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Ascending Combinatorial Scoring Auctions

Thomas Rieck∗

This version: May 2009

Abstract

In multi-attribute procurement auctions with multiple objects, the auctioneer may

care about the interplay of quality attributes that do not belong to the same item

– like each item’s delivery time, if all items are needed at once. This can influence

the performance of the auction mechanism. We generalize the Ausubel-Milgrom

ascending proxy auction to such an environment and show that the main properties

still hold: Equilibria in profit-target strategies exist, the final allocation maximizes

the surplus and the payoff vector is in the core.

Furthermore, the scoring rule used to evaluate the bids may contain valuable infor-

mation about the auctioneer for his competitors, providing an incentive not to reveal

it. In our setting, it is possible to keep the scoring rule secret without changing the

outcome of the auction. Additionally, for additive scoring rules a close connection

to the original proxy auction exists.

JEL: D44, D82

Keywords: Multi-object auction, multi-attribute auction, information revelation

1 Introduction

In a procurement auction, the buyer is usually not only interested in getting an object

as cheap as possible, but also cares about its quality. Scoring auctions provide the op-

portunity to submit bids that specify prices and quality attribute levels. These bids are

evaluated with the help of a scoring rule (a function of quality attributes and price) and

ranked according to the resulting scores. If the bidders know the scoring rule, this pro-

cedure resembles a classical auction with bids being scores. This simple relationship can
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get lost if the buyer wants to acquire multiple objects: His perception of an object’s qual-

ity may heavily depend on the quality attributes of the other objects. In this paper, the

scoring rule can be an arbitrary increasing function of all quality attributes (but quasi-

linear in price). Especially, the overall quality may depend on the attribute levels of all

items in a non-trivial way. Consequently, the score that a supplier is able to generate

with his bid may depend on the bids of the other suppliers. Such an interdependency of

bids does not appear in price-only auctions. Suyama and Yokoo (2004) have shown that

the presence of such quality interdependencies in the scoring rule is not innocuous: The

Vickrey-Clarke-Groves mechanism may fail to achieve individual rationality. We analyze

the properties of a different mechanism in the presence of an interdependent scoring rule:

The Ausubel-Milgrom ascending proxy auction. In standard auctions, this mechanism

does not suffer from certain weaknesses of the Vickrey-Clarke-Groves mechanism, e.g.

regarding collusion. It is thus a suitable candidate to work well with an interdependent

scoring rule.

To illustrate the role of the interdependency, think of a quality attribute like delivery time:

The buyer may need several objects simultaneously. He thus only values a fast delivery

time of one object if the other objects are delivered quickly as well – otherwise, the speed

advantage of one supplier is worthless. If these preferences of the buyer are reflected in

the scoring rule, it is difficult for the suppliers to estimate the impact of their bid on

the overall quality in advance – it depends crucially on the bids of the other suppliers.

Hence, a single bidder can be very influential, e.g. if he is the only one who can deliver a

particular item very quickly.

Other problems arise if the buyer does not want to give out information on its scoring rule

to the sellers, e.g. because he tries to avoid information spillovers to his competitors. This

could be information about his preferences toward different suppliers which are reflected in

the scoring rule, or information about the quality of an object he is able to produce out of

the items he wants to buy in this scoring auction. Due to such reasons, the auctioneer may

want to keep his scoring rule secret. In particular, we have an example like the following

setting in mind: A manufacturing firm is facing two procurement situations. On the one

hand, it wants to be the seller of a specific product, and has a competitor who is able

to deliver a similar product. Revealing information about the firm’s production abilities

to the competitor would have a negative impact on the firm’s revenue, because the other

firm can profitably use this information in its pricing process. On the other hand, the firm

wants to acquire the components to manufacture the product by means of an auction.

Using a public scoring rule in this auction provides the competitor with an informative

signal about the firm’s production abilities. If the firm wants to avoid these signals, is it

possible to adapt the Ausubel-Milgrom proxy auction to deal with secret scoring rules as

well?

Our version of the Ausubel-Milgrom proxy auction works as follows: For each possible

quality configuration for each package, a seller submits a minimum price at which he is



Ascending Combinatorial Scoring Auctions 3

willing to deliver. This can be interpreted as the seller’s cost structure. With the help of

this cost structure, the proxy bidder submits bids automatically on behalf of the seller.

The proxy follows a simple bidding strategy: It bids on all possible quality configurations

yielding the highest potential profits (with respect to the reported cost structure). Bidding

is stopped in case this potential profit gets negative.

We show with direct proofs that main theorems for the Ausubel-Milgrom proxy auction

extend to this mechanism. This includes, with respect to the reported preferences, surplus

maximization and the core property for the final winning allocation, as well as existence

of equilibria in profit-target strategies. The scoring rule can be kept secret without influ-

encing the outcome.

Furthermore, we consider the special case of an additive scoring rule. A scoring rule is

called additive if a score can be calculated for each item separately, and these scores

are added up to generate the score for a package. Here, the auction procedure can stay

essentially the same compared to the original price-only proxy auction, in case the scoring

rule is public: Each bidder calculates the maximum score he is able to generate for each

single item and submits these scores (not necessarily truthfully) to the proxy. Similar

to the price-only proxy auction, the proxy then bids myopically on packages of items.

Consequently, results stay the same compared to the price-only proxy auction. We extend

the bidding procedure to secret scoring rules by using price-quality bids. Although the

scoring rule is not known, the outcome of the auction with public scoring rule is replicable

with this bidding procedure. Particularly, this enables us to directly carry over some theory

on the Ausubel-Milgrom proxy auction to secret scoring rules.

The literature on scoring auctions is surprisingly scarce1, if one thinks of the variety of

procurement settings where price and quality matter. There is a first strand of literature

looking at optimal scoring auctions by adapting the scoring rule (Che 1993; Branco 1997;

David et al. 2002a). Contrary to this approach, the scoring rule is fixed in our environment

– we assume that the decision on the scoring rule has already been made.

Mueller et al. (2007) generalize Asker and Cantillon (2008) to combinatorial auctions:

They show that the set of equilibria can be transferred from multi-dimensional price-only

auctions to the corresponding scoring auctions. Mueller et al. (2007) use scoring rules

for every possible package, which are not necessarily the sum of the scoring rules for the

single items. The winning allocation is then determined by an allocation rule over scores.

The additive scoring rule we use in part of this paper is a special case of their setting.

Our general scoring rule differs from their approach, as it allows for interdependencies

of quality attributes for different items across bidders – there is just one single scoring

rule for all objects. Such an interdependent scoring rule can also be found in Suyama and

Yokoo (2004) and (2005) in the context of Vickrey-Clarke-Groves mechanisms. Which

type of scoring rule one wants to use is a question of the context. Furthermore, mixed

forms are possible as well.

1A good survey can be found in Strecker (2004).
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The possible failure of individual rationality in the Vickrey-Clarke-Groves mechanism with

general scoring rules was first shown by Suyama and Yokoo (2004), with a more detailed

characterization in Suyama and Yokoo (2005). Even if the rule is publicly known, a score

for bids on packages cannot be calculated – it depends on the bids submitted by the other

bidders. Imagine a scoring rule that treats two quality attributes of different items as

perfect complements. The score thus only increases if a bid raise is made on the attribute

levels for both items. Hence, if this raise is due to two different suppliers in the winning

allocation, both suppliers have to be paid for it in the VCG mechanism – the buyer has

to pay the raise twice. This may make the outcome too expensive for him, generating a

negative final score – he would have preferred not to conduct the auction at all. We thus

have to be careful when transferring results to scoring auctions with general scoring rules.

For example, Rieck (2006) shows that the Bernheim-Whinston first-price package auction

(Bernheim and Whinston 1986) can be extended to the setting of a general scoring rule

without complications.

Secret scoring rules in the context of single-unit English auctions go back to David et al.

(2002b). In their setting only monotonicity properties of the scoring rule with respect to

the attribute values are announced to the sellers. Bids consist of price-quality combina-

tions. As bidders do not know the scoring rule, submitted bids may be rejected if the score

they generate is lower than the standing high bid. The auction ends when no sufficiently

high bids are submitted in a prespecified period of time or all bidders stop their bidding

activity. The set of possible attribute levels is assumed to be finite.

David et al. (2002b) show that in this setting, it is a dominant strategy for the suppliers

to follow a bid list strategy : Each bidder ranks the possible bids (there are only finitely

many due to the finite attribute space) according to his own preferences (potential profit).

Then, he submits his bids in order of decreasing profit. In case he is standing high bidder

he suspends the submittance of bids. Otherwise, he submits bids until all bids on his list

were submitted. We extend their approach to the multi-object case: A proxy bidder takes

the role of submitting the multi-object counterpart of the bid list, a ranking of possible

bids according to their potential profit. This is the extension of the Ausubel-Milgrom

proxy auction to secret scoring rules.

Finally, Rezende (2009) makes use of bias functions instead of scoring rules to account

for quality differences. In his setting, the release of information is always optimal. The

ascending proxy auction that we use is introduced and discussed by Ausubel and Milgrom

(2002). A final discount stage is added by Lamy (2007), ensuring that truthful bidding

leads to a bidder-optimal point in the core. Ranger (2005) extends the proxy auction to

a setting with externalities.

The paper is organized as follows: First, we introduce the general framework in section 2.

The results on the proxy auction with a general scoring rule are developed in section 3.

Finally, we discuss the properties of secret scoring rules in the general context and in the

presence of an additive scoring rule in section 4, before we conclude in section 5.
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2 The Model

We consider the set N of n suppliers in a procurement auction. They bid to provide all or

some of the m indivisible goods in the set G. Each good j ∈ G is specified by rj quality

attributes. The attributes may take different real-valued attribute levels. For a realization

of these levels of good j, we denote the attribute vector by qj ∈ Qj ⊂ R
rj

+ . Let r =
∑m

j=1 rj

be the total number of attributes of all goods in G and q = (q1, q2, . . . , qm) ∈×m

j=1
Qj ⊂

R
r
+ the total attribute vector. Additionally, each bid on a good j specifies a price pj ∈ R+.

Let p =
∑m

j=1 pj be the total price of all goods. The set P of all possible prices and Qj

are assumed to be discrete and finite2. For a subset Gj ⊂ G, we denote the vector of

attributes of the goods in Gj by qGj
. rGj

and pGj
are defined analogously. The buyer has a

valuation function v for the set G of goods with a quality vector q. We assume quasilinear

utility for the buyer: If the set G is bought for a price p, the buyer has a total utility of

v(q) − p.

In a multi-object scoring auction, the sellers submit bids (pGj
, qGj

) for sets Gj of goods.

The evaluation of the bids is done on the basis of scores which are calculated by a scoring

rule that does not necessarily need to match the buyers true valuation v.

We consider a quasilinear scoring rule S : R
r+1
+ → R , which takes the form

S (p, (q1, . . . , qm)) = Φ(q1, . . . , qm) − p, (1)

with an overall price of p =
∑m

i=1 pi and increasing in the vector of quality attributes

(q1, . . . , qm).

Φ(q) represents the quality level that is achieved by the attribute vector q.

We denote the set of all possible allocations by H. A (winning) allocation qH ∈ H specifies

a partition H = {H1, . . . , Hn} in which every bidder i gets assigned a subset Hi ⊂ G such

that
⋃n

i=1 Hi = G and Hi ∩ Hj = ∅ for all i 6= j. These are the items each supplier has

to deliver. The set Hi may be empty. Additionally, qH fixes the attribute levels for the

items that each supplier got assigned. The winning allocation is the one that maximizes

the overall score according to S with respect to the submitted bids. Note that we do not

select a specific tie breaking rule; any rule will do for our purposes.

In our model, the suppliers differ with respect to their cost structure, which are private

values. In general, cost functions are specified for each package. Thus, bidder i has a cost

function ci

(
Gj, qGj

)
to produce quality qGj

for a package Gj. We write in short ci

(
qGj

)

for this. The costs are assumed to be strictly increasing in each quality attribute, and

each qGj
may be delivered for some finite price. Furthermore, let ci(q∅) ≡ 0.

The social surplus W (qH) that an allocation qH achieves can thus be denoted as follows:

2This assumption is not very restrictive, as we will use an ascending auction procedure in the following,

where it is common to use discrete bid increments. Furthermore, there are usually technical restrictions

on possible attribute levels, and the auctioneer has a maximum price he is willing to pay. All in all, the

attribute space is allowed to become very large, such that any realistic bid can be included.
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W (qH) := Φ (qH) −
∑

i∈N

ci (qHi
) .

We illustrate this model by the following example:

Example 1 Consider three bidders (1,2 and 3) and two objects (A and B). There is one

quality attribute for each object, the negative3 delivery time, represented by qA and qB,

respectively. The buyer uses the scoring rule

S (pA, pB, qA, qB) := 15 + min{qA, qB}
︸ ︷︷ ︸

=Φ(qA,qB)

−pA − pB

We assume that bidders are able to produce the objects in either one or five days or not

at all, according to the costs given in table 1.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Costs bidder 1 5 4 10 9 20 16 16 12

Costs bidder 2 10 9 4 3 19 15 15 13

Costs bidder 3 11 5 11 5 30 20 20 14

Table 1: Costs of the bidders.

The underlined costs mark the efficient allocation: Bidder 1 delivers item A and bidder 2

delivers item B, both in time 1. We now look at a Vickrey-Clarke-Groves mechanism to

determine the payments. Denote the winning allocation by q∗H (maximizing W (qH)) and

the winning allocation if bidder i were not present by q∗H−i
. Bidder i gets paid pi according

to the VCG payment rule:

pi := W (q∗H) − W
(

q∗H−i

)

+ ci

(
q∗Hi

)

Thus, each winning bidder gets paid for the surplus that he generates by his presence plus

his costs. Bidder 1 has costs of 5 and generates a score of ((15 − 1) − (4 + 5)) − ((15 −

5)− (3 + 5)) = 3 (if bidder 1 were not present, bidder 3 would deliver item A instead and

delivery time would go up to 5). Hence, he gets paid p1 = 8. Similarly, bidder 2 gets paid

9. With these payments we get a total score of (15−1)− (8+9) = −3 < 0. Consequently,

the buyer would prefer not to buy the items at these payments – the VCG mechanism

does not guarantee individual rationality.4

3We take the negative time to make the score increasing in quality.
4See Suyama and Yokoo (2005) for a more detailed discussion.
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3 Ascending Proxy Scoring Auctions

The auction format we use in this paper is a generalization of the Ausubel-Milgrom

ascending (proxy) package auction. We first describe how the ascending package auction

extends to the scoring auction environment and then introduce the proxy bidder.

The auctioneer (buyer) publicly announces the items he wants to buy and the items’

corresponding possible attributes and their levels. He decides on a scoring rule5 S to

evaluate the bids. In each round, a seller i bids according to the following general structure:

First, he selects the packages of items he wants to bid on and decides for each package Gj

which quality attribute levels qGj
he wants to offer – he may offer different combinations

of attribute levels for each package. For each of these offers, the bidder specifies a price

bid βi

(
qGj

)
at which he is willing to sell. Then, he submits all of these bids

(
βi

(
qGj

)
, qGj

)

simultaneously. Bids are treated as mutually exclusive – for each bidder, at most one bid

will be selected by the auctioneer for the standing high bids, the winning allocation of

each round. The auctioneer may also include bids of previous rounds in the standing high

bids (e.g. of bidders that already stopped bidding).

For the first bidding round, the auctioneer specifies a maximum price p̄ the sellers may

ask for. For the following rounds, there is a (minimum) bid increment b by which the

sellers have to lower their previous price offer on a particular package and attribute level

configuration. We denote the maximum bid price by mi

(
qGj

)
. A single bid is rejected if

the maximum bid rule is not met, all bids are rejected if the resulting standing high bids

would yield a negative score. Rejected bids are treated as a zero bid. Bidding ends if no

new bids are submitted or all submitted bids violate the maximum bid rule.

In the proxy auction, the bidding process is automated with the help of a proxy bidder. It

uses the following strategy, where asking for a price of ∞ corresponds to submitting no

bid on this attribute level configuration:

Definition 2 The bidding strategy

∀qGj
: βi

(
qGj

)
:=







mi(qGj
) if qGj

∈ arg maxq′
Gj

[

mi

(

q′Gj

)

− ci

(

q′Gj

)]

∞ if qGj
/∈ arg maxq′

Gj

[

mi

(

q′Gj

)

− ci

(

q′Gj

)]

is called straightforward bidding strategy. New bids are only submitted in case bidder i is

not one of the standing high bidders.

Bidding stops in case arg maxq′
Gj

[

mi

(

q′Gj

)

− ci

(

q′Gj

)]

< 0.

According to this strategy, the bidder places the maximum bid on all attribute level con-

figurations that yield the highest potential profit. Note that the straightforward bidding

strategy does not depend on the scoring rule used by the auctioneer, but only on the cost

structure of each bidder. Thus, using the straightforward bidding strategy is similar to

5The analysis of the decision process is not part of this paper – any decision process is fine for our

purposes.
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sorting all bids according to their potential profit into a bid list and submitting one after

the other (and all bids with the same profit at the same time).

In the proxy auction, each seller reports a cost structure ci (not necessarily truthfully)

to the proxy bidder. Then, the proxy submits bids on behalf of the seller following the

straightforward bidding strategy with respect to the reported cost structure.

Example 3 We use the setting of example 1 and apply the proxy scoring auction. Bidders

costs are given by table 1. The maximum starting price has to be chosen high enough – a

price of 15 will do for our purposes. Bidders start by bidding myopically on the attribute

level configuration with the lowest production cost, yielding the highest possible profit.

Table 2 shows the first set of bids submitted by the proxy bidders. We assume that the

bidders reported their costs truthfully to the proxy bidder.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 – 15 – – – – – –

Bids bidder 2 – – – 15 – – – –

Bids bidder 3 – 15 – 15 – – – –

Table 2: First round bids.

As no combination of these bids generates a positive payoff, all bids are rejected by the

buyer. The proxies submit a new set of bids, uniformly lowering the potential profit – we

assume a bid increment of 1 here. Table 3 shows the second set of bids.

Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 15 14 – – – – – –

Bids bidder 2 – – 15 14 – – – –

Bids bidder 3 – 14 – 14 – – – –

Table 3: Second round bids.

Again, bids are rejected because no positive score is generated by the submitted bids.

In the following rounds, the proxies will continue to lower the potential profit until a

nonnegative score is generated by the submitted bids. This is the case for the bids in

table 4.

The winning bids are the underlined bids in table 4 – bidder 3 will submit one more set

of bids with a potential profit of zero, but these bids are not high enough to outbid the

other two. The winning allocation is the same as in example 1, but prices are lower – the

outcome is individually rational.
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Object A Object B Objects A and B

Quality −1 −5 −1 −5 (−1,−1) (−1,−5) (−5,−1) (−5,−5)

Bids bidder 1 7 6 12 11 – – – 14

Bids bidder 2 13 12 7 6 – – – –

Bids bidder 3 12 6 12 6 – – – 15

Table 4: Bids leading to a nonnegative score.

For the following analysis, similar to Ausubel and Milgrom (2002), we assume that bid

increments are negligibly small, such that we have a continuous price range. We think of

bidding rounds as taking place at times t ≥ 0.

To derive our main results, we need to make sure that all allocations that may theoretically

win the auction are included in the bidding process. Particularly, bidding does not stop

before e.g. bidder i starts submitting a bid on an attribute level configuration that is

complementary to the others and would yield a higher score. This is established in the

following lemma.

Lemma 4 Consider any possible set of cost structures and any allocation qH that possibly

generates a positive score. Then, a sufficiently high starting price p̄ exists, fulfilling the

following: In each bidding round that yields a nonnegative score, every bidder who delivers

one or more items in this allocation qH submits a bid on his respective attribute level

configuration.

Proof See Appendix. �

In other words, the proxy starts bidding with a very high price, such that bids get rejected

in the beginning of the auction. As soon as the score gets positive, and bids are not rejected

any more, all allocations that are theoretically able to win the auction may be chosen by

the auctioneer.

To analyze the properties of the proxy scoring auction, we take a look at the corresponding

game in coalitional form. In particular, we want to show that the proxy auction leads to

a core outcome of this game.

First, we denote the set of all participants in the auction by Ns = N ∪ {0}. The buyer is

player 0. A coalition is any subset Nc ⊂ Ns. The set of allocations for a coalition Nc is

the set where all items get assigned to sellers in Nc \{0}, denoted by Hc := {qH ∈ H|∀i /∈

Nc \ {0} : qHi
= 0}. The coalitional value function w represents the profit a coalition Nc

can achieve by producing and trading all items only within its members. Note that only

coalitions including the buyer can achieve positive profits as he is paying the bill for the

delivered items. For such a coalition, an allocation in Hc is chosen and and w takes the
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following form:

∀Nc ⊂ Ns : w(Nc) :=







maxqH∈Hc

[

Φ(qH) −
∑

i∈Nc\{0}
ci(qHi

)
]

if 0 ∈ Nc

0 if 0 /∈ Nc

A payoff vector π = (π0, . . . , πn) is called feasible if its aggregate payoff does not exceed

the value achievable by the coalition of everyone. It is called unblocked if no coalition is

able to improve the payoff of its members on its own. The core is the set of feasible and

unblocked payoff vectors:

Core(Ns, w) :=

{

π

∣
∣
∣
∣
∣

∑

i∈Ns

πi = w(Ns) ∧ ∀Nc ⊂ Ns :
∑

i∈Nc

πi ≥ w(Nc)

}

Let π̃t denote the intermediate payoff vector in the auction at time t. We can now derive

the following connection between core and proxy scoring auction:

Theorem 5 The surplus with respect to the scoring rule and the reported cost structures

Φ(q∗H) −
∑

ci(q
∗
H) = w(Ns) is maximized in the final winning allocation q∗H of a proxy

scoring auction. The final payoff vector at time t̄ is in the core, π̃t̄ ∈ Core(Ns, w).

Proof See Appendix. �

The strategies of the sellers in the proxy scoring auction describe what kind of cost

structures they submit to the proxy. One particular type of strategy is the πi-profit-target

or semi-sincere strategy. Such a strategy guarantees bidder i a profit of πi in case he is

one winner of the auction. The strategy can be realized by submitting a cost structure

c̃i = ci +πi. Let Πi (c̃i, c̃−i) denote the profit bidder i makes in the proxy scoring auction if

he reports c̃i and the others report c̃−i. Generalizing the results of Ausubel and Milgrom

(2002), we first show that there is always a best reply which is a profit-target strategy.

Theorem 6 For any bidder i and any reports c̃−i to the proxy by the other bidders, let

π̄i = maxc̃i
Πi (c̃i, c̃−i). Then the π̄i-profit-target strategy is a best reply for bidder i in the

proxy scoring auction.

Proof See Appendix. �

To characterize a set of equilibria of the proxy scoring auction, we need the following

definition.

Definition 7 A payoff vector π is called bidder-optimal if π ∈ Core(Ns, w) and there

exists no π′ ∈ Core(Ns, w) with π′
−0 ≥ π−0 and π′

−0 6= π−0.

Bidder-optimal points in the core are associated with Nash equilibria of the proxy scoring

auction:
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Theorem 8 Suppose that π is bidder-optimal. Then the corresponding πi-profit-target-

strategies constitute a Nash equilibrium of the proxy scoring auction. Conversely, the pay-

off vector in any Nash equilibrium in profit-target strategies at which losing bidders bid

sincerely is bidder-optimal.

Given Theorem 6, the proof of Theorem 8 is now identical to the proof of the corresponding

theorem in Ausubel and Milgrom (2002) (Theorem 4).

In general, there may be several bidder-optimal points in the core, yielding several equi-

libria. A condition guaranteeing a unique bidder-optimal point in the core is bidder-

submodularity of the coalitional value function:

Definition 9 A coalitional value function w is called bidder-submodular, if for any bidder

i and all coalitions N1, N2 that include the seller, N1 ⊂ N2,

w(N1 ∪ {i}) − w(N1) ≥ w(N2 ∪ {i}) − w(N2)

holds.

Bidder-submodularity of w also relates the outcome of the proxy scoring auction to the

outcome of the VCG mechanism, πV :

Theorem 10 Suppose w is bidder-submodular. Then, the strategy profile where every

bidder i reports ci truthfully to the proxy bidder is an equilibrium of the proxy scoring

auction. Its payoff vector π is the unique bidder-optimal point in Core(Ns, w), and πi =

πV
i = w(Ns) − w(Ns \ {i}) = max{πi|π ∈ Core(Ns, w)}.

Given Theorem 5, the proofs of the corresponding theorems in Ausubel and Milgrom

(2002) (Theorem 8) or Milgrom (2004) (Theorem 8.11) apply.

The theorem provides a sufficient condition for the proxy scoring to work well: With

bidder-submodularity of the coalitional value function, truthtelling is an equilibrium and

it is thus easy for the sellers to follow this strategy. Additionally, the unique bidder-optimal

core point with respect to the true valuations is reached. Under these circumstances, the

proxy scoring auction works as well as the VCG mechanism, as it reaches the same payoff

vector. Note, however, that the proxy scoring auction additionally always guarantees

individual rationality of the outcome, which the VCG mechanism does not.

4 Secret Scoring Rules

We now turn to the question of how far the auctioneer is able to keep the scoring rule

secret. First, we discuss whether the analysis of the general model in section 3 can be

extended to secret scoring rules. Then, we consider a specific type of scoring rules: additive

scoring rules, where the total score can be calculated as the sum of the scores of the

individual items. For this type of scoring rules, a general result connecting the Ausubel-

Milgrom proxy auction and the proxy scoring auction can be derived.
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4.1 General Scoring Rules

How does the proxy scoring auction work with a secret scoring rule? Note that the auction

procedure did not specifically rely on the scoring rule being public. Without knowledge of

the scoring rule, sellers submit a cost structure to the proxy. Its bidding behavior stays the

same: The proxy submits the bids myopically in order of the respective seller’s preferences

– it does not need the scoring information to do so, but only the submitted cost structure.

Then, bids get evaluated according to the scoring rule – this can be done by a proxy

as well to ensure that the auctioneer sticks to the scoring rule and does not change it

during the auction process. The submitted bids do not need to be publicly announced.

The minimum information that is necessary to make the procedure work is to let every

bidder know when he is standing high bidder. Announcing this publicly has no impact

on the outcome of the auction. However, any information the auctioneer reveals contains

information about his scoring rule. Consequently, the more concerned he is with keeping

it secret, the less information on bids and their evaluation should be given out.

We start the theoretical analysis with the observation that Theorem 5 holds even with a

secret scoring rule, as the bidding behavior of the proxy does not change.

Corollary 11 The proxy scoring auction with a secret scoring rule reaches the same

outcome as the proxy scoring auction with a public scoring rule. Particularly, the final

winning allocation maximizes the surplus with respect to the scoring rule and the reported

cost structures. The final payoff vector is in the corresponding core.

The equilibrium analysis in theorems 6, 8 and 10 is in principle valid with a secret scoring

rule as well: As the outcome stays the same, best replies are still best replies, no matter

whether the scoring rule is secret or not. However, to enable the sellers to completely

derive the equilibrium strategies themselves, they need to have full knowledge of the

cost structures of their competitors (similar to bidders needing knowledge of all bidders

valuations in the original Ausubel-Milgrom proxy auction). Additionally, to derive best

replies and equilibria in the sense of theorems 6 and 8 they need knowledge of the scoring

rule (to calculate their potential maximum profit and the core, respectively).

Nevertheless, if the coalitional value function is bidder-submodular, this knowledge is not

needed: By Theorem 10, it is an equilibrium if all sellers report their cost structures

truthfully. Thus, if the auctioneer had a way to (credibly) announce that his scoring

rule is such that the coalitional value function is bidder-submodular, the sellers could

play their equilibrium strategy without knowledge of the scoring rule. However, such an

announcement can be difficult to make: The coalitional value function depends on the

bidders’ cost structures. If the auctioneer does not know these cost structures, a general

characterization for bidder-submodularity would be needed, enabling the auctioneer to

deduce bidder-submodularity using only the scoring rule and, if necessary, some regularity

conditions on the cost structures.
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4.2 Additive Scoring Rules

We now analyze the special case of an additive scoring rule. Then, the score for each item

j can be calculated individually by

Sj(pj, qj) := φj(qj) − ci(qj).

The total score for a set Gj is then given according to

SGj
(pGj

, qGj
) =

∑

l∈Gj

Sl.

Suppose in a first step that the scoring rule is publicly known. Note that, in contrast to

our previous analysis, an additive scoring rule enables the bidders to calculate the value of

their bids in terms of the score they generate. The bidding procedure can be substantially

simplified in this setting: Bidders need to submit only one score for each package they bid

on. To show this, think of a bidder i who is one of the winners of the auction. He has to

deliver the package Gj, and the auctioneer expects to get a score of tij on this package.

We suppose that bidder i has the freedom to provide a score of tij in any way he likes.

Analogously to statements in Asker and Cantillon (2008) and Mueller et al. (2007) we

can formulate the following lemma:

Lemma 12 The optimal level of quality q∗Gj
∈ QGj

that a supplier i with cost function

cGj
produces for a package Gj is independent of the score tij he has to fulfill.

Proof See Appendix. �

In our general setting, bidders needed to differentiate their bids by submitting different

attribute levels and configurations for each package. Lemma 12 shows that, with an ad-

ditive scoring rule, the suppliers are not interested in submitting different attribute level

configurations for the same package – they produce the same configuration in any case.

This leads us to the following corollary:

Corollary 13 Consider a multi-object scoring auction with a publicly known additive

scoring rule. Bidders have no restriction on how to deliver the requested score. Then,

there is no difference between bidders submitting bids of price-quality combinations or

bids of scores: Both mechanisms lead to the same outcome – the same quality is delivered

and the same price is paid.

Hence, it is sufficient to let bidders submit a single score for each package instead of a

price-quality combination as long as they know the scoring rule. For this setting with an

additive and public scoring rule we thus assume for the sequel that bids consist of scores.

Furthermore, Lemma 12 shows that each bidder has a maximum of social surplus he can

generate with respect to the scoring rule. This leads to the following definition.



Ascending Combinatorial Scoring Auctions 14

Definition 14 Suppose that bidder i has a cost function cGj
for each Gj ⊂ G. Then

kGj
:= max

qGj

[
φGj

(qGj
) − cGj

(qGj
)
]

(2)

is the pseudotype of bidder i for the package Gj.

Alternatively, the pseudotype can be interpreted as the maximum score a seller is able to

deliver without losing any money. Regarding this interpretation, the pseudotype is similar

to the valuation in price-only auctions – there, the valuation is the maximum amount of

money a buyer can pay without obtaining an object at a loss.

In this context, the proxy scoring auction works as follows: The sellers submit a pseu-

dotype vector (the pseudotype for each package) to the proxy. Then, the proxy submits

mutually exclusive bids of scores according to the straightforward bidding strategy – he

bids myopically on all packages promising the highest profit. The auctioneer selects the

standing high bidder by selecting the allocation that maximizes the sum of submitted

scores. We can compare this bidding procedure with the original Ausubel-Milgrom proxy

auction:

Remark 15 The proxy scoring auction with a public additive scoring rule can be inter-

preted as the original Ausubel-Milgrom proxy auction with bidders submitting pseudo-

types as valuation vectors and proxies submitting scores as bids. Particularly, if bidders

types in the scoring auction are their pseudotypes and distributed as the types in the

original scoring auction, all theorems that hold for the original proxy auction hold for the

additive proxy scoring auction as well (in their corresponding reformulations).

Note that this is a general statement on the transferability of results to the scoring auction

environment. Not only Theorems 5, 6, 8 and 10 hold, but all other statements that are

true for the original proxy auction have their counterpart for the additive proxy scoring

auction. For a general scoring rule we do not have this kind of general transferability –

each theorem has to be proven in the new environment, as we did in section 3.

However, transferring results for the additive scoring auction can be a bit more compli-

cated in an independent private values model with incomplete information: If bidders have

multidimensional types that do not represent the pseudotypes (but can be reduced to get

them), it is not directly obvious that the strategic bidding behavior of each participant

is the same as in the price-only auction. Nevertheless, Mueller et al. (2007) show that

under mild regularity assumptions the set of equilibria of a price-only auction and the

corresponding scoring auction is basically the same.

We now turn to the analysis of secret scoring rules in the context of the additive proxy

scoring auction. In this auction, bids are submitted as scores generated out of the pseu-

dotypes vectors of the bidders. As bidders need to know the scoring rule to calculate their

pseudotype, reducing bids to scores is not possible. Consequently, the bidding procedure

needs to be transformed in the presence of a secret scoring rule. A suitable bidding pro-

cedure is the one used in section 3: Each bidder submits a cost structure to the proxy,
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which generates bids on all possible attribute level configurations. The additive scoring

rule imposes enough structure to connect the two different bidding procedures:

Theorem 16 Consider a winning bidder and the associated winning package in any round

of a proxy scoring auction with a secret additive scoring rule. Then, among the bids on the

different attribute levels of that package by the bidder, the buyer chooses the bid using the

optimal quality attribute level from the seller’s perspective (if he knew the scoring rule).

Proof See Appendix. �

What does this theorem tell us? Consider a seller i who decides to bid according to a

cost structure c′i. Suppose he submits this cost structure to the proxy bidder, it bids

accordingly and the seller is a standing high bidder in one of the bidding rounds. Then,

the auctioneer will select the optimal attribute level in this standing high bid – the one the

seller would have chosen (according to his submitted cost structure) in case he would have

only been forced to deliver a particular package and score, and not a particular attribute

level configuration. Thus, the outcome of the auction is the same in case the scoring rule

is public and each seller i uses similarly c′i to calculate his pseudotype and decide on the

attribute levels he will deliver.

Note one particular difference: If seller i decides to choose c′i such that the relative costs

of attribute levels for a specific package are changed, his true optimal quality might differ

from the optimal quality implied by c′i. In case of a public scoring rule, he would have an

ex post incentive to supply his true optimal attribute levels after being told the package

and score he has to deliver. With a secret scoring rule, he is forced to deliver the attribute

levels chosen by the auctioneer. However, this distortion cannot appear when for each

possible package Gj there is a πGj
such that c′i(qGj

) = ci(qGj
)+πGj

– each bidder uses his

true relative costs for a package. This kind of bidding behavior is a best reply: Suppose a

seller would distort his costs for a specific package and win the auction on that package

with a profit π′. Then, he always makes at least the same profit by not distorting and

uniformly asking for a profit-target of π′ on that package. In fact, he could possibly even

raise the profit-target and still win the auction, as he is able to generate a (weakly) higher

score on the same package if he does not distort. Consequently, we can conclude:

Corollary 17 The outcome of the proxy scoring auction with a public additive scoring

rule can be reproduced using a secret scoring rule.

This is particularly interesting as bidding with public additive scoring rule relied on

the bidders’ knowledge of the scoring rule. Thus, we showed a way to transfer theory

regarding the original Ausubel-Milgrom proxy auction to scoring auctions with secret

additive scoring rule, using the public additive scoring rule as an intermediate step. Of

course, the restrictions on the use of secret scoring rules as mentioned in section 4.1 still

apply.
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5 Conclusion

We showed that the Ausubel-Milgrom proxy auction can be extended to a combinatorial

scoring auction setting. It is able to replicate the desirable outcome of the Vickrey-Clarke-

Groves mechanism in case the coalitional value function is bidder-submodular, but does

not suffer of the individual rationality problems that may appear in the context of a

general scoring rule when the VCG mechanism is used.

Furthermore, we discussed the possibility of keeping the scoring rule secret: The outcome

stays the same, best replies are still best replies, and if it is publicly known that the

coalitional value function is bidder-submodular, sellers can submit the truthful equilibrium

bid without further knowledge of the scoring rule. For an additive scoring rule we derived

a close connection to the original Ausubel-Milgrom proxy auction.
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A Appendix: Proofs

Proof of Lemma 4

Let

p̄ := 2 · max
q

S(0, q),

which is twice the maximum possible score (if all sellers would give away their items

for free). Hence, bids get rejected at least until the first submitted prices reach p̄

2
. Now

suppose we are in any bidding round after this point and consider any allocation qH

that generates a positive score with respect to the reported cost structures (these are the

allocations that may theoretically win the auction). In particular, this means that the

individual costs ci (qHi
) of each seller in this allocation are below p̄

2
. As this seller has

already submitted at least one bid (on some attribute level configuration) with a price

lower than p̄

2
, the maximum profit he may obtain in this round is lower than p̄

2
. He can

make at least the same profit by asking for a price of p̄ on qHi
, because p̄−ci (qHi

) ≥ p̄− p̄

2
.

Hence, according to the straightforward bidding strategy, the proxy places a bid on qHi

in this round. �

Proof of Theorem 5

We first show that at any time t the provisional payoff vector is unblocked by any coalition.
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Among all submitted bids at6 time t, the auctioneer selects the allocation qt
H ∈ H that

maximizes the score7:

qt
H ∈ arg max

qH∈H

S ((β1(t, qH1
), qH1

), . . . , (βn(t, qHn
), qHn

))

Now, we can rearrange this score:

π̃t
0 = max

qH∈H

S
(
(c1(qH1

) + π̃t
1, qH1

), . . . , (cn(qHn
) + π̃t

n, qHn
)
)

= max
Nc⊂Ns

max
qH∈Hc



Φ (qH) −
∑

i∈Nc\{0}

(
ci(qHi

) + π̃t
i

)





= max
Nc⊂Ns



 max
qH∈Hc



Φ (qH) −
∑

i∈Nc\{0}

ci(qHi
)



 −
∑

i∈Nc\{0}

π̃t
i





= max
Nc⊂Ns



w(Nc) −
∑

i∈Nc\{0}

π̃t
i



 (3)

The second equality holds as bidders not in coalition Nc receive a payment of 0 and do not

deliver an item. Using equation (3) we can directly see that the payoff vector is unblocked:

∀Nc ⊂ Ns : π̃t
0 ≥ w(Nc) −

∑

i∈Nc\{0}

π̃t
i

⇐⇒ ∀Nc ⊂ Ns :
∑

i∈Nc

π̃t
i ≥ w(Nc)

(4)

We still need to show that the final payoff vector is indeed feasible. Denote the set of

bidders in the final winning coalition at time t̄ by W . Then, we get as final payoff vector

π̃t̄:

π̃t̄
i =







βi(t̄, q
∗
Hi

) − ci(q
∗
Hi

) if i ∈ W

Φ(q∗H) −
∑

j∈W βj(t̄, q
∗
Hj

) if i = 0

0 if i /∈ W ∪ {0}

This payoff vector yields

w(Ns)
(4)

≤
∑

i∈Ns

π̃t̄
i = Φ(q∗H) −

∑

i∈W

ci(q
∗
H) ≤ max

qH∈Hc



Φ (qH) −
∑

i∈Ns\{0}

ci(qHi
)



 = w(Ns).

Hence, feasibility and maximization of surplus with respect to the scoring rule and the

reported cost structures are established. �

6Similar to the original Ausubel-Milgrom proxy auction, all bids up to time t can be included in the

optimization problem of the auctioneer. However, as the proxy simultaneously lowers the price on all

possible quality levels, the auctioneer will always prefer the latest bid submitted.
7Note that the auctioneer pays an amount of zero to every not winning bidder although the notation

suggests something different. For the ease of a simple notation we stick to it.
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Proof of Theorem 6

Suppose c′i is a cost structure that yields a profit of π̄i for bidder i if the others report

c̃−i. Denote the associated quality attribute allocation by q′. Then, bidder i sells q′i for a

price of ci(q
′
i)+ π̄i, as π̄i is the profit that he makes with respect to his true cost structure.

We can then slightly change this strategy without altering the outcome of the auction:

Let c′′i (qi) = c′i(qi) − c′i(q
′
i) + ci(q

′
i) + π̄i. The report c′′i shifts the report c′i such that the

winning quality allocation q′ makes a profit of zero with respect to the new cost structure

c′′i . Especially, bidding behavior by the proxy is not changed with this alteration of the

reported cost structure: The cost minimal quality allocation q̂ stays the same, p̂ stays

the same and relative reported costs stay the same as well. The shift can only affect the

potential profit, which is not visible for the auctioneer. Thus, decisions by the auctioneer

stay the same in every round, and the final decision q′ will stay the final decision with a

report of c′′i as well – only that the internal profit in the calculations of the proxy for this

allocation is reduced to 0.

Theorem 5 showed that q′ is surplus maximizing with respect to the scoring rule and

cost structures (c′′i , c̃−i). Hence, surplus cannot be increased by choosing an allocation

excluding i. Thus, keeping the reports of the others fixed, with any cost structure c̃i that

specifies c̃i(q
′
i) = c′′i (q

′
i) a quality allocation of q′ is feasible and bidder i will be included

in the winning allocation (either q′ or some other allocation including i).

Now note that the π̄i-profit-target-strategy specifies a bid of ci(q
′
i) + π̄i = c′′i (q

′
i) for q′.

So from our considerations above we know that bidder i will be included in the winning

allocation using this strategy. Furthermore, as the π̄i-profit-target-strategy guarantees a

profit of π̄i in case i is in the winning allocation, the maximum possible profit of π̄i is

realized with this strategy. It is thus a best reply. �

Proof of Lemma 12

The bidder chooses to supply the price-quality combination (p∗Gj
, q∗Gj

) that maximizes his

profit. Thus, his objective is

max
(pGj

,qGj
)

[
pGj

− c(qGj
)
]

s.t. φGj
(qGj

) − pGj
= tij.

This can be rewritten as

max
qGj

[
φGj

(qGj
) − tij − c(qGj

)
]

= max
qGj

[
φGj

(qGj
) − c(qGj

)
]
− tij. (5)

Note that the maximum exists and is unique: φGj
(qGj

)−c(qGj
) is a concave and continuous

function on a compact set. Furthermore, in (5) we can see that the optimal quality does

not depend on the score to fulfill. �

Proof of Theorem 16
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Consider the bids of a bidder i. For each possible attribute level configuration qGj
for each

possible package, a price exists such that a potential profit value πi is realized. As the proxy

continuously decreases the profit value during the auction process, for every quality level

and package the proxy will simply set the bid price βi(qGj
) such that βi(qGj

) := ci(qGj
)+πi.

Hence, in each round the buyer receives a set of bids by each seller including every attribute

configuration and the corresponding prices, all leading to the same profit for the seller.

Every level qGj
thus generates a score φGj

(qGj
) − βi(qGj

). As the buyer is rational, for

every πi he will prefer the bid (βi(qGj
), qGj

) out of the bids of seller i that maximizes his

score for a certain package. This is the bid that maximizes φGj
(qGj

)− βi(qGj
) + βi(qGj

)−

ci(qGj
) = φGj

(qGj
) − ci(qGj

), as βi(qGj
) − ci(qGj

) = πi is a constant. But the maximum

of φGj
(qGj

) − ci(qGj
) for a certain package is the bidder’s pseudotype for this package.

Hence, the optimal quality is chosen by the buyer. �
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