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1 Introduction

The regression discontinuity design (RDD) was �rst introduced by Thistlethwaite and Campbell

(1960) as a quasi-experimental design for evaluating social programs and interventions. The

prediction made by Campbell and Stanley (1963) that the RDD is �very limited in its range of

applications (that are) mainly educational�has been proven wrong by the recent literature. The

RDD has received tremendous attention in many �elds, e.g. labor markets, political economy

health, criminology, environment, development.1

The RDD has attracted a more modest attention in theoretical econometrics. Hahn, Todd, and

van der Klaauw (2001) describe this identi�cation strategy using the treatment e¤ect framework

and formalize the assumptions required to identify causal e¤ects. They also provide local linear

estimators to non-parametrically estimate the mean treatment e¤ect. Porter (2003) complements

their work by considering alternative estimators. Lee and Card (2008) consider the case when

the forcing variable is discrete. They interpret deviations of the true regression function from a

given approximating function as speci�cation errors and propose appropriately corrected standard

errors. McCrary (2008) develops a test of the manipulation of the running variable related to the

continuity of its density function. Frölich (2007) incorporates covariates in a fully nonparametric

way and shows that e¢ ciency gains are obtained and that the rate of convergence does not depend

on the number of covariates. Imbens and Lemieux (2008), van der Klaauw (2008) and Lee and

Lemieux (2009) have surveyed both the applied and theoretical literature on the RDD.

Despite this growing number of studies, the RDD has been used so far only to estimate average

treatment e¤ects. Yet, in many research areas, one is often not only interested in average impacts,

but also in the distributional consequences of treatment interventions. In the �eld of education

(e.g. Jacob and Lefgren (2004), Leuven, Lindahl, Oosterbeek, and Webbink (2007)), educational

inequality e.g. in cognitive achievement is of large public interest. When examining the e¤ects

1For an incomplete list see e.g. Angrist and Lavy (1999), Battistin and Rettore (2002), Battistin and Rettore

(2008), Black (1999), Black, Galdo, and Smith (2007), Black, Jang, and Kim (2006), Black, Smith, Berger, and

Noel (2003), Buddelmeyer and Skou�as (2003), Brügger, Lalive, and Zweimüller (2008), Chay and Greenstone

(2005), Chay, McEwan, and Urquiola (2005), DiNardo and Lee (2004), Fredriksson and Öckert (2006), Forslund

and Skans (2006), Imbens and Lemieux (2008), Gormley and Phillips (2005), Guryan (2001), Jepsen, Mueser, and

Troske (2009), Lalive (2008), Lalive, Wüllrich, and Zweimüller (2008), Leuven, Lindahl, Oosterbeek, and Webbink

(2007), Matsudaira (2008), NordströmSkans and Lindqvist (2005), Öckert (2008), Puhani and Weber (2007), van der

Klaauw (2002), van der Klaauw (2008) and the special issue of the Journal of Econometrics 2008.
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of training (e.g. Black, Galdo, and Smith (2007)), policy makers are often more interested in

the e¤ects at the lower quantiles than at the upper quantiles. When analyzing the e¤ects of

unemployment insurance on unemployment durations (e.g. Lalive (2008)), the distribution of the

unemployment durations is of interest, e.g. the risk of becoming long-term unemployed.

In this paper we identify and estimate nonparametrically the treatment e¤ects on the distri-

bution of the outcome variable in the RDD.2 We obtain uniformly consistent estimates for the

distribution functions of the potential outcomes. If the dependent variable is continuous, quantile

treatment e¤ects (QTE) are a convenient way to report heterogeneous impacts of treatments on

di¤erent points of an outcome distribution. Therefore, we show how quantile treatment e¤ects

can also be identi�ed and estimated. More generally, we obtain uniformly consistent estimates for

functionals of the distribution functions, e.g. for the Gini coe¢ cient, the Lorenz curve or distribu-

tion treatment e¤ects.3 Our estimators are based on the local-linear estimation of the distribution

function. If we choose optimally the bandwidth, our estimators are consistent at the n�
2
5 rate,

which is the optimal convergence rate for one-dimensional nonparametric estimation.

Even if one is not primarily interested in the distributional impacts or the impact on inequality,

one may still use the method proposed to reduce susceptibility to outliers. Compared to the widely

used mean RDD estimator, a median RDD estimator can provide more stable estimates when the

outcome variable is noisy, e.g. wages or earnings. The quantiles are well-de�ned even if the

outcome variable does not have �nite moments due to fat tails. This is akin to the discussion on

mean versus median regression, see e.g. Koenker and Bassett (1978) and Koenker (2005), who

stress the robustness of median regression to outliers. This may be particularly relevant for the

2The identi�cation of the distribution of the potential outcomes was �rst shown in section 4.3 of Frölich (2007).

These results were extended in the IZA working paper 3638 that was released in August 2008. The present paper

supplants this working paper and our previous results. Frandsen (2009) has proposed an estimator based on our

identi�cation strategy using local linear quantile regression. Frandsen�s estimator is di¤erent from ours in many

ways. However, it is ine¢ cient compared to our estimator. It does not achieve the optimal convergence rate of

n�
2
5 . (See his Assumption A7.) Guiteras (2008) suggests an interesting alternative identi�cation strategy based on

Chernozhukov and Hansen (2005). His assumptions are neither more nor less general than ours. However, we view

his assumptions as less natural in the RDD. His identi�cation approach relies on a monotonicity assumption in the

outcome equation, whereas we rely on a monotonicity assumption in the selection equation, which appears natural

in the RDD. His approach is only applicable for a continuous outcome variable Y , whereas we can allow for Y to

be discrete, continuous or mixed discrete-continuous, e.g. earnings with a mass point at zero.
3We proceed in this respect as in Chernozhukov, Fernández-Val, and Melly (2007). For a further discussion on

inequality measures see also Firpo (2008).
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RDD since the number of observations close to the discontinuity threshold is often relatively small.

In many applications, estimated e¤ects on higher-education or employment are often signi�cant

whereas e¤ects on earnings or wages are insigni�cant, because of the large variance of the latter

estimates, see e.g. Jepsen, Mueser, and Troske (2009).

The results in this paper are related to previous e¤orts to estimate quantile treatment e¤ects.

Koenker and Bassett (1978) propose a parametric estimator for conditional quantile functions

while Chaudhuri (1991) suggests a nonparametric estimator. In the RDD, the QTEs could be

estimated via nonparametrically weighted quantile regressions. However, we prefer to estimate

�rst the distribution function because the weights can be negative in the RDD, which causes the

objective function to be non-convex. In the fuzzy discontinuity design the proposed estimator

can be interpreted as an instrumental variable estimator where the discontinuity is used as a

binary instrument for the binary treatment. This is similar to the framework of Abadie, Angrist,

and Imbens (2002) and Abadie (2003) with the added complication that we must control

nonparametrically for the continuous running variable.

We illustrate how our estimators work in practice by applying the methodology to the data

used by Jacob and Lefgren (2004). They exploit an administrative rule introduced by Chicago

public schools in 1996 that tied summer school attendance to accomplishment on tests. Using the

discontinuity implied by this rule they �nd positive mean e¤ects of the summer school on later

educational achievement. We complement their results by showing that the e¤ects were clearly

larger at the upper quantile than at the lower quantiles of the test score distribution. This shows

that summer school is particularly e¤ective for motivated students who have presently di¢ culties.

The rest of the paper is organized as follows. In section 2 identi�cation is considered. Section

3 proposes estimators and derives their limiting distributions. We extend the previous results to

the case where covariates are present in section 4. Section 5 applies the estimation and inference

procedures to estimate distributional e¤ects of summer school on educational attainment. Section

6 concludes with a summary of the results.
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2 Identi�cation of QTE in the RDD

We de�ne causal e¤ects using the potential-outcome notation in the framework known as the

Neyman-Fisher-Rubin causal model.4 We are interested in the e¤ect of a binary treatment D on

an outcome variable Y . We observe n units, indexed by i = 1; :::; n, which are drawn randomly

and independently from a large population. Let Y 1i and Y
0
i be the potential outcomes of individual

i. Hence, Y 1i would be realized if individual i were to receive treatment and Y
0
i would be realized

otherwise. The potential outcomes as well as the treatment e¤ects Y 1i �Y 0i are permitted to vary

freely across individuals, i.e. no constant treatment e¤ect is assumed.

We observe each unit only once and, therefore, observe the realized outcome Yi = Y 0i (1�Di)+

Y 1i Di but not both potential outcomes. The identi�cation strategy of the causal treatment e¤ects

will exploit the presence of Zi, a variable that in�uences Di in a discontinuous way. In the

example in Section 5, Zi will be performance on a test before the summer break. Note that Z is

not an instrument because it is allowed to have a direct e¤ect on Y . However, this direct impact is

assumed to be �smooth�while the e¤ect on D is assumed to be discontinuous at a known threshold

z0.

In the literature, two di¤erent designs are often examined. In the sharp design Di changes for

everyone at z0,

Di = 1(Zi � z0). (1)

In this sharp design, all individuals change programme participation status exactly at z0. In many

applications, however, the treatment decision contains some element of discretion. Caseworkers

may have some discretion about whom they o¤er a programme, or they may base their decision

also on criteria that are unobserved to the econometrician. In this case, known as the fuzzy design,

D is permitted to also depend on other (unobserved) factors but we assume that the treatment

probability changes discontinuously at z0:

lim
"!0

E [DjZ = z0 + "]� lim
"!0

E [DjZ = z0 � "] 6= 0. (2)

The fuzzy design includes the sharp design as a special case when the left hand side of (2) is equal

to one. Therefore the following discussion focusses on the more general fuzzy design.5

4See Neyman (1935), Fisher (1935) and Rubin (1978).
5Battistin and Rettore (2008) introduce the mixed sharp fuzzy design as a special case of the fuzzy design.

4



In addition to the discontinuity (2), which is in fact a testable assumption, for identi�cation

it is further required that the conditional means of E[Y 0jZ] and E[Y 1jZ] are continuous at z0.

With these two assumptions, Z can act as an instrumental variable locally in a neighbourhood

about z0.6 Since we allow for heterogenous treatment e¤ects, identi�cation requires further a

monotonicity condition similar to that of Imbens and Angrist (1994). We identify the causal

e¤ects of D on the distribution of Y for the local compliers. Note that in the sharp design the

monotonicity assumption is automatically satis�ed and everyone is a complier.

For stating the identi�cation results, it is helpful to introduce more precise notation �rst. Let

N" be a symmetric " neighborhood about z0 and partition N" into N+
" = fz : z � z0; z 2 N"g

and N�
" = fz : z < z0; z 2 N"g. According to their reaction to the instrument z over N" we can

partition the population into �ve subpopulations:

Ti;" = a if Di(z) = 1 8z 2 N�
" and Di(z) = 1 8z 2 N+

"

Ti;" = n if Di(z) = 0 8z 2 N�
" and Di(z) = 0 8z 2 N+

"

Ti;" = c if Di(z) = 0 8z 2 N�
" and Di(z) = 1 8z 2 N+

"

Ti;" = d if Di(z) = 1 8z 2 N�
" and Di(z) = 0 8z 2 N+

"

Ti;" = ind if Di(z) is nonconstant over N�
" or over N+

" .

The de�nition of these subpopulations is a direct extension of the concept of Imbens and Angrist

(1994). The �rst group contains those units that will always be treated (if Z 2 N"), the second

contains those that will never be treated (if Z 2 N"), and the third and fourth group contains

the units that are treated only on one side of z0. The �fth group (labelled inde�nite) contains all

units that react non-monotonously over the N" neighbourhood, e.g. they may �rst switch from

D = 0 to 1 and then back for increasing values of z. We will assume that the last two groups

have measure zero for " su¢ ciently small. Note that in the sharp design, everyone is a complier

for any " > 0.

Assumption I: There exists some (arbitrary) positive �" such that for every positive " � �"
6Hahn, Todd, and van der Klaauw (2001) consider also as an alternative a kind of selection on observables

assumption. They assume that the treatment e¤ect is independent of D conditional on Z being near z0. We focus

on the IV type approach because it seems to dominate the literature. In the sharp design, both assumptions are

equivalent. In any case, in both designs the same estimator is obtained whichever of the two assumptions is invoked.
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(i) Existence of compliers lim
"!0

Pr(T" = cjZ = z0) > 0

(ii) Monotonicity lim
"!0

Pr (T" = tjZ 2 N") = 0 for t 2 fd; indg

(iii) Independent IV lim
"!0

Pr (T" = tjZ 2 N+
" )� Pr (T" = tjZ 2 N�

" ) = 0 for t 2 fa; n; cg

(iv) IV Exclusion lim
"!0

FY 1jZ2N+
" ;T"=t(u)� FY 1jZ2N�

" ;T"=t(u) = 0 for t 2 fa; cg

lim
"!0

FY 0jZ2N+
" ;T"=t(u)� FY 0jZ2N�

" ;T"=t(u) = 0 for t 2 fn; cg

(v) Density at threshold FZ(z) is di¤erentiable at z0 and fZ(z0) > 0

This assumption requires that for every small-enough neigbourhood, the threshold acts like a

local instrumental variable. Assumption I (i) requires that E [DjZ] is in fact discontinuous at z0,

i.e. we assume that some units change their treatment status exactly at z0. Assumption I (ii)

requires that, in a very small neighborhood of z0, the instrument has a weakly monotonous impact

on Di(z). Assumptions I (iii) and (iv) impose the continuity of the type and the distribution of

the potential outcomes as a function of Z at z0.7 Assumption I (v) requires that observations

close to z0 exist.

Under this assumption the distribution functions of the potential outcomes for local compliers

are identi�ed. De�ne FY djc(u) = lim
"!0

FY djZ2N";T"=c(u). De�ne also I
+ = 1 (Z � z0) and I� =

1� I+.

Theorem 1 (Distribution of potential outcomes) Under Assumption I, the distributions of

the potential outcomes for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

E [1 (Y � u) (I+ � p") jZ 2 N"; D = 1]

E [I+ � p"jZ 2 N"; D = 1]

FY 0jc(u) = lim
"!0

E [1 (Y � u) (I+ � p") jZ 2 N"; D = 0]

E [I+ � p"jZ 2 N"; D = 0]
.

where p" = Pr (Z � z0jZ 2 N") for " > 0.

Hence, the distribution functions can be estimated by local regression in a neighbourhood of

z0. Details of the estimator will be discussed in the next section.

Note that in the sharp design, everyone is a complier at z0, such that the cdf of the potential

outcomes in the population is identi�ed in this case as

FY 1(u) = lim
"!0

E [1 (Y � u) jZ 2 N"; D = 1]

FY 0(u) = lim
"!0

E [1 (Y � u) jZ 2 N"; D = 0] .

7This is slightly weaker than assuming (Y 1; Y 0; T")??1 (Z � z0) jZ 2 N" for "! 0.

6



The previous theorem showed that the distribution functions are identi�ed irrespective of

whether the outcome variable Y is continuous or discrete. Identi�cation of the distribution

function also implies the identi�cation of all functionals of the marginal distribution function

of the outcome with and without the treatment. We provide detailed results for a popular

functional, the quantile treatment e¤ect (QTE) process, but similar results may be obtained for

other functionals such as the variance, the Gini coe¢ cient, the Lorenz curve, the Theil index or

the interquartile or interdecile range. These results can also be used to develop tests of (�rst or

second order) stochastic dominance.

When Y is continuously distributed, we are often interested in the quantiles of the potential

outcomes and in particular the quantile treatment e¤ect. Suppose that Y 1, Y 0 are continuously

distributed which implies that the distribution functions are monotonously increasing and invert-

ible. Let Q�Y = inffu : FY (u) � �g be the quantile operator. De�ne Q�
Y djc = lim

"!0
Q�
Y djZ2N";T"=c

as the � th quantile of Y d for the local compliers. The quantile treatment e¤ect (QTE) for the

compliers is then de�ned as

��QTE = Q
�
Y 1jc �Q

�
Y 0jc.

We could identify the quantiles by �rst estimating the entire distribution functions, using the

results of Theorem 1, and thereafter inverting them. A more direct approach to identify and

estimate QTE consists in using the representation of conditional quantiles as the solution to a

minimization problem, as in Koenker and Bassett (1978). The following result gives a direct

representation of the quantiles and of the ��QTE . The expressions are obtained via the �rst order

conditions of a minimization/maximization problem.

Theorem 2 (Quantiles of the potential outcomes) Under Assumption I and assuming that

Y 0 and Y 1 are continuously distributed, the quantiles of the potential outcomes for the local com-

pliers are identi�ed as

Q�Y 1jc = lim
"!0

argmin
q

E
�
�� (Y � q)

�
I+ � p"

�
jZ 2 N"; D = 1

�
Q�Y 0jc = lim

"!0
argmin

q
E
�
�� (Y � q)

�
p" � I+

�
jZ 2 N"; D = 0

�
,

where �� (u) = u � f� � 1 (u < 0)g is the check function and p" = Pr (Z � z0jZ 2 N") for " > 0.
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Alternatively, we could identify the QTE ��QTE directly as�
Q�Y 0jc;�

�
QTE

�
= lim
"!0

argmin
a;b

E
�
�� (Y � a� bD)

�
I+ � p"

�
(2D � 1) jZ 2 N"

�
, (3)

which corresponds to a local weighted bivariate quantile regression.

Hence, the quantiles can be obtained by simple univariate weighted quantile regressions. De-

spite its simplicity one should note that the objective function of the weighted quantile regression

estimator is not convex since some of the weights are negative. Conventional linear programming

algorithms therefore will not work. Implementation via estimation of the cdf, as identi�ed by The-

orem 1, with subsequent inversion to obtain the quantiles is more convenient in practice. This is

the way how we implement the estimator in Section 3.

Before we discuss estimation of the cdf and the QTE in more detail, we note that the previous

expressions can be simpli�ed considerably. By Assumption I (v) and the symmetry of N" it follows

by l�Hospital that lim
"!0

p" = lim
"!0

Pr (Z � z0jZ 2 N") = 1
2 . Therefore we can identify the distribution

and the quantiles of the potential outcomes as

Corollary 3 (Distribution of potential outcomes) Under Assumption I, the distribution of

the potential outcomes for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

E [1 (Y � u) � (2I+ � 1) jZ 2 N"; D = 1]

E [2I+ � 1jZ 2 N"; D = 1]

FY 0jc(u) = lim
"!0

E [1 (Y � u) � (2I� � 1) jZ 2 N"; D = 0]

E [2I� � 1jZ 2 N"; D = 0]
.

Corollary 4 (Quantiles of potential outcomes) Under Assumption I and assuming that Y 0

and Y 1 are continuously distributed, the quantiles of the potential outcomes for the local compliers

are identi�ed as the solution of the following optimization problem

Q�Y 1jc = lim
"!0

argmin
q

E
�
�� (Y � q)

�
2I+ � 1

�
jZ 2 N"; D = 1

�
Q�Y 0jc = lim

"!0
argmin

q
E
�
�� (Y � q)

�
2I� � 1

�
jZ 2 N"; D = 0

�
In the following sections, however, we will base our estimators on Theorems 1 and 2 instead

of Corollaries 3 and 4 because using an estimated p" often performed better in Monte Carlo

simulations in small samples than using the fact that lim
"!0

p" =
1
2 .
8

8 In small samples, we may not have very many data points close to z0 available and therefore have to rely on a
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3 Estimators and asymptotic properties

In this section we suggest estimators for the distribution functions of the potential outcomes FY 1jc

and FY 0jc and for the quantile treatment e¤ect process �
�
QTE . We also derive asymptotic results

for these processes.

We �rst examine the estimator of the distribution function of the potential outcomes, which

has the advantage that it applies naturally irrespective of whether Y is continuous or discrete.

For example, when one considers earnings, there is usually a substantial masspoint at zero, which

does not pose any problems when estimating the cdf.

A natural estimator of FY 1jc following from Theorem 1 can be motivated as follows. Let Ki be

some kernel weights depending on the distance between Zi and z0 and a bandwidth converging to

zero. We permit the weights to be local linear regression weights and will be more speci�c further

below. A natural estimator of FY 1jc(u) is thus

F̂Y 1jc(u) =

P
1 (Yi � u)Di

�
I+i � p̂"

�
KiP

Di
�
I+i � p̂"

�
Ki

where a natural estimator of p" is
P
I+i Ki=

P
Ki. We thus obtain after a few calculations

=

P
i:I+
i
=1

1(Yi�u)DiKiP
i:I+
i
=1

Ki
�

P
i:I+
i
=0

1(Yi�u)DiKiP
i:I+
i
=0

Ki

P
i:I+
i
=1

DiKiP
i:I+
i
=1

Ki
�

P
i:I+
i
=0

DiKiP
i:I+
i
=0

Ki

.

De�ne for a general random variableW the following right limit functionm+
W = lim

"!0
E [W jZ = z0 + "]

and the corresponding left limit function m�
W = lim

"!0
E [W jZ = z0 � "]. The variable W will

represent at di¤erent places 1 (Y � u) � D or 1 (Y � u) � (1�D) or (1 � D) or D. Note that in

every case W has bounded support and the previously de�ned limit functions are therefore

bounded. We can write the suggested estimator as

F̂Y 1jc(u) =
m̂+
1(Y�u)D � m̂

�
1(Y�u)D

m̂+
D � m̂

�
D

larger smoothing window. In this case, the number of data points could be asymmetric around z0, and we could

obtain more precise estimates by estimating the probability p" for a given ". In some sense this result appears to be

related to the well-known result in the propensity score matching literature that estimators which use the estimated

propensity score are more e¢ cient than estimators that use the true propensity score. Those results, however, are

not directly transferable here, since we are in a nonparametric context. We plan to discuss this issue in future work

and will consider only estimators that use an estimated p" in this paper.
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and similarly for the non-treated outcome

F̂Y 0jc(u) =
m̂+
1(Y�u)(1�D) � m̂

�
1(Y�u)(1�D)

m̂+
1�D � m̂

�
1�D

.

If we use local linear weights, which appears appropriate here since we are e¤ectively estimating

conditional means at boundary points (from the left and right of z0), m+
W is estimated as the value

of a that solves

argmin
a;b

nX
i=1

(Wi � a� b (Zi � z0))2 � I+i K
�
Zi � z0
h

�
.

Analogously m�
W is estimated by using only observations to the left of z0.

Before we can state the main asymptotic results, we have to de�ne precisely the regularity

conditions that we assume.

Assumption R

(i) IID sampling: The data f(Yi; Di; Zi)g are iid

(ii) Smoothness and limit conditions: The left and right limits of the functions E [1 (Y � u) jZ;D = 0],

E [1 (Y � u) jZ;D = 1] and E [DjZ] exist at z0 and these functions are twice continuously

di¤erentiable with respect to Z at z0 with second derivative Hölder continuous in a left and a

right "-neighborhood of z0, respectively, and uniformly on y 2 Y, where Y is a compact subset of

R.

(iii) Density: The density fZ is bounded away from zero and is twice continuously di¤erentiable

at z0 with second derivative Hölder continuous in a "-neighborhood of z0.

(iv) Compliers: The fraction of compliers Pc = m+
D �m

�
D is bounded away from zero.

(v) Bandwidth conditions: nh!1 and
p
nhh2 ! � <1.

(vi) Kernel: K is symmetric, bounded, zero outside a compact set and integrates to one.

Assumption R (i) is made mainly for simplicity and because it is satis�ed in most applications

of the RDD. Assumption R (ii) assures su¢ cient smoothness on both sides of the threshold. It

guarantees that the distribution functions are equicontinuous in a neighborhood of z0. Note that

assumption R (ii) implies also the existence of the left and right limits of all covariance functions

since the random variables 1 (Y � u) and D are all binary. Condition R (iv) is equivalent to

assuming that we have a strong instrument in an IV problem. Condition R (v) balances bias and

variance of the estimator. For � > 0, squared bias and variance are of the same order. If we

choose a bandwidth such that � = 0, the bias vanishes asymptotically. To simplify the notation,
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the same bandwidth is used for all functions on both sides of the threshold. The results can be

adapted to allow for di¤erent bandwidths in a straightforward way as long as the convergence

rates of the bandwidths are the same. A kernel function with compact support is assumed for

convenience in the technical derivations.

Our main asymptotic result shows the joint weak convergence of
p
nhn(F̂Y 1jc (u)� FY 1jc (u))

and
p
nhn(F̂Y 0jc (u)� FY 0jc (u)) in the space `1(Y) of all bounded functions on Y equipped with

the supremum norm.

Theorem 5 (Limit distribution for distribution functions) If assumptions I and R are

satis�ed, the estimators F̂Y 0jc (u) and F̂Y 1jc (u) of the distribution functions for the compliers

FY 0jc (u) and FY 1jc (u) jointly converge in law to the following Gaussian processes:p
nhn

�
F̂Y j jc (u)� FY j jc (u)

�
=) Zj (u) , j 2 f0; 1g ,

in `1(Y), where u 7�! Zj (u) have mean functions

bj (u) =
�

Pc
C 0K

(
@2m+

1(Y�u)(D+j�1)
@z2

� FY j jc (u)
@2m+

D

@z2
�
@2m�

1(Y�u)(D+j�1)
@z2

+ FY j jc (u)
@2m�

D

@z2

)

where C 0K is a constant that depends on the kernel function,9 @2m+
W

@z2
= lim

"!0
@2E[W jZ=z0+"]

@z2
for a

general random variable W and @2m�
W

@z2
is the similar left limit function. The covariance functions

are, for j; k 2 f0; 1g,

vj;k (u; ~u) = CK
1

P 2c fZ (z0)

�
!+j;k (u; ~u) + !

�
j;k (u; ~u)

�
where CK is a constant that depends on the kernel function,10

!+j;k (u; ~u) = lim"!0
Cov

n
(D + j � 1)

�
1 (Y � u)� FY j jc (u)

�
; (D + k � 1)

�
1 (Y � ~u)� FY kjc (~u)

�
jZ 2 N+

"

o
and !�j;k (y; ~y) is the analogous left limit.

A simple corollary of Theorem 5 is that the estimators of the distribution functions evaluated

at a particular value u 2 Y are asymptotically jointly normally distributedp
nhn

�
F̂Y j jc (u)� FY j jc (u)

�
� N (bj (u) ; vj;j (u; u)) , j 2 f0; 1g .

9The exact formula can be found in the appendix. C0K = 11
190

for the Epanechnikov kernel function.
10The exact formula can be found in the appendix. CK = 56832

12635
for the Epanechnikov kernel function.
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This result can be extended to any �nite collection of uk 2 Y, k = 1; :::;K.

Note that the bias functions bj (u) disappear if we choose � = 0. This choice of the bandwidth

implies that we undersmooth the functions to be estimated. This has the obvious advantage of

simplifying the asymptotic inference, but may provide less accurate inference in �nite samples.

The asymptotic covariances are the sum of the covariances of the estimated functions rescaled by

P 2c fZ (z0).

A possible way to characterize the e¤ect of the treatment on the outcome Y consists in es-

timating the distribution treatment e¤ect (DTE) de�ned as �uDTE = FY 1jc (u) � FY 0jc (u). We

naturally estimate this function by �̂uDTE = F̂Y 1jc (u) � F̂Y 0jc (u). Corollary 6 gives the limiting

distribution of �̂uDTE .

Corollary 6 (Limit distribution for distribution treatment e¤ects) If assumptions I and

R are satis�ed, the estimator �̂uDTE = F̂Y 1jc (u) � F̂Y 0jc (u) of the distribution treatment e¤ects

for the compliers �uDTE converge to the following Gaussian processp
nhn

�
�̂uDTE ��uDTE

�
=) Z1 (u)� Z0 (u)

in `1(Y) with mean function b1 (u) � b0 (u) and covariance function v1;1 (u; ~u) + v0;0 (u; ~u) �

2v0;1 (u; ~u).

As indicated by the title of this paper, the main focus is not the distribution treatment e¤ects

but the quantile treatment e¤ects, which we �nd more intuitive. A disadvantage of considering

quantiles is that they have a well-de�ned asymptotic distribution only if the outcome is continuous.

We therefore make the additional Assumption Q from now on.

Assumption Q: FY 0jc (u) and FY 1jc (u) are both continuously di¤erentiable with continuous

density functions fY 0jc (u) and fY 1jc (u) that are bounded above and away from zero on Y.

We could estimate the quantile treatment e¤ects by the sample analog of Theorem 2. This

minimization problem is, however, a non-convex optimization problem because some weights

are positive while others are negative. This requires grid searches or algorithms for nonconvex

problems that do not guarantee a global optimum.11 Therefore, we follow a more direct strategy
11Abadie, Angrist, and Imbens (2002) encountered a similar problem and they proposed to convexify the problem

by using the projection of the weights on the space spanned by D, X and Y . This requires an additional nonpara-

metric regression and it is unclear if this additional step will preserve the asymptotic distribution of the estimator.

Our setup is simpler as we would not need to project on X.
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here and invert the estimated distribution function. Another consequence of having negative

and positive weights is that the estimated distribution function is non-monotone: F̂Y j jc (u)

may decrease when we increase u. Of course, this is only a small sample problem because the

assumed monotonicity ensures that the estimated distribution function is asymptotically strictly

increasing. Even being only a small sample problem, this is nevertheless disadvantageous if

one wants to invert F̂Y j jc (u). We follow here the suggestion of Chernozhukov, Fernandez-Val,

and Galichon (2007) and monotonize the estimated distribution functions by re-arrangements.

This does not a¤ect the asymptotic properties of the estimator but allows us to invert it. This

procedure consists of a sequence of closed-form steps and is therefore very quick.

We now derive the limiting distribution of the quantile functions and of other functionals

of the distribution functions via the functional delta method (see chapter 3.9 in van der Vaart

and Wellner (1996)). This requires establishing the Hadamard di¤erentiability of the functionals,

which is well known in the case of the quantile functions.12

Theorem 7 (Limit distribution for quantile functions) If assumptions I, R and Q are sat-

is�ed, the estimators Q̂Y 0jc (�) and Q̂Y 1jc (�) of the quantile functions for the compliers QY 0jc (�)

and QY 1jc (�) jointly converge to the following Gaussian processes:p
nhn

�
Q̂Y j jc (�)�QY j jc (�)

�
=) �fY j jc

�
QY j jc (�)

��1
Zj
�
QY j jc (�)

�
:=W j (�) , j 2 f0; 1g

in `1((0; 1)) with mean function bqj (�) = �fY j jc
�
QY j jc (�)

��1
bj
�
QY j jc (�)

�
and covariance func-

tion vqj;k (� ; ~�) = fY j jc
�
QY j jc (�)

��1
fY kjc

�
QY kjc (~�)

��1
vj;k

�
QY j jc (�) ; QY kjc (~�)

�
.

The straightforward Corollary 8 gives the limiting distribution of the quantile treatment ef-

fect process. As explained above, this implies that
p
nhn

�
�̂�kQTE ��

�k
QTE

�
is jointly normally

distributed for any �nite sequence �k 2 (0; 1), k = 1; :::;K.

Corollary 8 (Limit distribution for quantile treatment e¤ects) If assumptions I, R and

Q are satis�ed, the estimator �̂�QTE of the QTE for the compliers �
�
QTE converges to the following

Gaussian process p
nhn

�
�̂�QTE ���QTE

�
=)W 1 (�)�W 0 (�)

12We follow the same strategy as Chernozhukov, Fernández-Val, and Melly (2007).
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in `1((0; 1)) with mean function bq1 (�) � b
q
0 (�) and covariance function v

q
1;1 (� ; ~�) + v

q
0;0 (� ; ~�) �

2vq0;1 (� ; ~�).

Our last main result shows that various smooth functionals of both distribution functions

satisfy a functional central limit theorem.

Theorem 9 (Limit distribution for smooth functionals) Let �
�
u; FY 0jc; FY 1jc

�
be a

functional taking value in `1(Y) that is Hadamard di¤erentiable in
�
FY 0jc; FY 1jc

�
tangentially to

the set of continuous functions with derivative
�
�00; �

0
1

�
. If assumptions I and R are satis�ed, the

plug-in estimator �̂ (u) � �
�
u; F̂Y 0jc; F̂Y 1jc

�
converges to the following Gaussian process:p

nhn

�
�̂ (u)� � (u)

�
=) �00 (u)Z0 (u) + �

0
1 (u)Z1 (u)

in `1((0; 1)).

To conclude this section, we apply this powerful result to derive the limiting distribution of

the Lorenz curve and the Gini coe¢ cient, that will be examined in our application. The Lorenz

curves and their estimates are de�ned for j 2 f0; 1g as

Lj (�) =

R �
0 QY j jc (t) dtR 1
0 QY j jc (t) dt

, L̂j (�) =

R �
0 Q̂Y j jc (t) dtR 1
0 Q̂Y j jc (t) dt

.

The Hadamard derivative of the map from the distribution function to the Lorenz curve can

be found e.g. in Barrett and Donald (2000). Using their result we obtain the following limiting

distribution for the simple plug-in estimator:p
nhn

�
L̂j (�)� Lj (�)

�
=)

R �
0 W

1 (t) dtR 1
0 QY 1jc (t) dt

� L1 (�)R 1
0 QY 1jc (t) dt

Z 1

0
W 1 (t) dt � L (�)

in `1((0; 1)) with mean function

blj (�) =

R �
0 b

q
j (t) dtR 1

0 QY j jc (t) dt
� Lj (�)R 1

0 QY j jc (t) dt

Z 1

0
bqj (t) dt

and covariance function

vlj;k (� ; ~�) =
1R 1

0 QY j jc (t) dt
R 1
0 QY kjc (t) dt

� (
Z �

0

Z ~�

0
vqj;k

�
t; ~t
�
d~tdt+ Lj (�)Lk (~�)

Z 1

0

Z 1

0
vqj;k

�
t; ~t
�
d~tdt

� Lj (�)
Z 1

0

Z ~�

0
vqj;k

�
t; ~t
�
d~tdt� Lk (~�)

Z �

0

Z 1

0
vqj;k

�
t; ~t
�
d~tdt).
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The Gini coe¢ cient is de�ned by

Gj = 1� 2
Z 1

0
Lj (t) dt, Ĝj = 1� 2

Z 1

0
L̂j (t) dt

Our simple plug-in estimator is asymptotically normally distributed with bias �2
R 1
0 b

l
j (t) dt and

variance 4
R 1
0

R 1
0 v

l
j;k

�
t; ~t
�
d~tdt:

p
nhn

�
L̂j (�)� Lj (�)

�
! 2

Z 1

0
L (t) dt.

4 Extension: QTE in the RDD with covariates

In this section, we extend the regression discontinuity design to incorporate additional covariates

X in a fully nonparametric way and suppose that Assumption I holds conditionally on X. Frölich

(2007) discusses in detail why one might want to control for X. Even if we believe that the RDD

is valid without conditioning, we might want to check for the robustness of the results when we

include covariates. In addition, Frölich (2007) shows that including covariates will increase the

precision of the estimates.13 In other cases, the variable Z itself may be confounded, e.g. in

a situation of dynamic treatment assignment as in van der Klaauw (2008). Another reason for

incorporating covariates applies when the threshold crossing at z0 itself a¤ects various X variables

that one would like to control for. Under certain conditions we can disentangle the direct from

the indirect e¤ects by controlling for X. See e.g. Brügger, Lalive, and Zweimüller (2008).

Whatever reasoning is used to justify the inclusion of covariates, we assume in the following

that Assumption I holds conditionally on X. (Note that we permit that, when not conditioning

on X, Assumption I may or may not be valid.) The identi�cation results stated above now

apply immediately to the treatment e¤ect conditionally on X. In many situations we are however

more interested in the unconditional e¤ect, i.e. the e¤ect for all compliers irrespective of their

value of X. There are at least three reasons why unconditional e¤ects are interesting. First, for

the purpose of evidence-based policy making a small number of summary measures can be more

easily conveyed to the policy makers and the public than a large number of estimated e¤ects for

each and every value of X. Second, unconditional e¤ects can be estimated more precisely than

conditional e¤ects.14 Third, the de�nition of the unconditional e¤ects does not depend on the

13This has been shown only for average e¤ects. We will analyze this issue in more detail in future work for QTE.
14Unless one imposes parametric assumptions.
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variables included in X.15 One can therefore consider di¤erent sets of control variables X and

still estimate the same object, which is useful for examining robustness of the results to the set of

control variables.

The following results identify the unconditional e¤ects, which are obtained by �rst conditioning

on X and thereafter integrating with respect to X. For identi�cation we need a common support

restriction with respect to X.

Assumption C: Suppose Assumption I (i), (ii) and (v). Suppose further that Assumption I (iii)

and (iv) are true conditionally on X. Further assume:

(vi) Common support lim
"!0

Supp(XjZ 2 N+
" ) = lim

"!0
Supp(XjZ 2 N�

" )

With this assumption, we can identify the quantile and cumulative distribution functions of

the potential outcomes for all compliers. Similar expressions as in Theorems 1 and 2 are obtained

but the weights are now a function of p"(x) = Pr (Z � z0jX = x;Z 2 N"). The following Theorem

10 shows the results for the QTEs.

Theorem 10 (Identi�cation of QTEs in the presence of covariates) Under Assumption

C, �
Q�Y 0jc;�

�
QTE

�
= lim
"!0

argmin
a;b

E

�
�� (Y � a� bD)

I+ � p"(X)
p"(X) (1� p"(X))

(2D � 1) jZ 2 N"
�
.

This result shows that the unconditional QTE can be estimated via a simple weighted quantile

regression where the covariates X only enter in the weights via p"(x).1617 Again, the weights in

the previous expression are sometimes positive and sometimes negative such that conventional

linear programming algorithms fail because of the non-convexity. In the application we will there-

fore again proceed by �rst estimating the entire distribution functions and thereafter obtain the

quantiles via inversion. The results for the distribution functions are given in the appendix.
15This, of course, is only true if X contains only pre-treatment variables.
16Note that these weights are similar to the weights in Theorems 3.1 b and c of Abadie (2003). The weights

used here, however, are localized with respect to z0. The nonparametric setup of the RDD requires smoothing with

respect to Z. Therefore none of the conditions of Abadie (2003) is satis�ed in our local nonparametric framework.

This also implies that we cannot obtain a parametric rate of convergence as discussed before.
17Hirano, Imbens, and Ridder (2003) also use a weighting approach in a setup where treatment is unconfounded

given X.
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5 Application: e¤ects of summer school attendance

In this section, we apply the methods proposed earlier to estimate the e¤ects of a summer school

program for weak students on academic achievement. We use administrative data from the Chicago

Public School system, taken from Jacob and Lefgren (2004).18 We use the same identi�cation

strategy as in this in�uential article but consider the e¤ects of the summer school on the entire

distribution of test scores. While Jacob and Lefgren (2004) acknowledge the interest in quantile

treatment e¤ects (p. 233), they estimate only average e¤ects due to the absence, at that time, of

suitable methods for quantiles and distributions.

The regression discontinuity design follows from an administrative rule that tied summer school

attendance to the performance on a standardized test. In 1996, the Chicago Public Schools

required students in third, sixth and eighth grade to take a mathematics and a reading exam in

June. Students who did not meet the standards at both tests were required to attend a six-weeks

summer school. This discontinuity in the rule can be used to identify the e¤ect of the summer

school attendance on similar tests one and two years after the summer school. More details can

be found in the original article Jacob and Lefgren (2004).

We focus on students for whom the reading cuto¤ was binding (that is, students who passed

math) because many more students failed in reading than in mathematics. For this sample, the

reading test score is the unique running variable and this situation corresponds exactly to our

framework. With two tests (math and reading), two grades (third and sixth) and two periods

(one and two years after the summer school), we could consider eight outcome variables. Due to

space limitations, we provide detailed results for the math test score one year after the summer

school for the third graders. We focus on this outcome for two reasons. First, the treatment e¤ects

are estimated most precisely for this outcome variable in Jacob and Lefgren (2004). Second, the

support of this outcome variable comprises so many values that it can reasonably be treated as

a continuous variable. The results for other outcomes will be brie�y sketched at the end of this

section.

The administrative rule suggests a sharp discontinuity. However, some course waivers were

given and a small percentage of students who scored above the threshold were observed partici-

pating. This fuzziness of the selection rule does not preclude the identi�cation of the treatment ef-

fects for the subpopulation of compliers as discussed in Section 2. Figure 1 shows the relationship

18We thank Brian Jacob and Lars Lefgren for supporting us in accessing their data.
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between the reading test score (the running variable Z) and the treatment probability. The dis-

continuity is extremely clear and compliers represent about 90% of the population at the thresh-

old.

Figure 1 shows also three quantiles of the outcome variable as a function of the running variable

Z. If the summer school attendance had no e¤ect, we would not observe any discontinuity in the

relationship between the running variable Z and the outcome at the threshold. Yet, we can

recognize a drop in the conditional 95th percentile (-3.5), median (-2.8) and 5th percentile (-1.3)

exactly at the threshold. While these drops suggest that the treatment had a positive e¤ect, the

increasing size of the drops suggests that the e¤ects were stronger at the top of the distribution.

Note, however, that the di¤erences between the quantiles above and below the threshold do not

estimate the quantile treatment e¤ects in the fuzzy discontinuity design. Therefore, we present

now the results obtained using the consistent estimators suggested in this paper.

The implementation of the estimators requires choosing the bandwidth and the kernel function.

The choice of the kernel function is typically considered as being not very crucial. We have used

the Epanechnikov kernel but the robustness checks with the uniform kernel (as in Jacob and

Lefgren (2004)) do not reveal any sensitivity. For the bandwidth, we use the same bandwidth

as in the original article.19 This can be considered as a conservative choice since one-sided cross

validation gives larger bandwidths. When using the larger bandwidths, the estimated quantile

treatment e¤ects are similar but estimated with a smaller variance. From now on, we will use as

outcome variable the math test achievement gains instead of the math tests themselves in order to

be more in line with the analysis of Jacob and Lefgren (2004). This does not a¤ect the results very

much since we estimate the e¤ects only for the population with reading score in a neighbourhood

of z0, where also the pre-treatment math score is balanced between left and right.

Figure 2 plots the estimated distribution functions of the potential outcomes F̂Y 1jc and F̂Y 0jc

together with pointwise 95% con�dence intervals based on Theorem 5. At the lower end of

the distribution, F̂Y 1jc and F̂Y 0jc are rather similar, but they diverge at the upper end of the

distribution. The two con�dence intervals do not overlap over a large part of the distribution.

Figure 2 also reveals that the distribution of the outcome variable can be considered as reason-

ably smooth. This allows inverting the distribution functions and estimating the quantile treat-

19Actually, Jacob and Lefgren (2004) use a di¤erent bandwidth on the left (2) and on the right (4). We use the

same bandwidth (2) on both sides.
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ment e¤ect process. Figure 3 plots the estimated quantile treatment e¤ects with pointwise 95%

con�dence intervals. This con�rms the visual impression obtained from the distribution functions

of Figure 2: the e¤ect of summer school attendance is small or perhaps even negative at the bot-

tom and increases monotonically when we move up the distribution. Note that the QTEs esti-

mated at di¤erent quantiles are positively correlated. This means that the di¤erences between

two QTEs may be signi�cant even when the con�dence intervals overlap. In fact, we reject at the

3% level the equality between the 0.9 and 0.1 QTEs or between the 0.1, 0.25, 0.75 and 0.9 QTEs,

for instance.

Some caution must be exercised when interpreting these results, because of the population for

which they are identi�ed. We cannot simply interpret the quantile as unobserved ability since

all students had the same test score before the summer school. Conditionally on being relatively

mediocre at the �rst test, the best students bene�ted the most from attending the summer school.

We interpret the unobserved heterogeneity more like a measure of motivation: motivated students

bene�ted from being helped during the summer while unmotivated students did not gain anything

from additional school hours. Students who do not like going to school will not progress when

more school is being imposed. On the other hand, interested students who su¤ered from a lack of

resources and support at home could bene�t from this additional support. In light of these results,

the summer school cannot be considered as a panacea, but it was e¤ective for the majority of the

students.20

Figure 4 provides an alternative visualization of the results which might facilitate interpreta-

tion. It shows the estimated density functions of the potential outcomes, f̂Y 1jc and f̂Y 0jc, obtained

from the distribution functions of Figure 2. This graph shows very clearly that, for the population

of compliers who scored close to the threshold z0, summer school leads not only to a rightward

shift but also to a widening of the test distribution. Many students gain from summer school, but

clearly not everyone, and some may even be harmed by attending summer school.21

20Note that the students who attended the summer school have also taken a test in August. If their score was

good enough, they were allowed to advance. If their score was still too low, they were retained. We do not try to

identify separately the e¤ect of grade retention. Our results represent the total e¤ect of summer school participation

and potential grade retention. We do not believe that the heterogeneity of the e¤ects is driven by grade retention

because the weakest students were retained and Jacob and Lefgren (2004) �nd a positive e¤ect for grade retention.
21We do not require a rank invariance assumption as in Chernozhukov and Hansen (2005) or Guiteras (2008). We

therefore identify only the marginal distributions. Figures 3 and 4 only show that most quantiles move upwards,

yet individual treatment e¤ects could still be negative for many students.
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In our analysis so far, we have not included any control variables. Jacob and Lefgren (2004) in

fact include two year dummies in their main speci�cation and 23 other additional control variables

for their robustness checks. The main goal of this exercise is to check indirectly the validity of the

identifying assumptions. The arguments for the validity of the RD design in this application do not

rest on the presence of any conditioning variable. Therefore, conditioning on any pre-determined

covariates should not signi�cantly change the results. Of course, this procedure will detect lack

of local randomization only if the local self-selection is related to the observed characteristics.

Theorem 10 allows us to include additional control variables without changing the estimand

because we integrate them out to obtain the unconditional e¤ects. The large number of control

variables X included prevents to use a completely nonparametric approach. We estimate the

"propensity score" p" (X) by a parametric linear logistic regression and then implement our

estimator in the same way as we did without covariates. The QTEs estimated this way are

plotted in Figure 3, which show that they are very close to those estimated without covariates.

As in the original article, we �nd no reason to reject the validity of the design.

We have concentrated on one outcome variable (math test one year after the summer school)

so far. In Figure 5 we show the QTE estimates for several other outcomes variables: math and

reading test scores one and two years after the summer school, respectively.22 In the �gure, we have

smoothed the results because the reading test score is less smooth and the estimated distribution

functions were quite jumpy. The general pattern is the same for all outcomes, obtaining larger

QTEs for larger quantiles.

Table 1 pins down the results presented visually in the Figures 1 to 5 by giving the treatment

e¤ects on six summary statistics of the outcome distributions. Standard errors were estimated

using the sample analogs of the asymptotic variances derived in Theorem 9. The mean and the

median e¤ects show that the summer school attendance had a a positive e¤ect on the location of

the outcome distribution. These e¤ects are signi�cantly di¤erent from zero at levels ranging from

7.5% to 0.01%, depending on the outcome and on the statistic. The standard deviation, interdecile

di¤erence (Q0:9Y jc �Q
0:1
Y jc), interquartile di¤erence (Q

0:75
Y jc �Q

0:25
Y jc ) and Gini coe¢ cient measure the

treatment e¤ect on the dispersion of the outcomes. With one exception (reading score two years

after the summer school) the point estimates indicate that the treatment increased the dispersion

of the scores. Some of these e¤ects, most notably the interdecile ranges, are signi�cant and con�rm

22The con�dence intervals for these estimates are similar to those shown in Figure 3.
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the visual impression discussed above.23

6 Conclusion

In this paper, we described how the regression discontinuity design can be used to evaluate the

impact of endogenous treatments on the entire distribution of outcome variables. We showed that

both potential outcome distributions are identi�ed for the population a¤ected by the discontinu-

ity. We introduced estimators for these two distribution functions and showed their joint con-

vergence to continuous Gaussian processes. We also obtained uniformly consistent estimates for

functionals of the distribution functions and we considered in detail the quantile treatment e¤ect

process when the dependent variable is continuous. By appropriate bandwidth choice, our esti-

mators are consistent at the n�2=5 rate, which is the optimal convergence rate for one-dimensional

nonparametric estimation.

The approach was illustrated through estimation of the quantile treatment e¤ects of summer

school attendance on later educational performance. We used the same data and identi�cation

strategy as in Jacob and Lefgren (2004). Our results showed the heterogeneity of the treatment

e¤ects, with no e¤ect at the bottom of the distribution and signi�cantly positive e¤ects at the top

of the distribution.

We believe that the estimators suggested in this paper have many interesting applications in

economics, statistics and other social sciences. Since the late 1990s, a growing number of studies

have exploited threshold rules to estimate program e¤ects. Additional insights could be gained

in all applications where the outcome is not binary by estimating the distributional e¤ects of the

treatment. We make the estimators available in Stata to make them conveniently accessible and

usable.
23The Gini coe¢ cient makes sense only for variables with a positive support. Therefore, we transformed the

dependent variables to satisfy this condition. This is debatable since this measure is not invariant to location

changes. These results do not contradict the results using other measures of inequality.
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A Proofs

A.1 Proof of Theorem 1: Distribution functions of potential outcomes

We have to show that

FY 1jc(u) = lim
"!0

E [1 (Y � u) (I+ � p") jZ 2 N"; D = 1]

E [I+ � p"jZ 2 N"; D = 1]

FY 0jc(u) = lim
"!0

E [1 (Y � u) (I+ � p") jZ 2 N"; D = 0]

E [I+ � p"jZ 2 N"; D = 0]
,

where p" = Pr (Z � z0jZ 2 N") = E [I+jZ 2 N"].
In the following, we will prove the �rst equation and mention that the derivations for the

second equation are analogous.

lim
"!0

E [1 (Y � u) (I+ � p") jZ 2 N"; D = 1]

E [I+ � p"jZ 2 N"; D = 1]

= lim
"!0

E [1 (Y � u) (I+ � p")DjZ 2 N"]
E [(I+ � p")DjZ 2 N"]

= lim
"!0

E [1 (Y � u) (I+ � p")DjZ 2 N+
" ] p" + E [1 (Y � u) (I+ � p")DjZ 2 N�

" ] (1� p")
E
�
(I+ � p")DjZ 2 N+

"

�
p" + E

�
(I+ � p")DjZ 2 N�

"

�
(1� p")

.

= lim
"!0

E [1 (Y � u)DjZ 2 N+
" ]� E [1 (Y � u)DjZ 2 N�

" ]

E
�
DjZ 2 N+

"

�
� E

�
DjZ 2 N�

"

� . (4)

As next step, we examine the �rst term of the numerator of (4). De�ne g (Y ) to be a one-
dimensional measurable function such that lim

"!0
E
�
g
�
Y 1
�
DjZ 2 N+

"

�
and lim

"!0
E
�
g
�
Y 1
�
DjZ 2 N�

"

�
exist. We will later use the two functions g (Y ) = 1 (Y � u) and g (Y ) = 1. By Assumption I (v),
lim
"!0

E [g (Y )DjZ 2 N+
" ] and lim

"!0
E [g (Y )DjZ 2 N�

" ] exist and are observable. By the law of total

probability,

E
�
g (Y )DjZ 2 N+

"

�
= E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = a
�
Pr
�
T" = ajZ 2 N+

"

�
+E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = n
�
Pr
�
T" = njZ 2 N+

"

�
+E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = c
�
Pr
�
T" = cjZ 2 N+

"

�
+E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = d
�
Pr
�
T" = djZ 2 N+

"

�
+E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = i
�
Pr
�
T" = ijZ 2 N+

"

�
.

By Assumption I (ii) lim
"!0

Pr (T" = djZ 2 N+
" ) = lim

"!0
Pr (T" = ijZ 2 N+

" ) = 0. By

de�nition of the types, E
�
g
�
Y 1
�
DjZ 2 N+

" ; T" = n
�
= 0, E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = c
�
=

E
�
g
�
Y 1
�
jZ 2 N+

" ; T" = c
�
and E

�
g
�
Y 1
�
DjZ 2 N+

" ; T" = a
�
= E

�
g
�
Y 1
�
jZ 2 N+

" ; T" = a
�
.
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Therefore, we obtain

lim
"!0

E
�
g (Y )DjZ 2 N+

"

�
= lim

"!0
E
�
g
�
Y 1
�
jZ 2 N+

" ; T" = a
�
Pr
�
T" = ajZ 2 N+

"

�
+lim
"!0

E
�
g
�
Y 1
�
jZ 2 N+

" ; T" = c
�
Pr
�
T" = cjZ 2 N+

"

�
= lim

"!0
E
�
g
�
Y 1
�
jZ 2 N"; T" = a

�
Pr (T" = ajZ 2 N")

+lim
"!0

E
�
g
�
Y 1
�
jZ 2 N"; T" = c

�
Pr (T" = cjZ 2 N")

where the second equality follows from Assumption I (iii) and (iv).
By similar calculations, we obtain

lim
"!0

E
�
g (Y )DjZ 2 N�

"

�
= lim
"!0

E
�
g
�
Y 1
�
jZ 2 N"; T" = a

�
Pr (T" = ajZ 2 N") .

When we apply this intermediate result with respect to g (Y ) = 1 (Y � u) and g (Y ) = 1,
respectively, we can write expression (4) as

lim
"!0

E [1 (Y � u)DjZ 2 N+
" ]� E [1 (Y � u)DjZ 2 N�

" ]

E
�
DjZ 2 N+

"

�
� E

�
DjZ 2 N�

"

�
=

lim
"!0

E
�
1
�
Y 1 � u

�
jZ 2 N"; T" = c

�
Pr (T" = cjZ 2 N")

lim
"!0

Pr (T" = cjZ 2 N")

= lim
"!0

E
�
1
�
Y 1 � u

�
jZ 2 N"; T" = c

�
= lim

"!0
FY 1jZ2N";T"=c(u)

= FY 1jc(u),

because lim
"!0

Pr (T" = cjZ 2 N") is strictly positive by Assumption I (i). The identi�cation of

FY 0jc(u) is similar, with 1 � D replacing D, and is therefore omitted. Note that this result is
similar to Lemma 2.1 in Abadie (2002). The di¤erence is that all derivations are localized with
respect to z0, which gives the nonparametric features of this result.

A.2 Proof of Theorem 2: Quantile functions of potential outcomes

Starting from the results of Theorem 1, Q�Y 1jc and Q
�
Y 0jc are the solutions of the following two

moment conditions

lim
"!0

E
h
1
�
Y � Q�Y 1jc

�
(I+ � p")DjZ 2 N"

i
E [(I+ � p")DjZ 2 N"]

= �

lim
"!0

E
h
1
�
Y � Q�Y 0jc

�
(I+ � p") (1�D) jZ 2 N"

i
E [(I+ � p") (1�D) jZ 2 N"]

= �

or equivalently

lim
"!0

E
hn
1
�
Y � Q�Y 1jc

�
� �
o�
I+ � p"

�
DjZ 2 N"

i
= 0

lim
"!0

E
hn
1
�
Y � Q�Y 0jc

�
� �
o�
I+ � p"

�
(1�D) jZ 2 N"

i
= 0
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Q�Y 1jc and Q
�
Y 0jc are identi�ed by these moment conditions. Renaming Q

�
Y 1jc with Q

�
Y 0jc +�

�
QTE

and adding the �rst equation into the second one, we obtain

lim
"!0

E
hn
1
�
Y � Q�Y 0jc +D�

�
QTE

�
� �
o�
I+ � p"

�
DjZ 2 N"

i
= 0

lim
"!0

E
hn
1
�
Y � Q�Y 0jc +D�

�
QTE

�
� �
o�
I+ � p"

�
jZ 2 N"

i
= 0

which are the �rst order conditions of the weighted quantile regression stated in equation (3).

A.3 Proof of Theorem 5: Limit distribution for distribution functions

We will prove this theorem in several steps. Lemma 11 gives the limiting distribution of m̂+
W for

a generic random variable W that is bounded between 0 and 1. Lemma 13 gives the limiting
distribution of F̂Y 1jc(u) and F̂Y 0jc(u) evaluated at a �nite number of points. Finally, we show that
the process is asymptotically tight, which concludes the proof.

De�ne the kernel constants �l =
R
ulK(u)du and ��l =

1R
0

ulK(u)du. De�ne also ~� = ��2��0� ��21.

Furthermore de�ne ��l =
1R
0

ulK2(u)du.24

Lemma 11 (Linear representation of the local linear estimator) For a generic random
variable W , which is bounded between 0 and 1, the estimator m̂+

W is de�ned as the value of a
that solves

argmin
a;b

nX
i=1

(Wi � a� b (Zi � z0))2 � I+i K
�
Zi � z0
h

�
.

Its limiting distribution is given by

p
nh
�
m̂+
W �m+

W

� d�! N

�
�
@2m+

W

@z2
��22 � ��1��3

2~�
; �2+W

��22��0 � 2��2��1��1 + ��21��2
f(z0)~�

2

�
.

Proof. m̂+
W can also be written as

min
�

nX
i=1

�
Wi � Z0i�

�2 �KiI+i
where

Zi =
�
1;
Zi � z0
h

�0
,

24For the Epanechnikov kernel with support [�1; 1], i.e. K(u) = 3
4

�
1� u2

�
1 (juj < 1) the kernel constants are

�0 = 1, �1 = �3 = �5 = 0, �2 = 0:2, �4 =
6
70
, ��0 = 0:5, ��1 =

3
16
, ��2 = 0:1, ��3 =

1
16
, ��4 =

3
70
, and ~� = 19

1280
and

��0 = 0:3, ��1 =
3
32
and ��2 =

3
70
. The explicit calculations for the kernel dependent constants of bias and variance

in Theorem 5 refer to this Epanechnikov kernel.
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I+i = 1 (Zi � z0) and � = (a; hb)0. We thus obtain

m̂+
W = e01

 
nX
i=1

ZiZ0iKiI
+
i

!�1 nX
i=1

ZiWiKiI
+
i ,

where e1 is a column vector of zeros with �rst element being one. De�ne Â+ =
nP
i=1
ZiZ0iKiI

+
i we

obtain

= e01Â
�1
+

nX
i=1

ZiKiI+i (Wi � E [WijZ = Zi] + E [WijZ = Zi])

and with Taylor expansion

= e01Â
�1
+

nX
i=1

ZiKiI+i

 
Wi � E [WijZ = Zi] +

(
m+
W + (Zi � z0)

@m+
W

@z
+
(Zi � z0)2

2

@2m+
W

@z2
+ op

�
(Zi � z0)2

�)!
.

After a few calculations the terms with @m+
W

@z drop and we obtain

m̂+
W �m+

W = e01Â
�1
+

nX
i=1

ZiKiI+i (Wi � E [WijZ = Zi])

+e01Â
�1
+

nX
i=1

ZiKiI+i

(
h2
(Zi � z0)2

2h2
@2m+

W

@z2
+ op

�
h2
�)
,

where the remainder term is of order op(h2) because it is premultiplied with the kernel function
K which is zero outside a compact set. Using the result of Lemma 12 we obtain

= e01A
�1
+

1

nh

nX
i=1

ZiKiI+i

 
Wi � E [WijZ = Zi] +

(Zi � z0)2

2

@2m+
W

@z2

!
(1 + op(1))

and �nally

m̂+
W �m+

W =
1

nh

nX
i=1

��2 � ��1Zi�z0h
��2
2 � ��21

KiI
+
i

f(z0)

 
Wi � E [WijZ = Zi] +

(Zi � z0)2

2

@2m+
W

@z2

!
(1 + op(1)).

(5)
Next, we calculate bias and variance. The bias is thus given as

E
�
m̂+
W �m+

W

�
=

1

h
E

"
��2 � ��1Zi�z0h

��2
2 � ��21

KiI
+
i

f(z0)

(Zi � z0)2

2

@2m+
W

@z2
(1 + op(1))

#

=
@2m+

W

@z2
h2

2

1Z
0

��2 � ��1u
��2
2 � ��21

K(u)

f(z0)
u2f(z0 + uh)du (1 + o(1))

=
@2m+

W

@z2
h2

2

��22 � ��1��3
��2
2 � ��21

+ o(h2)

by a change in variables and dominated convergence.
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Next we derive the variance

V ar
�
m̂+
W �m+

W

�
=

1

nh2
V ar

 
��2 � ��1Zi�z0h

��2
2 � ��21

KiI
+
i

f(z0)

 
Wi � E [WijZ = Zi] + h2

(Zi � z0)2

2h2
@2m+

W

@z2

!
(1 + op(1))

!

which is clearly dominated by the �rst term

=
1

nh2
E

24 ��2 � ��1Zi�z0h
��2
2 � ��21

KiI
+
i

f(z0)
(Wi � E [WijZ = Zi])

!235 (1 + o(1))
=

1

nh

1Z
0

(��2 � ��1u)2�
��2
2 � ��21

�2 K2(u)

f2(z0)
V ar (WijZ = z0 + uh) f (z0 + uh) du (1 + o(1))

=
�2+W

nhf(z0)

��22��0 � 2��2��1��1 + ��21��2�
��2
2 � ��21

�2 (1 + o(1))

by dominated convergence.
With these results and the linear representation of (5) and because all higher order moments

of W exist (because W has been assumed to be bounded between 0 and 1), asymptotic normality
of m̂+

W follows straightforwardly by a CLT for independent observations

p
nh
�
m̂+
W �m+

W

� d�! N

�
�
@2m+

W

@z2
��22 � ��1��3

2~�
; �2+W

��22��0 � 2��2��1��1 + ��21��2
f(z0)~�

2

�
.

Lemma 12 (Denominator of the local linear estimator) Under the assumption that nh!
1,

1

nh

nX
i=1

ZiZ0iKiI
+
i = A+ + op(h

2) (6)

where the symmetric matrix A+ is24 f(z0)
2 + hf 0(z0)��1 +

h2

2 f
00(z0)��2 f(z0)��1 + hf

0(z0)��2 +
h2

2 f
00(z0)��3

f(z0)��1 + hf
0(z0)��2 +

h2

2 f
00(z0)��3 f(z0)��2 + hf

0(z0)��3 +
h2

2 f
00(z0)��4

35
plus lower order terms.25

25The matrix A� is analogously24 f(z0)
2

� hf 0(z0)��1 + h2

2
f 00(z0)��2 �f(z0)��1 + hf 0(z0)��2 � h2

2
f 00(z0)��3

�f(z0)��1 + hf 0(z0)��2 � h2

2
f 00(z0)��3 f(z0)��2 � hf 0(z0)��3 + h2

2
f 00(z0)��4

35 .
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Proof. The relationship (6) is shown via mean square convergence for each element of A+. Only
the derivations for the (1; 2) element are shown here, with the derivations for the other elements
being analogous.

Consider the (1; 2) element of 1
nh

nP
i=1
ZiZ0iKiI

+
i and denote it by �

� =
1

nh

nX
i=1

Zi � z0
h

KiI
+
i

which has the expected value:

E [�] =
1

h
E

�
Zi � z0
h

KiI
+
i

�
=
1

h

Z
z � z0
h

K

�
z � z0
h

�
1(z � z0)f(z)dz.

With a change in variables: u = z�z0
h and an expansion about the point z0, considering only

points to the right of z0, we obtain

=

Z
uK (u) 1(u � 0)f(z0 + uh)du

=

1Z
0

uK (u)

�
f(z0) + uhf

0(z0) +
u2h2

2
f 00(z0)

�
du

= f(z0)��1 + hf
0(z0)��2 +

h2

2
f 00(z0)��3

by bounded convergence.
To show convergence in mean square, it also needs to be shown that V ar (�) converges to zero:

V ar (�)

=
1

n2h2
V ar

�X Zi � z0
h

KiI
+
i

�
=

1

nh2
V ar

�
Zi � z0
h

KiI
+
i

�
=

1

nh2

(
E

"�
Zi � z0
h

KiI
+
i

�2#
� E

�
Zi � z0
h

KiI
+
i

�2)

=
1

nh2

1Z
0

�
z � z0
h

�2
K2

�
z � z0
h

�
f(z)dz �O

�
1

n

�

=
1

nh

1Z
0

u2K2 (u) f(z0 + uh)du�O
�
1

n

�

where a change in variables: u = z�z0
h and a Taylor expansion about the point z0 has been used. As

it has been assumed that nh!1, the variance of � converges to zero by dominated convergence.
Hence, mean square convergence has been shown, which implies convergence in probability by
Chebyshev�s inequality.
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Lemma 13 If assumptions I and R are satis�ed, the estimators F̂Y 1jc (u), F̂Y 0jc (u), F̂Y 1jc (~u),

F̂Y 0jc (~u) for any u and ~u 2 Y jointly converge in law to the following normal distribution:

p
nh

0BBBBBB@
F̂Y 1jc(u)� FY 1jc(u)

F̂Y 0jc(u)� FY 0jc(u)

F̂Y 1jc(~u)� FY 1jc(~u)

F̂Y 0jc(~u)� FY 0jc(~u)

1CCCCCCA
d�! N (B;V)

where B and V are de�ned below in the proof.

Proof. By Lemma 11 and 12 we have a linear representation of the local linear estimator (5) of
a generic random variable W that is bounded between zero and one. Now we consider the joint
normality of F̂Y 1jc(u), F̂Y 0jc(u), F̂Y 1jc(~u) and F̂Y 0jc(~u), i.e. of the estimators of the cdf at two
di¤erent values u and ~u. For convenience we restate the de�nition of the estimator here:

F̂Y 1jc(u) =
m̂+
1(Y�u)D � m̂

�
1(Y�u)D

m̂+
D � m̂

�
D

.

Note that this estimator is a continuous function of estimators m̂+
W and m̂�

W for di¤erent generic
variables W , once for W = 1 (Y � u)D and once for W = D. In any case W is bounded between
zero and one and all higher order moments exist.

De�ne the vector �̂ as a function of the sample size (and of u and ~u) as �̂ =

(m̂+
D; m̂

�
D; m̂

+
1(Y�u)D; m̂

�
1(Y�u)D; m̂

+
1(Y�u)(D�1); m̂

�
1(Y�u)(D�1); m̂

+
1(Y�~u)D; m̂

�
1(Y�~u)D; m̂

+
1(Y�~u)(D�1); m̂

�
1(Y�~u)(D�1))

0.

By the Cramer-Wold device it is trivial to show that �̂ converges to a jointly normal distribu-
tion: If �0�̂ converges to a normal random variable for every conformable constant nonzero vector
�, then �̂ converges to a multivariate normal random variable. Because every element in �̂ can be
represented in linear form as in (5), �0�̂ is a sample average of random variables, for whom higher
order moments exist. Applying a CLT to �0�̂, premultiplied with

p
nh, thus gives asymptotic nor-

mality, which thus implies joint normality of the elements in �̂.
With this notation, we can restate the estimators of the cdf as

F̂Y 1jc(u) =
�̂3 � �̂4
�̂1 � �̂2

and F̂Y 0jc(u) =
�̂5 � �̂6
�̂1 � �̂2

F̂Y 1jc(~u) =
�̂7 � �̂8
�̂1 � �̂2

and F̂Y 0jc(~u) =
�̂9 � �̂10
�̂1 � �̂2

where �̂k refers to the k-th element of �̂. Consider F̂Y 1jc(u); F̂Y 0jc(u); F̂Y 1jc(~u) and F̂Y 0jc(~u) as a

vector of a continuous function of the asymptotically normal �̂. It thereby follows by the continous
mapping theorem that the estimators of the cdf are jointly asymptotically normal

p
nh

0BBBBBB@
F̂Y 1jc(u)� FY 1jc(u)

F̂Y 0jc(u)� FY 0jc(u)

F̂Y 1jc(~u)� FY 1jc(~u)

F̂Y 0jc(~u)� FY 0jc(~u)

1CCCCCCA
d�! N (B;V) .
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It remains to calculate the bias and covariance matrix, which can be obtained by the delta method.
The �rst element of the bias B is

�

Pc

��22 � ��1��3
2~�| {z }

=� 11
190

for Epanechnikov

(
@2m+

1(Y�u)D
@z2

� FY 1jc(u)
@2m+

D

@z2
�
@2m�

1(Y�u)D
@z2

+ FY 1jc(u)
@2m�

D

@z2

)
.

The second element of the bias is

�

Pc

��22 � ��1��3
2~�

(
@2m+

1(Y�u)(D�1)
@z2

� FY 0jc(u)
@2m+

D

@z2
�
@2m�

1(Y�u)(D�1)
@z2

+ FY 0jc(u)
@2m�

D

@z2

)
and the third and fourth elements of B are analogous to the �rst two elements with u replaced by
~u.
After tedious calculations and application of the dominated convergence theorem we obtain

for the covariance matrix

V = ��22��0 � 2��2��1��1 + ��21��2
~�2| {z }

= 56832
12635

for the Epanechnikov kernel

1

P 2c f(z0)

0BBBBBB@
!+�
Y 1(u)Y 1(u)

!+�
Y 1(u)Y 0(u)

!+�
Y 1(u)Y 1(~u)

!+�
Y 1(u)Y 0(~u)

!+�
Y 0(u)Y 0(u)

!+�
Y 0(u)Y 1(~u)

!+�
Y 0(u)Y 0(~u)

!+�
Y 1(~u)Y 1(~u)

!+�
Y 1(~u)Y 0(~u)

!+�
Y 0(~u)Y 0(~u)

1CCCCCCA ,

where

!+
Y 1(u)Y 1(~u)

= lim
"!0

Cov
�
1 (Y � u)D � FY 1jc(u)D ; 1 (Y � ~u)D � FY 1jc(~u)D jZ = z0 + "

	
is the right limit and de�ne !�

Y 1(u)Y 1(~u)
analogously as the left limit and

!+�
Y 1(u)Y 1(~u)

= !+
Y 1(u)Y 1(~u)

+ !�
Y 1(u)Y 1(~u)

is the sum of left and right limit. Similarly, for the covariance element between F̂Y 1jc(u) and

F̂Y 0jc(~u)

!+
Y 1(u)Y 0(~u)

= lim
"!0

Cov
�
1 (Y � u)D � FY 1jc(u)D ; 1 (Y � ~u) (D � 1)� FY 0jc(~u)D jZ = z0 + "

	
.

The modi�cations for the de�nition of the other elements of V are obvious.

Lemma 13 shows the convergence of the �nite dimensional distributions. The last step to
prove Theorem 5 consists in verifying the asymptotic tightness. Starting from the asymptotic
representation in Theorem 13, we have to show that the process Wh (u) is asymptotically tight,
where Wh (u) =

Pn
i=1 Zni (u) and

Zni (u) = (nhn)
�1=2 P�1c KiDi

�
I+i
�
1 (Yi � u)� FY 1jc(u)

�
�
�
1� I+i

� �
1 (Yi � u)� FY 1jc(u)

�	
.

We can consider separately the �rst and the second term in the curly brackets. We will show the
result only for the �rst term. The second term is similar.
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We will prove that the three conditions displayed in Theorem 2.11.9 in van der Vaart and
Wellner (1996) are satis�ed for Wh (u).26 Endow Y with the semimetric � de�ned by

� (u; ~u) = P�1c

q��FY 1jc(u)� FY 1jc(~u)��.
Let us divide Y into sub-intervals t0 � t1 � ::: � tq where � (u; ~u) � C" for all u; ~u 2

[tj�1; tj ] ; j = 1; :::q with C some constant which we will determine further on. For the partition
Y = [t0; t1] [ [qj=2 ]tj�1; tj ], we �nd that

jZni (u)� Zni (~u)j � (nhn)�1=2 P�1c KiDi
�
j1 (Yi � u)� 1 (Yi � ~u)j+

��FY 1jc(u)� FY 1jc(~u)��� .
So

sup
u;~u2Y"j

jZni (u)� Zni (~u)j2 � (nhn)�1 �K2
�
C2"2 + j1 (Yi � u)� 1 (Yi � ~u)j2

�
.

For the appropriate choice of C, this leads to

nX
i=1

E

"
sup

u;~u2Y"j
jZni (u)� Zni (~u)j2

#
� "2

Hence the bracketing number N[] (";Y; Ln2 ) is equal to O
�
"�1
�
and we getZ �n

0

q
logN[] (";Y; Ln2 )d" =

Z �n

0

p
O ("�1)d"! 0

when �n ! 0. This veri�es the third condition of Theorem 2.11.9 in van der Vaart and Wellner
(1996). We do not need to verify the second condition, since our partition of Y is independent of
n.

Finally, we have to check whether for all � > 0

nX
i=1

E

�
sup
u2Y

jZni (u)j � 1
�
sup
u2Y

jZni (u)j > �
��

�! 0 as n!1

Since P�1c KiI
+
i

�
Di � 1 (Yi � u)� FY 1jc(u)D

�
is bounded uniformly, we get that sup

u2Y
jZni (u)j =

O
�
(nhn)

�1=2
�
which is always smaller than � for n su¢ ciently large. So the �rst condition is also

satis�ed.
This veri�es that the process is asymptotically tight, which, in combination with Lemma 13,

implies the result of Theorem 5 by Theorem 1.5.4 in van der Vaart and Wellner (1996).

A.4 Proof of Corollary 6: Limit distribution for distribution treatment e¤ects

This result follows from Theorem 5 by the continuous mapping theorem (see for instance Theorem
1.9.5 in van der Vaart and Wellner (1996)).

26Similar applications of this result can be found in van Keilegom and Akritas (1999), Braekers and Veraverbeke

(2003), Gaddah and Braekers (2009),
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A.5 Proof of Theorem 7: Limit distribution for quantile functions

This result follows from Theorem 5 by the functional delta method, since the quantile operator
is Hadamard di¤erentiable for absolutely continuous functions, which is assumed in Assumption
Q (see for instance section 2.2.4 in Kosorok (2008) for a de�nition of the functional delta method
and an application to the quantile operator).

A.6 Proof of Corollary 8: Limit distribution for quantile treatment e¤ects

This result follows from Theorem 7 by the continuous mapping theorem (see for instance Theorem
1.9.5 in van der Vaart and Wellner (1996)).

A.7 Proof of Theorem 9: Limit distribution for smooth functionals

This result follows from Theorem 5 by the functional delta method.

A.8 Proof of Theorem 10: Identi�cation of QTEs in the presence of covariates

We will proceed in three steps. We �rst show a regression representation of the distribution
functions. This result is very similar to Theorem 5 in Frölich (2007).

Lemma 14 (Distributions with covariates) Under Assumption C, the potential outcome
distributions for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

R
(m+ (1 (Y � u)Djx)�m� (1 (Y � u)Djx)) dFXjZ2N"(x)R

(m+ (Djx)�m� (Djx)) dFXjZ2N"(x)
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(m+ (Djx)�m� (Djx)) dFXjZ2N"(x)

where m+ (W jx) = E [W jX = x;Z 2 N+
" ] and m

� (W jx) = E [W jX = x;Z 2 N�
" ] for any ran-

dom variable W .

Proof. Let g(y) be a real measurable and absolutely integrable function. Consider the interior
terms
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Now consider the integral
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and insert the previous expression. All terms have well de�ned limits, mostly zero. The limits
of the terms for the T" = a and T" = n populations are zero by Assumptions C (iii) and (iv).
Since g(Y ) is absolutely integrable and since conditional probabilities are bounded and since
lim
"!0

Pr (T" = djX;Z 2 N�
" ) and lim

"!0
Pr (T" = ijX;Z 2 N") are zero by Assumption C (ii), also the

limits of the terms for the T" = d and T" = i subpopulations are zero. Hence, it remains

= lim
"!0

Z
E
�
g(Y 1)jX;Z 2 N+

" ; T" = c
�
Pr
�
T" = cjX;Z 2 N+

"

�
dFXjZ2N" .

By Assumptions C (iii) and C (iv), this is equal to

= lim
"!0

Z
E
�
g(Y 1)jX;Z 2 N"; T" = c

�
Pr (T" = cjX;Z 2 N") dFXjZ2N" .

By making use of Bayes�theorem, we obtain

= lim
"!0

Pr(T" = cjZ 2 N")
Z
E
�
g(Y 1)jX;Z 2 N"; T" = c

�
dF (XjT" = c; Z 2 N")

= lim
"!0

Pr(T" = cjZ 2 N") � E
�
g(Y 1)jZ 2 N"; T" = c

�
.

Applying this result with g(y) = 1 (Y � u) and g(y) = 1, for the numerator and denominator
respectively, we obtain the result of lemma 14 for Y 1. The result for Y 0 can be obtained similarly
with D replaced by 1�D in all expressions.

The distribution function has also a weighting representation:

Lemma 15 (Weighted distributions with covariates) Under Assumption C, the potential
outcome distributions for the local compliers are identi�ed as

FY 1jc(u) = lim
"!0

E
h
1 (Y � u) 1(Z�z0)�p"(X)p"(X)(1�p"(X)) (2D � 1) jZ 2 N"; D = 1

i
E
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i
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i
E
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p"(X)(1�p"(X)) (2D � 1) jZ 2 N"; D = 0

i
where p"(x) = Pr (Z � z0jX = x;Z 2 N") for " > 0.

Proof. This representation can be obtained by using Bayes�theorem starting from the results of
Lemma 14. For any real measurable and absolutely integrable function g(y)Z �

E
�
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We obtain Lemma 15 by applying this result to the numerators and denominators of Lemma 14.

Proof of Theorem 10. The proof follows from Lemma 15 using the same line of arguments as
in the proof of Theorem 2.
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B Figures and Table

Figure 1: The relationship between the forcing variable Z, the probability of attending the summer
school and three quantiles of the observed outcome
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Note: June reading grade equivalents relative to threshold (Z variable, with z0= 0). Bold line: Probability
of treatment as a function of Z, i.e. fraction of students with same value of Z who attended the summer school.

Dashed, dotted and gray lines: median, 0.05 and 0.95 quantile of the math grade equivalents one year after the

summer school as a function of Z. Population: Third-grade students from 1997 to 1999 whose math score exceeded

the promotional cuto¤.
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Figure 2: Distribution functions of the potential outcomes
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Note: Estimated distribution functions of the potential outcomes F̂Y 1jc and F̂Y 0jc, and pointwise 95% con�-

dence intervals based on Theorem 5. Outcome variable is the achievement gain in math test score one year after the

summer school. Population: Third-grade students from 1997 to 1999 whose math score exceeded the promotional

cuto¤ and whose reading test score was just below or just above the threshold.
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Figure 3: Quantile treatment e¤ects of summer school attendance on math test score
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Note: Estimated quantile treatment e¤ects, with and without covariates. Pointwise 95% con�dence intervals

are shown for the QTE estimated without covariates. Outcome variable is the achievement gain in math test score

one year after the summer school. Population: Third-grade students from 1997 to 1999 whose math score exceeded

the promotional cuto¤ and whose reading test score was just below or just above the threshold.
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Figure 4: Density functions of the potential outcomes
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Note: Estimated density functions of the potential outcomes f̂Y 1jc and f̂Y 0jc. Density functions only shown
for illustration. No con�dence intervals given. Outcome variable is the achievement gain in math test score one

year after the summer school. Population: Third-grade students from 1997 to 1999 whose math score exceeded the

promotional cuto¤ and whose reading test score was just below or just above the threshold.
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Figure 5: Quantile treatment e¤ects of summer school attendance on other outcomes
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Note: Quantile treatment e¤ects, estimated without covariates, for four outcome variables: achievement gain

in math and reading test scores one and two years after the summer school. Population: Third-grade students from

1997 to 1999 whose math score exceeded the promotional cuto¤ and whose reading test score was just below or just

above the threshold.
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Table 1: Summer school treatment e¤ects on summary statistics of the outcome distribution

Statistic Outcome

Math gain Reading gain

1 Year 2 Years 1 Year 2 Years

Mean 0.140 (3.78) 0.085 (2.34) 0.063 (1.78) 0.127 (3.53)

Median 0.163 (3.82) 0.125 (2.77) 0.112 (2.74) 0.151 (3.15)

Standard deviation 0.070 (1.43) 0.045 (1.47) 0.061 (1.40) 0.012 (0.37)

Interdecile range 0.175 (2.02) 0.162 (1.94) 0.200 (2.40) -0.024 (-0.29)

Interquartile range 0.083 (0.97) 0.171 (2.05) 0.000 (0.00) -0.023 (-0.27)

Gini coe¢ cient 0.007 (1.36) 0.006 (1.56) 0.005 (1.63) -0.000 (-0.02)

Note: Treatment e¤ects on six summary statistics of the outcome distribution. Four outcomes are considered:

achievement gains in math and reading scores one and two years after the summer school. The outcomes have been

re-localized to avoid negative outcomes. This allows calculating the Gini coe¢ cient but does not a¤ect the other

statistics. t-values are given in parentheses. The standard errors were estimated using the sample analog (plug-in

principle) of the asymptotic formulas derived in Theorem 9. Population: Third-grade students from 1997 to 1999

whose math score exceeded the promotional cuto¤ and whose reading test score was just below or just above this

threshold.
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