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Abstract

A growing body of recent literature allows for heterogenous trading strate-
gies and limited rationality of agents in behavioral models of financial markets.
More and more, this literature has been concerned with the explanation of some
of the stylized facts of financial markets. It now seems that some previously
mysterious time-series characteristics like fat tails of returns and temporal de-
pendence of volatility can be observed in many of these models as macroscopic
patterns resulting from the interaction among different groups of speculative
traders. However, most of the available evidence stems from simulation studies
of relatively complicated models which do not allow for analytical solutions.
In this paper, this line of research is supplemented by analytical solutions of a
simple variant of the seminal herding model introduced by Kirman [1993]. Em-
bedding the herding framework into a simple equilibrium asset pricing model,
we are able to derive closed-form solutions for the time-variation of higher mo-
ments as well as related quantities of interest enabling us to spell out under
what circumstances the model gives rise to realistic behavior of the resulting
time series.

1 Introduction

Until very recently, theoretical research in finance has largely ignored some of the
really universal stylized facts of practically all available financial data. In fact, a
glance at frequently used textbooks like the ones by O’Hara [1995] and Barucci
[2003] shows that even their glossaries lack entries for some of the prevalent techni-
cal terms of the empirical finance literature. For example, while many developments
in empirical finance are essentially motivated by the observation of non-Gaussian
returns distributions with their “fat tails” and temporal dependence of second mo-
ments leading to “volatility clustering”, these notions have been almost entirely
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absent from the theoretical literature.1 While these phenomena have spurred the
development of such seminal innovations like GARCH-type and stochastic volatil-
ity models in empirical finance, their behavioral origins have apparently remained
an almost unaccessible puzzle for a long time. Two reasons might be responsible
for this neglect: first, the above features characterize the behavior of financial time
series as a whole, while the interest in economic theory has typically been to spell
out the effect of a change of one (endogenous) economic variable on other, exoge-
nous variables. Even when allowing for an ensemble of traders, such a comparative
statics approach is not appropriate for explaining universal conditional and uncon-
ditional stochastic properties. Second, the prevalent efficient market paradigm did,
in fact, provide a very simple implicit answer to the question of the origin of all
stylized facts of returns: since, in this framework, prices would reflect forthcoming
news in an unbiased and immediate manner, any property of the returns distribu-
tion would simply reflect a similar feature of the distribution of new information
items. As a corollary of the efficient market hypothesis, the “news arrival process”
would, therefore, have to come along with fat tails and clustering of important news.
Unfortunately, this corollary can hardly be subjected to econometric scrutiny. On
the other hand, enough evidence had been collected against the universal validity of
the efficient market paradigm to motivate alternative, behavioral approaches which
then mushroomed over the nineties.

First analyses of complex data generating mechanisms based on interacting
agents can be found in Kirman [1991, 1993] and DeGrauwe et al. [1993]. While
they did not focus then on the above stylized facts (not broadly acknowledged at
that time among theoretical researchers), they both already showed that their mod-
els could mimic the random walk nature of asset prices and exchange rates although
their data-generating processes were clearly different from a true random walk. No-
tably, both studies also investigated what might be described as secondary stylized
facts: they applied certain frequent econometric analyses to their simulated data
and found similar behavior as with empirical records providing a possible explana-
tion of, e.g., the forward premium puzzle of foreign exchange markets.

Evidence for volatility clustering as an emergent phenomenon of a multi-agent
model appeared first in Grannen and Swindle [1994]. While a large body of subse-
quent models studied artificial markets with heterogenous autonomous agents often
endowed with some sort of artificial intelligence (classifier systems, genetic algo-
rithms), any consideration of empirical stylized facts is also curiously absent in the
first wave of such papers (Levy et al. [1994], Arifovic [1996], Arthur et al. [1997]). In
fact, much of this early literature had been preoccupied with the question of conver-

1Perfectly the same holds for theoretical work on exchange rate determination where the same
stylized facts have also remained unnoticed for a long time.
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gence or not of their learning algorithms to the benchmark of rational expectations
rather than considering empirical applications. However, subsequent research has
shown that relatively simple models of interacting traders could produce realistic
time series sharing the “stylized facts” of fat tails and clustering volatility even up
to numerical agreement with key quantities of empirical data (Lux and Marchesi
[1999, 2000]). Similar investigations of the dynamic properties of alternative models
revealed that many agent-based approaches share a certain tendency of generat-
ing fat tails and volatility clustering although their quantitative manifestations are
not always identical to the very robust numbers obtained with empirical data (cf.
LeBaron et al. [1999], Chen and Yeh [2002], Kirman and Teyssière [2002], Lux and
Schornstein [2005]). While often the general appearance of simulated data seemed to
be quite robust with respect to most of the underlying parameters, it also turned out
that the potential of generating stylized facts depends crucially on the system size
(i.e., number of agents). Realistic dynamic patterns are typically observed with the
(probably natural) initial choice of a few hundred or thousand agents. However with
an increasing number of market participants one often experiences a fading away of
the fat tails and volatility clustering beyond a certain threshold (cf. Egenter et al.
[1999], Lux and Schornstein [2005], Challet and Marsili [2004]).

The present paper attempts to shed light on both of the findings detailed above.
Within a relatively simple type of herding model (broadly along the lines of Kir-
man [1993]) we derive closed-form solutions for auto-covariances of returns and their
higher moments together with other statistics such as mean-passage times. Inspec-
tion of the results allows to infer in how far and under what conditions the model
could mimic the empirical findings of fat tails and clustering of volatility. Inves-
tigation of different specifications of the model also allows us to point out why -
in certain scenarios - increasing system size would lead to vanishing stylized facts.
Our approach is broadly complementary to recent attempts at studying asymptotic
properties of related agent-based models (Horst [2004], Föllmer et al. [2005]). These
authors provide conditions under which the limiting distribution of the price process
exists in models with both global and local interactions of agents (Horst [2004]) and
models with feedback from the price process on the group dynamics (Föllmer et al.
[2005]). Since our model can be viewed as a special case of the class of models
studied in Horst [2004] his results on convergence of equilibrium prices to a unique
equilibrium distribution also apply in our case. However, instead of focusing on
the properties of the price process alone we extend the analysis to returns to which
the famous empirical regularities of fat tails and clustered volatility apply. We also
go beyond asymptotic convergence results by working out various properties of the
stationary distribution which are of interest in the light of empirical findings.

The paper is organized as follows: section 2 introduces different variants of herd-
ing models inspired by Kirman’s ant process [Kirman, 1993]. Section 3 incorporates
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the recruitment mechanism of the ant model into an asset pricing framework. Section
4 details our analytical results for both the unconditional and conditional distribu-
tion of returns. In section 5 we explain different techniques for simulating these
agent-based models, while section 6 points out under which conditions the interest-
ing dynamics survives for large numbers of agents. Section 7 concludes. Technical
details are relegated to various appendices.

2 The Ant Model and Its Financial Interpretation

In his seminal 1993 paper, Kirman provides a simple stochastic formalization of
information transmission inspired by macroscopic patterns emerging from entomo-
logic experiments with ant colonies. The underlying scenario is one of foraging ants
who have two identical sources of food at their disposal in the vicinity of their nest.
Experimental settings show that, at any point in time, a majority of the ant pop-
ulation concentrates on exploiting one particular food source, but every once in a
while a switch occurs from one to the other source. Thus, averaging over time, a
bimodal distribution of the frequency of ants visiting one or the other manger would
result. Kirman explains this phenomenon by a combination of pair-wise interaction
(exchange of information by pheromons) and an autonomous switching probability
due to stochastic search. With an increase of the strength of the herding component,
the resulting stationary probability distribution of the model bifurcates from uni-
modality with an equal exploitation of both sources to a bi-modal one supporting
the experimental findings.

In a long series of subsequent papers, this and similar mechanisms have been ap-
plied as formalizations of contagion effects in financial markets. Kirman [1991, 1993]
replaces the binary choice of food sources by the ants by agents’ choice of a particu-
lar rule for the formation of their expectations. In his adaption to foreign exchange
market dynamics, agents can adopt chartist and fundamentalist forecasts of future
exchange rate movements. With the herding mechanism governing agents’ distri-
bution on these two behavioral types, the market switches between a dominance of
fundamentalist and chartist behavior with periods in which the later prevails giving
rise to speculative bubbles. Market equilibria are determined from a standard mon-
etary exchange rate model in which the assumption of rational expectations of the
original framework has been replaced by ‘non-rational’ expectations computed as the
average of the expectations of the two groups of chartist and fundamentalist both
weighted by a measure of their past success. Most relevant to our purpose, Kirman
and Teyssière [2002] have analyzed the temporal dependence of returns and volatility
from simulated data using a variety of pertinent econometric tools and have found
similar indication for long-term dependence in second moments as with real-life data.
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A closely related variant of a herding model has been proposed by Lux [1995],
who replaced the pair-interaction by an overall (mean-field) effect of the average
influence of the whole ensemble of traders on each individual’s choice of strategy.
This setting allowed to derive a number of analytical results via application of the
Master equation approach adopted from statistical physics (Lux [1997, 1998]). An
extended version of this model (Lux and Marchesi [1999]) with switching between
three different groups could be shown to give rise to realistic time series properties.
Egenter et al. [1999] showed, however, that these results depended on the number of
agents and that raising the number of market participants beyond several thousand
individuals leads to a gradual fading away of all its ‘interesting’ dynamics. We will
point out later what mechanisms are responsible for this loss of stylized facts and un-
der which assumptions ‘interesting’ solutions can be preserved even in large markets.

To set the stage, let us first restate the mechanics of the herding model proposed
by Kirman [1993]. The market (or ant colony) is populated by a fixed number of
agents N , each of them being either in state 1 or 2. The number of agents in the first
state will be denoted by n, so that n ∈ {0, 1, . . . , N} defines the configuration of the
system (the number of agents in the opposite state will obviously be N − n). The
stochastic evolution of the system is governed by random meetings of two agents,
after which one of them might follow the companion, and autonomous switches,
i.e. independent random changes of state. In the original set-up, the encounters of
agents are formalized by pair-wise interaction involving two ants/agents at a time,
which implies that the density of ants in the given search area is low in order to
exclude the possibility of multiple meetings. Additionally, neither the probability
of following another companion nor the success in recruiting companions depend on
the outcome of previous meetings. The lack of memory of the agents is the crucial
assumption to formalize the population dynamics as a Markov process. It, then,
evolves according to the probabilities of changing from state n at time t to some
state n′ at time t+∆t0. Let these Markovian conditional probabilities be denoted by
ρ(n′, t+ ∆t0|n, t) which are related to the transition rates per unit time, π(n→ n′)
by ρ(n′, t+ ∆t0 | n, t) = π(n→ n′)∆t0 for small time increments ∆t0. Since in the
limit of continuous time ∆t0 → 0, multiple switches during one incremental time
unit become increasingly unlikely, one can confine the analysis to n′ = n ± 1 with
transition rates:

π(n→ n+ 1) = (N − n)
(
a+ b̄ n

N

)
,

π(n→ n− 1) = n
(
a+ b̄ (N−n)

N

)
.

(1)

The term proportional to the number of agents in the state models their random
changes, while the quadratic term b̄ (N−n)n

N governs the recruitment mechanism; the
parameter b̄ measures the strength of the influence of the companions2.

2In the original version b̄ = 1 − δ, where δ is interpreted as the probability of an unsuccessful
recruitment.
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Some comments are in order here. First, note that the transition rates are
invariant under the transformation n→ N − n. It reflects the fact that the recruit-
ment mechanism is independent of the type of agents, and the random switching
component a is equal in both states. The system, therefore, does not exhibit any
preferential direction between the two states (in Alfarano et al. [2005] a more general
asymmetric setting has been investigated). This underlying symmetry is responsible
for the resulting symmetric shape of the unconditional distribution of ants’ visiting
time (see section 4.2). Moreover, the above transition rates are non-linear because
of the presence of the quadratic dependence on n. In general, non-linearity in the
transition rates arises from the presence of interactions among agents. In Kirman’s
model, an individual in state 1 is indirectly affected by agents who are in the other
state thought the recruitment mechanism. Linear transition rates, conversely, de-
scribe uncorrelated movements between groups due to idiosyncratic motivations and,
in general, systems composed by independent individuals.

An additional crucial property is the extensivity of the transitions in (1), since
they satisfy the following relation:

π(n→ n′) = Nπ(z → z′) , (2)

where z = n/N stands for concentrations rather than the raw numbers of agents, n,
as a variable to characterize the entire system. The extensivity property typically
characterizes systems whose evolution is governed by interaction mechanisms involv-
ing a small number of neighbors -as compared to the population size. As we will
see more precisely later on, this ‘local’ nature of the interactions among individuals
has remarkable consequences in the ‘thermodynamic’ limit (i.e. when the number of
individual N becomes very large): the equilibrium probability distribution ωe(x) of
the concentration of agents x becomes sharp around a macroscopic state variable,
which might be defined by the mean3 of ωe(x). In other words, the fluctuations of
the system can be neglected, and its dynamics can be described by a deterministic
differential equation (see sec. 6 below).

What happens if we relax the extensivity assumption (2) based on local interac-
tions among individuals? In which way would the dynamics of the system change
under the hypothesis of collective interactions? In order to study possible differences
in these alternative scenarios, we introduce a new pair of transition rates, where the
extensivity property (2) does not hold:

π(n→ n+ 1) = (N − n)
(
a+ b n

)
,

π(n→ n− 1) = n
(
a+ b (N − n)

)
.

(3)

3Alternative definitions could be based on the mode, the median or other characterizations of
the typical value of the distribution ωe(x).
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The transition rates (3) describe a scenario where the interaction among agents
does not depend on the fraction of agents in the alternative states, but rather on
the overall number of such agents. More precisely, an individual might change state
due to a random event, as in the previous setting, or he might switch under the
group pressure of the overall number of the individuals that belong to the opposite
state. A closer inspection to eqs. (1) and (3) shows that the main difference lies
in the scaling properties of the herding parameter. In the first formalization we
observe a dependence of the type O(1/N), with the herding parameter, vanishing in
the limit N →∞. In the second setting, on the contrary, b ∼ O(1), which therefore
remains bounded in this limit. One of the contributions of this paper is to point out
the interesting consequences of this different formalization, and the implications in
the characterization of the resulting dynamics in the two different scenarios, namely
extensive versus non-extensive transition rates when we increase the number of in-
dividuals N .

Would it make intuitive sense to replace intensities by occupation numbers as
we have done in eq. (3)? First, let us consider the autonomous switching compo-
nent. Increasing the number of agents and keeping the Poisson probability a of an
autonomous switch by any particular agent per time unit constant, larger n and
N −n would also lead to a higher probability of observing one such move within the
time interval ∆t. Since agents are independent in this autonomous component, the
linearity in n and N − n assumed in eqs. (1) and (3), in fact, appears intuitively
plausible. Replacing, for example, na by n

N a in the second equation would amount
to assuming that probability a does not apply to each individual agent herself but
rather to a fraction of the population. One can argue in the same way with respect
to the herding component: increasing the overall number of ants or agents (and
assuming that they are distributed equally in the space or have the same probability
of meeting other agents), the likelihood for agents to randomly bump into each other
should also increase, presumably linearly, in the number of agents (if we were not to
incorporate particular topological considerations into the model). Vice versa, a for-
mulation in intensities, i.e. expressing the conversion probabilities by b n

N and bN−n
N

in eqs. (1) would amount to a constant probability of meeting agents from the other
group independent of the overall number of agents which - at least in the literal inter-
pretation of the model - would be implausible. If we imagine to increase the number
of ants N and to keep the area S constant, the resulting increase of the density of
the colony would lead to a higher frequency of pairwise contacts, and finally, to a
uniform mass of ants covering all the area S. However, if we use the entomological
information transmission mechanism as a parabola for herding among humans, we
are not anymore constrained to a bounded region due to the ‘non-spatial’ nature of
modern communication systems. It is, therefore, not obvious which of the two ap-
proaches would be preferable in an economic setting. Using eq. (1) to formalize the
interactions, the extensivity property, then, constrains the information transmission
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to a limited number of neighbors. The alternative approach, formalized by eq. (3),
describes a scenario with connectivity increasing with the number of agents. It can
be used to model, for instance, groups pressure or mass-media interaction.

In the literature on agent-based economics, one often finds a formulation in which
transition rates depend on intensities rather than on group occupation numbers, i.e.
on n

N and N−n
N instead of n and N−n (Lux [1995]). Apparently, system size appears

to become suppressed in such a formalization and one might argue that this would
make the model outcome insensitive with respect to the market size (as it turns
out, the opposite, in fact, happens). In order to investigate the effects of occupation
number formalism vs. transition probabilities expressed in terms of concentrations
later on, we can integrate this alternative approach into the framework of eqs. (3)
by replacing the constant b by a flexible form, b = b0N0

N in which b0 and N0 are the
benchmark values for some initial scenario with constant parameters a and b0 and
benchmark population N0. The changes brought about by an increasing population
in the concentration formulation would, then, simply amount to multiplying the
original herding constant by N0

N which obviously leads to an effective decrease of
the succeptability of agents to contagion effects with increasing population size. For
a sufficiently high value of N , this transformation triggers macroscopic changes in
the underlying scenario, going from a bimodal equilibrium distribution to a ‘trivial’
Gaussian.

3 The Financial Market

In order to close the model, we embed the herding dynamics into a simple noise trader
framework. In particular, we interpret group 1 and 2 as optimistic and pessimistic
noise traders, respectively, who expect the prices to increase or decrease in the near
future. Optimists are assumed to buy a certain number Tc of additional units of
the asset while pessimists sell Tc units (Tc, thus, is a measure of average transaction
volume of chartists). Besides these chartists or noise traders, whose belief dynamics
are described by the above herding model, the model also hosts a second group
of fundamentalist traders who buy/sell if the current price p is below/above their
perceived fundamental value pf . Assuming that this group has Nf members with
average trading volume Tf and that they react on relative deviations between p and
pf , excess demand by this group amounts to

EDf = NfTf ln
(
pf

p

)
. (4)

Since noise traders’ excess demand mainly derives from a dominance of optimism
and pessimism in this sub-population, we can conveniently trace it back to a quantity
describing the population configuration: x = 2n

N − 1, which if zero signals a balanced
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disposition (zero excess demand) and if positive or negative amounts to optimistic
or pessimistic majorities. Noise traders’ excess demand, therefore, becomes EDC =
NTcx. Invoking a standard Walrasian price adjustment mechanism, relative price
changes would depend on overall excess demand:

1
p

dp

dt
= β

(
NfTf ln

(
pf

p

)
+NTcx

)
, (5)

with β the assumed price adjustment speed. Except for the incorporation of the
herding mechanism through x, this is a fairly standard asset price equation similar
to what one finds in the legacy of models with chartist-fundamentalist interaction
(e.g. Beja and Goldman [1980], Day and Huang [1990]).

Setting (without loss of generality) NfTf/NTc = 1 and assuming instantaneous
market clearing (β →∞), we arrive at the equilibrium price driven both by funda-
mental information and the average mood of noise traders:

p(t) = pf exp (x(t)) . (6)

Hence, derivation of the limiting distribution of the configuration x together with
a specification of the fundamentals process would allow us to characterize the dis-
tribution of equilibrium prices. However, we are interested in returns rather than
prices themselves as the later are known to be non-stationary in almost all real-life
markets. From eq. (6), returns over arbitrary time horizons are computed as:

r(t, τ) = ln p(t+ τ)− ln p(t) =
(
x(t+ τ)− x(t)

)
, (7)

assuming that pf is constant over time. Volatility can be obtained as V (t, τ) =
r2(t, τ). Eqs. (1) to (6) define a simple noise trader/infection framework with het-
erogenous interacting agents which is quite similar in spirit but simpler than the
formalization of Kirman [1991], and Kirman and Teyssière [2002]. Since the popu-
lation configuration from the infection process enters directly on the demand side of
the model it is, in fact, possible to infer the statistical properties of the returns and
volatility processes under the influence of this ant-like contagion dynamics.

It is interesting to compare the above framework to the way in which the ant
model is incorporated into a monetary exchange rate model in Kirman [1991], Kir-
man and Teyssière [2002]. In their papers, the contagion dynamics occurs on a much
faster time scale than price formation in the foreign exchange market. In particular,
they extract the population configuration at integer times t as a snapshot of the dis-
tribution of agents after a large number of pairwise meetings (for example, 10,000
meetings in Kirman [1991]) at the “intra-daily level”. The current distribution is
then used to compute the weights of chartists and fundamentalists and defining
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the market expectation as the average of current chartist and fundamentalist fore-
casts, and the equilibrium exchange rate is derived from a discrete-time monetary
model.4 The separation of time scales allows to observe relatively large fluctuations
of the average opinion at integer time steps, but it also impedes to take stock of
the theoretical solution of the ant process for a formal analysis of the exchange rate
dynamics. In contrast, in our approach, the time scales of the ant process and price
formation are the same (although we will later distinguish between the continuous
time dynamics of the process and discrete measurements thereof). With our Pois-
son probabilities, both occur in continuous time with changes of the configuration
of noise traders coming along with changes in equilibrium prices.

4 Analytical Results

The structure of the model allows to apply the Master equation formalism in order
to derive macroscopic properties of our dynamical system (cf. Aoki [2002]). Note
that our financial market consists of a large collection of interacting jump processes
with state-dependent and non-linear transition rates. In this paragraph we show
how this formalism allows for a compact characterization of the aggregate dynamics
of the system in terms of its underlying parameters.

4.1 Fokker-Planck Approximation

Sticking with our definition of non-extensive transition rates in eq. (3), the group
dynamics is characterized by the transition probabilities for agents’ moves between
the two states. These transition probabilities define a Markovian stochastic process
which belongs to the class of so-called nonlinear “one-step processes” (cf. Van Kam-
pen [1992]). In the following, we approximate the Markovian process (3) by a con-
tinuous diffusion process governed by the Fokker-Planck equation. First note that
the probabilities ω̄(n, t) to have n agents in state one at time t, obey the so-called
Master equation, which gives the probability flux between states:

∂ω̄(n, t)
∂t

=
∑
m

(πn,m ω̄(m, t)− πm,n ω̄(n, t)) , (8)

with πn,m = ρn,m

∆t0
the transition rates from statesm to states n. In the limit ∆t0 → 0,

multiple jumps occur with probability zero, so that one only has to consider jumps
to neighboring states, i.e. m = n ± 1. Replacing n by the intensive variable x
and treating it, for large N , as a continuous quantity, we can derive a Fokker-
Planck-equation for the time change of the pertinent probability density ω(x, t) (cf.

4There is, in fact, even a further intermediate step in which agents try to make an assessment of
the prevailing majority opinion on the base of a noisy signal. The distribution of this observation
rather than their own previous state is used in the computation of the weights of both groups.
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Appendix A.1 for details):

∂ω(x, t)
∂t

=
∂

∂x

(
A(x) ω(x, t)

)
+

1
2
∂2

∂x2

(
D(x)ω(x, t)

)
. (9)

The drift and diffusion terms A(x) and D(x) in eq. (9) are respectively given by:

A(x) = −2ax, D(x) = 2b (1− x2) +
4a
N

. (10)

The process is, therefore, characterized by a linear drift component with mean-
reversion towards its unconditional mean value E[x] = 0. Additionally, the diffusion
function, governing the properties of the fluctuations of the system, consists of two
terms: one term is N-dependent, and becomes negligible for large values of N ; the
second term is a symmetric and quadratic function of x, which is independent of
N . The two terms characterize two different mechanisms for the emergence of en-
dogenous fluctuations. The N-dependent term governs the fluctuations due to the
intrinsic granularity of the system, which obviously has to vanish in the continu-
ous approximation. The second term is directly related to the herding interactions
among individuals. If we are not too close to the boundaries x = 1 and x = −1, the
herding mechanism dominates, and the fluctuations are governed by the quadratic
term, while the N-dependent term can be neglected5. However, near the bound-
aries, the two effects are comparable in magnitude, therefore the N-dependent term
should also be taken into account. Moreover, it is a remarkable property of the
system that the diffusion function does not depend on the number of agents N -if
we neglect the granularity term. The magnitude of the fluctuations of the opinion
index x is, therefore, independent on the system size (i.e. in our case the number of
agents), and we observe qualitatively similar behavior for systems with any number
of agents (see Figure 1 in section 5). The ‘collective’ nature of interactions among
individuals formalized due to the non-extensivity of the transition rates (3) is the
ultimate reason for this particular behavior.

If we employ the original Kirman setting as the underlying scenario for the artifi-
cial market, the previous property of independence of the level of the fluctuations on
the system size changes dramatically. Let us assume that the underlying transition
rates between the two states are now governed by eq. (1) rather than by eq. (3).
In this setting we can also derive a diffusion approximation for the dynamics of the
stochastic process (1), pretty much in the same line as the derivation of the FPE
(9) in the case of non-extensive transition rates (3). The main difference consists in
replacing the parameter b in the diffusion function (10) by b̄

N . We, then, find the

5More precisely, the dominance of the herding term over the granular term is guaranteed if the
inequality 2b(1 − x2) > 4a

N
holds, which is equivalent to constrain the variable x to the interval(

2a
bN
− 1, 1− 2a

bN

)
.
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following drift and diffusion functions:

A(x) = −2ax, D(x) =
2b̄
N

(1− x2) +
4a
N

. (11)

While the drift function remains unchanged, the diffusion function, in this new
setting, is N-dependent. This means that in the limit of large N , the fluctuations
progressively attenuate, until they can become completely negligible (see paragraph
6). 6

4.2 Equilibrium Distribution

In the following, we derive some macroscopic statistical properties of the system
governed by the transitions (3) and approximated by the FPE (9) with drift and
diffusion given by (10). Since x is bounded between −1 and 1, we also have to add
the ‘natural’ boundary conditions of the model, that the probability current:

j(x, t) = −2ax ω(x, t)− ∂

∂x

(
b(1− x2) ω(x, t)

)
has to vanish at |x| = 1. Interestingly, the parameters a and b do not enter di-
rectly neither into the unconditional distribution ωe(x) nor into the unconditional
moments, but only via their ratio ε = a/b.

As detailed in Appendix A.2, the following closed-form expression for ωe(x) can
be derived:

ωe(x) =
Γ(2ε)

22ε−1Γ(ε)2
(1− x2)ε−1 . (12)

We recover the main findings of Kirman [1993]: ε > 1, i.e. dominance of autonomous
switches, implies uni-modality with a peak at x = 0 and possibly small fluctuations
of ln

(
pt

pf

)
around zero. Dominance of the herding component, ε < 1, however,

leads to a bimodal distribution with probability mass reaching its maximum at ±1,
generating phases of overvaluation and undervaluation of the price compared to its
fundamental value. In the knife-edge scenario ε = 1, the autonomous switching
propensity is exactly compensated by the herding tendency, generating a uniform
distribution of x. Note that the distribution (12) is symmetric around its mean value
0, which reflects the underlying symmetry between the two states of the system7.

6In the limit N → ∞ convergence to the equilibrium distribution, would take infinitely long
time.

7Alfarano et al. [2005] derive closed-form solutions for an asymmetric herding model with dif-
ferent propensities for autonomous moves, a1 and a2, in one or the other direction. In this more
general case, the resulting unconditional distribution is asymmetric, but covers eq. (12) as a special
case.
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It is interesting to show that for ε >> 1, the equilibrium distribution converges
to a Gaussian with mean zero and variance 1/2ε. In this case, eq. (12) can be
written as8

ωe(x) →
1√

2πσ2
exp

[
−1

2

(x
σ

)2
]
, (13)

where σ2 = 1
2ε .

If one would like to investigate the case of pure herding, ε = 0, the boundary
conditions would have to be modified in order to avoid absorbing states at |x| = 1.
Following for example Lux and Marchesi [1999], reflecting boundary conditions can
be imposed so that at least n0 agents remain always optimistic or pessimistic. Let
φ = n0/N , the boundary conditions then require the probability current to vanish
at |x| = 1− φ. The parameter φ can become arbitrary small for N →∞. Alfarano
and Lux [2005] provide analytical results and numerical simulations of this scenario.
They show that the stochastic switches between the vicinity of x = 1 and x = −1 also
give rise to volatility clustering, a leptokurtic distribution of returns and persistence
in the level of squared and absolute returns.

4.3 Unconditional Moments of Returns

Using the equilibrium distribution (12) we can proceed by deriving a compact for-
mula for the calculation of moments (cf. Appendix A.2):

E
[(

1− x2
)k

]
= 22k Γ (2ε)

Γ (2ε+ 2k)

(
Γ (ε+ k)

Γ (ε)

)2

. (14)

Equipped with this result, we can invoke the Langevin equation (see paragraph 5)
for the dynamics of x to characterize the ensuing dynamics of relative price changes.
Neglecting changes of the fundamental value, we see that eq. (7) simply leads to9:

r (t,∆t) = x (t+ ∆t)− x (t) = −2a∆t x (t) +
√

2b∆t (1− x2) η (t+ ∆t) . (15)
8In the case ε� 1, the x-dependence in eq. (12) can be written as

exp[(ε− 1) ln(1− x2)] ≈ exp[−εx2] ,

where the last step follows from the approximation

ln(1− x2) ≈ −x2 , for |x| � 1 .

The ε-dependent prefactor in eq. (12) can be simplified using Stirling’s approximation for the
Gamma function,

Γ(y + 1) ≈
√

2πy yye−y , for y � 1 .

9Note that the arbitrary interval of time τ of eq. (7) is now replaced by the macro-time ∆t,
which will be defined in paragraph 5.1.
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Eq. (15) allows to determine the expectation of even powers of the returns, r2k,
from those of x2k. Given the symmetry of the unconditional distribution, all odd
moments of returns are zero. In leading order ∆t we get:

E
[
r2k

]
= (2b∆t)k E

[(
1− x2

)k
η2k

]
. (16)

The second moment and kurtosis10 κ, for example, are given by:

E
[
r2

]
=

4a∆t
2ε+ 1

, κ =
3

ε (2ε+ 3)
. (17)

Eq. (17) gives us some first insights into the potential explanatory power of this
simple asset pricing model. Namely, one immediately infers that excess kurtosis is
positive and vanishes only for ε→∞ so that even in the case of a uni-model distri-
bution, the herding mechanism would lead to a leptokurtic shape of returns which is
in agreement with the ubiquitous empirical deviation of relative price changes from
Gaussian behavior. Since ε → ∞ would imply dominance of stochastic search, due
to very large a compared to b, we observe that it is the introduction of interpersonal
communication that leads to the emergence of leptokurtic returns. Leptokurtosis is,
thus, a generic feature of this framework. However, it comes along with an exponen-
tial decay for large returns. Note, in fact, that eq. (16) guarantees the theoretical
existence of all even moments of the return distribution; our model, therefore, does
not permit a ‘true’ scaling for the tail of the distribution, as observed in real data.

4.4 Autocorrelation functions

Conditional properties of the population index x and returns can be obtained in vari-
ous ways. One approach could be based on the general solution to the Fokker-Planck
equation, which can be derived as a series expansion of Jacobi polynomials (see Al-
farano [2005]). We can, then, provide a complete characterization of conditional mo-
ments for any transformation of returns. Alternatively, correlation functions could
be determined recursively using the Langevin approximation to the Fokker-Planck
equation. Although this approach has severe limitations in dealing with non-linear
transformations of returns, it can be employed to compute the autocorrelation for
raw and squared returns.

To this end, we consider the discrete time steps t = n∆t and define the recursion:

Fn = E [xt · x0] ,
10We define the kurtosis as

κ =
E

[
r4

]
E [r2]2

− 3 .
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for which the Langevin equation provides us with the difference equation:

Fn = (1− 2a∆t)Fn−1 .

Backward iteration leads to:

Fn = F0 (1− 2a∆t)n ,

with F0 = E[x2
0], which can be used to determine the auto-correlation Cx(t) of x:

Cx(t) = (1− 2a∆t)
t

∆t . (18)

In the limit ∆t → 0, eq. (18) becomes Cx(t) = exp(−2at). This result is not
surprising given the linear drift function of the F-P equation (see Gardiner [2003],
Van Kampen [1992]).

The correlation of rt can similarly be expressed in terms of Fn:

E [rt · r0] = E [(xt+∆t − xt) · (x∆t − x0)] = 2Fn − Fn−1 − Fn+1 ,

which leads to the expression (see Appendix A.3):

Cr(t) = −a∆t(1− 2a∆t)
t

∆t
−1 ≈ −a∆t exp(−2at) . (19)

In principle, the small negative correlation is at odds with the informational effi-
ciency and martingale nature of financial prices. However, the small mean-reverting
tendency of the population index and returns can easily be blurred by the noise level
generated by the finiteness of the data sample and would not easily be detected if a
were not too large (typical values are of the order of magnitude of a ≈ 10−2).

One can proceed similarly in deriving the auto-correlation functions of higher
moments. In order to compute Cr2(t) one starts with the relation11:

E
[
r2t · r20

]
= 4b2∆t2

(
1− E[x2

t ]− E[x2
t η

2
0] + E[x2

tx
2
0η

2
0]

)
. (20)

After some efforts, we finally arrive at:

Cr2(t) =
1

4ε2 + 6ε+ 3
exp

(
− 2bt (2ε+ 1)

)
. (21)

Obviously, Cr2(t) > 0 for all t > 0 so that we have shown that volatility persistence,
as the second universal time series property of returns, is also a natural outcome of
this model.

11Additional details are to be found in Appendix A.3.
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4.5 Mean First Passage Time

It is interesting to complement the analysis of conditional properties by closed-form
solutions of so-called mean first passage times (MFPT), defined as the time the
system takes on average to switch from one state to another. Of major interest for
the calculation of MFPTs are the modes and anti-modes x = 0,−1 and 1. As shown
in Appendix A.4, in the case 0 < ε < 1 the MFTP between the two modes x = 1
and x = −1 is given by:

T (−1 → 1) = T (1 → −1) =
1
b

π

1− 2ε
cos(πε)
sin(πε)

.

As can be seen, T (·) diverges for ε → 0, which corresponds to the emergence of
two absorbing states at |x| = 1 in the case of a vanishing autonomous switching
probability. The lock-in at one of the extremal modes from which the dynamics
would not return, since a = 0 and ε = 0, is mirrored in a divergence to infinity
of its MFPT. For ε → 1, divergence is obtained because for the uni-model case
established for ε > 1,±1 are reached with a vanishing probability. Interestingly and
maybe running against the first intuition, the MFPT is not monotonic in ε, but
has a minimum at ε = 0.5, i.e. a = 0.5b. At ε = 0.5, an increase of either the
autonomous component or the herding propensity would lead to an increase of T (·).

Remark. If we move to the extensive formulation (1), all the previous equations
still hold, but would contain a dependency on the number of agents via the relation
b = b̄

N . Moreover, the parameter ε has to be replaced by the following N-dependent
parameter:

εN = N
a

b̄
.

Obviously, volatility dependence gets lost with an increasing population size, as it
is apparent from eq. (21). The vanishing heteroscedasticity is reflected in a con-
vergence to zero of the autocorrelation of squared returns. The loss of volatility
dependence corresponds to the approach of the unconditional distribution towards
the Gaussian, as illustrated in Figure 2. The stylized facts, namely leptokurtic distri-
bution of return and volatility clustering measured as the non-vanishing correlation
in the squared returns, do not survive when we increase the number of agents in
the market. This means that the herding mechanism depending on the fraction of
agents in the other group, at least in the present setting, might not be a suitable
mechanism to explain the stylized facts as emerging properties of interactions among
the traders. On the contrary, the model with dependence on the overall group occu-
pation numbers, as formalized in eq. (3), does not exhibit any relevant influence of
the system size, and, therefore, gives identical results for markets with any number
of participants.
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5 Different Avenues for Simulating the Herding Model

5.1 Occupation number approach

Following multi-particle simulations in statistical physics, different avenues exist for
simulating the above model. The first, obvious choice would be a true microscopic
simulation keeping track of the state of each individual agent and determining its
switches over time by random number draws. Of course, the continuous-time frame-
work would have to be simulated in discretised form. As an obvious restriction,
these simulations would have to observe the condition that the sum of all transition
probabilities has to remain smaller than unity, i.e.

∑
π(n → n′)∆t0 ≤ 1 which

translates into an upper bound for the usable micro time steps ∆t0 depending on
the size of the population:

4t0 ≤
2

N(2a+ bN)
, (22)

since the herding component in both transition rates assumes its maximum at n = N
2 .

The maximum admissible time increment obviously decreases hyperbolically with
the population size, ∆t0 ∝ N−2. Microscopic simulations, therefore, become in-
creasingly more time consuming with larger population size.

As an alternative, we could resort to simulating the aggregated outcome of the
stochastic dynamics in terms of the population configuration which is summarized
by the variable n, without taking into account the information on the history of
every single individual. Rewriting (3) in terms of this state variable, one can see
that transitions between states occur with probabilities:

ρ(n′, t+ ∆t0|n, t) =


2 (N−n)(a+bn)

N(2a+bN) if n′ = n+ 1

2n(a+b(N−n))
N(2a+bN) if n′ = n− 1

bN2−4n(N−n)
N(2a+bN) if n′ = n

0 otherwise .

(23)

In (23), ∆t0 had been chosen such that it allows the highest “efficiency” of the
macroscopic simulations, i.e. such that it minimizes the probability to observe no
change in n. This is equivalent to using (22) as an equality. Of course, only the
smallest possible change in n can be observed during the micro-step ∆t0 of the
simulation. Similarly as in Kirman and Teyssière [2002], we may, therefore, introduce
a distinction between micro time steps ∆t0 and macro time increments ∆t in which
many changes of n may be observed. The difference is, however, that we also allow
the price process to operate along the micro time scale and that together with the
change of the population configuration we also aggregate over many small price
changes at the macro time scale ∆t. To illustrate the dynamics and to provide a
justification of a “useful” macro time scale, consider the following scenario: for n = 0,
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the system can evolve like follows: it may remain unchanged with probability N
N+2ε ,

or it may change by one unit with the small probability 2ε
N+2ε , ε = a

b . Therefore,
the average number of iterations of (23) needed to observe a move of one agent is
approximately equal to N . To observe larger increments of n (as changes by one
unit are negligible, in particular for the case of large N), we need a multiple of N to
define the number of micro time steps that make up one macro interval. From eq.
(22), a sensible choice appears to be:

∆t =
b

2
N2∆t0 (24)

In the simulations, one then iterates the process b
2N

2 times until one stores the
current value of n as one realization at the macroscopic time scale ∆t. The most
interesting aspect of this approach is that it guarantees invariance of the dynamics
of the macroscopic variable n with respect to the number of agents due to the flex-
ibility of the chosen macro time scale. This does not come as a surprise since we
have already noticed that the drift and diffusion functions in the FPE (9) are inde-
pendent of N . Figure 1 provides an illustration of this feature in which we indeed
observe no qualitative difference in the behavior of time series for different sizes of
the population.

All in all, in order to have a meaningful micro-simulation algorithm for the sim-
ulation of the Markov chain governed by eq. (3) in the case of various population
sizes, we have to introduce two different time scales. Note that the scaling of the
macro-time with the number of individuals is non-linear. Again the non-linear de-
pendence onN of the macro time-scaling reflects the non-extensivity of the transition
probabilities (3).

5.2 Concentration approach

A very different behavior is observed when the system is described by extensive
transition rates (1) in the limit N →∞. Let us start with the reference parameters
a0
N0

(we assume that a0 = 0.5) for the autonomous switching term, and b̄ = 1 for
the herding parameter; N0 is the starting population size. A glance at the diffusion
function in eq. (10) shows that the effective herding parameter (the constant in
front of the quadratic term) is b̄

N , for a market populated by N traders. The ratio
between the autonomous term and the herding parameter is, then, defined by:

εN =
N

N0

a0

b̄
=

N

2N0
. (25)

When the number of agents trading in the market N coincides with the reference
size N0, the market falls into the regime dominated by the herd behavior, with
a bimodal probability density function for x. If one now increases the number of
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Figure 1: The four panels show snapshots of the dynamics of the population index
for increasing values of the number of agents N . The right bottom panel shows a
trajectory computed via the Langevin approach given by eq. (29). The other three
panels show different examples of the simulation of the model with transition rates
according to eq. (3), as detailed in section 5.1.

agents over the starting level N0 and, at the same time, leaves unchanged the other
parameters, the equilibrium distribution will undergo a transition from a bimodal
shape to a narrowly peaked distribution around the average value E[x] = 0. The
linear dependence of εN on the number of agents N , cf. eq. (25), brings about
a convergence of the equilibrium distribution ωe(x) to a Gaussian, as analytically
derived in eq. (13) and illustrated in Figure 2. The transition from a bimodal to a
unimodal distribution implies the existence of a critical number of agents NC , which
we might conveniently define by the relation12:

εNC
=
NC

N0

a0

b̄
= 1 , NC = N0

b̄

a0
. (26)

12Note that in the case εN = 1, the equilibrium distribution is uniform.
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The critical size of the market, NC , might be used to distinguish between two
regimes. An interacting-agent regime, where the random meetings among agents
have a relevant impact on the opinion index dynamics, with a resulting bimodal
distribution, and an individualistic regime, where the market behaves like a collec-
tion of independent agents and the interactive component has a negligible influence.
The resulting Gaussian probability distribution for the case N � NC is, in fact, the
asymptotic distribution for a collection of independent agents. In the case of exten-
sive transition rates and a large number of components the system can be described
by a deterministic equation for the mean and a ‘small’ superimposed noise perturba-
tion (see Gardiner [2003] and, in particular, Aoki [1996, 2002] for several applications
of this formalism to economics). It is well known that the following equation holds

Figure 2: The four panels show the emergence of the macroscopic skeleton of the
system when governed by the extensive transition probabilities (1), for an increasing
number of agents. Note the clear exponential decay of the trajectory of x for large
population size, in accordance with the deterministic eq. (28). The dashed lines
represent the standard deviation of the equilibrium distribution of the variable x (see
appendix A.5). The underlying parameters are N0 = 20, b̄ = 1 and a0 = 0.5/N0.
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for the mean value x̄(t) of a stochastic process with linear drift function:

d

dt
x̄(t) = A

(
x̄(t)

)
, (27)

where A(·) is given by eq. (11) in our case. Equation (27) simply states that the
mean of ω(x, t) follows a differential equation of first order, whose unique and fully
deterministic solution is given by:

x̄(t) = x̄0 exp(−2ε bt) , (28)

where x̄0 is the mean value of the starting distribution ω0(x, 0). As a result, x̄
converges to its unconditional value E[x] = 0 with an exponential rate. If we take
into account the example of Figure 1, the macroscopic equation predicts no evolution
for x̄, since the starting value x̄0 coincides with the unconditional expected value.
On the contrary, we observe a non trivial dynamics of opinion index x for every size
of the agents population, which gives rise to the interesting statistical properties
of our artificial market. The contrast between the macroscopic approximation of
eq. (27) and the more complete description in terms of the FPE is striking. The
endogenous fluctuations of the system might be neglected at a cost of a meaningless
description of its time-evolution. On the contrary, the approach to the equilibrium
distribution for the model governed by intensities rather than occupation number
is well described by eq. (28), as illustrated in Figure 2. In the case of extensive
transition probabilities and a large number of agents, the aggregate behavior of the
system can be described by a deterministic equation for the mean and vanishing
fluctuations around x̄(t) for N →∞.

5.3 Langevin approach

Keeping with the non-extensive formulation of eq. (3), one might, as a third alter-
native, simulate the model using a Langevin equation providing a Gaussian approx-
imation to the stochastic dynamics over ∆t/∆t0 micro time steps per time unit ∆t
using drift and diffusion terms derived below (cf. eq 10):

x(t+ ∆t) = (1− 2a∆t)x(t) +
√

2b∆t(1− x2) η(t) . (29)

In eq. (29), η(t) is an iid noise variable following a Normal distribution with mean
zero. In Appendix A.6, we show how (29) can be derived from the Fokker-Planck
equation if ∆t is small enough to justify negligence of terms of order (a∆t)2 and
(b∆t)2. Although for small step sizes ∆t, the Langevin equation indeed provides a
close approximation to the underlying agent-based model, it has the drawback that
it might violate the built-in boundaries x ∈ [−1, 1] of the population dynamics. To
keep x within meaningful bounds in simulations of (29), reflecting boundaries at
x = ±1 need, therefore, to be imposed by hand. Despite these difficulties, (29) has
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the important advantage that it not only facilitates numerical simulations, but also
enables us to compute conditional and unconditional moments of the price process.
In Figure 1 we can observe the qualitatively good agreement between the micro-
simulation based on eq. (23) and the Langevin approach.

6 Local vs non-local interactions

Extensive transition rates describe systems whose evolution is driven by ‘local’ mech-
anisms. In order to justify this assertion, namely the relation between the extensive
transition probabilities with the local character of the interactions, we will provide
some qualitative arguments. Let us start considering a system composed of a large
number of independent components. To describe the asymptotic behavior of such
a system, we may advocate the CLT, expecting Gaussian fluctuations around the
mean of some aggregate quantities. The ratio of the amplitude of the fluctuations
relative to their mean, then, will converge to zero. More precisely, we expect a
dependence of the type O

(
1√
N

)
. The convergence to a well-defined mean with

vanishing fluctuations is the basic justification for a deterministic approach for the
description of models composed by independent ‘particles’ in terms of macroscopic
observables.

This scenario can be generalized to include some sort of interactions among the
constituents, which typically generate correlations among the different particles. If
the correlations are ‘weak’ enough, we can still apply the CLT and arrive at the
Gaussian regime for the fluctuations like for independent particles, with a well de-
fined mean for aggregate quantities, which can still be described by deterministic
laws. Here the term ‘weak’ stands for a limited number of constituents involved in
the interaction mechanism. On the contrary, the mechanism has a ‘non-local’ or,
in extreme cases like our simple herding model, global character if the range of the
correlations involves a macroscopic fraction of elements. The long-range correla-
tions prevent the use of the CLT and, therefore, we cannot expect the asymptotic
Gaussian regime for the fluctuations. Spatial or temporal correlations in the level
of fluctuations might be observed for any system size. Extensive transition rates
guarantee convergence to the Gaussian regime, while non-extensive systems might
or might not exhibit convergence to the Gaussian regime. Finally, we should stress
here that the classification between the local or non-local character of the inter-
actions is based on the interpretation of the different asymptotic behavior under
aggregation in the limit of a large number of constituents, which can be inferred
from the FPE.

The somewhat counterintuitive result here is that, on one hand, pair-wise meet-
ings and interactions in the line with the original philosophy of random meetings
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in space -eq. (3)- lead to a global character of the system with the dynamics pre-
serving the interesting features independent on the system size. Dependence of the
transitions on overall fractions of groups within the population, on the other hand,
lead to a more ‘local’ character of the dynamics and loose all interesting features
with an increasing number of agents, ultimately converging to a Gaussian regime.
The solution of this puzzle is that in the non-extensive formalization the number
of neighbors per constituent increases with an increasing population. It means that
every agent is coupled with the same fraction of other agents for all system size,
which guarantees that the interesting properties of the fluctuations are independent
on N . Hence, the intensity of the interpersonal coupling is preserved via eq. (3) for
varying numbers of agents N . In the extensive framework of eq. (1), in contrast, the
herding component looses its importance vis-à-vis the autonomous switches when
increasing the number of agents, because the coupling intensity effectively decreases
with system size.

7 Conclusion

The aim of the present paper was to contribute to a better understanding of the
statistical properties of agent-based models of financial markets. To this end, we
attempted a thorough analysis of different types of herding models in the tradition
of Kirman’s seminal ant model. Our novel insights are the following:

(i) We were able to derive closed-form solutions for various moments as well as
the autocorrelations of raw and squared returns. Our results demonstrate that both
leptokurtosis of returns and temporal dependence of volatility are generic features
of this model and are intimately linked to the herding component. This underscores
the importance of boundedly rational behavior as potential explanation of the styl-
ized facts. Admittedly, our model did not produce power laws (hyperbolic decay)
of the cumulative distribution nor of the autocorrelation function. However, in a
companion paper, (Alfarano and Lux [2005]), we also show that pseudo-empirical
analysis of time series for such a model could easily produce ‘spurious’ or ‘apparent’
power laws, which is a typical outcome within a preasymptotic regime with a length
of the time series below some threshold value.

(ii) We have also investigated the dependency of the ‘interesting’ dynamics and
stylized facts on system size, revisiting earlier findings of trivial large N limit in sim-
ilar models. As it turns out, trivial or non-trivial behavior of large markets depend
on the exact formalization of transition rates. Ironically, a literal interpretation of
pair-wise interactions leads to some sort of ‘global’ coupling of agents, which pre-
serves all interesting features of the model for any system size. On the contrary, a
more conventional formalization of the transitions rates in terms of concentration
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leads to a convergence to uninteresting (and unrealistic) Gaussian dynamics in the
limit of large markets.
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A Appendix

A.1 Derivation of the Fokker-Planck Equation

In this appendix, we derive the Fokker-Plank equation (9) as a second-order Taylor
approximation to the continuum of our population dynamics governed by eq. (3).
In order to do so, we introduce the intensive variable

x = 2n/N − 1 , (A1)

that, if the total number of agents N is large enough, can be treated as a continuous
quantity. The relation between the transition rates (3), expressed in terms of the
variables n or x, is given by the following formula:

π±n =
N2

4
π±x .

Note that the probabilities are invariant under the transformation (A1), therefore
ω̄n = ω̄x. The transition rates (3) are now functions13 of x:

π+
x = (1− x)

(
2a/N + b(1 + x)

)
,

π−x = (1 + x)
(
2a/N + b(1− x)

)
.

Let us introduce the “step” operators E and E−1, using the notation of Van Kampen
[1992]. Their effects on an arbitrary function f(n) are respectively to decrease or
increase its integer argument n by one unit. Formally:

E
[
f(n)

]
= f(n+ 1) , E−1

[
f(n)

]
= f(n− 1) .

13The new transitions have to be read as π±x = π(x→ x± 2/N).
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With the aid of the operators E[·] and E−1[·], the Master equation (8) for the one-
step process can be compactly rewritten in terms of the variable x:

∂

∂t
ω̄x = (E− 1)

[
π−x

N2

4
ω̄x

]
+ (E−1 − 1)

[
π+

x

N2

4
ω̄x

]
, (A2)

where we skip the obvious time dependence of ω̄x. Considering the continuous limit
for x, the probability ω̄x has to be ‘converted’ into a probability density:

ω̄n = ω̄x ≡ ωx
N

2
,

where ωx is a continuous function of x. The probability density might be alterna-
tively defined by the limit:

ωx = lim
N→∞

ω̄x

∆x
= lim

N→∞

N

2
ω̄x .

Eq. (A2) can be rewritten as:

∂

∂t
ωx =

N2

4
(E− 1)[π−x ωx] +

N2

4
(E−1 − 1)[π+

x ωx] .

Since in the limiting case, the step operator acts on continuous functions, we can
perform the Taylor expansion:

E[f(x)] = f(x+ ∆x) = f(x) + ∆x
d

dx
f(x) +

1
2
∆x2 d

2

dx2
f(x) + o(∆x2) , (A3)

where ∆x = 2/N . The step operator can be approximated by the following expan-
sion:

E = 1 + ∆x
∂

∂x
+

1
2
∆x2 ∂

2

∂x2
+ o(∆x2) . (A4)

Note that the derivatives in eq. (A3) are replaced by the partial derivatives in
eq. (A4), since the function f , which the operator is applied to, might have more
than one variable. The expansion for the operator E−1 is simply obtained from the
previous formula replacing ∆x with −∆x. Using the expansion (A4) for E and E−1

up to second order14, we end up with:

∂

∂t
ωx =

N2

4

{
−∆x

∂

∂x
[(π+

x − π−x )ωx] +
1
2
∆x2 ∂

2

∂x2
[(π+

x + π−x )ωx]
}
.

The N2/4 factor in front of the equation disappears, and we arrive finally at the
Fokker-Planck equation:

∂

∂t
ωx = − ∂

∂x
A(x)ωx +

1
2
∂2

∂x2
D(x)ωx , (A5)

14Higher terms would be o(1/N2), and are, therefore, negligible. The reason to include the second
order will be clarified later.
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where the drift and diffusion functions are respectively given by:

A(x) =
N

2
(π+

x − π−x ) = −2ax , (A6)

and
D(x) = π+

x + π−x = 2b(1− x2) +
4a
N

. (A7)

For finite b the term proportional to a/N can be neglected.

It should be emphasized that the Fokker-Planck equation is an approximation
to the continuum of our intrinsically discrete stochastic process governed by the
transition probabilities (3), up to terms proportional to 1/N2. This equation, there-
fore, provides a valid approximation only if ∆x � |1 ± x|, i.e. not too close to the
boundaries, where the discreteness of the variable x cannot be neglected any longer
and the term 4a/N should be taken into account. More precisely, the granularity
term can be neglected if 2b(1− x2) � (4a/N), which is equivalent to the constraint
ε

2N − 1 � x � 1 − ε
2N However, given the dependence of ∆x on N , this ‘critical’

region might be set to any arbitrary small interval by simply increasing the total
number of agents N .

A.2 Unconditional distribution of x and returns

The following textbook formula allows to compute the equilibrium distribution
ωe(x), given in eq. (12) in the main text, if we know the diffusion and drift functions:

ωe(x) =
K

D(x)
exp

(∫ x 2A(y)
D(y)

dy

)
, (A8)

(see for instance Van Kampen [1992]). The first step consists in solving the following
integral: ∫

2A(x)
D(x)

dx = −2a
b

∫
x

1− x2
dx ,

where we take the drift and diffusion functions from eqs. (A6) and (A7), neglecting
the last term in D(x). With the aid of ε = a

b and a little effort, the solution is:∫
2A(x)
D(x)

dx = ε ln(1− x2) ,

that plugged into (A8), gives the equilibrium distribution ωe(x):

ωe(x) = K(1− x2)ε−1 . (A9)

The constant K is computed via the normalization condition:

K

∫ +1

−1
ωe(x)dx = 1 . (A10)
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Recalling the definition of the Beta function,

B(ε1, ε2) :=
∫ 1

0
zε1−1(1− z)ε2−1dz =

Γ(ε1)Γ(ε2)
Γ(ε1 + ε2)

,

we obtain for symmetric coefficients ε1 = ε2 and with the substitution z = 1
2(1+x):∫ +1

−1
(1− x2)ε−1dx = 22ε−1 Γ(ε)2

Γ(2ε)
.

Solving the integral (A10), we arrive at K = Γ(2ε)
22ε−1Γ(ε)2

.

Using eq. (A9) we can derive a compact formula for the calculation of moments:

E[(1− x2)k] =
Γ(2ε)

22ε−1Γ(ε)2

∫ 1

−1

(
1− x2

)ε−1 (1− x2)kdx . (A11)

Via the definition of the Beta function, eq. (A11) becomes:

E[(1− x2)k] = 22k Γ(2ε)
Γ(2ε+ 2k)

[
Γ(ε+ k)

Γ(ε)

]2

which is used in the main text for computing the unconditional moments of returns.

A.3 Autocorrelation functions

Closed-form approximate solutions for the auto-covariances of transformations of
the variable x may be obtained via different approaches.

Starting from the Fokker-Plank equation (A5), we can solve for the conditional
probability ω(x, t|x0, 0), given the initial distribution ω0(x0). It turns out that
ω(x, t|x0, 0) can be expanded in Jacobi polynomials, which allows to compute the
autocorrelation for any transformation f(x) of the variable x in series of these poly-
nomials (see Alfarano [2005]).

Alternatively, correlation functions can be determined recursively using the Langevin
approximation of the Fokker-Planck equation. We proceed here using this second
approach. For discrete time steps t = n∆t, we consider first

Fn = E[xt · x0], F0 = E[x2
t ] .

From the Langevin equation (29), we obtain a recursion for Fn:

Fn = (1− 2a∆t)Fn−1 .
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Inserting the solution
Fn = F0(1− 2a∆t)n

into the auto-correlation formula of x, we get:

Cx(t) = (1− 2a∆t)t/∆t ∼ exp(−2at) ,

where the exponential form is exact in the limit ∆t→ 0.

The correlation of r can also be expressed in terms of Fn:

E[rt · r0] = E[(xt+∆t − xt) · (x∆t − x0)] = 2Fn − Fn−1 − Fn+1 .

Therefore for n > 0, the auto-correlation takes the form:

Cr(t) =
2Fn − Fn−1 − Fn+1

E[(x∆t − x0)2]
. (A12)

Using E[(x∆t − x0)2] = 4a∆t F0 and inserting Fn into (A12), one proves (19) given
in the main text15. Eq. (19) can be alternatively expressed by means of the following
approximation:

Fn+1 − 2Fn + Fn−1 = ∆t2
∂2Fn

∂t2
= (a∆t)2 exp(−2at) . (A13)

Plugging eq. (A13) into eq. (A12), we arrive to the same result.

Computation of Cr2 is slightly more complicated. In order to compute the auto-
correlation function of the second moment, we use eq. (29) to substitute for the
auto-covariances of r2t :

E
[
r2t · r20

]
=

E
[(
xt+∆t − xt

)2 ·
(
x∆t − x0

)2] =

E
[(
− 2a∆t xt +

√
2b∆t(1− x2

t ) ηt

)2 ·
(
− 2a∆t x0 +

√
2b∆t(1− x2

0) η0

)2] =

4b2∆t2E
[
1− x2

t η
2
0 − x2

0η
2
0 + x2

tx
2
0η

2
0

]
+ o(∆t2) . (A14)

It is obvious, that expression (A14) is identical in leading order ∆t2 with eq. (20)
in the main text. It can be easily derived from eq. (14) that E[x2

t ] = 1
2ε+1 . Then,

from eq. (29), we can work out the following relation:

E[x2
t η

2
0] =

(
1− 2b∆t(2ε+ 1)

)
E[x2

t−∆tη
2
0] + 2b∆t for t > 1 . (A15)

15For Fn+1 and Fn−1 we use the Taylor expansion ex = 1 + x + x2

2
+ o(x2).
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Defining Hn = E[x2
n∆tη

2
0] and H0 = E[x2

0], the recursive approach leads to:

Hn =
8a∆t E[x2

0](
1− 2b∆t(2ε+ 1)

) exp
(
− 2bn∆t(2ε+ 1)

)
+ E[x2

0] = E[x2
0] + o(∆t) . (A16)

The infinitesimal term o(∆t) in eq. (A16) stands for the contribution to the recursive
eq. (A15) of the the term E[x2

1η
2
0] =

(
1−2b∆t(2ε+3)

)
E[x2

0]+6b∆t, which is slightly
different from the other terms in the recursive eq. (A15). In order to obtain a closed-
form solution for E

[
x2

t · x2
0 · η2

0

]
, we again make use of a recursive determination of

the auto-covariances. Defining Gn = E[x2
n∆t x

2
0 η

2
0], we can write:

Gn+1 =
(
1− 2b∆t(2ε+ 1)

)
Gn + 2b∆tE

[
x2

0

]
for t > 1 ,

Solving this difference equation, we arrive at the following expression:

Gn =
(
1− 2b∆t(2ε+ 1)

)n(
G0 − E[x2

0]
2
)

+ E
[
x2

0

]2 + o(∆t) ,

with G0 = E[x4
0]. The infinitesimal term takes into account the contribution to the

auto-covariance of the term E[x2
∆t x

2
0 η

2
0]. From (14), we obtain the fourth moment

of x0:

G0 = E
[
x4

0

]
=

3
(2ε+ 3)(2ε+ 1)

.

In order to solve for Cr2(t), we need some further ingredients:

E
[
r20

]
= E

[
(x∆t − x0)2

]
= E

[
(−2a∆tx0 +

√
2b∆t(1− x2

0) η0)2
]

= 2b∆tE
[
(1− x2

0)η
2
0

]
+ o(∆t) ' 2b∆t (1− E[x2

0]) .

We, therefore, get for the numerator of Cr2(t) in leading order of ∆t:

E
[
r2t+∆t · r2∆t

]
− E

[
r2∆t

]
= 4b2∆t2

(
1− 2b∆t(2ε+ 1)

)t/∆t(
E

[
x4

0

]
− E

[
x2

0

]2)
.

Finally, in order to pin down the denominator, consider

E
[
r40

]
= E

[
(−2a∆tx0 +

√
2b∆t(1− x2

0) η0)4
]

= E
[
(2b∆t)2(1− x2

0)
2η4

0

]
+ o(∆t2)

'
(
2b∆t)2E

[
(1− 2x2

0 + x4
0)η

4
0

]
= 3(2b∆t)2

4ε(ε+ 1)
(2ε+ 1)(2ε+ 3)

.

It, then, turns out that:

E
[
r40

]
− E

[
r20

]2 = (2b∆t)2
(4ε2 + 6ε+ 3)4ε
(2ε+ 1)2(2ε+ 3)

.

One solves for

Cr2(t) =
E

[
r2t+∆t · r2∆t

]
− E

[
r2t

]2

E
[
r4t

]
− E

[
r2t

]2 ,

and obtains eq. (21).

31



A.4 Mean First Passage Time

To compute the MFPT T (x0 → x2) one integrates the Fokker Planck equation with
a reflecting boundary condition at x = −1 and an absorbing boundary condition at
x = +1. Evoking the following general formula (see Gardiner [2003]) for MPFTs,
we can try to find a closed-form solution for this quantity as well:

T (x0 → x2) =
∫ x2

x0

dx (ψ(x))−1

∫ x1

x

2ψ(y)
D(y)

dy ,

with the auxiliary ψ(x) function being defined as:

lnψ(x) =
∫ x

0

2A(y)
D(y)

dy .

Note first that with drift and diffusion terms A(x) = −2ax and D(x) = 2b(1− x2),
according to our previous computations ψ(x) = (1−x2)ε. Taking stock of this result,
we obtain:

b T (−1 → 1) =
∫ 1

−1
(1− x2)−ε

(∫ x

−1

2(1− y2)ε

2b(1− y2)
dy

)
dx .

Because of the symmetry of (1 − y2)ε−1 we can solve the double integral in a few
steps:

b T (−1 → 1) =
∫ 1

−1
(1− x2)−ε

(∫ 0

−1
(1− y2)ε−1dy −

∫ −x

0
(1− y2)ε−1dy

)
dx ,

where the second integral is identically zero since the integrand is an odd function
integrated in a symmetric interval. We arrive, then, at:

b T (−1 → 1) =
1
2

∫ 1

−1
(1− x2)−ε dx

∫ 1

−1
(1− y2)ε−1 dy

=
1
2

∫ 1

−1
22ε−1 Γ(ε)2

Γ(2ε)
(1− x2)−εdx

=
1
2
· Γ(ε)2 · Γ(1− ε)2

Γ(2ε) · Γ(2− 2ε)
.

The identity Γ(1− x) · Γ(x) = π
sin(πx) finally leads to:

T (−1 → 1) =
1
b

π

(1− 2ε)
· cos(πε)
sin(πε)

.
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A.5 Convergence to the Gaussian

We have shown that in the case of local interactions the drift and diffusion terms
are given by eq. (11), where a = 0.5/N0. Given the N-dependence of b, the 1/N
correction to the diffusion can not be neglected any longer, and both terms have to
be taken into account in deriving the equilibrium distribution. For the number of
agents N much higher than the benchmark value N0, the equilibrium distribution
converges to a Gaussian. Using eq. (A8), we obtain:

ωe(x) ∝
(

1− x2 +
2a
b̄

)εN−1

,

where εN = N
2b̄N0

. The previous expression can be rewritten as:

ωe(x) ∝ exp
(

(εN − 1) ln
(

1− x2 +
2a
b̄

))
.

Recalling eq. (13), the equilibrium distribution is well approximated by a Gaussian
with mean zero and variance:

σ2 =
1

2
(

N
2b̄N0

− 1
) ≈ b̄N0

N
.

A.6 Langevin equation

The basic idea of the Langevin approach is to find an appropriate time interval,
which one might call a macro-interval, for which the conditional distribution of the
discrete variable x is well approximated by a Gaussian. In the following we sketch
a proof of the Langevin equation as an approximation to the discrete process (3)
based on some heuristic arguments. Let us start with the identity:

xt+∆t = xt +
M∑
i

ηt+i∆t0 , (A17)

where ∆t = M∆t0 and η(t + i∆t0) might take the values in the finite set S ≡
{0, 2/N,−2/N}; ∆t0 is the elementary time interval for a possible change of strategy
of one agent. The previous decomposition is based on a separation of the dynamics
of x into two different time scales: a micro time scale ∆t0 and a macro time scale ∆t.
During the micro interval ∆t0, the variation of x is constrained to the numerable set
S. If we concentrate on the aggregate variation ∆x during the macro-time interval
∆t, we sum up over many of these elementary increments, loosing the information
on the fine structure of the dynamics of x (i.e. the single movements of the distin-
guishing individuals). Our aim is exactly to give up this too detailed perspective,
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in favor of a more general macroscopic description of the system. In order to do
so, we have to find a proper time scale, long enough to aggregate the tiny details,
and not too long to lose relevant information. This perspective is sometimes called a
mesoscopic approach, as it is somehow between the micro and macroscopic approach
[Ramsey, 1996]. We have, then, to find the proper value for the aggregation level M .
The random variable η

(
t+ (i+ 1)∆t0

)
can take just three values with the following

probabilities:

ηi+1 =


+ 1

N pi∆t0 = (1− xi)
(

2ε
N + 1 + xi

)
bN2∆t0 ,

0 1− (pi + qi)∆t0 ,

− 1
N qi∆t0 = (1 + xi)

(
2ε
N + 1− xi

)
bN2∆t0 ,

(A18)

where we explicitly take into account the dependence on the previous value of x
(here xi = x(t + i∆t0) and ηi+1 = η

(
t + (i + 1)∆t0)

)
. For notational convenience,

we label the time step by i. The mean µi+1 and variance σi+1 of ηi+1 are given by,
respectively:

µi+1 =
∆t0
N

(pi − qi) , (A19)

σ2
i+1 = E[η2

i+1]− µ2
‘+1 =

∆t0
N2

(pi + qi) + o

(
∆t0
N2

)
. (A20)

Following the Central Limit Theorem (CLT), a sum of M independent random
variables, drawn from a common distribution, with mean µ and finite variance σ2,
converges to a Normal with meanMµ and varianceMσ2. We can, therefore, approx-
imate the sum in (A17) by a normally distributed random variable. The requirement
of a finite variance is certainly fulfilled by the distribution of the variable η. How-
ever, the iid-ness assumption does not strictly hold. The probabilities p∆t0 and
q∆t0 depend on x, which dynamically changes with η itself. We have to impose a
further condition on x: it should not vary ‘too much’ during the time interval ∆t,
in such a way that it can be treated as a constant. Finally, M and, consequentially,
∆t should be large enough to assure the convergence towards the Gaussian, but not
too large to prevent the approximation of constant x.

We approximate the sum in eq. (A17) by a Gaussian distribution with mean
Mµ and standard deviation

√
Mσ. Therefore we end up with:

xt+∆t = xt − 2axt M∆t0 +
√

2(1− x2
t )Mb∆t0 · ηt , (A21)

where ηt is a Normally distributed random variable. The inequality Mb∆t0 � 1
should be satisfied in order to guarantee small variations of the variable x and,
therefore, to preserve the approximation of a constant x during the interval ∆t.
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Recalling the inequality (22), we come up with the following scaling relation between
the number of micro steps M and the number of agents N :

M = k
N2

2
, (A22)

with an arbitrary small number k. Finally, the Langevin approximation for the
stochastic process eq. (A17) is given by:

∆x = −2a∆t xt +
√

2b∆t (1− x2
t ) · ηt , (A23)

where ∆t = M∆t0 The limit of such an approximation is related to the assumption
of the CLT, therefore to the goodness of the Gaussian approximation for the sum in
eq. (A17). Near the edges, x = −1 or x = 1, the variable x cannot be considered to
be constant, and the assumption of identically distributed variables does not hold
any longer16. Additionally, eq. (A23) does not incorporate neither the conditions of
boundedness of x to the compact interval [−1, 1], nor the natural boundary condi-
tions of the eqs. (1) and (3). The boundary conditions, then, should be put in the
equation (A23) ‘by hand’. They are given by:

if x(t) > 1 then
x(t+ ∆t) + x(t)

2
= 1 , (A24)

if x(t) < −1 then
x(t+ ∆t) + x(t)

2
= −1 . (A25)

A glance to eqs. (A24) and (A25) shows that they are equivalent to a reflection
around the edges of the domain of x, x = 1 and x = −1, respectively.17

16Note that also the FPE is not a valid description of the system near the borders.
17Alternative boundary conditions are also possible. For example, the boundary conditions can

also be implemented as follows:

if x(t) > 1 then x(t + ∆t) = 1 ,

if x(t) < −1 then x(t + ∆t) = −1 .
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