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Abstract 

 

We model EU countries’ bank ratings using financial variables and allowing for intercept and 
slope heterogeneity. Our aim is to assess whether “old” and “new” EU countries are rated 
differently and to determine whether “new” ones are assigned lower ratings, ceteris paribus, 
than “old” ones. We find that country-specific factors (in the form of heterogeneous 
intercepts) are a crucial determinant of ratings. Whilst “new” EU countries typically have 
lower ratings than “old” ones, after controlling for financial variables we also discover that 
all countries have significantly different intercepts, confirming our prior belief. This intercept 
heterogeneity suggests that each country’s rating is assigned uniquely, after controlling for 
differences in financial factors, which may reflect differences in country risk and the legal 
and regulatory framework that banks face (such as foreclosure laws). In addition, we find that 
ratings may respond differently to the liquidity and operating expenses to operating income 
variables across countries. Typically ratings are more responsive to the former and less 
sensitive to the latter for “new” EU countries compared with “old” EU countries.  
 

 

Keywords: EU countries, banks, ratings, ordered probit models, index of indicator variables 
 
 
JEL Classification: C25, C51, C52, G21. 
 

                                                 
1 Corresponding author. Research Professor at DIW. Centre for Empirical Finance, Brunel University, West 
London, UB8 3PH, UK. Email: Guglielmo-Maria.Caporale@brunel.ac.uk 
2 Centre for International Capital Markets, London Metropolitan Business School, London Metropolitan 
University, 84 Moorgate, London, EC2M 6SQ. Tel: 020-7320-1569. E-mail: r.matousek@londonmet.ac.uk. 
3 London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London, EC2M 6SQ. 
Tel: 020-7320-1651. E-mail: c.stewart@londonmet.ac.uk.  

mailto:Guglielmo-Maria.Caporale@brunel.ac.uk
mailto:r.matousek@londonmet.ac.uk
mailto:c.stewart@londonmet.ac.uk


 



1. Introduction 
 

Ratings of banks and companies conducted by External Credit Assessment Institutions 

(ECAIs) may be seen as instruments that provide investors with prima facie information 

about the financial position of the subject in question and on the price of credit risk.  

Ratings are ordinal measures that should not only reflect the current financial position of 

sovereign nations, firms, banks, etc. but also provide information about their future financial 

positions. The objective of our paper is to analyse the determinants of individual bank ratings 

conducted by Fitch Ratings (FR) and to investigate whether the country of origin matters for 

individual ratings. For this purpose, we first consider whether (and which of) the key 

financial variables of banks reflect individual ratings (that is, according to FR, a key 

component for long- and short-term rating). Second, we examine whether bank ratings are 

systematically determined by the country origin of commercial banks. Our first hypothesis is 

that FR might assign higher ratings to commercial banks from “old” EU countries that have 

the same financial position as those from “new” EU countries. This could reflect differences 

in country risk (given that bank ratings cannot exceed sovereign ratings) or differences in 

legal and regulatory factors (including their enforcement), such as foreclosure laws. Another 

hypothesis is that FR might set ratings differently for “old” and “new” EU countries in terms 

of response to financial factors. That is, the coefficients on financial variables in a regression 

explaining ratings may be different for “old” and “new” EU countries. 

In other words, we test if commercial banks from “new” EU countries are assigned 

ratings on the basis of their financial ratios in the same way as “old” EU countries or if other 

factors are considered. To this end, we incorporate “new” EU and country-specific indicator 

variables to capture heterogeneous variations in ratings under the rationale that a bank’s 

rating is related to the country in which it is based. For country-specific indicators we 

construct index-of-indicator variables that are in the spirit of the method applied in Hendry 

(2001) and Hendry and Santos (2005), although we extend it to allow heterogeneous country 

slopes. Caporale et al. (2009) applied a similar methodological approach, within the context 

of modelling bank ratings, by allowing country-specific intercepts. Our extension to permit 

country-specific slopes is a further contribution to current research in this field. We also 

assess the predictive power of our model to classify the individual ratings of the commercial 

banks in question. 

The ability to predict the financial soundness of banks, corporations and sovereign 

countries has been of central importance for analysts, regulators and policy makers. A large 
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number of studies have employed financial ratios to predict failures of individual firms 

(banks), for example, Altman et al. (1977) and Ohlson (1980). Models that predict bank 

failures using so-called Early Warning Systems (EWS) have appeared in a number of studies, 

including Mayer and Pifer (1970) and Kolari et al. (2002).  Within this context, the financial 

variables of commercial banks have been utilised in several ways.   

Yet the ability of ECAIs to assign ratings correctly has been extensively questioned 

(Altman and Saunders, 1998, Levich et al., 2002, Altman and Rijken, 2004, Amato and 

Furfine, 2004, Portes, 2008). One of the most frequent arguments about the prediction 

abilities of rating agencies (RAs) is that they could provide misleading information since the 

analysis is backward- rather than forward-looking. In addition, the low transparency of 

ratings assignments contributes to the concern over the accuracy of ratings. Further, ECAIs 

do not have, and cannot have, superior information to market participants about uncertainty 

and the degree of insolvency (illiquidity) of companies. By modelling ratings we seek to 

identify their determinants and, using measures of fit, gauge how transparent ratings 

assignments are. In particular, we assess the extent to which ratings are determined by a 

bank’s financial position and, using indicator variables, ascertain the extent to which rating 

assignments reflect differences in a bank’s country of origin.  

There are numerous studies that predict bond ratings such as Kamstra et al. (2001),  

who utilise ordered-logit regression. Other recent studies (Kim, 2005; Huang et al., 2004 and 

Lee, 2007) show that artificial intelligence methods do not provide superior predictions of 

bond ratings compared with standard ordered-choice methods.4 Hence, using ordered 

logit/probit regressions is a valid way of addressing the main challenge in modelling ratings, 

which is to increase the probability of correct classifications. However, we are not aware of 

any previous studies that seek to model and predict individual bank ratings allowing for 

heterogeneous country effects (in both intercept and slope), which is the aim of this paper.  

The organization of the paper is as follows. Section 2 describes the data and the 

methods applied, while Section 3 discusses the principal empirical findings. The last section 

concludes.  

 

 

 

 

                                                 
4 There is also extensive research on credit risk ratings migration, see, for example, Feng et al. (2008), and 
Stefanescu et al. (2009). 
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2. Data and Methodology 

 

We model the individual ratings of EU banks as produced by Fitch Ratings (FR). 

These ratings are divided into six main categories (A, B, C, D, E, F) which, with four 

intermediate subdivisions (A/B, B/C, C/D, D/E), give ten categories of bank performance. 

We use 1168 ratings observations for 303 different European banks, denoted , between 

1996 and 2008.

iY

5  is ordinal and has ten categories that are assigned integer values, 0 to 9: 

lower values indicate a lower rating. The ten rating categories are: F (0), E (1), D/E (2), D 

(3), C/D (4), C (5), B/C (6), B (7), A/B (8), A (9).  

iY

We apply ordered-choice estimation techniques to model this ordinal dependent 

variable because, as is well known, they are the appropriate method to use in this case. The 

ordered dependent variable model assumes the following latent variable form (see Greene, 

2008):  

 

i

K

k
kiki uXY +=

=1

* β  (1) 

 

where  is the kth explanatory variable for the ith bank,  is a stochastic error term, and  

is the unobserved dependent variable that is related to the observed dependent variable, , 

(assuming ten categories) as follows:  

kiX iu *
iY

iY

 

                                                 
5 On average there are 3.85 (approximately 4) different time-series observations for each bank (some ratings in 
our sample change while others are simply confirmed). This suggests that the sample may not be independent: 
there may be bank specific factors that affect each bank in all time periods. To the extent that such factors are 
omitted from our model they will enter the model’s error term. If such factors are uncorrelated with the variables 
included in the model the strict exogeneity assumption will not be violated and the estimator will not become 
inconsistent from this source. However, if these omitted factors are correlated with the model’s covariates this 
will induce inconsistency in the estimator. To guard against this we try to minimise the likelihood of there being 
omitted variables by incorporating the financial covariates previously considered in the literature and by adding 
a country index to account for country-specific factors that affect a bank. However, we do not incorporate 
individual intercepts (essentially fixed effects) for each bank because this can cause inconsistency in the 
estimator when the number of time-series observations per bank is small, due to the incidental parameters 
problem – see Greene (2008).  
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where 1λ , 2λ ,…, 9 λ  are unknown limit points to be estimated with the coefficients (the 

kβ s). We are primarily interested in the general direction of correlation between the 

dependent and independent variables. Therefore, we use the sign of kβ  to provide guidance 

on whether the estimated signs of the coefficients are consistent with our a priori 

expectations. This is instead of looking at the marginal effects which indicate the direction of 

change of the dependent variable (for each value of the dependent variable) in response to a 

change in kiX . For ordered-choice models these marginal effects are difficult to interpret.  

denot total asse

of et int

l

 The probit form of this model assumes that the cumulative distribution function 

employed is based upon the standard normal, while the logit form assumes a logistic 

distribution. Greene (2008) suggests that probit and logit models yield results that are very 

similar in practice and so we focus on one form, namely the probit form.  

The first explanatory variable that we consider is the year in which the rating was 

made [ ]. This is 3 in 1996, 4 in 1997, 5 in 1998 and so on.iDate

i

ta

6 The second set of 

covariates considered is the first lagged values of the following seven financial variables: the 

ratio of equity to total assets [ ed Equity ], the ratio of liquid assets to ts 

[ Liquidity ], the natural logarithm ssets [ ( )Assetsln ], the n erest margin 

[ ]NIM , the ratio of operating expenses to total operating income [ OIOE _ ], other operating 

income to to  assets, [ ]OOIA  and the return on assets [ ROA ].

i

total a i

i

i i

i
7 Current values of financial 

variables are not used as they may contain information not known when the rating was 

                                                 
6 Originally we had data from 1994 where 1994 took the value of 1. However, data prior to 1996 was lost due to 

sis due to multicollinearity.   
missing observations on some variables. 
7 Some other variables were considered but were omitted from the analy
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made.8 A further benefit of using lagged financial variables is that it ensures that they are 

exogenous and no endogeneity bias will affect the estimates.9 The choice of variables is 

l variable,

shift in that

nd Hendry and Santos (2005) to construct 

new” EU countries’ (intercept) dummy 

variables, , is estimated, thus:12  

 

(3) 

wh in country m and is zero otherwise and 

denotes the respective estimated coefficients.  

                                                

guided by the past literature. 

 A third set of variables employed are country indicator (or dummy) variables. Two broad 

types of indicators are considered. First, we construct a shift dummy variable, New
iD , that is 

defined to take the value of unity for the 12 “new” EU countries and is zero for the 15 “old” 

EU countries.10 This dummy variable, multiplied by the pth financia ields the 

 variable’s slope coefficient for a “new” EU country, New
ipi

New
pi DZZ ×= , where, 

1,2,...,7=p .

 piZ , y

11 Second, we develop index-of-indicator variables that allow each country to 

have different intercept and slope coefficients. However, an ordered-choice model 

incorporating 27 dummy variables for each covariate cannot be estimated; hence, we employ 

a method that is in the spirit of Hendry (2001) a

indices-of-indicator variables for each covariate.  

 To construct a country index for the intercept we estimate two probit models, one 

incorporating “new” EU countries’ dummies and one for “old” EU countries’ dummies. That 

is, one probit regression of ratings on the 12 “

1,2,...,12m  , =miD


=

=
12

1

* ˆˆ
m

mimi DY δ   

 

ere, miD  takes the value of one for a bank 

mδ̂

 
8 For example, if a bank’s rating was decided in January 2007 then the value of any explanatory factor measured 
over the whole of 2007 would be unknown when the rating was made.  
9 Not only are the financial covariates predetermined, the other covariates are also exogenous: the time variable 
is deterministic and the country index (discussed below) is constructed as a linear combination of deterministic 
country dummy variables (which are also deterministic). The use of lagged variables to avoid endogeneity is a 
strength of our work relative to some other authors who have used contemporaneous financial covariates when 
modelling ratings.  
10 The twelve “new” EU countries in our sample (associated with the fifth enlargement of the EU) are: Bulgaria, 
Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, Slovakia and Slovenia. 
The fifteen “old” EU countries are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, 
Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and the UK. 
11 There are 7 financial variables.  
12 Including all 27 countries’ dummy variables in one regression was not possible due to problems with 
estimating the model, hence the use of two separate regressions for “new” and “old” EU countries’ dummy 
variables. Note that both regressions use all 1168 observations. 
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 The initial index for “new” EU countries is constructed as the sum of the products of the 

coefficients and their corresponding dummy variables for the statistically significant terms, 

thus:    

 


=

=
12

1
1̂

m
mi

N
i DI δ  (4)  

 

 Similarly, the following ordered-choice model is fitted to the 15 “old” EU country 

dummy variables, : 2713,14,...,m  , =miD

 


=

=
27

13

* ˆˆ
m

mimi DY δ  (5) 

 

 The initial index for “old” EU countries is correspondingly constructed as:   

 


=

=
27

13
1̂

m
mi

O
i DI δ   (6) 

 

 To obtain a preliminary index for all countries, ratings are then regressed on these two 

indices, thus:  

 

O
iO

N
iNi IIY γγ ˆˆˆ* +=   (7) 

 

 The initial country index is constructed as: 

 

O
iO

N
iN

C
i III γγ ˆˆ +=   (8) 

  

 This index was checked for appropriateness by running a single regression that included 

the initial country index plus one individual country’s dummy, that is: 

 

mim
C
ii DIY αλ ˆˆˆ * +=   (9) 
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 If the latter individual dummy variable was significant the value of its coefficient, mα̂ , 

was incorporated into the country index. This was repeated for all 27 countries, that is, 27 

regressions containing only two variables (the country index and a particular country’s 

dummy) were estimated. After all the coefficients of the individual country dummies that 

were significant in these 27 regressions had been incorporated into the index this step was 

repeated until no individual country dummies were significant at the 5% level (when included 

in a regression with the country index). The result is the intercept country index – reported in 

Table 4.13   

 A modified procedure was employed to construct indices for the non-intercept 
covariates. For each covariate (except for ) and slope interaction variables, , for 

each country were constructed using:  
iDate C

pmiZ

 

mipi
C
pmi DZZ ×=  (10) 

 

 For the pth financial covariate, one regression is estimated using the “new” EU countries’ 

slope interaction variables. That is, ratings is regressed on the 7 financial variables, date and 

the 12 “new” EU countries’ slope interaction terms for the pth variable, thus:14  

 


==

++=
12

1

7

1
1

* ˆˆˆˆ
m

C
pmim

p
pipii ZZDateY θφβ   (11) 

 

 A corresponding regression for the pth financial variable is estimated using slope 

interaction variables of 15 “old” EU countries, as:  

 


==

++=
27

13

7

1
1

* ˆˆˆˆ
m

C
pmim

p
pipii ZZDateY θφβ   (12) 

 

 Initial indices for the pth covariate for “new” and “old” EU countries, respectively, are 

constructed using only the statistically significant interaction terms in each regression 

(equations (11) and (12)), as: 

                                                 
13 Using an index of indicators to model country-specific factors in our model of ratings ensures that these 
country factors do not enter the disturbance term of this model. To the extent that there is some correlation 
between these country-specific terms and the financial covariates the inclusion of this country indicator in the 
model prevents endogeneity that could otherwise arise from this source.  
14 We do not include interaction terms for all 27 countries in one regression due to problems with estimating the 
model.  
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=

=
12

1

ˆ
m

C
pmim

N
pi ZI θ   (13) 

 


=

=
27

13

ˆ
m

C
pmim

O
pi ZI θ   (14) 

 

 To obtain a preliminary index of the pth covariate for all countries we regress ratings on 

these two indices, thus:  

 

O
piO

N
piNi IIY ωω ˆˆˆ * +=   (15) 

 

 The initial country slope index for the pth financial variable is constructed as: 

 

O
piO

N
piN

C
pi III ωω ˆˆ +=   (16) 

  

 This index was refined by the following iterative process. A single regression that 

included the date, the financial variables, the initial country slope index plus a single 

interaction term for country m and the pth financial variable was estimated as follows: 

 

C
pmipm

C
mi

p
pipii ZIZDateY μρφβ ˆˆˆˆˆ

7

1
1

* +++= 
=

  (17) 

 

 If the latter individual interaction term was significant the value of its coefficient, pmμ̂ , 

was incorporated into the country index. This was repeated for all 27 countries. After all the 

coefficients of the individual country interaction terms that were significant in these 27 

regressions had been incorporated into the index this iteration was complete. Further 

iterations were repeated until there was convergence giving the final country slope index for 

the pth financial variable, . Complete convergence would be achieved when no  term 

was significant at the 5% level for any country in (17) in a full iteration. Convergence may 

also be achieved even if interaction variables can be added with significance between 

CF
piI pmiZ
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iterations if the change in the index is small between iterations (to some tolerance level).15 

We found that 999 iterations was sufficient for all but the liquidity index to achieve complete 

convergence or make the changes between the values in the indices sufficiently small to 

conclude that they had converged.16  For the liquidity index there is non-convergence such 

that the index is not the same between adjacent iterations but is exactly the same for every 

other iteration. In this case we tried both possible indices for liquidity in our regressions.17  

  

3. Empirical Results 

 

 In this section we discuss two broad sets of results for the determinants of bank ratings. 

The first set allows heterogeneity to the extent that intercept and slope coefficients are 

different for “old” and “new” EU countries by employing shift dummy variables. The second 

set of results allows intercepts and slopes to be different for all countries (using index of 

indicator variables). For both sets we report a general model and one favoured parsimonious 

specification obtained using a cross-sectional variant of the general-to-specific 

methodology.18 When there was ambiguity over which model to favour we selected the 

model with the lowest SBC. In all cases the favoured parsimonious models only include 

variables that are individually significant according to z-statistics and jointly significant 

according to a likelihood ratio test, denoted LR statistic. The restrictions placed on the 

general model to obtain the parsimonious model cannot be rejected according to a likelihood 

                                                 
15 We regard convergence to be achieved if the percentage change in the maximised value of the likelihood 
function does not exceed 0.01% between two adjacent iterations.  
16 The indices for assets, operating expenses to operating income and other operating income to assets converge 
completely by the 999th iteration. The indices for equity, net interest margin and return on assets almost 
completely converge by the 999th iteration in the sense that the index changes by a very small amount. The 
percentage changes in the maximised value of the log-likelihood function between the 998th and 999th iteration 
are 0%, 0.00006% and 0.00006% for these three variables, respectively, which is well below the tolerance level 
of 0.01% that we set. 
17 For the liquidity index the value of the index was exactly the same between adjacent iterations for all 
countries except for Luxembourg. For this country, the value of the index was 2.589 in the first iteration, –1.046 
in the second iteration, 2.589 in the third iteration, –1.046 in the fourth iteration and so on. We used the index 
that produced the best fit in our experiments, using the 998th iteration (where the value for Luxembourg is –
1.046). Plots of the 998th and 999th iterations of the index for each of the 7 financial variables are available from 
the authors upon request.  
18 In this method we first delete all variables with z-statistics below one (or, exceptionally, 0.5 if the z-statistics 
are very small for a large number of variables) and apply a Likelihood Ratio (LR) test relative to the general 
model. If the restrictions cannot be rejected, we delete all variables with z-statistics below 1.5 and then all 
explanatory factors with z-statistics below 1.96 (applying all LR tests relative to the general model). If any LR 
test for joint restrictions is rejected, we experiment to find the variable(s) that cause this rejection and retain it 
(them) in the model.  
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ratio test [LR(general→favoured)]. The favoured parsimonious models will yield more 

efficient inference relative to the general model and so they are used for inference. 

The ordered probit regression results that potentially allow shifts between “old” and 

“new” EU countries are presented in Table 1. The model reported in the column headed “No 

shift” in Table 1 contains no coefficients that shift for “new” EU countries (all the 

coefficients are the same for all countries). In the favoured model all the significant 

coefficients have plausible signs. That is, liquidity has a positive effect on ratings: banks with 

greater liquidity have a higher rating; the natural log of assets has a positive effect on ratings: 

banks with a larger size of assets have a higher rating; the net interest margin (  has a 

positive correlation with ratings: a bank with a higher margin has a higher rating.

)

)

                                                

NIM

19 Further, 

operating expenses to operating income (  has a negative correlation with a bank’s 

rating: a bank with a greater ratio of operating expenses to operating income has a lower 

rating. All other variables are excluded from the favoured specification because they were 

insignificant in the general model. This benchmark model’s percentage of correct predictions 

is 33.6% which exceeds the predictive accuracy of 10% (given 10 rating categories) expected 

if the ratings were assigned randomly. Hence, the model adds predictive performance that is 

22.6 percentage points greater than that obtained by chance.  

OIOE _

 The favoured model in the column headed “Intercept shift” in Table 1 contains the 

intercept dummy variable that shifts for “new” EU countries, , but no slope coefficient 

shift variables. The same financial variables as for the “No shift” model are significant and 

have the same plausible coefficient signs, while the shift in the intercept is significant and 

negatively signed. The latter implies that, given the financial variables, “new” EU countries 

receive a systematically lower rating than “old” EU countries.

New
iD

20 This may reflect, for 

example, higher country risk and/or regulatory and legal deficiencies in “new” EU countries 

and confirms our hypothesis that the country of origin is an important determinant of a bank’s 

rating. This model’s percentage of correct predictions is 37.4%, thus allowing the intercept to 

 
19 A high NIM contributes to a bank’s profitability and enables them to build up sufficient reserves/provisions 
for potential losses. 
20 It should be emphasised that we cannot interpret the magnitude of the coefficient on the intercept shift term as 
indicating by how much, on average, ratings are lower (ceteris paribus) in “new” EU countries because the 
coefficients are not marginal effects.  
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shift notably increases the model’s predictive performance relative to our benchmark 

model.21  

 The favoured model in the column headed “All shift” of Table 1 contains variables that 

allow both the intercept and slope coefficients to shift depending upon whether the nation is 

an “old” EU or “new” EU country. Six “non-shift” variables are significant (equity, liquidity, 

ln(Assets), NIM, OE_OI and ROA) and their coefficients represent these variable’s 

associations with ratings for “old” EU countries. Seven of the “shift” variables are significant 

(intercept, equity, liquidity, ln(Assets), NIM, OOIA and ROA) which indicates that the 

influence of these variables on ratings is different for “new” EU countries and “old” EU 

countries.22 The model’s percentage of correct predictions is 39.6% and demonstrates that 

allowing slopes to shift as well as the intercept further increases the model’s predictive 

performance.23 The negative coefficient on the intercept shift term suggests that, as for the 

previous model, “new” EU countries have systematically lower ratings than “old” EU 

countries after the effects of financial variables have been taken into account. Further, the 

significance of the slope shift variables’ coefficients demonstrates that bank ratings responses 

to financial variables are different for “old” and “new” EU countries. This implies that RA’s 

determine ratings differently for “old” and “new” EU countries in terms of banks’ financial 

positions. 

 Table 2 reports the slope coefficients and t-ratios for “old” and “new” EU countries 

implied by the general and favoured specifications of the models reported in Table 1 under 

the heading “New EU intercept and slope shift”. From the results corresponding to the 

favoured specification, 5 of the 6 significant coefficients have the expected signs for the 

“old” EU countries. An increase in liquidity, assets, net interest margin and return on assets 

will have a positive impact on ratings whereas an increase in operating expenses relative to 

operating income has a negative effect on ratings. All of these relations are plausibly signed. 

However, the negative correlation of equity and ratings is unexpected. One possible 

rationalisation is that banks use equity to create a buffer against possible loss or non-

                                                 
2R

2R

21 The other reported measures of fit, pseudo  and SBC, confirm this increase in fit and, being broader 
measures of fit, help guard against the result arising because the former measure focuses only on whether a 
model predicts with complete accuracy or not. 
22 The likelihood ratio statistics indicate that these shift variables are jointly significant, confirming that the 
coefficients for “old” and “new” EU countries are different for all of these variables. 
23 The other reported measures of fit, pseudo  and SBC, confirm this increase in fit. 
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performing assets.24 Thus, a higher equity to assets ratio may indicate potential problems 

with asset quality, which is reflected in a lower rating.25  

                                                

 For “new” EU countries 3 of the 4 significant coefficients of the favoured model reported 

in Table 2 have the expected signs. Increases in assets and operating income to assets have a 

positive impact on ratings whilst an increase in operating expenses relative to operating 

income has a negative effect on ratings. In contrast, the negative correlation of return on 

assets with a bank’s rating is not expected.26 However, the coefficient is only just significant 

and may be due to a Type-I error (of which there is a 5% chance given our chosen 

significance level). Indeed, this finding of a positive coefficient on return on assets is not 

repeated in any other regressions and may, therefore, be regarded as a fragile result. 

 The results of the favoured model reported in Table 2 provide clear evidence that ratings 

are determined differently for “old” and “new” EU countries. The coefficient for “new” EU 

countries is significantly larger than for “old” EU countries for equity, assets and operating 

income. Conversely, the coefficient for “new” EU countries is significantly smaller than for 

“old” EU countries for liquidity, net interest margin and return on assets. Only for operating 

expenses to operating income are the coefficients the same for “old” and “new” EU countries. 

 Table 3 reports results where heterogeneous intercepts and slopes (for the financial 

covariates) are allowed for all countries and not just for the “new” and “old” EU country 

groupings. The models reported in the column headed “Intercept heterogeneity” contain the 

intercept country index but no country indices for the covariates’ slopes. From the favoured 

model that allows intercept heterogeneity only we see that all significant coefficients have 

expected signs except equity. Date, liquidity, assets, net interest margin and operating income 

have plausible positive effects on ratings while operating expenses has a plausible negative 

correlation with a bank’s rating. As before, equity has an unexpected negative impact on 

ratings suggesting that this may not be a fragile result.27 It is particularly noteworthy that the 

intercept country index is highly significant and its inclusion in the model raises the model’s 

percentage of correct predictions substantially (compared with the models reported in Table 

 
24 Until recently (before the crisis) equity (or capitalisation) was not a problem in banking. 
25 In transition economies it has been essential that banks build up high equity because of higher risk, although 
we do not find a negative correlation between ratings and equity for “new” EU countries.  
26 Return on assets is an indicator of profitability. In this specific case high profitability can be considered as a 
weakness that is associated with imprudent lending policies. In other words, a high profit may result from 
reckless lending. This would be especially relevant for “new” EU countries.  
27 A higher equity to assets ratio may be an indication of potential problems with asset quality which is reflected 
in a lower rating.  
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1) to 48.0%.28 This suggests that country-specific factors, beyond those captured by financial 

covariates, are very important determinants of ratings.  

 The models reported in the column headed “All heterogeneity” of Table 3 contain both 

heterogeneous intercept and slope indices. The same non-index covariates as reported in the 

favoured model under the “Intercept heterogeneity” column are significant, except for Date, 

and have the same coefficient signs. The index variables that are significant are for the 

intercept, liquidity and operating expenses: these are the only variables that exhibit 

significant coefficient heterogeneity. The percentage of correct predictions is 50.5%, which 

suggests that adding financial covariate indices (giving slope heterogeneity) raises the 

predictive performance by 2.5 percentage points relative to the model only allowing intercept 

heterogeneity.  

 The values of the intercept coefficients from the intercept country index are given in 

Table 4. All of the countries have different intercepts, indicating that all countries’ ratings 

contain a country-specific element. All of the “old” EU countries have larger intercepts than 

the “new” EU countries, indicating that country-specific factors lower “new” EU countries’ 

ratings relative to “old” EU nations, which confirms our initial hypothesis. However, it is 

worth emphasising that within “old” and “new” EU country groupings there is intercept 

heterogeneity. Hence, factors such as sovereign risk and country differences in the legal and 

regulatory frameworks in which banks specifically operate affect the ratings at the individual 

country level. Whilst we confirm that “new” EU countries have lower ratings than “old” EU 

countries (after controlling for financial variables) our results emphasise that ratings do not 

simply differ by “old” and “new” EU country cohorts. 

 The country-specific coefficients for the liquidity and operating expenses to operating 

income variables are reported in Table 5. All of the countries’ coefficients have the expected 

signs, except for Romania’s liquidity coefficient which is relatively small in magnitude, being 

virtually zero. With the exception of Romania (and Spain) “new” EU countries tend to have 

larger coefficients for both variables compared with “old” EU countries. Further, ratings tend 

to be more sensitive to liquidity for “new” EU countries relative to “old” EU countries, while 

ratings tend to be less responsive to the ratio of operating expenses to operating income for 

“new” EU countries compared with “old” EU countries. Whilst there is some heterogeneity 

for both variables, many coefficients are the same. That is, for 16 out of 27 countries the 

                                                 
28 This intercept index variable improves predictive performance relative to a model with no heterogeneity or 
shifts by 14.4 percentage points. That is, the model headed “Intercept heterogeneity” in Table 3 has a predictive 
performance of 48.0% compared with the model headed “No shift” in Table 1 where 33.6% of predictions are 
correct.  
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coefficients are the same for liquidity and for 13 out of 27 countries they are the same for 

operating expenses. We note that only two financial variables show coefficient heterogeneity 

and within these variables many of the different countries’ parameters are the same, which 

contrasts with the intercept index which indicates a different value for all countries. It 

therefore appears that the main country heterogeneity comes from the intercept variable and 

only a small part comes from the different country responses of ratings to financial variables. 

 Further, recall that the predictive performance of the benchmark model containing no 

heterogeneous (or shifting) coefficients is 33.6%. Thus, the incorporation of a heterogeneous 

intercept increases this performance by 14.4 percentage points to 48.0%. Adding indices for 

both heterogeneous slopes and a heterogeneous intercept raises the model’s predictive 

accuracy to 50.5%, which is a relatively modest increase of 2.5 percentage points (compared 

with the model containing a heterogeneous intercept). This suggests that most of the 

improvement in fit comes from adding a heterogeneous intercept and only a small percentage 

from the addition of heterogeneous slopes. Thus, the heterogeneous intercept appears to be a 

crucial determinant of ratings and likely captures differences in factors such as sovereign risk 

and the legal and regulatory framework across all countries. The comparatively limited 

evidence in favour of slope heterogeneity is suggestive of only modest differences in the way 

banks are rated according to their financial positions across countries.  

 To provide a final assessment of our model we consider whether the favoured model that 

allows for intercept and slope heterogeneity (reported in the last column of Table 3) has 

constant parameters through time. Ten of the new EU countries joined in 2003 while two 

(Bulgaria and Romania) joined in January 2007 giving rise to the possibility of changes in the 

ratings assignment equations around these times. Further, the international banking crisis that 

began in the middle of 2007 (which the rating agencies reacted to by downgrading several 

banks) provides an additional reason for structural change after 2007. We therefore conduct 

likelihood ratio tests of parameter constancy [denoted LR(time shift)] using dummy variables 

to allow coefficient shifts in each of the years from 2003 to 2008 in Table 6. The column 

headed Intercept tests for a change in intercept only, the column headed Slopes tests for shifts 

only in the slope coefficients, while the column headed Slopes and Intercepts tests for 

structural change in both intercepts and slopes of the model. We also report the pseudo 2R , 

SBC and percentage of correct predictions of the unrestricted model (allowing for structural 

changes) used in the tests. 
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 The LR tests indicate clear evidence of coefficient changes with 15 of the 18 tests 

rejecting parameter constancy at the 5% level.29 To ascertain how much benefit modelling 

these coefficient shifts yield we consider the fit of the models allowing for time shifts relative 

to a baseline model that does not (the favoured model reported in the last column of Table 5). 

The pseudo 2R  is at least as large as the baseline model (0.259) for all 18 models that allow 

shifts with the largest being 0.277 for the model allowing shifts in both intercept and slopes 

in 2003. However, this measure would be expected to rise when the shift variables are added 

(even if they were not significant) and so this is not a particularly informative measure for 

this purpose. The SBC, which trades of fit against the number of coefficients in the model, 

may be more useful. Only 5 of the 18 models have a lower SBC than the baseline model 

(2.777) with the smallest (by far) SBC being 2.771 for the model with a shift in both intercept 

and slope in 2003. 

 The percentage of correct predictions is an especially useful measure in this context 

because it provides an interpretable comparison of the different models performance. 

According to this measure 4 of the 18 specifications that model parameter shifts through time 

have greater performance than that of the baseline model. The percentage of correct 

predictions rises from 50.514% for the baseline model to 50.599% for the models with just an 

intercept shift and with both an intercept and slope shift in 2008, and to 50.685% for the 

model with just an intercept shift in 2003 and the model with just a slope shift in 2008. The 

increase in predictive performance from modelling these time shifts is, at best, 0.171 

percentage points, which is a very modest rise. Hence, while the tests for parameter 

constancy through time suggest evidence for significant shifts, the benefit from modelling 

these changes through time is very small. We therefore believe that the inference from our 

baseline model is informative. To the extent that there are changes in the coefficients through 

time they most likely occur in 2003 which coincides with the accession of the first 10 of the 

“new” EU countries considered here and/or 2008, which is just after the accession of the last 

two “new” EU countries (Bulgaria and Romania) and the emergence of the international 

banking crisis. 

 

 

 

 

                                                 
29 The tests that could not reject parameter constancy were those that only allowed an intercept shift in the years 
2005, 2006 and 2007.  
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4. Conclusions 

 

 Our models of EU country ratings show that ratings are determined by financial variables 

and that these covariates have the expected coefficient signs except for equity. We suggest 

that the explanation for this latter result may be that a higher equity to assets ratio can be an 

indication of potential problems with asset quality which is reflected in a lower rating. 

Country-specific factors (in the form of heterogeneous intercepts) are a crucial determinant of 

ratings. Whilst “new” EU countries typically have lower ratings than “old” EU countries, 

after controlling for financial variables, it should be emphasised that all countries have 

significantly different intercepts. This intercept heterogeneity confirms our initial hypothesis 

that country-specific factors, beyond those captured by banks’ financial positions, influence 

ratings and may reflect differences in country risk and the legal and regulatory framework 

that banks face (such as foreclosure laws).  

 There may be some differences across countries in the assignment of ratings due to the 

liquidity and operating expenses to operating income variables. There is some evidence that 

ratings are typically more responsive to liquidity and less sensitive to operating expenses for 

“new” EU countries compared with “old” EU countries, although differences in assigning 

ratings according to financial variables across countries are relatively modest. However, it is 

clear that the primary country heterogeneity in ratings arises from the intercept rather than 

from the slopes. Nevertheless, construction of slope heterogeneity indices is a novel 

development in the methodology of producing index-of-indicator variables.  

 Whilst there is evidence that parameters may not be constant through time there is little 

benefit to modelling these coefficient changes in terms of the improved predictive 

performance. The shifts in coefficients most likely take place in 2003, which coincides with 

the accession of 10 of the “new” EU countries, and/or 2008 which is just after the accession 

of Bulgaria and Romania to the EU and when the emergence of the international banking 

crisis became apparent. The latter may reflect ratings agencies’ reaction to the discovery of 

various banks having substantially poorer financial positions than previously expected. 
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Table 1: Bank ratings probit regressions with new EU coefficient shift  
 

 No shift New EU intercept 
shift 

New EU intercept 
and slope shift 

Variables  
(expected sign) 

Gen Fav Gen Fav Gen Fav 

Date  –0.002 
(–0.229) 

 0.014 
(1.276) 

 0.018 
(1.509) 

 

1−tEquity                (+) 
–0.572 

(–0.631) 
 –1.237 

(–1.023) 
 –4.216 

(–2.277) 
–4.047 

(–2.252) 

1−tLiquidity            (+) 1.301 
(8.049) 

1.327 
(8.354) 

1.285 
(7.358) 

1.336 
(7.714) 

1.118 
(5.735) 

1.143 
(5.946) 

( ) 1ln −tAssets           (+) 0.243 
(14.430) 

0.249 
(15.683) 

0.177 
(8.332) 

0.183 
(9.030) 

0.181 
(6.944) 

0.181 
(6.929) 

1−tNIM               (–/+) 1.672 
(1.560) 

1.867 
(2.115) 

5.694 
(4.493) 

5.721 
(4.780) 

6.052 
(4.032) 

5.702 
(3.953) 

1_ −tOIOE               (–) –1.461 
(–10.680) 

–1.547 
(–13.917) 

–1.342 
(–6.874) 

–1.517 
(–8.748) 

–1.119 
(–5.615) 

–1.182 
(–6.172) 

1−tOOIA                    (+) –13.388 
(–1.693) 

 8.993 
(1.271) 

 –5.319 
(–0.476) 

 

1−tROA                      (+) 
4.593 

(1.110) 
 8.725 

(1.355) 
 43.807 

(4.000) 
42.302 
(3.976) 

NewIntercept _    –1.548 
(–14.163) 

–1.485 
(–14.455) 

–0.983 
(–1.609) 

–1.356 
(–2.674) 

1_ −tNewEquity  
    7.039 

(2.989) 
6.681 

(2.902) 

1_ −tNewLiquidity      –1.350 
(–2.870) 

–1.478 
(–3.273) 

( ) 1_ln −tNewAssets      0.127 
(2.801) 

0.121 
(2.790) 

1_ −tNewNIM      –6.814 
(–2.778) 

–7.571 
(–3.231) 

1__ −tNewOIOE      –0.637 
(–1.126) 

 
 

1_ −tNewOOIA      33.272 
(2.469) 

24.723 
(3.546) 

1_ −tNewROA  
    –59.774 

(–4.291) 
–50.554 
(–4.735) 

Fit Measures       

% correct 33.390 33.647 37.158 37.414 39.555 39.555 

Pseudo   2R 0.096 0.095 0.142 0.140 0.160 0.159 

SBC 3.354 3.334 3.197 3.179 3.176 3.161 

LR statistic 405.272 
[0.000] 

401.090 
[0.000] 

596.398 
[0.000] 

588.520 
[0.000] 

670.413 
[0.000] 

666.545 
[0.000] 

LR(general→favoured)  4.183 
[0.382] 

 7.879 
[0.096] 

 3.869 
[0.276] 

LR(slope shift)     74.015 
[0.000] 

73.218 
[0.000] 

LR(slope/intercept shift)     265.141 
[0.000  ]

264.186 
[0.000  ]

Observations 1168 1168 1168 1168 1168 1168 
Table 1 notes. The dependent variable is a bank’s rating which has ten categories that correspond to the integer values in the range of 1 to 

10 and yields nine limit points,  (the intercept is not separately identified from the limit points). Z-statistics (in parentheses) 

are based upon Huber-White standard errors and the percentage of correct predictions (% correct) use the category with the highest 

probability to give the predicted rating. Also reported are the Pseudo  and Schwartz’s information criterion, SBC. Likelihood ratio tests 
for the model’s explanatory power, LR Statistic, the deletion of variables from the general model to obtain the parsimonious model, 
LR(general→favoured) the deletion of slope shift variables, LR(slope shift), and the deletion of slope and intercept shift variables, 
LR(slope/intercept shift) from a model are additionally reported. Probability values are given in square parentheses. All regressions were 
estimated using E-Views 6.0. 

9 ,...,2 ,1  , =iiλ
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Table 2: Implied slope coefficients and t-ratios of EU shift models  
 

 General Favoured 
Variables (expected sign) Old EU New EU Old EU New EU 
Date  0.018 

(1.509) 
   

1−tEquity                 (+) –4.216 
(–2.277)* 

2.823 
(1.917) 

–4.047 
(–2.252)* 

2.634 
(1.829) 

1−tLiquidity             (+) 1.118 
(5.735)* 

–0.232 
(–0.542) 

1.143 
(5.946)* 

–0.336 
(–0.818) 

( ) 1ln −tAssets            (+) 0.181 
(6.944)* 

0.309 
(7.773)* 

0.181 
(6.929)* 

0.302 
(8.067)* 

1−tNIM                  (–/+) 6.052 
(4.032)* 

–0.762 
(–0.378) 

5.702 
(3.953)* 

–1.869 
(–1.011) 

1_ −tOIOE               (–) –1.119 
(–5.615)* 

–1.756 
–(3.208)* 

–1.182 
(–6.172)* 

–1.182 
(–6.172)* 

1−tOOIA                   (+) –5.319 
(–0.476) 

27.953 
(3.684)* 

 24.723 
(3.546)* 

1−tROA                     (+) 43.807 
(4.000)* 

–15.967 
(–1.890) 

42.302 
(3.976)* 

–8.251 
(–1.991)* 

Table 2 notes. The (implied) coefficients and t-ratios are reported for new EU and old EU countries based upon 
the general and favoured regressions reported in Table 1 under the column headed “New EU intercept and slope 
shift”. The coefficients and t-ratios for the old EU countries are exactly the same as those reported in Table 1. 
The coefficients for new EU countries are the sum of the coefficients on the variable of interest and its 
corresponding shift term. The t-ratios for new EU countries are calculated based upon the variance of the sum of 
a particular variable’s coefficient (a) and its corresponding shift variable’s coefficient (b), that is, Var(a + b) = 
Var(a)  + Var(b) + 2Cov(ab). An asterix indicates that a variable is significant at the 5% level (using a critical 
value of 1.96 in absolute value). 
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Table 3: Bank ratings probit regressions with country heterogeneity 
 

 Intercept heterogeneity Intercept and slope 
heterogeneity 

Variables (expected sign) Gen Fav Gen Fav 
Date  0.026 

(2.489) 
0.026 

(2.448) 
0.022 

(1.714) 
 

1−tEquity                (+) –3.447 
(–3.704) 

–3.142 
(–3.537) 

–3.518 
(–2.770) 

–3.272 
(–2.723) 

1−tLiquidity            (+) 0.541 
(3.212) 

0.569 
(3.424) 

0.380 
(1.903) 

0.426 
(2.370) 

( ) 1ln −tAssets           (+) 0.233 
(13.367) 

0.234 
(13.461) 

0.297 
(9.256) 

0.290 
(9.248) 

1−tNIM                  (–/+) 4.845 
(4.402) 

5.219 
(4.987) 

3.741 
(2.968) 

3.539 
(3.176) 

1_ −tOIOE              (–) –1.237 
(–8.795) 

–1.324 
(–11.365) 

–1.354 
(–5.884) 

–1.418 
(–7.434) 

1−tOOIA                   (+) 19.053 
(2.329) 

20.178 
(2.486) 

14.911 
(2.022) 

17.271 
(2.551) 

1−tROA                     (+) 4.621 
(1.101) 

 0.946 
(0.162) 

 

CountryIntercept _  1.065 
(24.159) 

1.065 
(24.159) 

1.065 
(19.883) 

1.050 
(22.507) 

1_ −tCountryEquity    0.00004 
(1.570) 

 

1_ −tCountryLiquidity    0.135 
(1.161) 

0.299 
(3.332) 

( ) 1_ln −tCountryAssets    2.166 
(1.294) 

 

1_ −tCountryNIM    –0.00003 
(–1.088) 

 

1__ −tCountryOIOE    0.217 
(1.964) 

0.224 
(2.475) 

1_ −tCountryOOIA    –0.0001 
(–0.201) 

 

1_ −tCountryROA    –0.000001 
(–0.768) 

 

Fit Measures     
% correct 48.116 48.031 50.086 50.514 

Pseudo   2R 0.248 0.248 0.261 0.259 

SBC 2.815 2.810 2.812 2.777 
LR statistic 1042.631 

[0.000] 
1041.420 
[0.000] 

1095.051 
[0.000] 

1086.883 
[0.000] 

LR(general→favoured)  1.211 
[0.271] 

 8.168 
[0.318] 

LR(slope heterogeneity)   52.420 
[0.000] 

51.460 
[0.000] 

LR(slope/intercept heterogeneity)   689.779 
[0.000] 

682.916 
[0.000] 

Observations 1168 1168 1168 1168 
Table 3 notes. The dependent variable is a bank’s rating which has ten categories that correspond to the integer values in the range of 1 to 

10 and yields nine limit points,  (the intercept is not separately identified from the limit points). Z-statistics (in parentheses) 

are based upon Huber-White standard errors and the percentage of correct predictions (% correct) use the category with the highest 

probability to give the predicted rating. Also reported are the Pseudo  and Schwartz’s information criterion, SBC. Likelihood ratio tests 
for the model’s explanatory power, LR Statistic, the deletion of variables from the general model to obtain the parsimonious model, 
LR(general→*) the deletion of slope shift country variables, LR(slope heterogeneity), and the deletion of slope and intercept country 
variables, LR(slope/intercept heterogeneity) from a model are additionally reported. Probability values are given in square parentheses. The 
variables corresponding to the country shift are all determined after 999 iterations except the one for liquidity, which alternated between two 
different forms - we used the form corresponding to the 998th iteration. All regressions were estimated using E-Views 6.0. 

9 ,...,2 ,1  , =iiλ
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Table 4: Heterogeneous intercept (country weights) 
 

Country Weight Country Weight 
Old EU New EU 

Luxembourg 3.493 Estonia 0.653
Netherlands 2.527 Slovakia 0.590
UK 2.485 Malta 0.570
Denmark 2.450 Hungary 0.344
Spain 2.357 Cyprus 0.338
Sweden 2.137 Slovenia 0.284
Ireland 2.098 Czech R -0.172
Portugal 1.851 Poland -0.196
Finland 1.723 Bulgaria -0.204
Belgium 1.559 Romania -0.211
Austria 1.440 Lithuania -0.227
Italy 1.263 Latvia -0.601
France 1.182
Germany 0.727
Greece 0.670

Table 4 notes. The coefficient of the individual countries embodied in the index of indicators 
variable, , are given. The coefficients are ranked from highest to lowest 
value.  

CountryIntercept _
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Table 5: Heterogeneous slopes 
 

Liquidity  Oe_oi 
Malta 0.900  Sweden -1.696 
Lithuania 0.836  Denmark -1.695 
Latvia 0.802  Finland -1.647 
Bulgaria 0.676  Romania -1.642 
Slovenia 0.620  Germany -1.601 
Spain 0.533  Austria -1.591 
Austria   France -1.587 
Belgium   Italy -1.577 
Cyprus   Belgium 
Czech Republic   Cyprus 
Estonia   Czech Republic 
Finland   Estonia 
France   Greece 
Greece   Ireland 
Hungary   Luxembourg 
Ireland   Netherlands 
Italy   Poland 
Netherlands   Portugal 
Poland   Slovakia 
Portugal   Spain 
Slovakia   UK 

 
 
 
 
 
 

-1.418 
 

UK  

0.426

 Slovenia -1.283 
Sweden 0.276  Bulgaria -1.215 
Denmark 0.198  Lithuania -1.194 
Germany 0.132  Malta -1.191 
Luxembourg 0.114  Hungary -1.184 
Romania -0.057  Latvia -1.170 

Table 5 notes. The coefficients for each individual country implied by the financial 
variables’ parameters and the index of indicator variables,  and 

, are given. These are constructed as the coefficient on the pth financial 

variable, , and the product of the pth variable’s index, , and its associated coefficient, 

, that is, as, . The coefficients are ranked from the highest to lowest value 

for liquidity and lowest to highest for operating expenses to operating income.  

1_ −tCountryLiquidity

1__ −tCountryOIOE
F
pβ̂

CF
pβ̂ F

pβ̂ +

CF
piI

CF
pi

CF
p Iβ̂
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Table 6: Tests for parameter constancy through time 
 

Year Statistic Intercept Slope Intercept and slopes 
Pseudo R2 0.261 0.267 0.277 
SBC 2.774 2.800 2.771 
% Correct 50.685 49.829 49.572 2003 

LR(time shift) 
10.266 
[ 0.001] 

36.616 
[ 0.000] 

77.278 
[ 0.000] 

Psuedo R2 0.261 0.266 0.276 
SBC 2.775 2.806 2.774 
% Correct 49.829 49.572 49.229 2004 

LR(time shift) 
9.412 

[ 0.002] 
29.939 
[ 0.000] 

74.110 
[ 0.000] 

Pseudo R2 0.259 0.264 0.273 
SBC 2.781 2.812 2.786 
% Correct 49.572 48.973 49.829 2005 

LR(time shift) 
1.988 

[ 0.159] 
21.927 
[ 0.009] 

60.058 
[ 0.000] 

Pseudo R2 0.259 0.263 0.273 
SBC 2.782 2.815 2.786 
% Correct 50.086 49.229 49.829 2006 

LR(time shift) 
0.424 

[ 0.515] 
19.530 
[ 0.021] 

59.874 
[ 0.000] 

Pseudo R2 0.259 0.263 0.269 
SBC 2.782 2.816 2.800 
% Correct 50.171 49.914 50.257 2007 

LR(time shift) 
0.560 

[ 0.454] 
17.457 
[ 0.042] 

43.557 
[ 0.000] 

Pseudo R2 0.260 0.263 0.266 
SBC 2.776 2.815 2.811 
% Correct 50.599 50.685 50.599 2008 

LR(time shift) 
7.861 

[ 0.005] 
19.430 
[ 0.022] 

30.148 
[ 0.001] 

Table 6 notes: statistics assessing the constancy of coefficients in the favoured specification 
that allows both intercept and slope heterogeneity (reported in the final column of Table 3) 
are given. A dummy variable that takes the value of unity in the date specified in the column 
headed Year (as well as all subsequent periods) and is zero otherwise is added to this model 
and various statistics relating to this dummy-augmented specification are reported in the 
column headed Intercept. The same statistics for the favoured model under current 
consideration augmented by slope-shift terms (the time dummy is interacted with each 
explanatory variable in the model) are reported in the column headed Slopes. Similarly, 
statistics are also reported for the favoured model augmented by both a time-intercept shift 
dummy as well as slope-shift terms in the column headed Intercept and slopes. The reported 
statistics are the pseudo 2R , SBC and percentage of correct predictions (% correct) as well as 
a likelihood ratio test [denoted LR (time shift)] for the deletion of all time-dummy variables 
from the time augmented models. The probability values for this likelihood ratio test are 
given in squared parentheses.  
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