coefficient

on the number of patents is positively significant. At the same time, the diversity

of technologies in the firm knowledge portfolio (log(Lt)) is found to have a nega-

tive impact on productivity. However, this result does not hold for every model.

For instance, in the most robust model, model 5, the coefficient on technological

diversity is not significant.

The entropy of firm technological knowledge (log(St)) is significant and negative

in the model from which an unbiased estimator was not expected due to autocor-

relation (model 2), and where the autocorrelation correction is not very successful

(in model 3, the Durbin-Watson statistic is far from two). Therefore, we cannot

provide any meaningful conclusions concerning this variable.

The coherence of technological knowledge (log(Rt)) is not significant in any

specification. Therefore, we can conclude that the coherence of technological knowl-

edge is not correlated with firm productivity. In other words, there are no signif-

icant differences in productivity among firms with different levels of technological

knowledge coherence.

5.2 Projects

Table 3 reports the empirical results for the sample of projects-in-development. Au-

tocorrelation was not detected in the least squares dummy variable model (model

2). Therefore, we use a random effects specification and compare it with its fixed

effects counterpart. According to a Hausman specification test (Hausman, 1978),

the random-effects specification should be preferred over a fixed-effects specifica-

tion. Moreover, since the Baltagi-Wu test statistic (Baltagi and Wu, 1999) is close

to two, we conclude that there is no significant autocorrelation in our panel data.

Consequently, in the case of project data, we do not need to proceed any further

with a panel estimation that corrects for panel autocorrelation.

As opposed to technological knowledge, product-in-development accumulated

knowledge (log(ep)) does not have a significant impact on productivity. None of the

10Since our panel is not strongly unbalanced, we use Durbin-Watson significance intervals.
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Table 3: Estimation Results for Projects

(1) (2) (3)
Productivity OLS LSDV RE

log(ep) -0.145 -0.345 -0.294
(0.346) (0.265) (0.254)

log(Lp) 0.473 0.577* 0.511*
(0.445) (0.310) (0.291)

log(Rp) -1.829 -2.705*** -2.739***
(1.215) (1.035) (0.924)

log(Sp) -0.606 -0.482** -0.445
(0.471) (0.243) (0.300)

Firm dummies yes

Constant -0.715* -0.937*** -0.769**
(0.421) (0.322) (0.319)

Observations 228 228 228
R-squared 0.059 0.657
Number of firm 35
Autocorrelation† yes no yes
Durbin-Watson‡ 1.0984
Hausman RE
Baltagi-Wu LBI 1.810134

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

† Wooldridge test for panel autocorrelation
‡ modified Durbin-Watson (Bhargava et al., 1982)

reported models contains a significant coefficient for the corresponding variable.

Project knowledge diversity (log(Lp)) is positively significant after controlling

for unit heterogeneity by introducing random effects (model 3), as well as in the

LSDV specification (model 2). The sign on the diversity of project knowledge

variable is positive, suggesting that firms with varied project knowledge tend to

be more productive. In other words, more productive firms tend to possess more

diversified project knowledge.

The coherence of project knowledge (log(Rp)) is negatively significant in both

models 2 and 3. Recall that the coherence of technological knowledge was insignif-

icant in the estimation of the impact of technological knowledge on productivity.

The negative coefficient for project knowledge coherence means that firms with

coherent project knowledge tend to be less productive. In other words, specializing

in one indication is generally correlated with lower productivity.

The coefficient on the entropy of project knowledge (log(Sp)) is negatively sig-

nificant in the model 2. Consequently, there is weak evidence that the entropy of

project knowledge negatively affects productivity. Therefore, the uneven distribu-

tion of a project knowledge portfolio across an increasing number of project areas

(indications) is negatively correlated with productivity.
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5.3 Patents and projects

In the next estimation we combine project and technology knowledge characteris-

tics, as variables affecting firm productivity, into one equation. Here we assume

a simple specification, where the dependence of productivity on the value of tech-

nological and project knowledge is expressed as a multiplication of the values of

technological and project knowledge. Accordingly, the logarithmic version of this

dependence is expressed through the following equation:

a ∼ log(et)+log(Lt)+log(Rt)+log(St)+log(ep)+log(Lp)+log(Rp)+log(Sp) (28)

Note that due to logarithmic specification, the potential interaction between

different types of knowledge is not formally excluded.

Table 4: Estimation Results for Patents and Projects

(1) (2) (3) (4)
Productivity OLS LSDV GLS RE

log(et) 0.186* 0.167** 0.167** 0.193**
(0.0959) (0.0791) (0.0813) (0.0932)

log(Lt) -0.272 -0.308** -0.299** -0.310*
(0.175) (0.122) (0.126) (0.183)

log(Rt) 0.0390 0.109 0.106 0.0197
(0.114) (0.0899) (0.0929) (0.109)

log(St) 0.107 0.0767 0.0777 0.141
(0.242) (0.202) (0.207) (0.300)

log(ep) -0.0581 -0.274 -0.274 -0.249
(0.378) (0.262) (0.269) (0.210)

log(Lp) 0.215 0.439 0.434 0.381
(0.468) (0.306) (0.314) (0.249)

log(Rp) -0.838 -1.704 -1.620 -1.490*
(1.484) (1.192) (1.193) (0.901)

log(Sp) 0.0542 -0.191 -0.195 -0.142
(0.373) (0.249) (0.251) (0.275)

Firm dummies yes yes

Constant -0.141 -0.259 -2.988*** -0.208
(0.413) (0.501) (0.454) (0.373)

Observations 157 157 157 157
R-squared 0.116 0.772 0.758
Number of firm 25
Autocorrelation† yes yes, 10% yes
Durbin-Watson‡ 1.115054 1.168077 1.234805
Hausman RE
Baltagi-Wu LBI 1.939832
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

† Wooldridge test for panel autocorrelation
‡ modified Durbin-Watson (Bhargava et al., 1982)

The first two models in table 4 indicate the presence of autocorrelation. Conse-
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quently, a generalized least squares estimation is applied, with the results reported

as model 3 estimation. Although the significance of detected autocorrelation de-

creases (judging from the change in the Durbin-Watson statistic from 1.115054 in

LSDV (model 2) to 1.168077 in GLS (model 3)), the residuals from GLS estimation

are still autocorrelated. However, when we used a random-effects specification, in-

stead of a fixed-effects specification (the latter produces results similar to LSDV)

there is no autocorrelation detected in the panel data, according to Baltagi-Wu test

for an unbalanced panel. Taking into account that the Hausman test results sug-

gested a random-effects estimation should be preffered to a fixed-effects estimation,

model 4 seems to provide the best fit for our data.

As seen in table 4 we are now left with only three significant coefficients for

the variables which correspond to the results of previous estimations. In specific,

the amount of accumulated technological knowledge (log(et)) has a positive effect

on productivity. Moreover, the diversity of technological knowledge (log(Lt)) and

the coherence of project knowledge (log(Rp)) both affect productivity negatively.

In other words, the more productive firms tend to be those with a large amount

of technological knowledge, a lesser degree of project specialization and a reduced

diversification of their technological portfolios.

6 Discussion and conclusion

There are some caveats that should be discussed prior to summarizing the main

results of the paper. For instance, this analysis is performed on a relatively small

data set, especially the last part of estimation which was performed using data from

both the project and patent side. However, the advantage of this approach is that it

contains information on a relatively homogeneous group of firms, which enables us

to make conclusions which suffer less from various industry biases. Consequently, it

is worth noticing that our results differ from similar analysis made by Nesta (2008)

on a sample of firms from different industries.

Secondly, we did not model the interaction between project and patent knowl-

edge explicitly, potentially leaving room for further investigation into the subject

matter. This extension on the presented results could be further justified given the

importance of the finding that various types of knowledge cause different effects on

productivity.

We should again note that the productivity estimation was performed using

compustat data including firms with mostly above average size. This, of course,

poses the question of the effect of heterogeneous knowledge on the productivity of
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small firms. Although extending the data to include smaller firms would also be

an interesting way for further research, restricting the data to the sample of big

firms still provides interesting results.

The results of our regressions allow us to conclude that there are some signif-

icant differences between the various types of a firm’s knowledge and their effect

on productivity. Specifically, the estimation performed utilizing only patent data

demonstrates the significant effect of accumulated knowledge on productivity. The

positive correlation between productivity and accumulated technological knowledge

allows to claim that firms with larger sets of accumulated knowledge tend to be

more productive. Note though, that because unobserved unit heterogeneity was

controlled for in the estimation, it cannot be stated that this finding is equivalent

to claiming that big firms are more productive. Instead, it just signifies that more

technological knowledge is associated with higher productivity.

The strong finding on the project side is that high project knowledge coherence

is associated with low productivity. Considering that projects represent future

products in the process of development, this finding suggests that there may be

certain disadvantages in developing a coherent project portfolio. It could be that

coherent or specialized project knowledge does not allow firms to either take ad-

vantage of every opportunity, maintain flexibility and so to enrich its production

process with new ideas. These facts may actually lead to lower productivity in

those firms with more coherent project knowledge. On the other hand, the lower

productivity of highly coherent firms could also be explained by the higher risks

born by those firms due to poor diversification of their products-to-be portfolio.

Concerning the weaker findings of this study, the diversity of project knowledge

positively affects productivity, suggesting that more diversified firms are more pro-

ductive. However, this finding does not appear in either joint project or the patent

regression, possibly due to the more complicated nature of the interaction between

these two types of knowledge. Nevertheless, technological diversity becomes signif-

icant in the last regression.

We can thus conclude from the comparison of these regression results that

different types of knowledge should be considered separately, and through possibly

different theories and interpretations. The knowledge of a firm appears to be highly

heterogeneous, not only with respect to different technology classes, but also and

most importantly with respect to the various fields of a firm’s activity.
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A Sources of data for productivity estimation

Table 5 lists variables used for productivity estimation. Their labels correspond to

those in the main part of the paper.

Table 5: Variables

Name Description Source Period

EMPL Number of employees COMPUSTAT ITEM 29 ’50-’04
LRE Labor and related expenses COMPUSTAT ITEM 42 ’50-’04
ALC Average labor cost per person per year BLS 1 ’88-’00
eci Employee cost index, constant dollar BLS 2 ’79-’05
GK Gross capital stock COMPUSTAT ITEM 7 ’50-’04
NK Net capital stock COMPUSTAT ITEM 8 ’50-’04
DEP Current depreciation COMPUSTAT ITEM 14 ’50-’04
ppi Producer price index BLS 3 SIC ’84-’03

NAICS ’67-’06
TS Total sales COMPUSTAT ITEM 12 ’50-’04
OIBD Operating income before depreciation COMPUSTAT ITEM 13 ’50-’04
vapi Value added price index BEA 4 ’47-’07
1File ’ntaa8800.zip’ obtained from ftp://ftp.bls.gov/pub/special.requests/cew/SIC/history/national/ntaa8800.zip

It contains Annual Average Employment (EMP), and Total Wages (WAGES) for 4-digit SIC industrial sectors.

The average labor cost can be computed as ALC = WAGES/EMP.

2File ’eci.ecconst.txt’ can be downloaded from ftp://ftp.bls.gov/pub/suppl/eci.ecconst.txt It contains ’price index’

for compensation at constant dollar (2005=100).

3From the website http://www.bls.gov/ppi it is possible to obtain producer price index for 3 or 4 digit SIC

sectors. Base price is December ’85. Longer series can be obtained looking at ”commodity”

rather than ”industry” data.

4 From the website http://www.bea.gov/industry/gpotables. Chain-type price indexes for value added by

industry. Reference year 2000=100. Industries are classified according to NAICS.

B Alternative productivity estimation

Value added (V A2) is calculated according to formula:

V A2 = (operating income in dollars) + (labor expenses in dollars) (29)

Labor expenses = (number of employees) ∗ (hour wage) ∗ (number of working hours)

(30)
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Operating income, capital and labor expenses were deflated using indexes of

output, capital income and labor compensation respectively. All values are ex-

pressed in 2000 dollars.

Estimation of a measure of total factor productivity was attained from run-

ning regressions following equation 15 and then predicting residuals. Productivity

attained using value added as output measure is called mprod1.

Compustat items

Table 6: Variables and their Correspondence to Compustat Items

Variable Compustat correspondence

Net Sales DATA12 in compustat: Net sales
Operating Income DATA13 in compustat: Operational income
Number of Employees DATA29 in compustat: Number of employees
Net Capital Stock DATA8 in compustat: Capital stock net

(less depreciation)

Table 6 contains variables used for productivity estimation together with the

corresponding items in compustat database. Number of employees is a measure of

labor and Net Capital Stock is a measure of capital in equation 14.

Note that all compustat items are expressed in millions of dollars, except for

number of employees. Therefore, Net Sales, Operating income and net capital stock

volumes were multiplied by 1.000.000 for estimation.

Deflators

Labor expenses, capital, net sales and operating income volumes were deflated

according to labor compensation, capital income and output indexes from the his-

torical multifactor productivity measurement tables from the US Bureau of Labor

Statistics11.

The set of tables ”Historical multifactor productivity measures (SIC 1948-87

linked to NAICS 1987-2007)” (the name of the file is prod3.mfptablehis.zip) was

downloaded from the web site of the US Bureau of Labor Statistics. These tables

are available for the private business sector and private nonfarm business sector.

We used the table ”Net Multifactor Productivity and Cost, 1948-2007. Basic mea-

sures.” for the private nonfarm business sector, which reports current dollar output,

labor compensation and capital income as index values with year 2000 as the base

year. From this table, we extracted the columns for Current Dollar Output, Labor

Compensation in current dollars and Capital Income in current dollars. These three

11http://www.bls.gov/mfp/#tables
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indexes were used to adjust output, net sales, employee expenditure and capital

measures in the calculation of value added and productivity.

Wage and working hours

Hourly wage was attained from the US Bureau of Labor Statistics web site12 by

requesting table B-4, ”Average hourly earnings of production and nonsupervisory

workers on private nonfarm payrolls by industry sector and selected industry detail,

seasonally adjusted” for non-durable goods production. As monthly (not yearly)

data was derived, data for one month (July) was chosen to represent hourly wage.

Number of working hours was assumed to be 2040 per year, following Brynjolf-

sson and Hitt (2003).

C Tables

Table 7: Description of Variables in Regressions

Variable Description

a logarithm of productivity as in equation 24

et number of patents accumulated over 5 years

Lt variety of patent portfolio over 5 years

St entropy of patent portfolio over 5 years

Rt coherence of patent portfolio over 5 years, following Breschi et al. (2003)

ep number of projects accumulated over 5 years

Lp variety of project portfolio over 5 years

Sp entropy of project portfolio over 5 years

Rp coherence of project portfolio over 5 years, following Breschi et al. (2003)

12http://www.bls.gov/webapps/legacy/cesbtab4.htm
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Table 8: Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max

a 957 3.67E-10 0.951735 -4.40589 3.801741
et 6136 35.78113 179.3873 0 3087
ep 2932 4.213847 17.38699 0 231
Lp 2932 2.773874 9.466475 0 99
Lt 6136 5.565026 18.64114 0 264
Rt 1731 0.241517 0.259368 0 1
Rp 691 0.795174 0.061246 0.412048 1
Sp 956 0.747732 0.55828 0 2.554782
St 1932 1.128958 0.623785 0 2.932398

Table 9: Correlation

1 2 3 4 5 6 7 8 9

1 a 1

2 et 0.0625 1
0.0534

3 ep 0.1229 0.1351 1
0.0003 0

4 Lp 0.133 0.172 0.9803 1
0.0001 0 0

5 Lt -0.0882 0.7906 0.0764 0.0965 1
0.0063 0 0 0

6 Rt 0.2344 -0.0791 0.0427 0.0579 -0.2499 1
0 0.001 0.12 0.0352 0

7 Rp -0.1478 -0.0614 -0.0321 -0.0527 -0.078 -0.0204 1
0.0225 0.1068 0.3996 0.1665 0.0403 0.6943

8 Sp 0.2066 0.1387 0.5145 0.5972 0.0785 0.2162 -0.2272 1
0.0002 0 0 0 0.0152 0 0

9 St -0.1943 0.0663 -0.0225 -0.0341 0.3414 -0.5459 0.0325 -0.1666 1
0 0.0035 0.3887 0.1925 0 0 0.5157 0.0001

Correlation values are bold. significance levels are reported below correlation values.
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