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An Evolutionary Algorithm for the Estimation of
Threshold Vector Error Correction Models∗

Abstract
We develop an evolutionary algorithm to estimate Threshold Vector Error Cor-
rection models (TVECM) with more than two cointegrated variables. Since
disregarding a threshold in cointegration models renders standard approaches
to the estimation of the cointegration vectors inefficient, TVECM necessitate a
simultaneous estimation of the cointegration vector(s) and the threshold. As far
as two cointegrated variables are considered this is commonly achieved by a grid
search. However, grid search quickly becomes computationally unfeasible if more
than two variables are cointegrated. Therefore, the likelihood function has to be
maximized using heuristic approaches. Depending on the precise problem structure
the evolutionary approach developed in the present paper for this purpose saves 90
to 99 per cent of the computation time of a grid search.

Keywords: Evolutionary Strategy, Genetic Algorithm, TVECM

JEL classification: C61, C32

∗ The author is indebted to Herbert Buscher, Christian Schmeißer, Sebastian Giesen, Rolf
Scheufele and Toralf Pusch for valuable comments and discussions.
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Ein evolutionärer Algorithmus zur Schätzung von
Threshold-Vektorfehlerkorrekturmodellen

Zusammenfassung
Im vorliegenden Papier wird ein evolutionärer Algorithmus zur Schätzung von
Threshold-Vektorfehlerkorrekturmodellen (TVECM) mit mehr als zwei kointegrier-
ten Variablen entwickelt. Da die fehlende Berücksichtigung eines Schwellenwerts,
bei dem sich die Anpassung an das langfristige Gleichgewicht verändert, in einem
Kointegrationsmodell dazu führt, dass konventionelle Schätzer nicht länger effizient
sind, muss dieser Schwellenwert simultan mit dem Kointegrationsvektor geschätzt
werden. Solange nur zwei kointegrierte Variablen betrachtet werden, wird die
Schätzung üblicherweise mittels einer Rastersuche vorgenommen. Eine solche
Rastersuche ist allerdings, wenn mehr als zwei Variablen kointegriert sind, aufgrund
des immensen Rechenaufwands meist undurchführbar. Die Likelihood-Funktion
muss daher über heuristische Verfahren maximiert werden. Abhängig von der
genauen Problemstruktur kann der zu diesem Zweck im vorliegenden Papier
vorgeschlagene Algorithmus 90 bis 99 Prozent der Rechnerkapazität, die für eine
Rastersuche notwendig wäre, sparen.

Schlagworte: Evolutionäre Strategie, Genetischer Algorithmus, Vektorfehlerkor-
rekturmodelle

JEL-Klassifikation: C61, C32

4 IWH Discussion Paper 1/2010



IWH

1 Introduction

In the present paper we develop an evolutionary algorithm to estimate Threshold
Vector Error Correction Models (TVECM) with more than two cointegrated vari-
ables and an unknown cointegration vector.
Since the seminal contribution of Balke & Fomby (1997) about cointegration rela-
tionships where error correction only occurs if a certain variable - mostly the error
correction term or its absolute - exceed a certain threshold, the analyzis of threshold
cointegration became a standard tool in applied economics.
A major problem of TVECM is that the long term relation, i.e. the cointegration
vector, is not estimated efficiently by conventional estimators if the threshold is not
adequately taken into account. Therefore, the cointegration vector and the thresh-
old itself have to be estimated simultaneously (Hansen & Seo 2002). Hansen & Seo
(2002) who focus on two variable cointegration relationships employ a simple grid
search to find the optimum of the likelihood function. This approach is still clearly
prevalent. While a grid search is feasible if no more than two variables are cointe-
grated and the problem is thus limited to two unknown parameters1, it is no longer
computationally feasible if more variables are considered. Gascoigne (2004) recom-
mends a “sequentially modified grid search” that combines a limited grid search with
hill climbing techniques. However, this procedure is neither saving sufficient com-
putational time nor does it evade local optima with sufficient probability. Hansen
and Seo themselves recommend the genetic algorithm of Dorsey & Mayer (1995) for
problems with more than two variables.
Genetic algorithms - or rather evolutionary algorithms in general - attempt to find
an optimum parameter combination for a given problem by refining a set of solution
attempts consecutively by simulating an evolutionary process consisting of (fitness
based) selection of promising candidates, recombination of the solution components
and mutation, until convergence to one solution is achieved. This procedure ought to
save a substantial proportion of the computational requirements of a full grid search,
while being less prone to convergence in local optima than conventional heuristics
like hill climbing algorithms. However, our results show that this simple evolutionary
technique is not suited to asure robust convergence close to the global optimum of

1 Since the cointegration vector is normalized only one component of the cointegration vector
and the threshold have to be searched if two variables are cointegrated.
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the likelihood function of a TVECM.2 Likelihood functions of complex econometric
models often exhibit features that make it difficult for simple evolutionary heuristics
to track down the global optimum. Thus, there are only few attempts to use them
in maximum likelihood (ML) estimation.3 In the present paper we show that a
properly adapted evolutionary algorithm can robustly find the global maximum of a
Gaussian likelihood function while saving 90 percent and more computational time.

The paper contributes to the literature in three ways: First, we develop a new selec-
tion mechanism that guarantees population diversity and thus avoids local optima
more easily. Second, we use a structured approach to mutation based on a princi-
pal component analysis of the genome of well performing individuals in the tested
population. Third, we combine these new techniques with modern concepts from
the evolutionary optimization literature to develop an evolutionary algorithm that is
well suited for ML estimation. While we focus on a TVECM in the present paper the
algorithm we propose is applicable to most econometric models where nonlinearities
of some kind cause a rough surface of the likelihood function.

The remainder of the paper is structured as follows: Section 2 briefly introduces
evolutionary algorithms. Section 3 describes the structure of TVECM and their
encoding in chromosome form. Section 4 presents the evolutionary algorithm we
develop.

2 Evolutionary Algorithms

Evolutionary algorithms go back to the works of Holland (1975)4 on genetic algo-
rithms and Rechenberg (1973) on evolution strategies.

2 Dorsey and Mayer only discuss genetic algorithm for economic optimization problems in gen-
eral and do not explicitly recommend their algorithm for this special purpose.

3 Examples include Czarnitzki & Doherr (2002) and (more recently) Öztürkler & Alaten (2008).
4 Holland actually presented some contributions on genetic algorithms earlier, but this work is

usually consireded to be the origin of genetic algorithms since it includes the schema theorem
that he uses to show the efficiency of his algorithm design.
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These mechanisms 5 attempt to maximize an evaluation function by simulating
the process of biological evolution. Starting with a population of randomly created
solution candidates (individuals) the quality of the population is stepwisely improved
by the mechanisms of selection, recombination (often referred to as crossover) and
mutation:

• In the selection phase auspicious solution candidates are chosen to inherit their
“genetically” coded information to an offspring generation. The probability to
create offspring is based on the fitness, which is usually defined as a function
that is strictly monotonous in the evaluation function.

• In the crossover phase components of randomly selected pairs of individuals
from the parent population are recombined to create new individuals that
replace their parents.

• In the mutation phase randomly chosen individuals from the resulting popu-
lation are chosen and (randomly) altered slightly. While this might cause a
certain loss of already accumulated information about the “correct” solution,
it assures a thorough search over the space of possible solutions.

While the various evolutionary techniques all share these common principles, they
differ heavily in the details. Selection method (most importantly the rigidity of the
selection mechanism), mutation and crossover operators and probabilities have to be
adapted to the problem of interest. Essentially, most of these design decisions boil
down to the core trade-off, that has been mentionend in the context of mutation,
between a broad randomly driven search that allows to avoid local optima and the
use of accumulated information about clusters of good solution candidates.

5 In computer science and engeneering evolutionary algorithms are traditionally quite rigidly
classified in genetic algorithms and evolution strategies. For a detailed comparison see
Hoffmeister & Bäck (1990). The most notable difference between these is the chromosome
encoding of solutions. Genetic algorithms closely model biological chromosomes, where ev-
ery gene has only a limited number of possible values, and mostly use a bitstring encoded
chromosomes. In evolution strategies the genes traditionally are real numbers. However, the
term “genetic algorithm” is used more general in economics and will accordingly be used as
a synonym for evolutionary algorithm in the remainder of this paper. Anyhow, the concept
of “real valued” genetic algorithms is not entirely unknown (see e.g. Wright (1991)), since
the key difference between genetic algorithms and evolution strategies is not uncontroversiaal.
Furthermore, recent developments made the distinction difficult due to the increasing mutual
adoption of various techniques.
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3 TVECM and their chromosome encoding

We consider the following type of TVECM :
xt is a p-dimensinal vector from the nonstationary (I(1)) time series x of length T .
xt is cointegrated of rank 1, i.e. there is a β where ect = β′xt is stationary. The
degree of error correction, i.e. the impact of ect−1 on ∆xt depends on whether a
threshold variable θt exceeds the threshold θ̃, so that:

∆xt =

α1ect+1 + γ1(L)∆xt + εt ∀θ | θ ≤ θ̃

α2ect+1 + γ2(L)∆xt + εt ∀θ | θ > θ̃
|α1 6= α2 (1)

Following Hansen & Seo (2002) this specification does not only allow the degree of
error correction to change between regimes, but also accounts for possible changes
of the short run correlation, i.e. the possibility that γ1 6= γ2. Since the difference in
α is the essential one, because a model with γ1 6= γ2 and α1 = α2 can be estimated
conventionally, this is often neglected in the specifications found in the literature.6

However, the possibility that the short run relations change when the error correction
changes can rarely be ruled out.
Since we can normalize the cointegration vector β so that β1 = 1 and α1,α2, γ1 and γ2

are set deterministically by the choice of β the genetic algorithm has to identify the
choices for βi|i = 2..p and θ̃ that maximize a Gaussian likelihood function.7 Since
the most common threshold variable is the error correction term ec which is not
known ex ante but depends on β, we do not include the threshold in absolute terms
in the chromosomes but rather the relevant quantile qθ of the variable of interest.
This guarantees that any allele (i.e. a specific gene value) of the “threshold gene” can
still be reasonably interpreted when β changes due to mutation or recombination.
Since the estimate of β that is obtained if the threshold is ignored gives a reasonable
idea about β despite its inefficiency, we restrict the search space to the proximity of
this original estimate.
This leads to chromosomes of the form:

6 See Krishnakumar & Neto (2009) and Gonzalo & Pitarakis (2005)
7 Potentially, the lag order l could be included if the evaluation function is a properly chosen

information criterion. However, this cannot be recommended. Ng & Perron (2001) and Qu &
Perron (2007) show that commonly used information criteria as the AIC are strongly biased
in Vector Error Correction models. They propose a modified AIC (MAIC) to correct for
this bias. However, the MAIC relies on the knowledge of the likelihood ratio test of the
cointegration rank which is not known before estimation.
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c =



q′θ

β′2

β′3
...
β′p



T

,

with

q′θε[π, (1− π)]|0 < π < 0.5

β′iεR, β̂i − 3 ∗ σ̂βi
≤ β′i ≤ β̂i + 3 ∗ σ̂βi

,

where the apostrophe denotes components of solution candidates and the hat denotes
estimation results from the initial analysis that ignores the threshold effect. The
parameter π guarantees that the algorithm considers only thresholds that divide
the sample in two subsamples of suffucient size for reasonable statistical inference.

4 The evolutionary algorithm

4.1 Selection

In the selection phase of a genetic algorithm a a parent population that is subse-
quently used to create the offspring generation is chosen. Since we only consider
mechanisms, where the parent population that is generated by sampling mechanims
with replacement is of the same size as the original population, this parent pop-
ulation actually is a preliminary offspring generation.. This preliminary offspring
generation consists of excact copies of well performing individuals of the original
population.
The selection mechanism is the driving force behind any evolutionary approach. It
creates the pressure that is necessary to ensure that the improvements created by
random mutation are actually realized. It is evident that a strong selection leads to
faster convergence. However, speed comes at a cost: strict selection limits population
diversity and thus increases the risk of premature convergence in local optima.
This trade-off turns out to be especially tricky in the case of Gaussian likelihood func-
tions of TVECM. These functions exhibit very rough surfaces with a large number of
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local optima. This is usually taken into account by choosing a selection mechanism
with low “pressure index”. However, we often find that the global optimum exceeds
local optima only slightly, a problem that is commonly solved by choosing a high
pressure mechanism. Accordingly, the construction of an efficient selection mecha-
nism requires a lot of fine tuning that allows a selective conservation of population
diversity while generally working at a high level of pressure.
We compare three established selection mechanisms for this purpose: the common
probabilistic “roulette wheel with replacement”, a remainder stochastic sampling
without replacement and a binary selection tournament. However, our main con-
tribution is a population density adjustment of the fitness function that drastically
decreases the risk of premature convergence at an almost neglectibly small cost in
terms of computational time.
In this section we only present some general results on the various selection schemes,
since their efficiency is strongly interacting with other design choices that are dis-
cussed in later sections. Thus, a full test of several promising combinations of
selection, crossover and mutation will not be done before section 5.

4.1.1 Selection Mechanism

Roulette Wheel The traditional selection mechanism is a simple “roulette wheel”
procedure. Sections of a roulette wheel are assigned to members of the parent
popuation proportional to their fitness. Every member of the preliminary offspring
generation is then selected by a separate spin of the wheel. With f denoting the
fitness function and n denoting the population size the probability of selection psof
individual xi thus is given by:

ps(xi) = f(xi)∑n
j=1 f(xj)

, i = 1..n.

While probabilities of contributing the genes to subsequent generations are propor-
tional to the fitness with this method, results vary strongly.

Binary tournament In a binary tournament (BT) two randomly chosen individ-
uals are draw from the parent generation. Each individual has the same probability
to be selected for competition in the tournament. Only the better of the two individ-
uals that are matched enters the preliminary offspring generation. This prodedure is
repeated until the new generation is complete. Binary tournaments have been found
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to be highly effective and improve the speed of convergence substantially (Goldberg
& Deb 1991).
Contrary to other approaches the chance to contribute to future generations is not
based on the fitness function directly, but on the corresponding percentile. Since
the chance of an individual xi to win the tournament does approximately equal
the quantile of the corresponding fitness value in the current distribution of fitness
values, it can be said for large population sizes that:

ps(xi) ≈
2
n
qf(xi), i = 1..n,

where qf(xi)denotes the quantile of the fitness of xi.

Remainder Stochastic Sampling without replacement Remainder Stochas-
tic Sampling (RSS) is a variation of the roulette wheel approach that maintains its
probabilites of creating offspring but produces much more stable results. For each
individual the ratio

ri = f(xi)
mean(f(x)) , i = 1..n,

is computed. Each individual of the parent population is then placed in the prelim-
inary offspring generation according to the integer part of r. The remaining places
in the preliminary offspring generation are then selected randomly from the parent
population without replacement, where the selection probabilities equal (rmod 1)
i.e. the fractional part of r. Contrary to binary tournaments remainder stochasic
sampling is known to ensure a high degree of population diversity. Contrary to the
other mechanisms used, RSS always selects the best individual at least once.
Table 1 summarizes some results on the performance of these three selection schemes.
For simplicity we do not maximize an actual function, but instead generate a popu-
lation with preassigned evaluation values that are uniformly distributed (real num-
bers) between zero and one as. For this example the fitness function is defined as
the difference to the worst individual. To give an idea about the dynamics induced
by the selection mechanism each mechanism has been applied 10 times. Note, that
this is not full fleged simulation of a genetic algorithm, since the individuals of an
offspring generation are neither recombined nor mutated before the selection scheme
of interest is applied again. This procedure has been repeated 2000 times for each
scheme. We compare the average population mean of the evaluation value (µx) af-
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Table 1: Selection mechanism performance

Roulette Wheel RSS BT
µx dix µx dix µx dix

Iteration 1 0.6703
(0.245)

0.7187
(0.0492)

0.6701
(0.0028)

0.7212
(0.0001)

0.6666
(0.0230)

0.7082
(0.0467)

Iteration 2 0.7663
(0.0274)

0.7894
(0.0811)

0.7633
(0.0049)

0.7930
(0.0049)

0.7988
(0.0260)

0.8146
(0.0882)

Iteration 3 0.8308
(0.0263)

0.8281
(0.1116)

0.8254
(0.0059)

0.8384
(0.0082)

0.8865
(0.0225)

0.8881
(0.1463)

Iteration 4 0.8776
(0.0242)

0.8568
(0.1435)

0.8700
(0.0060)

0.8693
(0.0121)

0.9376
(0.0175)

0.9299
(0.2170)

Iteration 5 0.9111
(0.0214)

0.8768
(0.1834)

0.9031
(0.0057)

0.8947
(0.0162)

0.9656
(0.0133)

0.9492
(0.3201)

Standard deviation given in paranthesis
diversity index:dix = σx

1−µx

ter a given number of iterations, the average population diversity (indicated by the
diversity index of the population members that is explained in the table) after that
number of iterations and the standard deviation of these indicators.
The less “bad” individuals are selected for the parent generation, the higher is the
speed of convergence to one or - if the best indivdual is deleted in at some generation
- close to some value close to one.. This essentially reflects the pressure produced
by the selection mechanism. A high diversity index indicates a diverse population,
that is necessary to mitigate the risk of premature convergence in local optima in
more complex settings. The standard deviations of these values describe how stable
the mechanism produces its “standard” result.
While the roulette wheel and RSS are almost identical on average in terms of con-
vergence speed (as indicated by the development of the population means) and
population diversity, the results produced by RSS are substantially more stable as
predicted. Also, the high convergence speed of BT can be seen.

4.1.2 Evaluation Function

Squared diffence to worst vs. difference to worst The most common fitness
function is the difference of the evaluation function to the worst evaluation function
value of an individual in the present population, i.e.:

12 IWH Discussion Paper 1/2010



IWH

f(xi) = e(xi)− emin(x),

where e is the evaluation function.
However, the likelihood function of a TVECM has some features which cause prob-
lems if this fitness function is used:
While the slope of the fitness function is often very flat around the global optimum
in one dimension, it is very steep if following other dimensions. Even if mutation
is carefully adapted during runtime of the algorithm, this usually leads to some
very badly performing individuals in the population after mutation. Since these
badly performing individuals define the new fitness benchmark, the relatively small
differences in the top region of the population barely make a difference.8

Thus, we try to enhance the impact of differences in the better region of the popula-
tion on selection probabilities by using the squared difference to the worst performing
individual:9

f(xi) = (e(xi)− emin(x))2.

This strongly favors the top performers, while still allowing for some randomness.
Especially if combined with selection mechanism that favor population diversity
(like RSS) these fitness functions grant the necessary boost to the selection chances
of the best individuals while at the same time being sufficiently diverse to prevent
frequent premature convergence.

Dynamic offset We implement several adjustments to the fitness function to
prevent premature convergence. One of them is a dynamic offset mechanism that
reacts to a sudden decline in population diversity. As noted by Czarnitzki & Doherr
(2002) an offset ψ|ψ > 0 can be added to the fitness function of all individuals
to increase the selection probabilities of badly performing individuals and by that
to increase the population diversity of following generations. Since an offset can
strongly reduce convergence speed, we recommend to limit the use of a substantial
offset to situations where the danger of premature convergence due to a sudden

8 Obviously this argument is not applicable to tournament selection schemes that operate en-
tirely based on the quantile of the fitness that is independent of any strictly monotonous
transformations.

9 This does not affect tournament selection.
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decline in population diversity is imminent. Instead of relying on a fixed offset ψ we
thus propose a fitness functions of the form:

f(xki ) = (e(xki )−min[emin(xk), 1
z

z∑
j=1

emin(xk−j)])m|mε[1, 2],

where emin(xk)|kεN+ denotes the minimum of the population x in generation k.
If the current minimum exceeds the rolling average of past minima, the latter is
substracted instead of the first. Essentially this equals the addition of an offset, if
the minimum evaluation value drastically increases from one generation to the next.

Density Adjustment The prime contribution of this paper to selection schemes
that are suited for typical estimation problems in econometrics is the introduction
of a density adjustment.
Due to the vast size of the search space in a genetic TVECM estimation and real
valued problems in general, even a large population cannot guarantee that all clusters
of “good” solutions are well covered by the population. Since the probability that
the peek (or a point close to the peek) of an elevation in the evaluation function
surface has been hit is lower if this specific elevation has been tested less thoroughly,
this does induce a high risk of premature convergence.
To compensate for this we introduce a density adjustment to the fitness function
that favors more insulated individuals in early stages of the algorithm.10 A density
adjustment factor φ is added to the fitness of individuals that already achieve an
unadjusted fitness above the median fitness. With ηi denoting the density index
around individual i, and dij denoting the standardized Euclidean distance between
xi and xj, φ is set to

10 Potts, Giddens & Yadav (1994) follow a similar idea in their “migration” based algorithm.
However, they attempt to preserve several populations throughout runtime and thus have
substantially higher loss of “evolutionary information” resulting in higher runtimes. This
extreme procedure does not seem necessary for TVECM applications according to our expe-
rience. Partly, the different approaches are due to the different optimization philosophies: In
engeneering and computer science the objective usually is to improve some technique while a
true global optimum does not necessarily exist. Even if a global optimum does exist, finding
an excellent solution with a parameter combination far from this optimum is clearly preferred
to a less fit solution that is close to the global optimum. In econometrics, however, the final
objective is not to find a parameter combination with a fitness that is close to the fitness
maximum, but to find a parameter combination that is close to the parameter combination
that has maximum fitness.
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φi =

(1− ηi)(fmax(x)− f(xi)) ∀i|f(xi) ≥ q.5(f)

0 ∀i|f(xi) < q.5(f)
,

where

ηi = |{xj : dij < q.1(d)}|
n− 1 , jε[1..n]\i.

That is, the density index of an individual xi is defined to be the share of other
individuals of the same population which are closer to xi than the distance given by
the 10th percentile of the distribution of bilateral distances in the entire population.
It has to be kept in mind that population density is not exogenous. The higher the
generation number, the more the current population density at different points in the
search space is driven by the fitness in these regions. Thus, the density adjustment is
only applied in early stages of the algorithm. Since the number of generations until
convergence differs heavily dependent on the basic selection mechanism, crossover
operators and mutation schemes, the number of adjusted generations is selected
based on the average runtime of the respective algorithm without adjustment. De-
tailed information is found in section 5 where full algorithms are compared.

4.2 Recombination

4.2.1 The recombination operator

In the second stage of a genetic algorithm pairs of chromosomes that have been
selected in the selection phase are chosen for recombination:
Commonly recombination in genetic algorithms is achieved by exchanging genes
between two parent chromosomes. However, it has been shown by Wright (1991)
that this procedure is not in line with the schema theorem for real coded genes.
Therefore, we use an alternative recombination operator:
The parent chromosome with the higher fitness remains unchanged. The parent
chromosome with lower fitness is replaced by a chromosome where each gene is the
mean of the parents’ respective genes.11

Replacing the worse parent with the average of both parents creates a “gravity”
towards already known clusters of good solutions. Similar gravitational effects are

11 Averaging is commonly also found in evolutionary strategies.
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part of the “differential” mutation schemes frequently used for real valued genetic
algorithms (see Hrstka & Kučerová (2004) for a detailed discussion). These muta-
tions schemes commonly include a deterministic component of mutation that causes
a movement to the best parameter combination that is presently known. The major
advantage of our approach, that incorporates this gravitational pull into crossover,
is that it is less detrimental for population diversity since the gravitation is evenly
distributed over regions with good results instead of being concentrated in one point.

4.2.2 The recombination rate

All algorithms that we use run with a recombination rate of 0.5. On a first glance,
this might seem unusually high. However, while both parents are changed by the
usual crossover operators, only one parent is changed by the crossover operator used
herein. Thus, the actual rate of change associated with a certain recombination
probability is halved compared to conventional genetic algorithms. Correspondingly,
the mechanisms designed in this paper have to work with a high recombination
probability.

Although it has been shown that the adaptation of the crossover rate during run-
time is mostly superior to a fixed recombination rate (Bäck & Hoffmeister 1994, Bäck
1992),12 the present algorithms use a simple fixed rate approach. A full fledged self
adaptiation13 would require an additional evaluation step following crossover. How-
ever, contrary to many other applications evaluation is by far the most computation
time consuming part of genetic TVECM estimation. Since crossover has been found
to be of limited importance for real valued problems (Spears 1995), an additional
evaluation seem inappropriate.

12 Thierens (2002) notes that fixed rates are nevertheless convenient for many problems (and
thus dominant in practical applications) since they are not only more easily implemented but
also mostly find the solution after a higher but still acceptable number of generations.

13 We follow the definition of self-adaptation by Angeline (2002) who defines self adaptive algo-
rithms as algorithms where the choice of the new mutation or crossover rate is based on the
empirical comparison of different rates over one or several generations. Contrarily, adaptive
algorithms use a fixed rule to change the respective rates based on the evaluation of the current
success of crossover or mutation. While both evaluate the success in preceeding generations,
they differ in so far as only self adaptation evaluatuates several potential rates to make the
choice for coming generations.
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Some experiments we run with self adaptive recombination rates (that are presented
in the section on mutation) using the noisy evaluation signal aquired after the sub-
sequent mutation phase, do not outperform fixed rate algorithms.

4.3 Mutation

4.3.1 Dimensional Adjustment of the search space

We find that gene-by-gene mutation operators do not work well with genetic
TVECM estimation. Due to mismatching structures in the likelihood function and
the mutation pattern it is virtually impossible in the later stages of the algorithm
that mutation leads to a better solution. This fosters premature convergence in the
best points of early stages of the population.
To visialize this Figure 1 on page 18 shows the small section of a likelihood func-
tions of one of the simulated three-variable-TVECM that have been used to test the
algorithms designed in this paper. The axis show the second and third component
of the cointegration vector β, the threshold held constant. Darker shades indicate
higher loglikelihood. The structure in the “good” solution canditates is clearly visi-
ble. While this is partly due to the choice of scales on the axis that exaggerate this
structure slightly, this general pattern can be found very frequently. The reason for
this behavior is that the cointegration vector is not unique. Any multiple of a valid
cointegration vector is a valid cointegration vector itself. Only by normalizing the
first component the cointegration vector is made “unique”. Thus, if all components
of β except the normalized one (that is not part of the genetic estimation) change
consistently with each other, only the first component truly deviates from an opti-
mum solution. Therefore, the surface of the likelihood function often has the form
of a long mountain range with an especially high peak where the components of β
are in line with the initially chosen normalization.
A genetic algorithm will quickly evolve to populations along this mountain range.
However, standard mutation operators will systematically cause mutations to “fall
over the edge”. Figure 2 illustrates the mutation pattern of gene-wise mutation
using a (relatively high) mutation rate of 20 percent. It is evident that mutation
will systematically favor mutations that are not in line with the structure found in
the likelihood function. Thus, quick evolution is almost impossible. Especially if
the selection pressure is high, this will lead to convergence in local optima.
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Figure 1: Contourplot of a section of a TVECM likelihood function

Partially, this problem can be solved by mutating all genes jointly. However, the
algorithm can be improved substantially more by including structural information
in the mutation process. We use a principal components analysis of the population
to determine in how far changes in the different parameters are coaligned. The
mutation operator is not applied to a chromosome, but instead to its counterpart
from a factorized population:

Let Pj denote the population in generation j. cmj is the mth chromosome of this pop-
ulation and cmij the ith gene on this chromosome. Since the distribution of individuals
is entirely random in the beginning and mostly random in the first generations the
algorithm uses a standard mutation approach during the first generations. Thus, if
j ≤ j̃, the mutated gene i of the chromosome cmij in generation j is given by:

cm∗ij =

c
m
ij + vijω

m
ij ∀ρmij < pM(i, j)

cmij ∀ρmij ≥ pM(i, j)
,ωij ∼ N(0,σcij

), ρmij ∼ U(0, 1),

where pM(i, j) is the mutation probability of gene i of the chromosome, vijis a
variation adjustment parameter and j̃ is the number of “warmup” generations that
are used to identify the structure of good solution candidates.
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Figure 2: Pattern of mutation given a 0.2 gene-wise mutation probability

A parameter combination (0,0) is mutated by adding a number randomly drawn from a standard-
ized normal distribution to a mutating gene.
Each gene mutates with 20 percent probability, where mutation of the genes is independent.
Darker shades indicate a higher likeliness of this mutation result.
The distribution in the figure is not theoretically derived but generated from one million mutations
(i.e. mutation attempts where at least one gene did actually change).

If j > j̃ we consider a factorized population P f
j . P f

j = (Pj − µPj ) ∗ Fj, where Fj
is the matrix of factor loadings derived by a principal components analysis of the
population in generation j and µPj is a matrix of the dimensions of P where every row
of the µPj is the current average individual µcj. Let (cmj )fdenote the redimensioned
chromosome cmj , i.e. (cmj )f = (cmj − µcj) ∗Fj. Mutation now takes place according to
the formula:

(cmij )f∗ =

(cmij )f + vijω
m
ij ∀ρmij < pM(i, j)

(cmij )f ∀ρmij ≥ pM(i, j)
,ωij ∼ N(0,σcf

ij
), ρmij ∼ U(0, 1),

and

cm∗ij = µcj + (cmij )f∗ ∗ F T .
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This procedure guarantees that mutation can be adjusted to follow the most cru-
cial correlations found in the selected individuals. However, since no factors are
“selected” as in the traditional principal components analysis, mutation along all
dimensions is possible. The key difference is, that mutation can by scaled according
to the patterns that are actually found in the data.14

We find that the application of this alternative mutation operator cuts convergence
time roughly into half for most algorithm designs while at the same time improving
the chance of convergence close to the global optimum. Details are presented in
section 5.

4.3.2 Mutation rate and variation adjustment

It has been frequently shown that adapting mutation intensity during runtime im-
proves the performance of genetic algorithms substantially.
Most of the literature concentrates on the aspect of the mutation rate when mutation
intensity is analyzed. This is appropriate for standard genetic algorithms with long
binary string chromosomes. In these setups distance between chromosomes is defined
by the number of differing genes. Thus, mutation probabiliy is not only measuring
whether a chromosome will change, but first of all how far the mutated chromosome
will be from its progenitor. However, this is not applicable to the real valued domain,
where chromosome distance is mostly determined by the distance of individual genes.
Thus, we do not only apply adaptation mechanisms to the mutation rate, but also
to the variation adjustment parameter v.
We test slightly changed versions of two self adatation mechanisms known from the
literature: the self adaptive genetic algorithm (SAGA) developed by (Hinterding,
Michalewicz & Peachey 1996) and the probabilistic rule-based adaptive model
(PRAM) by Ho, Lee & Leung (1999). Both algorithms were originally designed
as population level adjustment mechanisms. Since it has recently been found that

14 One technical note has to be made. The algorithms used in this paper are run in MatLab.
It is quite difficult to rescale the frontiers of the search space according to the new dimen-
sions. Theoretically it would be best to repeat mutation until legitimate mutation results are
achieved. However, this would enforce element by element mutation. This element by element
implementation does indeed save generations but it increases the computation time for any
given generation with MatLab substantially, since it does not make use of MatLabs matrix
based architecture. Thus we simply adjust illegal mutations according to fit the violated
border of the search space. This creates very few mutations that do not follow the intended
mutation logic.
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gene level adjustment generally outperforms population level adjustment (Korejo,
Yang & Li 2009) both are implemented on gene level herein.

PRAM In the PRAM the population is split in three more or less equally sized
subpopulations that use slightly differing values of the control parameter of interest
(i.e. mutation rate or variation adjustment parameter). After each generation the
success of each rate is evaluated. If the highest rate outperformed the others - and
the rate has not yet reached a predefined maximum - all three rates are increased for
subsequent generations. Analogue, all rates are lowered for subsequent generations
if the lowest rate outperformed the alternatives. If the middle rate is best, the rates
are left unchanged.
The advandate of PRAM is that - albeit several rates are simultaneously tested - the
rates are close enough to assure that most of the population is subject to reasonable
control parameters.

SAGA Like PRAM, SAGA uses three (or more) subpopulations. Each subpopu-
lation uses a different value of the control parameter of interest. However, opposed
to PRAM, the subpopulations differ in size and the chosen parameter values have
to differ substantially. Instead of adjusting the parameter choices themselves, the
sizes of the subpopulations are adjusted after each generation. The number of indi-
viduals which are subject to the most successfull parameter choice of the previous
generation is increased, while the number of individuals that are treated with the
worst performing parameter choice of the previous generation is decreased by the
same amount. If a small adjustment of a parameter is no improvement but a larger
change is, this can be recognized by SAGA while PRAM is oblivious to the necessity
of large changes. However, this comes at a cost: First, SAGA is much less flexible
since the parameter choices are limited by the initial decision. Second, for SAGA to
work properly, a substantial part of the population has to be treated with parameter
choices that are clearly inefficient at the current stage of the algorithm. The first
disadvantage is partially offset in our approach, since we index variation intensity
on the current distribution of the population and create and additional dynamic by
this.
For the mutation rate itself it has been shown that PRAM outperforms SAGA.
However, the advantage of the SAGA to allow for larger jumps might be more
important if applied to the size of the mutation. Thus we concentrate on PRAM to
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adapt the mutation rate, but include both SAGA and PRAM in our analysis of the
mutation size adaptation.

5 Comparing algorithm designs

It turns out that design choices partially interact heavily, causing control parameter
choices that perform good in one setup to be detrimental or at least less helpfull
in others. Since the number of combinations is quite large we ran “pretest” with
few repetitions on all possible combinations and only pursue to full fleged tests for
promising candidates.
The tests are run based on two test functions derived from simulated TVECM with
different identification problems. Both simulated TVECM include three variables
that are cointegrated of rank 1 with a threshold effect in the error correction term.
The details concerning the specifications of these are found in the appendix. Both
functions have been thoroughly tested using a grid search. This is necessary since we
are mostly interested in the maximizing properties of the algorithm, i.e. we are not
looking for the true parameters but for the parameters that maximize the likelihood
function. While the maximum likelihood function finds the true parameters on
average, if the econometric model is well specified, this is obviously not true for any
singe case with its specific distribution of error terms.
As mentioned before, finding parameter estimates close to the maximum of the
likelihood function is favorable compared to finding strongly deviating parameter
estimates that have a similarily high likelihood value. Thus we employ an indicator
that controls for proximity to the best solution: To be considered as a “hit” a run
of the algorithm has to fulfill two conditions: The estimation of the threshold itself
must be precise enough that at most one observation in the simulated time series
is classified into the wrong regime. Furthermore, each parameter estimate must
deviate less than two percent from the “true” parameter.15

15 While we know the true parameters from the simulation these are not necessarily those that
maximize the likelihood function. Since the task of the genetic algorithm is to find the
maximum of the likelihood function of the TVECM we take the true parameters from the
maximum likelihood estimation. Our reference value for the “true” parameters is the optimum
parameter set that is found by a tight grid search or the best result of any genetic algorithm
applied, if a genetic algorithm finds a superior estimation between the knots of the grid we
use.
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Contrary to the comparison of achieved likelihood values this quality indicator does
actually measure estimation performance.
Since there is a particularly strong tradeoff between accuracy (i.e. the probability
that the algorithm produces a “hit”) and runtime. To allow for a reasonable com-
parison of the mechanisms that are accurate but slow and the mechanism that are
less accurate but substantially faster we construct an “accuracy adjusted runtime ”
(AAR) as additional measure, where:

AARi = ḡ(i) ∗ ln(pmin)
ln(p(i)) ,

where ḡ is the average runtime of the algorithm in generations, p(i) is the hit ratio
of algorithm i, and pmin is the required probability to have found a solution that is
set to 99.9% for our purpose. AARi thus is the total number of generations that
algorithm i needs on average, if the algorithm is applied sufficiently often to find
the correct maximum with the minimum probability pmin.
All computations were done with MatLab (without toolboxes).

5.1 Screening results

These first tests include the following control six parameter choices leading to 144
possible:

• The fitness function can be based on linear differences or squared differences
to the benchmark.

• Selection method can be roulette wheel, RSS or BT.

• Mutation size adaptation be be done by PRAM or SAGA.

• Densitity adjustment is or is not applied.

• Factorization of the search space before mutation is or is not done.

• The polulation size is set to 100, 200, or 300.

According to the results the squared fitness functions outperforms the linear fitness
function by far, independent of the general parameter setup. Thus the full test is
only run with squared fitness function.
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Especially roulette wheel selection performs very badly for our kind of problem,
being relatively slow and inaccurate at the same time. While RSS is comparably
slow, it has a substantially higher probability of finding a solution close to the
true maximum of the likelihood function than the alternative designs we took into
account. Although BT has the lowest hit ratio, its immense speed outweights these
problems clearly in terms of AAR. We do indeed find quite strong evidence, that
it might be the computationally efficient solution to take the best solution that is
produced by a battery of subsequent attempts to maximize the given likelihood
function with a BT based algorithms.16

SAGA outperforms the more recently developed PRAM slightly but quite robustly.
The “mountain range” like structure of the likelihood function we face, seems to
produce substantially less cases of premature convergence if we allow for mutation
over different distances. Therefore, only SAGA is included in the full test.
For the three variable case we use as a benchmark 300 is the minimum population size
to produce reasonable results. Therefore, the full test is performed with populations
of this size.17

Additionally, the baseline algorithm as found in Dorsey &Mayer (1995) is included in
the screening for both likelihood functions. Since the first findings indicate strongly
that this algorithm is no substantial improvement to grid search for our problem it
is not included in the full test. However, it has to be emphasized that their algo-
rithm, while having been recommended, has not been constructed for this purpose
originally.

5.2 Test of promising candidates

To summarize, the algorithms we test thouroughly share the following key features:

• squared fitness functions

• BT selection mechanism

16 However, due to the high selection pressure of BT it has to be applied with special care. If
the population density is chosen to low for the complexity of the problem, the already low hit
ratio drops sharply. While this is mostly mitigated by factorization and density adjustment,
we recommend to repeat testing with a larger population if less then four of the 10 runs of a
BT algorithm we recommend cluster arround the optimum the algorithm suggests.

17 The necessity for large populations if real valued problems are considered is well known, see
e.g. Whitley (1994).
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• PRAM mutation adaptation of the mutation probability

• SAGA mutation adaptation of the mutation size

• averagering based crossover (with a fixed rate)

• the population size is 300.

The resulting core algorithm is combined with the four possible design choices con-
cerning density adjustment of the population, and the refactorization of the search
space dimensions that are tested for two simulated TVEM scenarios.
For each scenario each algorithm is used 1000 times with different, randomly gener-
ated starting populations.
One of our TVEM-simulations produces a likelihood function with the afore men-
tioned “mountain range structure” being diagonal to the search space. In the other
scenario the mountain range is parallel to one of the main axis of the search space.
However, this scenario produces a likelihood functions where “good” results cluster
strongly in a region of the mountain range that is far from the global optimum, and
the global optimum (albeit being part of the “mountain range” is a relatively) iso-
lated peak. For simplicity we will refer to these scenarios as “diagonal” and “peak”
for the remainder of the section.
Table 2 on page 26 summarizes the average hit rate and the average number of
required generations for each algorithm for both scenarios.
The diagonal structure of the clusters of good solutions seems to be the harder prob-
lem for conventional genetic algorthims. As seen from the table, the performance of
the algorithm is considerably improved by the factorization approach. In the “peak”
scenario there is only a slight improvement. While the hit ratio increases slightly
and the runtime decreases the results on both factors are insignificant.
Unsurprisingly, the picture is the other way round when density adjustment is con-
sidered. While density adjustment improves the performance of the baseline algo-
rithm in the diagonal setup, its additional benefits when the (necessary) factoriza-
tion is also applied are quite small in this scenario. Contrarily, densitiy adjustment
can substantially improve the results in the “peak” scenario, raising hit ratios from
roughly 60% to abotu 80% and by that saving more than a third of the accuracy
adjusted runtime.
Both innovations presented in this paper contribute strongly to the mitigation of
the problems caused by the common features of TVEM based likelihood functions.
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Table 2: Hitrate and runtime of genetic algorithms
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diagonal - - 12.6 2343
diagonal - + 21.0 1433
diagonal + - 53.0 443
diagonal + + 56.8 417
peak - - 61.2 405
peak - + 81.8 269
peak + - 63.60 339
peak + + 83.0 207

Since the structure of the likelihood function is commonly unknown, and there does
not seem to be a relevant computation cost attached to the use of either mechanism,
they can be recommended withouth substantial caveat.
The application of both mechanisms simulateously raises the hit ratio concerning the
more difficult optimization scenario from less than 13% to 56%. Finding these hit
ratios for very complex TVECM structures (that were actually designed to feature
a high degree of complexity) we recommend to run the mechanism 10 times to find
the true global optimum with a 99.9 % probability.

6 Conclusion

We show that genetic algorithms perform extremely well in optimizing the likelihood
functions of TVEM that are characterized by a “mountain range” like structure and
frequent local optima if the right genetic techniques are combined and two major
changes are made.
Our essential innovations are the inclusion of a density adjustment that reduces
premature convergence and thus allows strong selection that is generally considered
to result in fast algorithms. Furthermore, we use a factor model to adapt the
dimensions of the search space to the specific structure of the function of interest.
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The recommended algorithm consists of these two features, squared fitness functions,
binary tournament based selection, an averaging crossover operator, PRAM based
adaptation of the mutation rate and SAGA based adaption of the mutation size.
In a three variable scenario with 200 observations per variable these mechanisms
score hit ratios of roughly 60% to 80%. Taking the best of ten results generated
by the algorithm gives a result in the close proxity of the true maximum with a
probability 99.9%. That means that we have to run roughly 120.000 regressions to
compute the maximum of the likelihood function. Even if the grid of choice only
features 100 possible choices for each coefficient that is estimated and all (reasonable)
thresholds are taken into account this results in 1.6 million regressions. However,
according to our tests, the genetic algorithm commonly finds a solution that is better
than the grid search solution. Finding solution that is as accurate as the genetic
algorithm requires (roughly) 200 possible choices per estimate, leading to 6.4 million
required regressions. The genetic algorithm thus saves about 98% of the required
computation time.
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Appendix

“Peak”-Scenario

Figure 3: Time series of the “peak scenario”

True parameters: β = [1− 0.297 + 0.178]′, θ = 0.795
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“Diagonal”-Scenario

Figure 4: Time series of the “peak scenario”

True parameters: β = [1− 0.194 + 0.905]′, θ = 0.415
Note: The right hand scale refers to time series x2.
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