Pope, Robin; Selten, Reinhard

Working Paper
Risk and Expected Utility Theory

Bonn Econ Discussion Papers, No. 5/2009

Provided in Cooperation with:
Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Pope, Robin; Selten, Reinhard (2009) : Risk and Expected Utility Theory, Bonn Econ Discussion Papers, No. 5/2009, University of Bonn, Bonn Graduate School of Economics (BGSE), Bonn

This Version is available at:
http://hdl.handle.net/10419/37033

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Risk and Expected Utility Theory

by

Robin Pope and Reinhard Selten

June 2009
Financial support by the
Deutsche Forschungsgemeinschaft (DFG)
through the
Bonn Graduate School of Economics (BGSE)
is gratefully acknowledged.

Deutsche Post World Net is a sponsor of the BGSE.

Problems of the time structure of risk are investigated in a simple temporal framework restricted to a subclass of temporal lotteries in the sense of David Kreps and Evan Porteus (1978). This subclass is narrow but wide enough to discuss basic issues. It will be shown that there are serious objections against the modification of expected utility theory axiomatised by Kreps and Porteus (1978, 1979). By contrast the umbrella theory proffered by Pope that she has now termed SKAT, the Stages of Knowledge Ahead Theory, offers an epistemically consistent framework within which to construct particular models to deal with particular decision situations. A model by Caplin and Leahy (2001) will also be discussed and contrasted with the modelling within SKAT (Pope, Leopold and Leitner 2006).

Introduction

In their pioneering work on dynamic choice theory, David Kreps and Evan Porteus (1978, 1979) explicitly consider the timing of the resolution of risk in their recursive construction of a space of “temporal lotteries”. They axiomatize a generalisation of von Neumann-Morgenstern utility to this space.

In the context of preferences on stochastic income streams induced from preferences for consumption streams, the importance of resolution times has received attention (eg Mossin, 1969, Drèze and Modigliani 1972, Spence and Zeckhauser 1972). However, with their space of temporal lotteries Kreps and Porteus created a basic decision theoretic structure for an adequate treatment of problems arising from the influence of resolution times on preferences over distributions of time sequences of future events. Undoubtedly this structure was a path-breaking conceptual innovation. However, we shall raise serious objections to the generalisation of von Neumann-Morgenstern utility axiomatized by Kreps and Porteus.
Consider a decision maker who at time point $t = 0$ must decide whether to take a business opportunity or not. At the later time point $t = 10$, this business opportunity will either yield a gain $W > 0$, or a loss $L < 0$. Winning W has the probability α where $0 < \alpha < 1$. There are no costs in taking this business opportunity, so the loss L has the complementary probability $1-\alpha$.

Is this everything the decision maker needs to know? The decision maker lacks a further piece of information. When will she know whether she will win W or lose L? Suppose that she will know at a point τ, one of the points 1, … 9. At τ the risk is resolved, in the sense that, from then on, but not before, the probability of a gain is no longer α but either 0 or 1. At time point τ, her knowledge ahead of whether she will win or lose has changed from being limited to possibilities (probabilities), to being full knowledge ahead, to certainty. Since at time τ the risk is resolved, we term τ the resolution time. We assume that the decision maker knows at her point of choice $t = 0$ the exact resolution time τ.

If for instance $\tau = 1$, she will learn whether she won or lost a whole nine periods ahead of when she receives her gain or pays out for her loss. An early resolution time (τ small) has planning advantages as regards her response to already known business opportunities at $t = 0$ and to new business opportunities that were unknown to her at the point of choice $t = 0$ but become known to her after τ. If she learns early that she has made a gain, she is free soon after making the decision to commit herself fully to paying back a loan on the gain in order to finance such new business opportunities.

Optimising the inter-temporal consumption path was the focus of Kreps and Porteus. In having the risk resolved early (τ small), so that she learns soon whether she has made a gain or a loss, the decision maker can plan and implement a beneficially smoother consumption path. If she learns soon that she has made a loss, she can more smoothly reduce her consumption. Conversely she can more smoothly increase her consumption if she learns soon that she has made a gain.

In view of such planning advantages as regards investments and consumption, the business opportunity at time $t = 0$ is more attractive the earlier the risk is resolved. However, especially as regards emotional advantages, the opposite preference for a late resolution time is also possible. Consider buying a lottery ticket for 2 dollars that yields a very high gain of say, 1 million dollars, with a small probability 1/1,000,000. In this case the main benefit from the purchase of the ticket may be the hope of gaining one million. Then it may be advantageous to maintain this hope as long as possible, such that a late resolution time increases the attraction of the lottery ticket.
It is of course possible that the risk is gradually resolved at a sequence of resolution times $\tau_1, \tau_2, \ldots \tau_K$. Her degree of knowledge ahead in this case increases from $\tau_1, \tau_2, \tau_3, \ldots$ and reaches certainty, full knowledge ahead, of whether she won or lost, at time point τ_K. In a modified version of our simple example, the probability α of a gain could change to α_1 at τ_1 and to α_2 at τ_2 etc until finally $\alpha_K = 0$ or $\alpha_K = 1$ pertains at time point τ_K. Moreover one could have probabilistic rather than exact knowledge of resolution times. All this is possible within the space of temporal lotteries of Kreps and Porteus.

In this paper we consider only that subset of the space of temporal lotteries that we term simple. This is the subset of lotteries in which all risk is resolved at a single exactly known resolution time and the risk is numerical, in the form of a probability distribution over outcomes. Since in this paper we do not consider decision situations with more complex choices, we can for brevity term simple temporal lotteries ‘choices’, and the set of all simple temporal lotteries, the ‘choice space’. We further assume a finite outcome space and consider decision situations with a finite number of choices. We refer to this set of assumptions and restrictions on what we consider as the ‘simple temporal framework’.

Our focus on this narrow subset of the space of temporal lotteries serves the purpose of concentrating on basic conceptual issues without deflecting attention to mathematical detail. We restrict attention to finite sets as much as possible and where this cannot be done, we only look at compact (closed and bounded) subsets of Euclidean space. The presentation is intentionally kept on a very elementary level. We hope that in this way we can also reach readers who are easily discouraged by abstract mathematical formalism.

The objections raised in this paper against the modified expected utility concept of Kreps and Porteus remain valid in their more general framework, eg if two properties of a utility function are incompatible in the simple temporal framework, they are also incompatible in the more general framework of Kreps and Porteus. The simple temporal framework is an easily accessible source of examples and counterexamples yielding theoretically important intuitive insights.

In this paper a choice is described as a pair $c = (p_0, \tau)$, namely (i) a probability distribution p_0 over the outcomes, and (ii) a resolution time τ. The distribution p_0 reflects the state of knowledge at the time $t = 0$, the point of choice. A decision situation is simply a set of two or any finitely larger number of choices.

We shall argue, that the axiomatization of a temporal expected utility by Kreps and Porteus remains unsatisfactory in view of their use of the substitution axiom, on
account of the consistency and plausibility issues discussed already in Robin Pope (2006) and in (Pope, Leitner, Leopold 2006, 2009). As we shall see in section 7, this axiom lacks an intuitive interpretation, and an example is presented in which plausible preferences violate the substitution axiom. However it is not the purpose of this paper to propose a new axiomatised temporal utility. On the contrary, we want to convince the reader of our point of view, that axiomatization is far less important than a careful analysis of all relevant satisfactions and dissatisfactions in concrete decision situations, as recommended by SKAT, the Stages of Knowledge Ahead Theory (Pope, Leitner, Leopold 2006, 2009). Nevertheless it is necessary to look at some particular properties of utility functions and their reasonableness without going the full way towards axiomatization.

Sections 2 and 3 present the simple temporal framework and arrive at a complete overview over all the choices within this framework. In section 3 we look at two statements about expected utility:

(I) the expectation property; and

(II) the essential uniqueness property.

Property (I) means that the utility of a distribution over outcomes is the expected value of the utilities of the outcomes with respect to this distribution. Property (II) asserts the uniqueness of the utility function up to the zero point and the unit of measurement. It is shown in appendix 1 that for a finite outcome set the essential uniqueness property (II) is a consequence of the expectation property (I).

In the simple temporal framework a utility function defined for outcomes and distributions over outcomes is inadequate. Therefore in section 6 we look at utility functions defined for choices and also for pairs \((x, \tau)\) where \(x\) is an outcome and \(\tau\) is a resolution time. The more general approach of Kreps and Porteus restricted to the simple temporal framework leads to these “modified” utility functions. In turn, insofar as these modified utility functions preserve the expected utility, they have the following modified expectation property.

Modified Expectation Property \((I')\)

The utility \(u(p_0, \tau)\) of a choice \(c\) is the expected value of the utilities \(u(x, \tau)\) where \(x\) is distributed according to \(p_0\).

It will be shown in section 6 that, unlike in the case of ordinary expected utility, the modified expectation property does not imply essential uniqueness.

In the context of axiomatised expected utility theory a natural requirement for a utility function \(u(p_0, \tau)\) defined for choices \((p_0, \tau)\) in the simple temporal framework is the following limit property.
Limit property (III)

The influence on utility of the resolution time \(\tau \) becomes weaker and weaker as the probability \(p_0(x) \) converges to 1 and vanishes in the limit.

Why should it matter much when the risk is resolved, if the decision maker knows at the point of choice that a particular outcome \(x \) will be reached with virtual certainty? After all in the limit such a choice is virtually riskless at the point of choice. In our view the limit property (III) is such a natural extension of the usual continuity requirements of axiomatised expected utility that it is hard to imagine how a deviation from this limit property can be intuitively justified by any who accept these other continuity requirements.

In section 6 it will be shown that a utility function \(u(p_0, \tau) \) which satisfies the modified expectation property \((I')\) cannot satisfy the limit property \((III)\) unless \(u(p_0, \tau) \) does not depend on \(\tau \). However, dependency on \(\tau \) is the phenomenon that needs to be explained. Obviously either \((I')\) or the limit property \((III)\) has to be dropped since it is implausible, even absurd, to propose that a business person’s profits and emotional well-being can be independent of \(\tau \) except in the neighbourhood of the limit of the distribution \(p_0(x) \) being degenerate. We think that the modified expectation property has to be abolished in favour of limit property \((III)\). The generalised von Neumann-Morgenstern utility of Kreps and Porteus, restricted to the temporal lotteries considered here, has the modified expectation property and therefore cannot depend on the resolution time \(\tau \) without violating the limit property \((III)\). In our view this is a serious objection against the axiomatic theory of Kreps and Porteus.

An important distinction between primary and secondary satisfactions and dissatisfactions contributing to the evaluation of choices is discussed in section 8. For some classes of emotional satisfactions, this distinction dates back at least to Marshall (1921) Canaan (1926) and Ramsey (1926). For the gamut of emotional and financial (material) satisfactions, the distinction is delineated in Pope (1983). The distinction is used to partition all satisfactions, to define the utility of gambling and solve the complementarity paradox whose solution von Neumann and Morgenstern left to future researchers, Pope (1984, 1985 and 1995). The distinction is given the new terminology of primary and secondary satisfactions in Pope (2001). This paper lists words that had evolved over the preceding century for parts for each sort of satisfaction and describes the confusions associated. The terminology for the overarching theory involving the distinction between primary and secondary satisfactions is changed from that of Pope (1983) to being termed SKAT, the Stages of Knowledge Ahead Theory in (Pope, Leitner and Leopold 2006).
Primary satisfactions or dissatisfactions derive from a particular outcome x, regardless of the probability of this outcome x. In our simple example of a business opportunity at $t = 0$, the gain W and the loss L are sources of primary satisfactions connected to the outcomes, winning or losing. The anticipated planning advantages of an early resolution time are secondary satisfactions. Another example of a secondary satisfaction is the hope of winning a big amount after buying a relatively cheap lottery ticket.

Caplin and Leahy (2001) have presented an interesting two period model. In this model utility depends only on the ‘emotional states’ for the two periods. A ‘generating function’ describes how the emotional state of a period depends on the physical features of an outcome in the current period and in the case of the first period, also on the distribution of emotional states in the second period. A simplified version of this model is presented in section 9.

Section 10 contains critical remarks on the model of Caplin and Leahy. These remarks concern not only our simplified version but also the original model. In particular the description of the decision process of Caplin and Leahy (2001) is contrasted with that of SKAT. It is argued that SKAT offers a more adequate picture. However, we think that Caplin and Leahy (2001) is an interesting attempt to portray decision making as a two layer process composed of an automatic emergence of emotional states and the maximization of expected utility depending on the distribution of pairs of emotional states for the two periods.

Caplin and Leahy justify expected utility maximization and timewise additively separable utilities by an axiom system of Fishburn (1982). One of the axioms in this system is the substitution axiom. Our critique of the interpretation of this axiom in section 7 applies here too. Another axiom in the same system is their ‘marginal distribution axiom’ which postulates that the preference relationship between two distributions c and h of pairs of emotional states depends only on the marginal distributions of f and c with respect to the emotional states in both periods. Appendix 2 shows that the following assertion holds. Assume that the expectation property (I) holds for the utility of distributions over pairs of emotional states and that the marginal distribution axiom holds for the preference relationship represented by this utility function. Then this utility function is timewise additively separable. In addition to this statement it is also pointed out that in view of its interpretation the marginal distribution axiom is by no means obvious. This has been explained already in Fishburn (1982).
2. Basic notions of the simple temporal framework

The simple temporal framework considers only a narrow class of temporal lotteries namely choices of the form \((p_0, \tau)\) where \(p_0\) is a probability distribution over the outcomes at the point of choice time point \(t = 0\) and \(\tau\) is the resolution time point. However this class is wide enough to discuss the basic issues raised in this paper.

We proceed from the assumption of a finite outcome set, \(X\), interpreted as the set of all conceivable outcomes. In order to keep things simple, time is modelled as a sequence of finitely many points. These are \(T+1\) points of time, \(0, \ldots, T\) combined with \(T\) periods of time \(1, \ldots, T\). Time period \(t\) begins at the time point \(t-1\) and covers all later times before the time point \(t\). The time point \(t\) does belong to period \(t\) but to the sequential period \(t+1\). The last time point \(T\) does not belong to any period. Consider a probability distribution \(p\) over \(X\). The notation \(p(x)\) is used for the probability of an outcome \(x \in X\).

Outcomes are interpreted as what the decision maker anticipates as possible future events that will affect her utility. Outcomes have a time structure. An outcome \(x\) is a sequence of segments \(s_1, \ldots, s_\tau \ldots s_T\) for periods \(1, \ldots, t, \ldots, T\) respectively. These segments \(s_t\) are elements of a finite segment set \(S\). A segment is interpreted as a description of what, in reaching her choice, the decision maker anticipates might happen in a period. The set \(X\) of conceivable outcomes may or may not contain all sequences with \(T\) members that can be formed with elements of \(S\). The scope to exclude some sequences allows for irreversibilities like death, after which a person cannot become alive again. Consider an outcome \(x\) with the segment sequence \(s_1, \ldots, s_T\). The subsequence \(s_1, \ldots, s_\tau\) is called the part of \(x\) before \(\tau\). We further make the simplifying assumption, shared implicitly or explicitly by other temporal choice theories, that from the point of choice, as the future unfolds, the decision maker knows in each period \(t\) that segment \(s_t\) and derives utility from it.

The time point \(t = 0\) is the point of choice. At this time point the decision maker has to take a choice available to her. Before she does this she has two items of information about every available choice. One item is an initial probability distribution \(p_0\) over \(X\). The other one is the resolution time \(\tau\), one of the numbers \(0, \ldots, T-1\). The resolution time is defined as the first of these time points \(0, \ldots, T-1\) at which the decision maker knows which outcome is realized.

It is assumed that at the beginning of period \(t\), i.e. at the time point \(t-1\), the decision maker sees the segment of period \(t\) lying before her. At the time point \(T-1\) she sees the last segment and the earlier segments are in the past. Therefore \(T-1\) is the latest possible resolution time point.
The probability distribution of the decisionmaker evolves over time by Bayesian updating. For $t = 0, \ldots, T-1$.

A probability distribution p_t over X is degenerate at time point t if it assigns $p(x) = 1$ to a particular outcome $x \in X$ and $p(y) = 0$ to every outcome $y \in X$ with $y \neq x$. Probability distributions over X without this property are called non-degenerate.

In this paper’s simple temporal framework the decisionmaker knows that choices which are degenerate at the time of choice $t = 0$ will remain degenerate, and that any non-degenerate probabilities will evolve over time to become degenerate. It is useful to have a distinct symbol for a distribution when it is degenerate as follows. For every $x \in X$, let e_x be the probability distribution with $e_x(x) = 1$ and $e_x(y) = 0$ for every $y \in X$ with $y \neq x$. Every degenerate probability distribution is one of the distributions e_x. A choice c is called sure if p_0 is degenerate and risky if p_0 is non-degenerate. Here the word ‘risky’ means that the decision maker perceives a risk connected with the choice. Whether she perceives such a risk depends on her beliefs. It is hardly imaginable that a decision maker with reasonable beliefs perceives a risk connected to a sure choice.

There is a subtle difference between probability zero and impossibility. Consider, for example, a random variable ξ that is uniformly distributed over the closed unit interval $[0,1]$. A particular value, say $.3$, has probability 0 under this distribution in spite of the fact that one value must be realised. Even in distributions over finite sets, elements with probability zero may nevertheless be possible. Thus an outcome z may only occur if the value $.3$ of ξ is realised. However, in the case of distributions over finite sets, a distribution can have the property that an event with probability zero is impossible. For the sake of simplicity we assume that all probability distributions over X considered in this paper are of this kind. In this way one avoids the cumbersome distinction between absolute certainty and knowledge with probability 1.

For $t = 0, \ldots, T-1$, let p_t be the probability distribution at time t. The initial probability distribution p_0, together with the resolution time τ, completely determines which sequences p_0, \ldots, p_{T-1} of the decision maker’s probability distributions can evolve over time and with which probabilities they can occur. The segment observed at the beginning of a period may lead to an updating. An updating must occur at the resolution time τ. There the decision maker receives the information about the exact outcome realised. If τ is one of the numbers $1, \ldots, T-1$, then at this point of time τ the probability distribution $p_{\tau-1}$ changes to e_x with probability $p_0(x)$. The probability distribution p_τ is a random variable just like the outcome x.
The sequences p_0, \ldots, p_{T-1} for which p_0 and τ determine positive probabilities are called sequences generated by the pair (p_0, τ). Since a pair (p_0, τ) contains all the information necessary for the determination of the consequences of a choice, a choice can be defined as a pair of this kind with some additional properties.

It will be required that p_t changes at most once. If p_0 is non-degenerate and τ is not zero, then the definition of the earliest resolution time (as the earliest point of time at which the exact outcome is known to the decision maker) has the consequence that there must be a change of p_t from $p_{\tau-1}$ to p_{τ}. This is the only change permitted in a sequence p_0, \ldots, p_{T-1} generated by a choice in the simple decision framework. This is expressed by the following definition.

Definition of a choice in the simple temporal framework

A choice c is a pair (p_0, τ), namely an initial probability distribution p_0 over X together with a resolution time τ where τ is one of the numbers $0, \ldots, T-1$ such that the following is true for every sequence, p_0, \ldots, p_{T-1} generated by (p_0, τ). A change of p_t takes place in the step from $p_{\tau-1}$ to p_{τ} if p_0 is non-degenerate and $\tau > 0$ holds, but apart from this p_t doesn’t change.

Further definitions

The set of all conceivable choices defined above is the choice set C. A decision situation D is a finite subset of C with at least two elements. The choices in D are called available in this decision situation. A utility function assigns a real number, the utility $u(p_0, \tau)$ to every choice $(p_0, \tau) \in C$.

The decision maker is assumed to have a utility function. If she faces a decision situation D, she will choose an available choice with maximal utility.

3. Consequences of the choice definition

In this section we examine which pairs (p_0, τ) satisfy the choice definition of the preceding section. We first look at the case where p_0 is degenerate, since the decision maker knows the realized outcome already at the point of choice $t = 0$. It follows that every sure choice must have the form $(e_x, 0)$ and that for every risky choice (p_0, τ) the resolution time τ is positive. By the definition of a risky choice p_0 is non-degenerate. We have obtained the following conclusion.

Conclusion (i)

Every sure choice has the form $(e_x, 0)$ with $x \in X$. For every risky choice (p_0, τ) the resolution time τ is positive and p_0 is non-degenerate.
Consider a pair of the form \((e, 0)\). Since the initial probability distribution \(p_0 = e\) is already degenerate, it cannot be changed by updating. We must have \(p_t = e\) for \(t = 0, \ldots, T-1\). Therefore a pair \((e, 0)\) is a choice in the sense of the definition of the preceding section. This together with conclusion (i) leads to the following conclusion.

Conclusion (ii)
A pair \((p_0, \tau)\) is a sure choice if and only if it has the form \((e, 0)\).

Assume that the pair \((p_0, \tau)\) is a non-degenerate probability distribution \(p_0\) over \(X\) with a positive resolution time. We know by conclusion (i) that a pair denoting a risky choice must have these properties. However not every pair of this kind is a choice in the sense of the definition of the preceding section.

Following Pope (1983) we argue that under our assumptions, in addition to the properties mentioned in conclusion (i), a risky choice \(c = (p_0, \tau)\) must satisfy the condition that every outcome \(x \in X\) has the same part before \(\tau\), a part that we term the pre-resolution part of the choice \(c\). Let \(x\) and \(y\) be two outcomes with \(p_0(x) > 0\) and \(p_0(y) > 0\) and different parts before \(\tau\). Then there must be a smallest positive number \(h\) such that the \(h\)th segment of \(x\) and \(y\) is different. Let \(h\) be this number. Then the decision maker observes the segment \(h\) with \(h \leq \tau\) at the point \(h-1\). If this happens, she can exclude \(y\) and therefore has to update her probability distribution at the time point \(h-1\). The definition of a choice of the preceding section does not permit this. We have obtained the following conclusion.

Conclusion (iii)
If a pair \((p_0, \tau)\) is a risky choice then all outcomes \(x \in X\) with \(p_0(x) > 0\) must have the same part before \(\tau\), the pre-resolution part of the choice \((p_0, \tau)\).

Let \((p_0, \tau)\) be a pair with the following three properties: 1) the initial probability distribution \(p_0\) is non-degenerate; 2) the resolution time \(\tau\) is one of the numbers \(1, \ldots, T-1\); and 3) all outcomes \(x\) with \(p_0(x) > 0\) have the same pre-resolution past.

We know already that a risky choice must have the properties 1) and 2) by conclusion (i) and property 3) by conclusion (iii). We shall now show that the three properties of \((p_0, \tau)\) have the consequence that \((p_0, \tau)\) is a choice \(c\) in the sense of the definition of the preceding section.
In view of conclusion (iii), the initial probability distribution is not updated before the time point τ. The decision maker knows already before he takes the choice that the part before τ common to all outcomes x with $p_0(x) > 0$ is guaranteed to occur. Nothing further can be learned from the fact that the decision maker observes these segments as they occur period by period after the point of choice, time point $t = 0$. Therefore we have $p_t = p_0$ for $t = 0, \ldots, \tau - 1$. However, p_τ is degenerate. Consequently p_t changes in the step from $p_{\tau+1}$ to p_τ from a non degenerate to a degenerate distribution. A degenerate distribution cannot be updated any more. Therefore we have $p_t = p_\tau$ for $t = \tau, \ldots, T-1$. Consequently (p_0, τ) satisfies the requirement of the choice definition at the end of the preceding section. We can conclude that a pair (p_0, τ) is a risky choice if and only if it has the properties 1), 2) and 3). The following result summarizes what has been shown up to now and gives a complete overview of all choices in the sense of definition at the end of the preceding section.

Results about choices in the simple temporal framework

The set of all “sure” choices is the set of all pairs $(e_x, 0)$. The set of all risky choices is the set of all pairs (p_0, τ) with the following three properties:

1) the initial probability distribution p_0 is non-degenerate;
2) the resolution time τ is one of the numbers 1, \ldots, T-1; and
3) all outcomes $x \in X$ with $p_0(x) > 0$ have the same part before τ.

4. Remarks on standard expected utility

Standard expected utility theory, from now on abbreviated to EUT, lacks reference to the change in knowledge ahead inherent in the resolution time τ being positive at the point of choice. It is one of the aims of this paper to show that EUT cannot be applied to this paper’s simple temporal framework, at least not in a satisfactory way. There are many axiomatisations of EUT. However, here we are not concerned with axioms but rather with conclusions. We will restrict our attention to the case of finitely many possible outcomes.

In EUT, we can use simpler notation. We can omit the subscript 0 to indicate that p is the distribution at the point of choice $t = 0$ and not at a later date, since EUT ignores the issue of when the time point τ occurs when any risk will be resolved. In this section therefore we use the symbols x, X, p, c, C and D with analogous but different
meanings from those of section 2. The set of all conceivable outcomes is denoted by X. This set is non-empty and finite. A choice c is simply a probability distribution p over the outcome set X. The probability of an outcome \(x \in X \) under p is denoted by \(p(x) \). The symbol C stands for the set of all conceivable choices. A decision problem D is a finite non-empty subset of C.

The decision maker is assumed to have a complete preference order \(\succcurlyeq \) over C. The expression \(p \succcurlyeq q \) means that the decision maker prefers \(p \) to \(q \) or is indifferent between \(p \) and \(q \). Strict preference of \(p \) to \(q \) is expressed by \(p \succ q \). A utility function \(u \) is a function which assigns a real number \(u(p) \) to every \(p \in C \). We say that a utility function \(u \) represents the preference order \(\succcurlyeq \) if the following is true: \(u(p) \geq u(q) \) holds if and only if we have \(p \succeq q \). A utility function \(v \) is a positive linear transformation of a utility function \(u \), if there are real numbers \(a \) and \(b \) with \(a > 0 \) and

\[
v(p) = a u(p) + b \quad \text{for every } p \in C
\]

For every \(x \in X \) let \(e_x \) be the probability distribution of X that assigns 1 to \(x \) and 0 to every other outcome in X. The distribution \(e_x \) is the sure choice of \(x \). Strictly speaking \(e_x \) is an element of C, but \(x \) itself does not belong to C.

As explained in Pope (1983) and (2004), to avoid introducing additional inconsistencies, in EUT the values of the outcomes \(x, y \) yielding the set of utility numbers, \(u(x), u(y) \) must be interpreted in one of two ways, that of Ramsey (1926), or that of Friedman and Savage (1948). Depending on the choice set, Pope (2004) shows that the two interpretations yield different choices. Nevertheless both interpretations imply that the utility or value assigned to an outcome does not vary with its probability of occurring, and thus also does not vary with the probabilities of other outcomes.

Under the Friedman and Savage interpretation it is unnecessary to distinguish between \(x \) and \(e_x \) as far as EUT is concerned. Within EUT we can treat \(x \) and \(e_x \) as identical, as Pope (1991b) observes that Harsanyi (1977, 1986a) had already discerned, and write \(u(x) \) instead of \(u(e_x) \). However this identification is problematic, since it hides the severe restrictions inherent in the interpretation of EUT.

The axioms in most EUT axiomatizations are requirements imposed on the preference order \(\succcurlyeq \). In this respect the axiom system of von Neumann and Morgenstern (1944) is an exception. Their axioms are in terms of utilities. However a translation to the language of preferences seems to be possible. In the following it will be assumed that the axioms express postulated properties of the preference order. Most axiomatizations of this kind lead to a representation theorem of the following form.
If the axioms are satisfied then the following two assertions (I) and (II) hold.

(I) **Expectation property**
The preference order \(\succcurlyeq \) can be represented by a utility function \(u \) of the following form,
\[
 u(p) = \sum_{x \in X} p(x) \, u(x)
\]

(II) **Essential uniqueness**
If two utility functions \(u \) and \(v \) represent the preference order \(\succcurlyeq \) then one is a positive linear transformation of the other.

A positive linear transformation of a utility function shifts the zero point and the unit of measurement like the transition from Fahrenheit to Celsius. Obviously the difference between the two temperature scales is not essential. In this sense a utility function \(u \) with the expectation property (I) is *essentially unique* if it also satisfies (II).

It can be seen without difficulty that a positive linear transformation \(v \) of a utility function \(u \) with the expected value property also has this property. As has been said before, this paper is restricted to the case of finitely many possible outcomes. For this case it is relatively easy to show that (I) implies (II). A proof will be given in Appendix 1. Nevertheless it is important to keep in mind that a representation theorem has the two parts, (I) and (II). As we shall see in section 5, in the context of the simple temporal framework a utility function may not be essentially unique even if it has a modified expectation property, analogous to property (I).

5. Expected utility in the simple temporal framework.

As we have seen in section 2 from conclusions (i) and (ii), in the simple temporal framework choosing \((p_0, \tau)\) is making a sure choice if and only if \(\tau = 0\). Otherwise it is making a risky choice. In this framework a utility function \(u \) can have the expectation property provided that \(u(p_0, \tau) \) does not depend on \(\tau \) such that instead of \(u(p_0, \tau) \) we can write:
\[
 u(p_0, \tau) = u(p_0) \quad \text{for every choice} \ (p_0, \tau).
\]

The expectation property also implies the conditions under which an outcome \(x \) can be identified with the distribution \(e_x \).

Suppose that the decision maker does not care about the resolution time \(\tau \) and evaluates outcomes as if certain so that we can omit the subscript 0 to indicate that
distributions p, q and r are at the point of choice $t = 0$ and not at a later date. However, even if this is the case, there is still an important difference between EUT and the simple temporal framework. This difference concerns the definition of a choice.

In EUT a choice is simply a probability distribution over X. Let p, q and r be three probability distributions over X with

$$ r(x) = \alpha p(x) + (1-\alpha) q(x) \text{ for all } x \in A. $$

Here α is a real number with $0 \leq \alpha \leq 1$. If p, q and r can be related in this way, and simplifying our notation to the EUT convention – wherein all probabilities are recorded solely with their values at the time of choice – the subscript 0 can be left implicit,

$$ r = \alpha p + (1-\alpha) q $$

and we say that r is a mixture of p and q. If we have $0 < \alpha < 1$ then r is called a proper mixture of p and q. In EUT every proper mixture of two choices is again a choice or in other words, the set C of all choices is convex.

By contrast, the choice set in this paper’s simple temporal framework does not have a similar convexity property. Suppose that (p_0, τ) and (q_0, τ) are risky choices with different pre-resolution parts. Let r_0 be a proper mixture of p_0 and q_0. Then the conceivable choice (r_0, τ) satisfies conclusions (i) and (ii) of the simple temporal framework identified in section 2, but not conclusion (iii). Consequently (r_0, τ) fails to be a choice. This is the reason why a utility function $u(p_0, \tau)$ defined on the set of all conceivable choices C in the simple temporal framework may have the expectation property, but nevertheless not be essentially unique. This will now be illustrated by an extremely simple example.

Example 1. The time horizon is $T = 3$. The set of segments is $S = \{a, d\}$. The symbol a stands for “alive” and d means “dead”. Somebody who dies in period t cannot become alive later. Death will happen for sure in period 3, if it does not happen earlier. Accordingly there are only three possible outcomes:

$$ x_1 = (a, a, d) \quad x_2 = (a, d, d) \quad x_3 = (d, d, d) $$

Here the outcomes are described by vectors with the jth segment as the jth part ($j = 1, 2, 3$). For $i = 1, 2, 3$, let e_i be the probability distribution which assigns 1 to x_i and zero to each of the two other outcomes.
In our example a risky choice must have the form \((p_0, 1)\). At \(\tau = 2\) no uncertainty is left. In view of conclusion (ii) of the simple temporal framework identified in section 2, the probability distribution \(p_0\) in \((p_0, 1)\) must be a proper mixture of \(e_1\) and \(e_2\), since otherwise the outcomes with positive probability under \(p_0\) would not have a common pre-resolution part. Table 1 provides a complete overview over all possible choices.

Table 1: The Choice set \(C\) for Example 1

<table>
<thead>
<tr>
<th>Sure Choices</th>
<th>Risky Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = (e_1, 0))</td>
<td>(c = (p_0, 1))</td>
</tr>
<tr>
<td>(c_2 = (e_2, 0))</td>
<td>with</td>
</tr>
<tr>
<td>(c_3 = (e_3, 0))</td>
<td>(p_0(x_i) > 0) for (i = 1, 2)</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>(p_0(x_3) = 0)</td>
</tr>
</tbody>
</table>

Given that “\(a\)” is alive and “\(d\)” is dead, the following suggests itself.

(P1) Preference order assumption in example 1
Let \((p_0, 1)\) and \((q_0, 1)\) be risky choices with \(p_0(x_1) > q_0(x_1)\).
Then following is true:
\((e_1, 0) > (p_0, 1) > (q_0, 1) > (e_2, 0) > (e_3, 0)\)

Assumption (P1) completely describes the preference order \(\succ\). All preference relations between two different choices are strict. From Table 1 it can be seen that the resolution time in a choice \((p_0, \tau) \in C\) is uniquely determined by \(p_0\). Therefore a utility function defined on \(C\) has the property that the utility of a choice \((p_0, \tau) \in C\) can be described as a function of \(p_0\) alone, as \(u(p_0)\). Starting from three fixed but arbitrary real numbers \(u_1, u_2, u_3\) with
\(u_1 > u_2 > u_3\)
we now construct such a utility function \(u(p_0)\) which represents \(\succ\) and has the expectation property (I). Define
\[u(e_i) = u_i \quad \text{for} \quad i = 1, 2, 3 \]
and
\[u(p_0) = p_0(x_1)u_1 + p_0(x_2)u_2 \]
for
\[p_0 = \alpha e_1 + (1-\alpha)e_2 \quad \text{with} \quad 0 < \alpha < 1 \]
It can be seen without difficulty that \(u(p_0) \) represents the preference order \(\succeq \) defined by (P1). Moreover we obviously have

\[
u(p_0) = \sum_{i=1}^{3} p_0(x_i) u(x_i) \quad \text{for all } (p_0, \tau) \in C
\]

This shows that \(u(p_0) \) has the expectation property (I).

We now show that \(u(p_0) \) is not essentially unique. Let \(v \) be a positive linear transformation of \(u \).

\[
v(p_0) = au(p_0) + b
\]

Define,

\[v_i = au_i + b \text{ for } i = 1, 2, 3\]

and therefore

\[
\frac{v_1 - v_2}{v_2 - v_3} = \frac{u_1 - u_2}{u_2 - u_3}
\]

The ratio of the two utility differences \(u_1 - u_2 \) and \(u_2 - u_3 \) is not changed by a positive linear transformation. However, in the same way as \(u \) has been constructed we can construct a utility function \(w \) starting from real numbers \(w_1, w_2 \) and \(w_3 \) with

\[w_1 > w_2 > w_3\]

Such that we have

\[
\frac{w_1 - w_2}{w_2 - w_3} \neq \frac{u_1 - u_2}{u_2 - u_3}
\]

This utility function \(w \) cannot be a positive linear transformation of \(u \). Therefore \(u \) does not satisfy the essential uniqueness property (II).

The lack of the essential uniqueness in utility functions with the expectation property is due to the fact that only relatively few of the probability distributions \(p \) over the outcome set \(X \) are parts of choices \((p_0, \tau) \in C \).

This is the reason why Proposition 1, proved in Appendix 1, does not hold for the simple temporal framework. In the case of example 1, the proof of Appendix 1’s Proposition 1 would require a choice \((p_0, \tau) \) such that \(p \) is a proper mixture of \(e_1 \) and \(e_3 \) for which the decisionmaker is indifferent to \(e_2 \). There is no such choice in example 1.

6. Resolution time dependence

It is a highly unrealistic assumption that preferences do not depend on resolution times. Many people would like to know as soon as possible whether they have passed
an exam. However early resolution of risk is not always preferred. Many people would not like to know the exact day of their death years in advance. Suppose that somebody belongs to a family in which there have been cases of a deadly hereditary disease. Whether she will get the disease ten years from now depends on whether she has a certain genetic disposition. This can be found out by a gene test. Would she want to take the test? How much would she willing to pay for it or would she refuse to take it even if money is paid to her for taking it? Presumably most people would not be indifferent between an early or late resolution of the risk in this situation.

If resolution times matter, utility cannot depend on the outcome alone. In the simple temporal framework one may want to pursue an approach which looks at a pair \((x, \tau)\) with \(x \in X\) and \(\tau = 0, \ldots, T-1\) as the basic unit to which a utility \(z(x, \tau)\) is attached. One can then postulate a utility function \(u\) defined on the set \(C\) of all choices in the simple temporal framework such that \(u\) has the following property.

\[(I') \quad \text{Modified expectation property} \]

For every choice \((p_0, \tau) \in C\) we have

\[u(p_0, \tau) = \sum_{x \in X} p(x)z(x, \tau) \]

where \(z\) is a function defined on the set of all pairs \((x, \tau)\) with \(x \in X\) and \(\tau = 0, \ldots, T-1\)

It must be emphasized that for \(\tau = 1, \ldots, T-1\) the pair \((e_x, \tau)\) is not a choice but a pseudo choice. If \(x\) is reached with probability 1 then the resolution time \(\tau\) must be zero. Therefore \(z(x, \tau)\) should not be interpreted as the utility of a choice but as a limit of choice utilities. Consider an arbitrary choice \((p_0, \tau)\) and an outcome \(x\) with \(p_0(x) > 0\). Define

\[q_\varepsilon = (1 - \varepsilon) e_x + \varepsilon p_0 \quad \text{for } 0 < \varepsilon < 1. \]

Obviously \((q_\varepsilon, \tau)\) is a choice. This implies that we have

\[z(x, \tau) = \lim_{\varepsilon \to 0} u(q_\varepsilon, \tau) \quad \text{if } (I') \text{ holds.} \]

It is a basic property of expected utility that it depends linearly on the probabilities of the outcomes wherever it is defined. If this is the case then the limit of \(u(q_\varepsilon, \tau)\) for \(\varepsilon \to 0\) exists and is independent of \(p_0\). The representation required by \((I')\) is then possible. Obviously the modified expectation property is the only natural adaptation of the expected utility property \((I)\) to the simple temporal framework.

The modified expectation property permits a dependence of \(u(p_0, \tau)\) on the resolution time \(\tau\) and on the common pre-resolution part of the outcomes \(x\) with \(p_0(x) > 0\) in the
choice \((p_0, \tau)\). Nevertheless we shall now argue that the modified expectation property is not really satisfactory.

Consider again the choices of the form \(q_\varepsilon = (1-\varepsilon) e_x + \varepsilon p_0\) with \(0 < \varepsilon < 1\) where \((p_0, \tau)\) is an arbitrary choice. As \(\varepsilon\) approaches zero, the risk involved in \(q_\varepsilon\) becomes smaller and smaller and vanishes in the limit \(\varepsilon \to 0\). There is little difference between the sure choice \((e_x, 0)\) and \((q_\varepsilon, \tau)\) with a very small \(\varepsilon\), say \(\varepsilon = 10^{-100}\). It is reasonable to assume that the difference does not matter in the limit and that therefore the limit of \(u(q_\varepsilon, \tau)\) for \(\varepsilon \to 0\) is equal to \(u(e_x, 0)\). This leads to the following limit property for a utility function \(u(p_0, \tau)\) defined on the set \(C\) of all conceivable choices \((p_0, \tau)\) in the simple temporal framework.

\[\text{(III) Limit property}\]

Let \((p_0, \tau)\) be a risky choice in \(C\) and let \(x\) be an outcome with \(p_0(x) > 0\). Then for

\[q_\varepsilon = (1-\varepsilon)e_x + \varepsilon p_0\quad \text{with} \quad 0 < \varepsilon < 1\]

the following equation

\[\lim_{\varepsilon \to 0} u(q_\varepsilon, \tau) = u(e_x, 0)\]

holds. This is true for every choice \((p_0, \tau)\) and every outcome \(x\) with \(p_0(x) > 0\).

Consider a utility function \(u\) which satisfies (I’) and (III). Then it follows by limit property (III) that we have

\[u(x, \tau) = z(e_x, 0)\quad \text{for} \quad \tau = 0, \ldots, T-1\]

Consequently the modified expectation property yields

\[u(p_0, \tau) = \sum_{x \in X} p_0(x) z(x, 0)\]

This means that such a utility function does not depend on the resolution time but only on the probability distribution \(p_0\). If we write \(u(p_0)\) instead of \(u(p_0, \tau)\) and \(u(x)\) instead of \(z(x, 0)\) we obtain the expectation property (I).

The modified expectation property is an attempt to save as much as possible from the expectation property. The limit property (III), however, has a strong intuitive appeal. As has been argued at the beginning of this section, resolution times matter in serious decision problems. If one wants to model resolution time dependent utility one cannot have both (I’) and (III). In our view (I’) should be dropped in favour of (III).

We do not want to suggest a functional form of a utility function defined on the set \(C\) of all conceivable choices \((p_0, \tau)\). Instead of this we propose identifying the causes of
satisfactions and dissatisfactions in every concrete application context and making them explicit in the modelling of the utility function \(u(p, \tau) \). Preferences for and against an early resolution of risk may be motivated by curiosity, hope, or fear or even the fear of losing the hope. Emotional factors of this kind are important for the wellbeing of the decision maker and therefore should enter the utility evaluation. In this respect SKAT, the Stages of Knowledge Ahead Theory (Pope, Leitner and Leopold 2006) can be useful as a modelling guide.

The following result states the most important conclusion of this section.

Result:

Let \(u(p_0, \tau) \) be a utility function defined for all \((p_0, \tau) \in C\) and assume that \(u \) has the modified expectation property \((I')\) and the limit property \((III)\). Then \(u(p_0, \tau) \) neither depends on \(\tau \), nor on the pre-resolution part of the outcomes with \(p_0(x) > 0 \), and \(u(p_0, \tau) \) is a function of \(p_0 \) alone.

7. Critique of the substitution axiom

In their pioneering *Econometrica* paper, Kreps and Porteus (1978) developed a decision theoretic approach in which resolution times of probabilities have an important role. Other authors like Klibanoff and Ozdenoren (2006) have built on their work. We also appreciate Kreps and Porteus, even if we present a different point of view.

As has been shown, the modified expectation property together with the limit property exclude preferences depending on the resolution time. Nevertheless in their *Econometrica* paper (1978) Kreps and Porteus axiomatize utility functions that may depend on the resolution time. The restrictions of these utility functions to the simple temporal framework satisfy the modified expectation property. As we have seen these restrictions cannot satisfy the limit property unless they do not depend on the resolution time and also not on the common pre-resolution part of all outcomes with positive probability in the probability distribution of the choice.

If the limit property holds for a utility function \(u(p_0, \tau) \) defined on the set \(C \) of all choices in the simple temporal framework and \(u(p_0, \tau) \) depends on the resolution time \(\tau \), then the modified expectation property must be violated. We may express this by saying that the modified expectation property, resolution time dependence and the limit property are incompatible.
In the theory of Kreps and Porteus the modified expectation property is a consequence of axioms 4.1, 4.2 and 4.3 (p195). Axiom 4.1 requires that the preference order over temporal lotteries is complete and transitive. Axiom 4.2 postulates continuity of the preference order. These two axioms are standard. We do not want to criticize them in this paper. The crucial axiom is the substitution axiom 4.3. In the language of our simple temporal framework, this axiom can be expressed as follows:

Substitution axiom:

Let \((p, \tau)\) and \((p', \tau)\) be two choices with the property that all outcomes \(x\) with \(p(x) > 0\) or \(p'(x) > 0\) have the same pre-resolution part. Assume

\[(p, \tau) \succ (p', \tau)\]

Moreover for some \(\alpha\) with \(0 < \alpha < 1\). Let \(p''\) be probability distribution

\[p'' = \alpha p + (1- \alpha)p'\]

Then,

\[(p'', \tau) \succ (p', \tau)\]

holds.

Interpretation of the substitution axiom

Whether an axiom is plausible or not depends on the interpretation of the formal terms appearing in it. In the substitution axiom \(p''\) is defined as \(\alpha p + (1-\alpha)p'\). An interpretation of \(\alpha\) and \(1-\alpha\) as probabilities in a two-stage lottery suggests itself. In a first stage two events, say \(Y\) and \(Z\) come about with probabilities, \(\alpha\) and \((1-\alpha)\) and then in the second stage \((p, \tau)\) follows in the case of \(Y\) and \((p', \tau)\) in the case of \(Z\). However, as observed in Pope (2006), this interpretation does not seem to be adequate in the framework of a theory in which every probability is connected to a resolution time. What is the resolution time of \(\alpha\)? Suppose that \(\tau_1\) is the resolution time of \(\alpha\). Since the first stage of the two-stage lottery precedes the second one, we must have \(\tau_1 < \tau\). The substitution axiom, however, mentions only one resolution time, namely \(\tau\). For a two-stage lottery, as observed in Pope (2006), the resolution time \(\tau_1\) of \(\alpha\) and \((1-\alpha)\) must precede the resolution time \(\tau\) of \((p, \tau)\) and \((p', \tau)\). We must have \(\tau_1 < \tau\). This suggests that \(\alpha\) and \(1-\alpha\) should not be interpreted as probabilities but simply as coefficients in a convex linear combination of \(p\) and \(p'\). It is by no means clear how the substitution axiom can be justified on this basis.

Let \(X'(s_1, \ldots, s_{\tau-1})\) be the set of all outcomes with the same part \(s_1, \ldots, s_{\tau-1}\) before \(\tau\). Moreover let \(P'(s_1, \ldots, s_{\tau-1})\) be the set of all probability distributions over \(X'(s_1, \ldots, s_{\tau-1})\). The set \(P'(s_1, \ldots, s_{\tau-1})\) is convex, in the sense that every convex linear combination of probability distributions in this space is also in this space. Under the
conditions specified for \(p \) and \(p' \) by the substitution axiom, \((p'', \tau) \) is therefore always a choice. However the mere fact that every convex linear combination of \(p \) and \(p' \) is in \(P'(s_1, \ldots, s_{\tau-1}) \) does not provide an interpretation of the mathematical operation of forming a convex linear combination of \(p \) and \(p' \).

Consider a preference order over a convex set of consumption bundles. In this case convex linear combinations are also in the set. An axiom analogous to the substitution axiom combined with transitivity and continuity would yield the conclusion that indifference curves must be linear, contrary to the usual assumptions of consumptions theory.

An intuitive justification of the substitution axiom would require a substantive interpretation of the weights \(\alpha \) and \(1-\alpha \) in the definition of \(p'' \). Moreover as noted above, this interpretation cannot be based on the idea that \(\alpha \) and \(1-\alpha \) are probabilities of having the choices of respectively \((p, \tau) \) and \((p', \tau) \), since no resolution time is attached to them.

Unlike the substitution axiom, the limit property has a strong intuitive appeal. Since the substitution axiom, together with completeness, transitivity and continuity, leads to the modified expectation property, our objections against the modified expectation theory also apply to the substitution axiom. There is a conflict between the substitution axiom and the limit property if one wants to model resolution time dependent utility. In our view one cannot uphold the substitution axiom.

It is however also important to understand what is not intuitively compelling in the substitution axiom given that the interpretation of its mixture \(\alpha \) and \(1-\alpha \) is restricted to being a convex linear combination of \(p \) and \(p' \). For this purpose we present an example.

Example 2: Suppose that after an examination a patient is told that he has a very rare nerve disease. There is a chance of 90% for either blindness or a complete loss of balance after 50 months. Both developments of the disease have the same probability, 45%. With a probability of 10% nothing bad happens. It will be known after 46 months, but not earlier, which of the three possibilities will be realized.

There is a treatment available that eliminates the danger of a loss of balance but also increases the probability of blindness to 90%. The treatment is quick and not disagreeable. The cost is carried by the health insurance. It will be known after 46 months whether the patient will become blind after 50 months. The health status in the first 50 months is the same regardless whether the patient takes the treatment or not. The patient has to decide for or against the treatment. He has no other choices.

The decision problem permits the following three outcomes \(x_1, x_2 \) and \(x_3 \).
x_1 blindness
x_2 complete loss of balance
x_3 no adverse effects

All 3 outcomes have the same resolution time and the same part before the resolution time. We shall look at the probability distribution p over these three outcomes as a vector $p = (p_1, p_2, p_3)$ with the probabilities p_i of the x_i as parts. Define

\[
p = (.9, 0, .1)
\]
\[
p' = (0, .9, .1)
\]

and

\[
p'' = \frac{1}{2}p + \frac{1}{2}p' = (.45, .45, .1)
\]

The length of one period is assumed to be one month. The resolution time of both choices of the patient is $\tau = 47$, the point of time at which period 46 has just ended.

Let c_1 be the choice of taking the treatment and c_2 be the choice of not taking it. Moreover let c_0 be the unavailable choice $(p, 47)$:

\[
c_0 = (p, 47), \quad c_1 = (p', 47) \quad \text{and} \quad c_2 = (p'', 47)
\]

The decision situation is portrayed in Table 2.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Loss of Sense of Balance x_1</th>
<th>Blindness x_2</th>
<th>No Adverse Effects x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_0 = (p, 47)$ not available</td>
<td>.9</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>$c_1 = (p', 47)$ available</td>
<td>.0</td>
<td>.9</td>
<td>.1</td>
</tr>
<tr>
<td>$c_2 = (p'', 47)$ available</td>
<td>.45</td>
<td>.45</td>
<td>.1</td>
</tr>
</tbody>
</table>

Note: the entries in the field are the probabilities of outcomes (column) following a choice (row)

Suppose that the patient would prefer $(p, 47)$ to $(p', 47)$ as assumed by the substitution axiom. This means that he would prefer a 90% probability of a complete loss of balance to a 90% probability of blindness if in both cases with 10% probability there are no bad effects. Although $(p, 47)$ is not available as a choice, p'' mixes p and p' with equal probabilities and therefore he should prefer c_0 to c_1 according to the substitution axiom.
However is it really plausible to conclude that \(c_1 \) is preferred to \(c_2 \) as required by the substitution axiom, regardless of how strong is the preference of \((p',47)\) over \((p,47)\)? Suppose for a moment that the decision maker were instead indifferent between \((p',47)\) and \((p,47)\). Then the patient may take the treatment since she values the gain in knowledge ahead. If he takes the treatment he does not have to worry which of the two dreadful events will happen with high probability. This gives him an opportunity to adjust emotionally to his likely fate. Moreover it will be easier for him to prepare for the future after 50 months. He can learn to read and write Braille in this time and does not have to think about how to cope with the complete loss of balance.

We now return to the assumption that the patient would prefer the unavailable choice \(c_0 \) over \(c_1 \). Suppose that the intensity of this preference is low and the dislike of not knowing which of the two bad events will occur is so strong that it outweighs the influence of the preference of \(c_0 \) over \(c_1 \). The patient will then choose to take the treatment since he hates the uncertainty of \(c_2 \) so much that he is willing to choose blindness with probability .9 in spite of a slight preference for a complete loss of balance. We can conclude that violations of the substitution axiom can be quite reasonable. They cannot be excluded as irrational.

Admittedly the example does not describe a realistic situation. As far as the authors know in reality there is no medical condition similar to that described above. However, our fictitious example is sufficient as a direct refutation of the idea that a rational decision maker must obey the substitution axiom. This direct refutation complements an earlier finding in this section. Our earlier finding is that the substitution axiom of Kreps and Porteus (1978) and the limit property, together with some uncontroversial assumptions on the preference order, jointly preclude preferences from depending on resolution times.

8. Primary and secondary satisfactions and their role in SKAT

wide sense, also including dissatisfactions. (One may think of dissatisfactions as negative satisfactions.)

Beginning with Pascal 1670, Pope (2001) surveys the numerous terminologies used for the partition of satisfactions into primary and secondary, the misleading connotations, the confusions and associated misclassifications to which each terminology was subject, and decided that a new terminology would be helpful. She received numerous suggestions from economists, psychologists and philosophers dealing with the terminological confusion in the literature. The proposal of Reinhard Selten to introduce the terms primary and secondary was selected.

Primary satisfactions derive from specific outcomes of a choice and depend neither on probabilities nor their resolution time. They are independent of knowledge ahead at any stage. Examples of primary satisfactions are pleasures and displeasures from consumption and state of health. Of course, what is considered to be a source of primary satisfaction depends on the concrete decision situation and the degree of detail in which it is modelled.

Secondary satisfactions depend on probabilities and/or on resolution time, in other words on what is known about the future. They include certainty effects from full knowledge ahead, and uncertainty effects from limited knowledge ahead. The term secondary was selected not to connote that these satisfactions are of lesser importance. Rather it is to connote that they derive from primary satisfactions – from concern at what will or may be primary satisfactions in the future, and from what were and might have been primary satisfactions in the past.

Secondary satisfactions may arise from emotional response to the uncertain evolution of the choice situation over time, like fear of or hope for some future events. We call such secondary satisfactions emotional. SKAT also considers non-emotional secondary satisfactions such as inter-temporal planning inefficiencies and inability to commit unconditionally to repay a loan or complete a task when the future is uncertain. Such secondary satisfactions are called material.

SKAT describes how knowledge ahead, or in other words what is known about the future, changes over time. In the course of dealing with a problem there is an evolution in what is unknown at each stage and what progressively becomes known about the future. It is necessary to distinguish at least three stages of knowledge ahead.
Stage 0: The Pre-Decision Stage – before a choice is made and thus when the decision maker has limited knowledge ahead of which choice he will make.

Stage 1: The Pre-Outcome Stage – before the risk is resolved of which of the various possible outcomes in the choice will occur and thus when the decision maker has limited knowledge ahead about what will be the outcome of the choice.

Stage 2: The Post-Outcome Stage when the risk concerning which outcome of that choice will occur has been resolved even if the outcome has not yet occurred, and thus when the decision maker will have full knowledge ahead (certainty) of the outcome of the (previously risky) choice.

At the beginning of Stage 0 the decision maker is ignorant of what choices are available and ignorant of what he will choose. By the end of Stage 0 the decision maker knows what choices are available and what the utility of each choice is. Then at \(t = 0 \) the decision is made and his knowledge ahead enters stage 1 of knowing what he has chosen. In stage 1 the decision is irrevocably fixed but risk is still unresolved since he has limited knowledge ahead of which outcome will eventuate. All risk concerning which particular outcome will occur from his choice is resolved at the resolution time \(\tau \) so that there is full knowledge ahead concerning the outcome. That is, Stage 2 begins at this point.

Pope (1996/7 pp292-3) subdivides the Pre-Decision stage into two processes (i) generating options and (ii) generating decision rules for evaluating options and evaluating options. Pope, Leopold and Leitner (2006, figure 5.2, p30) subdivide the pre-decision stage into two, namely into a pre-choice set stage and the remainder a pre-decision stage during which the available choices are evaluated. The phrase “pre-choice set” refers to the process of ascertaining by search and negotiation the set of available choices.

The subdivision of stage 0 is based on a picture of the decision process involving consecutive activities: first the construction of the set of available choices; and then the construction of rules for evaluating choices and the evaluation of these choices by those rules. However SKAT does not require that this process is strictly sequential.
Rather the process will normally involve a degree of toing and froing since, apart from anything else, the matter of evaluating options typically results in needing to specify the options more precisely in some respects than was initially realised.

Further SKAT does not exclude path-dependent satisficing and aspiration-adaptation in the Pre-Decision Stage 1. Satisficing (Simon 1954) is a search for alternatives in which, as soon as it is found, a choice is evaluated and, if on evaluation it reaches the satisficing threshold, chosen without expending time and resources to ascertain if there are available other better choices. Under aspiration adaptation theory, before encountering a particular decision situation, the chooser has identified a set of conceivable options for altering his current situation and made an order of urgency as regards improvements, and as regards a retreat variable. Thus each time a firm completes its search procedure of discovering what is feasible, it has no additional evaluation to do. If it discovered that moving up is feasible, it already knows that if it has to choose between different upward directions, and already knows which upward directions are higher on its urgency scale. Again, if retreating is all that is feasible, our firm already knows its retreat variable. It has no need to do an evaluation in order to discover its desired advance or retreat steps. (Sauermann and Selten 1962, Selten 1998, 1999, Selten, Pittnauer and Hohnisch 2008).

In the case of a sure choice, all risk is resolved at $t = 0$. Therefore in this case stage 1 is missing. Stage 0 is immediately followed by stage 2. In the following it will be assumed that the choice under consideration is risky. This has the consequence $\tau > 0$. There is a pre-outcome stage of at least one period. In stage 1 the decision maker knows the choice she has taken but she does not yet know which outcome will be realized. This becomes known at the resolution time τ, when the post-outcome stage 2 begins.

We now turn our attention to the evaluation of choices in SKAT. The evaluation procedure determines a value $u(p_0, \tau)$ for every available choice $c = (p_0, \tau)$. In this paper we restrict our attention to the case where $u(p_0, \tau)$ is a real number, the utility of $c = (p_0, \tau)$. Multi-dimensional values could also be considered, but they are beyond the scope of this paper.

The value $u(p_0, \tau)$ of a choice (p_0, τ) is the final result of a stepwise procedure in which successively broader aggregates of satisfactions are formed. Table 3 provides a list of the notation of the parts of $u(p_0, \tau)$ entering this aggregation. Table 4 orders these parts by stage and level of aggregation to provide an overview of how these parts combine to form $u(p_0, \tau)$.
Table 3: Notation for parts of the Utility of a Choice in SKAT

$x_{1\tau}$	pre-resolution part of an outcome x in the pre-outcome stage 1, common to all x with $p_0(x) > 0$
$x_{2\tau}$	post-resolution part of an outcome x in the post-outcome stage 2, different for each different x
$v_1(x_{1\tau})$	primary satisfactions in pre-outcome stage 1, common to all x with $p_0(x) > 0$
$v_2(x_{2\tau})$	primary satisfactions of a particular outcome x in post-outcome stage 2
$\bar{v}_2(p_0, \tau)$	aggregate primary satisfactions in post-outcome stage 2
$v(p_0, \tau)$	total primary satisfactions
$w_1(x_{1\tau}, p_0)$	secondary satisfactions in pre-outcome stage 1, common to all x with $p_0(x) > 0$
$w_2(x_{2\tau}, p_0)$	secondary satisfactions of a particular outcome x in post-outcome stage 2
$\bar{w}_2(p_0, \tau)$	aggregate secondary satisfactions in post-outcome stage 2
$w(p_0, \tau)$	total secondary satisfactions
$u(p_0, \tau)$	utility of the choice (p_0, τ)

Table 4: parts of the Utility of a Choice

<table>
<thead>
<tr>
<th>primary</th>
<th>Pstage 1</th>
<th>Post-outcome stage 2</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_1(x_{1\tau})$</td>
<td>particular outcome x</td>
<td>Aggregate over $x \in X$</td>
<td></td>
</tr>
<tr>
<td>$w_1(x_{1\tau}, p_0)$</td>
<td>$v_2(x_{2\tau})$</td>
<td>$\bar{v}_2(p_0, \tau)$</td>
<td></td>
</tr>
<tr>
<td>$v(p_0, \tau)$</td>
<td>$w(p_0, \tau)$</td>
<td>$\bar{w}_2(p_0, \tau)$</td>
<td></td>
</tr>
<tr>
<td>$u(p_0, \tau)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With respect to a resolution time τ, with $0 < \tau < T$, every outcome $x \in X$ can be split into two parts, $x_{1\tau}$ and $x_{2\tau}$. The first part is $x_{1\tau}$, the pre-resolution part of x that occurs before τ in the pre-outcome stage 1. The second part is $x_{2\tau}$, the post-resolution part of x that occurs during the post-outcome stage 2 that begins at τ. The pre-resolution part $x_{1\tau}$ consists of the first τ segments $s_1, \ldots, s_{\tau-1}$ of x and the post-resolution part consists of the remaining segments s_{τ}, \ldots, s_T of x.

Every x with $p_0(x) > 0$ has the same pre-outcome stage 1 part $x_{1\tau}$. (See part 3 of the result at the end of section 3.) Primary satisfactions received in stage 1 are a function $v_1(x_{1\tau})$ of this common pre-resolution part. Even if this is not formally expressed,
$v_1(x_1 \tau)$ should be thought of as an aggregate of disparate primary satisfactions anticipated to be experienced in the segments of $x_1 \tau$. Primary satisfactions anticipated to be experienced in the post-outcome stage 2 for a particular outcome x are a function $v_2(x_2 \tau)$ of the post-resolution part $x_2 \tau$ of x, and are sub-aggregates, aggregated over each mutually exclusive x with $p_0(x) > 0$ to form $\overline{v}_2(p_0, \tau)$. How this is done is left unspecified.

The primary satisfactions $v_1(x_1 \tau)$ of the pre-outcome stage 1 and $\overline{v}_2(p_0, \tau)$ of the post-outcome stage 2 are then combined to form total primary satisfactions $v(p_0, \tau)$. Again, how this is done is left unspecified.

Secondary satisfactions can only be anticipated and formulated after primary satisfactions have been formed. In order to fear a bad outcome or hope for a good one, it has to be known which outcomes are good or bad and this is judged in terms of their primary satisfactions.

Unlike the primary satisfactions $v_1(x_1 \tau)$ and $v_2(x_2 \tau)$, the secondary satisfactions $w_1(x_1, p_0)$ and $w_2(x_2, p_0)$ do not depend solely on $x_1 \tau$ and $x_2 \tau$ respectively, but also on p_0. In the pre-outcome stage 1 a bad outcome may be feared less the smaller is its probability in stage 1, and in the post-outcome stage 2, elation at a good outcome may be more intense the smaller its probability was in stage 1.

Actually $x_1 \tau$ is redundant in the notation for secondary satisfactions $w_1(x_1, p_0)$ in pre-outcome stage 1 since $x_1 \tau$ is uniquely determined by p_0. However for the sake of an intuitive notation we retain $x_1 \tau$ as an argument of w_1.

In the same way as the primary satisfactions $v_1(x_1 \tau)$ are an aggregate, the secondary satisfactions $w_1(x_1, p_0)$ is an aggregate of the disparate secondary satisfactions of the segments of $x_1 \tau$ in the pre-outcome stage 1. An analogous statement holds for secondary satisfactions $w_2(x_2, p_0)$ in stage 2.

The secondary satisfactions $w_2(x_2, p_0)$ are aggregated over $x \in X$ to $\overline{w}_2(p_0, \tau)$. Then the secondary satisfactions $w_1(x_1 \tau)$ of stage 1 and $\overline{w}_2(p_0, \tau)$ of stage 2 are combined to form total secondary satisfactions $w(p_0, \tau)$.

Finally the total utility of the choice $u(p_0, \tau)$ is formed from $v(p_0, \tau)$ and $w(p_0, \tau)$. Again the precise way in which these aggregations and combinations are done is intentionally left unspecified in order to leave room for adjustments to specific contexts.

Remarks on aggregation of mutually exclusive outcomes in the post-outcome stage 2:

In the post-outcome stage 2, in the case of a risky choice, satisfactions differ for each mutually exclusive x with $p_0(x) > 0$. The formation of the aggregates of primary satisfactions $\overline{v}_2(p_0, \tau)$ and secondary satisfactions $\overline{w}_2(p_0, \tau)$ thus involve mutually
exclusive outcomes x. This means that, compared to the stage 1 aggregates $v_1(x_1)$ and $v_2(x_2)$ an additional tier of aggregation is required, that over each mutually exclusive x with $p_0(x) > 0$. This merits additional attention in view of the widespread confusion in the literature of aggregation procedures involving probability weights with the inclusion of secondary satisfactions in the mapping from outcomes into utilities.

This second tier of aggregation can take the form of an atemporal weighting procedure that gives a fractional weight at $t = 0$, that, depending on x and p_0, is allocated to each of these mutually exclusive outcomes. Such weights can take many different forms. There can be an ultra conservative of putting all the weight on the worst possible outcome and ignoring all the other possible outcomes. There can be an ultra optimistic weighting of putting all the weight on the best possible outcome. There can be some intermediate form of weighting in between the extremes such as the various sorts of probability weighting of rank dependent theories that give more weight to bad outcomes as in most rank dependent theories (Quiggin 1982, Allais 1988, Tversky and Kahneman 1992), or to both good and bad outcomes, (Lopes 1984, Lopes and Oden 1999).

As emphasised in Pope (1983 and 1995), it is crucial to distinguish such atemporal derivative usage of probabilities for aggregating alternatives, from the denotation of probabilities as the decision maker’s degree of knowledge ahead at particular times. As further emphasised in Pope (1983) and (1995), once the plausibility and reasonableness of including secondary satisfactions is admitted there are neither descriptive nor normative grounds for performing the atemporal aggregation with probability weights. Rather the appropriate weights should be determined on a case by case basis concerning the range of outcomes and the decision maker’s preferences.

The matter of atemporal weighting of mutually exclusive alternatives is distinct from the issue of consistently including secondary satisfactions within SKAT, as explained in Pope (1983), (1995) and Pope, Leopold and Leitner (2006, p. 55-57). This is because atemporal weighting by probabilities may or may not occur forming the aggregate of primary satisfactions $\bar{v}_2(p_0, \tau)$. Thus we may have

$$\bar{v}_2(p_0, \tau) = \sum_{x \in X} p(x)v_2(x_2)$$

Likewise these are examples of a special model within SKAT in which probability weights $p_0(x)$ are used in Stage 2 also for the aggregation of the mutually exclusive secondary satisfactions $w_2(x, \tau)$ for each different x into $w_3(p_0, \tau)$.
\[w_2(p_0, \tau) = \sum_{x \in X} p(x)w_2(x,\tau) \]

But SKAT does not recommend aggregation by probability weights for most decision situations. The above examples are given as in earlier papers to assist in ending the widespread current practice of speaking about the utility of a choice outside EUT as “non-linear in probabilities” without distinguishing between the two classes of theories. One class of theories, namely standard rank dependent theories, generalises EUT by allowing generalisations of EUT’s atemporal probability weights but excludes secondary satisfactions. The other class of theories, of which SKAT is an epistemically consistent example, includes secondary satisfactions. Within this other class, SKAT is eclectic, an umbrella theory that permits all secondary satisfactions and all atemporal aggregation rules for the mutually exclusive outcomes in Stage 2. By contrast, many other theories, such as Kreps and Porteus (1978), Caplin and Leahy (2001) and Klibanoff and Ozdenoren (2007) are less eclectic both as regards the secondary satisfactions included (excluding important sets of secondary satisfactions due to the axiomatic restrictions of their substitution axiom as itemised in Pope, Leitner and Leopold (2006)), and non-eclectic as regards the atemporal aggregation weights (imposing atemporal aggregation by simple probability weights). For understanding and researching what influences choice and giving policy advice, it is crucial that these two classes of theories need to be kept distinct. Note that in both Stage 1 and in Stage 2, aggregates may be formed by automatic intuitive judgment processes inaccessible to conscious inspection.

Many details are left unspecified in the description of the evaluation of a choice. Details may depend on the context and may vary from decision maker to decision maker. A careful analysis of every concrete decision situation is much more important than a premature specification of a precise mathematical form.

9. A Model by Caplin and Leahy

In this section we want to describe a version of a model proposed by Caplin and Leahy (2001). Their approach is similar to that of SKAT, even if they apply axiomatized expected utility theory. They take the point of view that all satisfactions and dissatisfactions are emotional and that therefore the utility of a choice should only depend emotional states. The emotional state is assumed to depend on the current physical outcome segment and on anticipations of the future. Caplin and Leahy develop a two-period model based on these ideas.
They assume that the outcome set is infinite. We shall present a simplified version of the model of Caplin and Leahy in which the outcome set is finite. This will permit us to connect the model with the simple temporal framework and use of the definitions and notations of section 2. However some additional definitions and notations will have to be introduced.

Since the model of Caplin and Leahy has two periods we have \(T = 2 \). For every outcome \(x \in X \). Let \(s_1(x) \) be the first segment and \(s_2(x) \) be the second segment of \(x \). Let \(m_1 \) and \(m_2 \) be emotional states of periods 1 and 2 respectively. The emotional state depends on the currently experienced segment and the anticipated emotional states in the future and their probabilities. In period 2 there are no anticipated future emotional states. Therefore the emotional state \(m_2 \) depends only on the segment \(s_2(x) \) of the realized outcome \(x \). This enables us to identify \(m_2 \) with \(s_2(x) \). Without any loss of generality:

\[
m_2 = s_2(x).
\]

One may think of an outcome \(x \) as specified by a first physical segment. If \(c \) is a sure choice, this is due to the fact that there is only one outcome \(x \) with \(p_0(x) > 0 \). For a risky choice this follows from Conclusion (iii) in section 3. The first segment common to all outcomes \(p_0(x) > 0 \) is uniquely determined. We call this segment the *first segment realized* by \(p_0 \) and denote it \(s_1(p_0) \). Of course, the function \(s_1(p_0) \) is only defined for probability distributions which can appear in choices \(c = (p_0, \tau) \).

Emotional state \(m_1 \) for the first period depends on the first segment \(s_1(p_0) \) and on the probability distribution over \(m_2 = s_2(x) \) which uniquely determined by \(p_0 \):

\[
m_1 = \Phi(s_1(p_0), p_0)
\]

Subsequently \(m_1 \) can be described as a function of \(p_0 \) alone:

\[
m_1 = \psi(p_0)
\]

We call \(\psi \) the *generating function for \(m_1 \).* For a given choice \(c = (p_0, \tau) \) this function directly connects the emotional state \(m_1 \) in the first period to the probability distribution \(p_0 \).

We shall refer to a pair \(m = (m_1, m_2) \) of two emotional states for periods 1 and 2 as an *emotional future.* Caplin and Leahy think of emotional states as vectors in a Euclidian space. The parts may be intensities of emotions or similar variables which at least in principle permit physiological measurement. In their model the emotional states \(m_1 \) and \(m_2 \) for periods 1 and 2 are elements of two sets \(M_1 \) and \(M_2 \). In our version of the model, we also assume that \(M_1 \) and \(M_2 \) are compact (closed and bounded). The set of all \(m = (m_1, m_2) \) is denoted by \(M \). Obviously all emotional...
futures are elements of M. Caplin and Leahy assume that the decision maker has a complete and transitive preference order \succeq over all probability distributions M.

Consider a choice $c = (p_0, \tau)$. What distribution g over M results from taking the choice? We shall look at this question. For any distribution p_0 over the outcome set, let $R_2(p_0)$ be the set of all second segments s_2 such that

$$x = (s_1(x), s_2(x))$$

is an outcome in X with $p_0(x) > 0$. We call $R_2(p_0)$ the second segment reservoir or for brevity the reservoir of p_0. It can be seen that the probability $g(m)$ of $m = (m_1, m_2)$ if g is chosen is as follows:

$$
\begin{cases}
 p_0(s_1(m), s_2) & \text{for } m = \psi(p_0) \text{ and } s_2 \in R_2(p_0) \\
 0 & \text{else}
\end{cases}
$$

This distribution is called the distribution over M generated by the choice $c = (p_0, \tau)$.

Let f be a probability distribution specifying positive probabilities $f(m)$ for all m in a finite subset $K(f)$ of M and specifying a probability of zero for all subsets of M not intersecting $K(f)$. The set $K(f)$ is called the carrier of f. Probability distributions of this kind are called distributions with a finite carrier. This definition excludes continuous or partially continuous distributions that assign probability densities rather than probabilities in some regions of M. F denotes the set of all distributions over M with a finite carrier. Obviously G is a subset of F. For our version of the model it is therefore sufficient to look at the restriction of the preference order \succeq to pairs of distributions in F.

Let u be a utility function defined on M and extended to F by (I)

$$u(f) = \sum_{m \in K} f(m)u(m)$$

It is clear that this equation simply restates the expectations property introduced in section 4. We say that a utility function u defined on M is timewise additively separable if for every $m = (m_1, m_2)$ in M we have

$$u(m) = u_1(m_1) + u_2(m_2)$$

where u_1 and u_2 are continuous partial utilities defined on M_1 and M_2 and respectively.

Caplin and Leahy proceed from a system of axioms imposed on the preference relationship \succeq over general distributions over M. The axioms yield the conclusion that a preference relationship which can be represented by a utility function with the expectations property (I) can also be represented by a utility function u satisfying (I) and (IV).
In this paper we do not want to describe the axiom system of Caplin and Leahy for their utility function in detail. However it is important to say something about the crucial role of two of these axioms.

The first one of these two axioms is the substitution axiom (Assumption I (ii), Caplin and Leahy 2001, p.61), essentially the same one as discussed in section 6. The substitution axiom is crucial for the expectation property (I). The second of these two axioms assumes indifference between two probability distributions over M with the same marginal distributions on M_1 and M_2. A precise statement of this marginal distribution axiom can be found in Appendix 2. There a proposition is proved that our version of the model of Caplin and Leahy implies that a utility function u satisfying the marginal substitution axiom exists such that the expected value $u(f)$ given by (I) represents \geq restricted to F.

The approach of Caplin and Leahy looks at decision making as a two layer process. The first layer describes how a distribution of physical outcomes connected to a choice leads to a distribution over emotional futures. The second layer concerns the selection of a choice by the maximization of expected utility. In this way they achieve a clear separation of psychological assumptions about the pre-rational genesis of emotional states on the one hand and the postulated rationality of the preference order over distributions of emotional futures on the other hand.

The two layer structure results in a high degree of flexibility. In their paper Caplin and Leahy apply their model to the influence of anxiety on asset pricing. Moreover they discuss many interesting experimental results, reported in the psychological literature, and interpret them in the light of their model. Undoubtedly their paper is an important contribution to decision theory. Nevertheless some critical points need to be raised. This will be done in the next section.

10. Remarks on the model by Caplin and Leahy.

In the following we shall present three remarks on the model by Caplin and Leahy. In these remarks we shall refer to our versions of the model of Caplin and Leahy as presented in the previous section and to the axioms stated in Appendix 2. It will be clear to every reader familiar with the paper by Caplin and Leahy that the objections also apply to their more general form of the model.

10.1 The Region on which preferences are defined.

In the model of Caplin and Leahy the decision maker is assumed to have preferences over arbitrary probability distributions over M. In our version of their theory we consider only distributions f in the set F of distributions with finite carriers.
Consider the choice set \(G \). As we have seen the distributions in \(G \) have very special carriers. All emotional futures \(m = (m_1, m_2) \) in such a carrier must have the same first part \(m_1 \). For any reasonable measure over \(M \) the probability that a randomly selected corner with \(n \) elements (\(n \geq 2 \)) is a carrier of a distribution in \(G \) is zero. In this sense almost all distributions are not in \(G \).

It is sufficient for the decision maker to have preferences defined on \(G \). Why should she be forced to form preferences over all pairs of distributions \(f \) and \(g \) in the vastly larger set \(F \)? Distributions in \(G \) but not in \(F \) arise from pseudo choices rather than choices. Any interpretation in terms of a possible choice is bound to be contradictory. Preference judgments involving pseudo choices are not natural. It is not reasonable to require that a rational decision maker should make preference judgments concerning impossible distributions over emotional futures.

10.2 Use of the substitution axiom
Caplin and Leahy (2001) make use of a substitution axiom (Assumption 1(ii), p.61). As has been explained in section 7 there are serious objections against the substitution axiom. This axiom lacks a reasonable interpretation. The weights \(\alpha \) and \(1-\alpha \) of \(p \) and \(p' \) in the substitution axiom (see section 7) cannot be interpreted as probabilities with a temporal extension.

Example 2, presented in section 7, was a direct argument against a substitution axiom in the theory of Kreps and Porteus (1978, 1979). This argument loses its force in the context of the theory of Caplin and Leahy, since they do not apply their axioms directly to temporal lotteries, but to distributions over emotional futures. Nevertheless the more basic objection concerning the lack of a reasonable interpretation remains valid.

10.3 Formation of Preferences
The model of Caplin and Leahy conveys the impression that the generating function is looked upon as the description of an automatic process not involving evaluative judgment or deliberation. This process transforms a choice to a probability distribution over emotional futures. Preference judgments concerning such distributions are then used in order to select one of the available choices. The preference relationship is assumed to satisfy a system of rational axioms. This suggests that the formation of preferences involves rational cogitation.

The emergence of an emotional future is modelled behaviourally but preferences over distributions of emotional futures are dealt with in the usual rationalistic fashion of
axiomatized expected utility theory. This extreme difference between the two layers of the model of Caplin and Leahy does not seem to be plausible.

In contrast to the model of Caplin and Leahy, SKAT describes the utility of a choice as the result of a stepwise procedure of forming aggregates of primary and secondary satisfactions. (See section 8.) Instead of the neat separation of an automatic and rational part of the decision process in the model by Caplin and Leahy, the evaluation procedure of SKAT permits a combination of emotional response, intuitive judgment and rational deliberation at every step, without being too precise about the role of each of these mental activities. Satisfactions and dissatisfactions certainly have an emotional aspect as indicated by the everyday meaning of the words but they are also influenced by intuitive judgment and rational deliberation.

Axiomatized expected utility theory remains silent about the way in which preferences are formed. The decision maker is assumed to have a preference book in his head in which preference intensities can be looked up without much effort, like numbers in a telephone book. This picture also seems to underlie the upper layer of the model by Caplin and Leahy. SKAT rejects the axiomatic approach and instead of this tries to gain insight into how preferences are formed.

11. Discussion

This paper has discussed conceptual issues concerning the generalization of axiomatized expected utility to temporal lotteries in the sense of Kreps and Porteus (1978). For this purpose it was not necessary to go beyond a narrow subclass of temporal lotteries in which all risk is resolved at a resolution time \(\tau \) and not before. A temporal lottery of this kind can be described by a pair \((p_0, \tau)\) where \(p_0\) is a probability distribution over the outcomes at the point of choice and \(\tau\) is the resolution time. However such a pair must satisfy an additional condition to be a choice in a decision situation. The resolution time \(\tau\) is zero if and only if \(p_0\) assigns probability 1 to one outcome and zero to all other outcomes. Therefore the set of all possible choices is not convex.

Axiomatizations of expected utility usually derive a representation theorem asserting two properties, the expectation property and the essential uniqueness property (see section 4). As we have seen in section 5, the essential uniqueness does not hold for the simple temporal framework. The reason for this lack of convexity is not removed by the more general framework of Kreps and Porteus.
The essential uniqueness property is important for the interpretation of utility as a cardinal quality. However as long as the expectation property holds, it is still possible to describe decision making as maximizing expected utility, even if the utility function is not unique up to the origin and the unit of measurement. Therefore one can take the point of view that the essential uniqueness property is not really an indispensable feature of a generalized expected utility of temporal lotteries.

However the essential uniqueness property may matter for welfare judgments involving interpersonal comparisons of expected utilities. John Harsanyi (1955, 1986b) has argued that interpersonal preference judgments can be formed by empathy. A person with perfectly good eyesight must be able to form preference judgments comparing his or her present situation with that of a blind person. This is necessary for judging decision alternatives involving the risk of loosing one’s eyesight. Such judgments are made by empathy, i.e. “by putting oneself into the other’s shoes”. Empathy can also be used to form counterfactual preference judgments e.g. about what it would be worth to be 10 cm taller. This presumably impossible increase in size is as much in the power of imagination as a possible loss of eyesight. At least in principle a “universal utility function” applicable to every conceivable situation of a human being can be constructed.

In Harsanyi’s utilitarianism welfare judgments are based on the average of the universal utilities of all living human beings. No difficulties arise in the theory if the universal utility function has the expectation property but not the essential uniqueness property. However, if welfare depends not only on the average universal utility but also on a measure of dispersion like the variance of the distribution of universal utilities, then the essential uniqueness property becomes important.

As has been argued in section 3, the modified expectation property \((I') \) is the only natural generalization of the expectation property \((I) \). In the same section a further requirement, the limit property \((III) \) has been introduced. The limit property is nothing more than a natural extension of continuity. It has been shown that a utility function for the simple temporal framework cannot depend on \(\tau \) if it has the modified expectation property \((I') \) and the limit property \((III) \). However the whole purpose of a utility theory for temporal lotteries is to capture the influence of resolution times. Therefore, one of the two properties has to be dropped. In our view the limit property has a greater intuitive appeal. The modified expectation property has to be given up.

In our view the limit property is a decisive argument against the utility theory for temporal lotteries axiomatized by Kreps and Porteus (1978). Their theory permits resolution time dependence, but not in a reasonable way. The restriction of their
theory to the simple temporal framework satisfies the modified expectation property and therefore does not have the limit property unless utility does not depend on resolution time, but only on the initial probability over outcomes.

The axiomatization of Kreps and Porteus (1978) makes use of a substitution axiom. In section 7 we argued that this substitution axiom has no reasonable interpretation. The axiom makes an assertion about a mixture of two choices without offering a substantive interpretation of the weights in the mixture. In the theory of temporal lotteries every probability is connected to a resolution time. Therefore the weights cannot be interpreted as probabilities.

Section 7 also presents an example indicating why it would be wrong to impose the substitution axiom even if it had a substantive interpretation.

Sections 6 and 7 have shown that there are serious objections to the axiomatic theory of Kreps and Porteus (1978). The same criticism also applies to later papers e.g. Klibanoff and Ozdenoren (2066). In our view the axiomatic approach to choice among temporal lotteries remains unsatisfactory. Axiomatic theories assume that the preference relationship satisfies some plausible properties and then derive a representation theorem on this basis. Maybe a fundamentally different approach to modelling rational choice of a temporal lottery in more promising. Instead of taking plausible properties of the preference relationship as a point of departure one can ask oneself how preferences are constructed from more basic elements. SKAT, the Stages of Knowledge Ahead Theory (Pope, Leitner, Leopold 2007) provides a picture of the decision process proceeding from primary to secondary satisfactions and finally to evaluations of choices in the simple temporal framework. SKAT is described in section 8.

SKAT does not aim at a full description of the decision process but leaves much room for modelling detail to be developed as appropriate in the application to concrete cases. This avoids assuming that for all decision situations the same model details and way of reaching a solution will be identical. However in SKAT the distinction between primary and secondary satisfactions is fundamental in guiding the modelling of the description and analysis of particular concrete decision problems.

The two-period model by Caplin and Leahy (2001) portrays the decision process as composed of two levels. The first layer determines emotional futures for every choice in the decision situation by a pre-rational psychological mechanism. On the second level the final choice is determined rationally by expected utility maximization. In a sense all satisfactions are secondary in the model. In our view the neat separation of the two layers does not sufficiently take into account the complexity of the interaction
of automatic psychological reactions and rational deliberation. In this respect SKAT seems to offer a better picture of the decision process. Our critical objections against the model of Caplin and Leahy have been made and need not be repeated here. However, undoubtedly that model is an important contribution to the literature.

Appendix 1
This appendix refers to the expected utility context (See section 4)

Proposition
Let X be a finite non-empty outcome set and let C be the set of all probability distributions over X. Moreover let u be a utility function over J representing \succeq with property (I). Then u also has property (II).

Proof
Without loss of generality we can assume
$$X = \{x_1, \ldots, x_n\}$$
and
$$u(x_1) \leq u(x_2) \leq \ldots \leq u(x_n)$$
Consider first the trivial case $u(x_i) = g$ for $i = 1, \ldots, n$. It is clear that (II) holds in this case. From now on assume $u(x_n) > u(x_1)$. For $i = 1, \ldots, n$ let a_i be the number with $u(x_n) > u(x_i)$. For $i = 1, \ldots, n$ let a_i be the number with
$$u(x_i) = (1-a_i) u(x_1) + a_i u(x_n)$$
In view of $u(x_1) \leq u(x_i) \leq u(x_n)$ we must have
$$0 \leq a_i \leq 1$$
Therefore the probability distribution p_i with $p_i(x_1) = 1 - a_i$ and $p_i(x_n) = a_i$ is an element of J and we have
$$x_i \sim p_i$$
Let v be another utility function over J with the expected value property (I), which represents \succeq. In view of $x_i \sim p_i$ we have:
$$v(x_i) = (1-a_i) v(x_1) + a_i v(x_n)$$
We obtain the following equation for a_i
Define
\[a_i = \frac{v(x_i) - v(x_1)}{v(x_n) - v(x_1)} \]
and
\[b = v(x_1) - au(x_1) \]
Since \(u \) and \(v \) represent the same preference order \(\succeq \), we must have \(v(x_n) > v(x_1) \) in view of \(u(x_n) > u(x_1) \). Therefore \(a > 0 \) holds. Multiplication of the equation for \(a_i \) by
\[v(x_n) - v(x_1) = a(u(x_n) - u(x_1)) \]
yields
\[v(x_i) = au(x_i) + b \]
Therefore we have
\[v(p) = \sum_{x \in X} p(x)au(x) = \sum_{x \in X} p(x)(au(x) + b) \]
and consequently
\[v(p) = au(p) + b \]
for every \(p \in C \). It follows that \(v \) is a positive linear transformation of \(u \) as required by the essential uniqueness property (II). This completes the proof of the proposition.

Remark: It is of crucial importance for the proof of proposition 1 that the probability distribution \(p_i \) always is an element of \(C \). The proof does not work unless \(C \) contains all probability distributions that assign positive probabilities to \(x_1 \) and \(x_n \) and to no other outcomes. However, the proof does not require that \(C \) contain other probability distributions.

Appendix 2
It is the purpose of this appendix to throw light on the crucial role of the marginal distribution axiom for the additive separability property (V) of the utility function \(u \) in the model of Caplin and Leahy (See section 9). As explained in section 3, in our version of this model we assume that the sets \(M_1 \) and \(M_2 \) of possible emotional states for periods 1 and 2, respectively are compact convex subsets of Euclidian space and \(M \) is the set of all emotional futures \(m = (m_1, m_2) \) with \(m_1 \in M_1 \) and \(m_2 \in M_2 \). Moreover the set of all probability distributions over \(M \) with finite carrier is denoted by \(F \).
Consider a probability distribution \(g \in F \). Let \(K \) be the carrier of \(g \). For every first part \(m_1 \) of an emotional future \(m = (m_1, m_2) \in K \), let \(L_2(m_1) \) be the set of all \(m_2 \) with \((m_1, m_2) \in K\). Similarly for every second part \(m_2 \) of an \(m \in \tau \), let \(L_1(m_2) \) be the set of all \(m_1 \) with \((m_1, m_2) \in K\). Then the marginal distributions \(g_1 \) and \(g_2 \) of \(g \) with respect to \(M_1 \) and \(M_2 \) are defined as follows:

\[
\begin{align*}
g_1(m_1) &= \sum_{m_2 \in L_2(m_1)} g((m_1, m_2)) \\
g_2(m_2) &= \sum_{m_1 \in L_1(m_2)} g((m_1, m_2))
\end{align*}
\]

Let \(g \) and \(h \) be two distributions in \(F \) with the property that \(g_1 = h_1 \) and let \(g_1 = g_2 \) hold for the marginal distributions \(g_1, g_2 \) of \(g \) and \(h_1, h_2 \) of \(h \). If this is the case we say that \(g \) and \(h \) agree with respect to their marginal distributions.

Caplin and Leahy state the marginal distribution axiom as a property of the preference relation \(\succ \) represented by \(u \) (Caplin and Leahy 2001, assumption 1 (iv), p.61). For our purpose an equivalent version in terms of \(u \) is more convenient.

Marginal distribution axiom

Let \(g \) and \(h \) be two distributions in \(F \) such that \(g \) and \(h \) agree with respect to their marginal distributions, then \(u(g) = u(h) \) holds.

It is the aim of this appendix to prove a proposition about a continuous utility function \(u \) defined on \(M \) and extended to \(F \) by the expectation property (I) in section 4. This proposition 2 connects the timewise additive separability property of section 9 to the marginal distribution axiom.

Proposition 2

Let \(M_1 \) and \(M_2 \) be compact subsets of Euclidian space and let \(M \) be the set of all \(m = (m_1, m_2) \) with \(m_1 \in M_1 \) and \(m_2 \in M_2 \). Let \(u \) be a continuous utility function defined on \(M \) and extended to \(F \) by the expectation property (I) in section 4. Moreover let \(\succ \) be the preference relation over \(M \) represented by \(u \). Assume that \(u \) satisfies the marginal distribution axiom. Then continuous functions \(u_1 \) and \(u_2 \) defined on \(M_1 \) and \(M_2 \), respectively, exist, such that

\[
u(m) = u_1(m_1) + u_2(m_2)
\]

holds for every \(m = (m_1, m_2) \in M_1 \).

Proof

Since \(M \) is compact and \(u \) is continuous, the function \(u \) has a minimum \(u_0 \) over \(M \):
\[u_0 = \min_{m \in M} u(m) \]

Let \(m^0 = (m_1^0, m_2^0) \) be a fixed minimizer of \(u \) in \(M \). (There may be more than one minimizer.) For \(m = (m_1, m_2) \) define
\[
u_1(m) = u((m_1, m_2^0)) + u_0
\]
and
\[
u_2(m) = u((m_1^0, m_2))
\]

We shall show that \(u(m) = \nu_1(m) + \nu_2(m) \) holds for the partial utility functions \(\nu_1 \) and \(\nu_2 \) defined in this way. Let \(m^* = m(m_1^*, m_2^*) \) be a fixed but arbitrary element of \(M \). Let \(g \) and \(j \) be the following distributions:
\[
g(m) = \begin{cases} \frac{1}{2} & \text{for } m = (m_1^*, m_2^0) \\ \frac{1}{2} & \text{for } m = (m_1^0, m_2^*) \\ 0 & \text{else} \end{cases}
\]
\[
h(m) = \begin{cases} \frac{1}{2} & \text{for } m = m^0 \\ \frac{1}{2} & \text{for } m = m^* \\ 0 & \text{else} \end{cases}
\]

It can be seen immediately that \(g \) and \(h \) have the same marginal distributions \(g_1 = h_1 \) and \(g_2 = h_2 \). The distribution \(g_1 = h_2 \) assigns probability \(\frac{1}{2} \) to \(m_1^0 \) and \(m_1^* \) and zero to all other elements of \(M_1 \). Similarly \(g_2 = h_2 \) assigns probability \(\frac{1}{2} \) to \(m_2^0 \) and \(m_2^* \) and zero to all other elements of \(M_2 \). It follows by the marginal distribution axiom that we have \(u(g) = u(h) \). This yields
\[
\frac{1}{2} u((m_1, m_2^0)) + \frac{1}{2} u((m_1^0, m_2^*)) = \frac{1}{2} u_0 + \frac{1}{2} u(m^*)
\]
Division by \(\frac{1}{2} \) and rearrangement of terms leads to
\[
u(m^*) = \nu_1(m^*) + \nu_2(m^*)
\]
Since \(m^* \) is an arbitrary element of \(M \) this equation holds for every \(m^* \in M \). This completes the proof of the proposition.

Comment: Caplin and Leahy make use of an axiomatization of timewise additive expected utility taken from Fishburn (1982). In his book Fishburn explains that the marginal distribution axiom is not really compelling. He points out that a decision maker may not be indifferent between the distributions \(g \) and \(h \) described in the proof of Proposition 2. Suppose that \(m_1^* \) and \(m_2^* \) are better than \(m_1^0 \) and \(m_2^0 \), respectively, in the sense that \((m_1^*, m_2^0)\) and \((m_1^0, m_2^*)\) as well as \((m_1^*, m_2^*)\) are strictly preferred to \((m_1^0, m_2^0)\). Then in \(g \) the decision maker is sure to get the better emotional state in at
least one of the two states where as in \(h \) she may end up with the worse emotional state in both periods.

It is of course possible that the preferences of the decision maker are adequately represented by the expectation of a timewise additively separable utility function, but whether this the case or not has to be judged on the basis of the concrete context. The marginal distribution axiom fails to be a property that must always be satisfied by the preferences of a rational person.

References

Pascal, Blaise, 1670, Pensées, reprinted by Chez L Hachette, Paris, 1845

Pope, R.E., 2001 'Evidence of Deliberate Violations of Dominance due to Secondary Satisfactions — Attractions to Chance', Homo Economicus XIV(2) 47-76.

