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Abstract

By means of wavelet transform a time series can be decomposed into
a time dependent sum of frequency components. As a result we are able
to capture seasonalities with time-varying period and intensity, which
nourishes the belief that incorporating the wavelet transform in exist-
ing forecasting methods can improve their quality. The article aims to
verify this by comparing the power of classical and wavelet based tech-
niques on the basis of four time series, each of them having individual
characteristics.

We find that wavelets do improve the forecasting quality. Depending
on the data’s characteristics and on the forecasting horizon we either
favour a denoising step plus an ARIMA forecast or an multiscale wavelet
decomposition plus an ARIMA forecast for each of the frequency com-
ponents.

JEL-Classification: C22, C53.

Keywords: Forecasting; Wavelets; ARIMA; Denoising; Multiscale Anal-
ysis.

1 Introduction

Forecasting prices of stocks, commodities or derivatives on liquid markets is in a
large part guesswork. However, we can try to use the information contained in his-
torical data to estimate future developements, which is what parametric statistical
models do: It is assumed that the given time series is the realisation of an under-
lying stochastic process with a certain specification. The forecast is generated by
extrapolation while eliminating the random element by taking the expectation.

A widely used approach is the Autoregressive Moving Average (ARIMA) model,
which captures intertemporal linear dependence in the data itself as well as in the



error term. Existing trends are treated by modeling not the data but the differences
which is then called Autoregressive Integrated Moving Average (ARIMA) model
(see McNeil et al., 2006). In contrary to these technical approaches, Majani (1987)
assumes that the time series can be split into a sum of some deterministic compo-
nents, e.g. seasonal oscillation and linear trend, and a stochastic error term. There
are different ways to estimate the individual components. The seasonal component,
for example, can be identified using the Kalman filter or via Fourier transform.
However, the quality of both methods suffers, if the season has a changing period
and/or intensity.

This is why Wong et al. (2003) use the wavelet transform, which is able to
capture dynamics in period and intensity, to model both the trend and the season-
ality. By means of the wavelet transform we can decompose a time series into a
linear combination of different frequencies. With some restrictions we are able to
quantify the influence of a pattern with a certain frequency at a certain time on the
price. Having such a feature the wavelet transform is likely to improve the quality of
forecasting. Besides estimating the components of Majani’s model there are various
concepts: Donoho & Johnstone (1994) apply them to filter the error term’s influence
(denoising). Conejo et al. (2005) decompose the time series into a sum of processes
with different frequencies, and forecast the individual time series before adding up
the results. It is assumed that the motions on different frequencies follow different
underlying processes and that treating them separately should increase the forecast-
ing quality. A rather technical concept is the locally stationary wavelet process (see
Fryzlewicz, 2005), where the price process is written as a linear combination using
wavelets as basis functions.

There are, however, some shortcomings: Using wavelets increases the model
complexity, more parameters have to be estimated and a wavelet function has to
be chosen. The number of approximation steps increases, i.e. there are more error
sources. This paper intends to verify empirically wether it does really pay off to
use the wavelet transform for forecasting. We choose four data sets with different
characteristics: From the oil prices, where the long-term structure dominates, via
the Euro-Dollar exchange rate and the Deutsche Bank stock price to the UK day
ahead power price which shows heavy daily, i.e. short-term oscillations (see Figure
2). We perform a one day ahead and one week ahead forecast using the three
classical methods as well as each of these techniques in combination with a wavelet
denoising step and a wavelet decomposition scheme. In addition to that we try the
approach of Wong et al. (2003) and compute forecasts based on locally stationary
wavleet processes.

What we see is: It pays off to use wavelets to reduce forecasting errors, however,
there is no method performing best across all scenarios. The optimal choice de-
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pends on both the time series characteristics like volatility or existence of long-term
trends and the forecasting horizon. The methods to choose from are wavelet based
denosining plus ARIMA forecast and wavelet based time series decomposition plus
an ARIMA forecast of the individual frequency components. Using locally station-
ary wavelet processes fails completely and so does estimating Majani’s structural
component model via wavelets.

The paper is structured as follows: We present the classical forecasting tech-
niques in Section 2. In Section 3 we give an introduction into wavelet transform and
describe the corresponding forcasting methods. In Section 4 we present the data
sets and discuss the results of our empirical study. Section 5 concludes.

2 Classical Forecasting Models

We present three well-known classical forecasting methods: the structural time series
model (STSM), the autoregressive moving average (ARMA) model and its extension,
the autoregressive integrated moving average (ARIMA) model.

2.1 Structural Time Series Model

The structural time series model describes a process (Xt)t∈Z at time t as a sum of
a long-term trend Tt, a seasonal component St and a random (noise) term Ut (see
Majani, 1987):

Xt = Tt + St + Ut (2.1)

An analogous version ,in which Xt is the product of the above factors, can be ob-
tained by applying the logarithm. Trend and season are expected to be deterministic,
but we can also design them to be stochastic (see Harvey, 1989).

The exact shape of Tt and St depends on how both components are estimated.
Common methods are the moving average method, Fourier transform, Kalman
filter or exponential smoothing. A more sophisticated version is to explain Tt

as a function f(t;β1, . . . , βn) with parameters β1, . . . , βn ∈ B, where B is the
parameter domain. Examples for f are f(t) = β1f1(t) + . . . + βnfn(t) + εt or
f(t) = f1(t)β1 + . . .+ fn(t)βn + εt, where εt is a noise term and f1, . . . , fn some func-
tions. The parameters are estimated via least squares method or in more complex
scenarios via numerical methods like the Gauss-Newton algorithm. The seasonal
component St is commonly estimated via Fourier transform or dummy variables
(see Harvey, 1989). Both methods, however, require a true seasonal pattern with
fixed period and intensity to provide sound estimation results. Forecasting with
(2.1) is done by extrapolating both Tt and St, and expecting E(Ut) = c ∈ R.
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2.2 Autoregressive Moving Average

The autoregressive moving average model (ARMA) of order (p, q) ∈ N2 is a linear
model which comprises of an autoregressive and a moving average term; it describes
a process (Xt)t∈Z of the form

Xt = µ +
p∑

i=1

φiXt−i +
q∑

j=1

θjεt−j + εt, φi, θk ∈ R ∀i ∈ 1, . . . , p j = 1, . . . , q. (2.2)

The εt is a random variable with a given distribution F and µ ∈ R is the drift (see
McNeil et al., 2006). The moving average part is weakly stationary by definition
and the autoregressive part is weakly stationary if for all z ∈ C that fulfill

1− φ1z − . . .− φpz
p = 0

holds: |z| > 1. Having weakly stationarity and a Gaussian random term causes that
the whole process is mean and covariance ergodic. We can then compute consistent
estimatees for the mean and covariance of Xt based on the historical data.

The parameters of (2.2), including those of F , are estimated using the regression
method of Durbin (1960), conditional or unconditional least squares method or by
maximizing the likelihood function. As this is a nonlinear optimization problem,
numerical methods like the Berndt-Hall-Hall-Hausmann algorithm or the Newton-
Raphson algorithm are necessary. For determining the lag-order (p, q) of the process,
methods like overfitting or measures like the Bayesian information criterion, that
punishes a high number of variables, can be used (see McNeil et al., 2005). A
comparison of different criteria is given by Kereisha & Pukkila (1995).

The h-step forecast (h ∈ N) X̂t+h is obtained by computing the expected value
of (2.2) conditional on the filtration up till time t denoted by Ft:

X̂t+h = E

µ +
p∑

i=1

θiXT+h−p + εT+h +
q∑

j=1

θjεT+h−j

∣∣∣∣∣∣Ft

 . (2.3)

Because the conditional expectation is a linear function we additionally know

E [XT+j ] =

 XT+j if j ≤ 0,

X̂T+j else,
E [UT+j ] =

 XT+j − X̂T+j if j ≤ 0,

X̂T+j else.
(2.4)

Thereby we see that the prediction converges to the long run mean for h →∞.
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2.3 Autoregressive Integrated Moving Average

If the ARMA(p,q) process is not weakly stationary (e.g. because of a trend), one
can try to achieve stationarity by computing differences and then modeling the new
time series ∆Xt = Xt −Xt−1. This procedure can be repeated and we speak of an
autoregressive integrated moving average (ARIMA) process with integration order
d ∈ N, if ∆dXt is weakly stationary. For more sophisticated versions like the seasonal
ARIMA model (SARMA) or the fractional integrated ARIMA (ARFIMA) model,
where the model has a long-term memory, we refer to Granger & Joyeux (1980) and
Hosking (1981).

The optimal h-step forecast (h ∈ N) for an ARIMA(p,d,q) model is computed
in two steps. First, we forecast Yt = ∆dXt applying (2.3) and (2.4) to obtain an
estimate for the differences Ŷt+h, then we use the relation Yt+h = (1 − B)dXt+h,
with BXt+h = Xt+h−1, to obtain a forecast for Xt+h (see McNeil et al., 2005).

3 Wavelet Based Forecasting

As suggested in the introduction we can try to improve the forecasting accuracy of
the above methods by using wavelets. Before presenting the individual concepts we
give a few basic definitions of wavelet theory.

3.1 A Brief Introduction Into Wavelet Theory

The continuous wavelet transform (CWT) generalizes the Fourier transform and is,
unlike the latter, able to detect seasonal oscillations with time-varying intensity and
frequency. Stationarity of the process is not required but square-integrability is (see
Mallat, 2003). In the sequel we focus on the CWT, for an introduction into the
discrete wavelet transform see Kaiser (1994) or Jensen & Cour-Harbo (2001).

The CWT is a complex-valued function Ψ(t) ∈ L1(R) ∩ L2(R) that fulfills the
admissibility condition CΨ =

∫∞
−∞ |Ψ̂(ω)|2/ |ω| dω < ∞, where the hat denotes the

Fourier transform. Each Ψ has a fixed mean and frequency. To make it more flexible,
set Ψa,b = Ψ(t/a− b) /

√
a, which translates Ψ by b ∈ R and a scaling factor a > 0

that is inverse proportional to the frequency. The CWT is the orthogonal projection
of a process (St)t∈R on Ψa,b, i.e.

WTS(a, b) = 〈S, Ψa,b〉 =
∫

R
StΨa,b(t)dt, (3.1)

where the overline denotes the conjugate complex (see Mallat, 2003). The WTS(a, b)
indicates how much of S is explained by the local oscillation Ψ in time b with scale a.
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Figure 1: The Real Part of the Morlet Wavelet at Different Scales

The inverse transform is therefore a linear combination of Ψ and in the continuous
case a double integral (see Mallat, 2003) of the form

S(t) =
1

CΨ

∫ a0

0

∫ ∞

−∞
WT (a, b)

1
a2
√

a
Ψ

(
t− b

a

)
dbda. (3.2)

We can simplify (3.2) significantly when having a discrete data set, e.g. daily com-
modity prices. Then Shannon’s sampling theorem states that the signal can be
exactly reconstructed using only a discrete set of scales, i.e. the above integration
is reduced to a sum (see Shannon, 1949).

When identifying the influence of patterns with a certain scale/frequency (sea-
sonalities, for example), we have to respect the uncertainty principle of time-frequency
analysis, which says that not both scale and location of a signal can be exactly spec-
ified simultaneously (see Lau & Weng, 1995). We are limited to an analysis of
time-frequency windows and the only lever we can pull is to choose an adequate
wavelet function. For various selection criterions see e.g Ahuja et al. (2005). The
best one regarding window size is the Morlet wavelet ΨM (t) with

ΨM (t) = cω0π
−1/4e−t2/2σ2

(
eiω0t − e−

1
2
ω2

0

)
, cω0 =

(
1− e−ω2

0 − 2e−
3
4
ω2

0

)− 1
2
,

where ω0 > 0 denotes the basis frequency and σ > 0 (see Daubechies, 1992). It is
plotted in Figure 1 at three different scales for b = 0, and its time-frequency can
be found in Appendix A. In Figure 1 we can clearly see the influence of the scale
parameter and the character of a local oscillation. It is diminishing outside the a set
called cone of influence (CoI) that reads as [b− d(su − sl)ae , b + b(su − sl)ac], where
[sl, su] ⊆ R is the support of Ψ (see Lau & Weng, 1995). If data within the CoI are
missing for a time t and a scale a > 0, WTS(a, t) from (3.1) is skewed, which espe-
cially holds for the edge regions of a finite data set. For methods to reduce this effect
see Meyers et al. (1993), Jensen & Cour-Harbo (2001) or Torrence & Compo (1998).
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Applying this theory to a data set St, t = 1, . . . , T , with dt = 1 we set b ∈ Z.
For discretizing the scale grid, most authors (e.g. Torrence & Compo, 1998) use a
dyadic approach to form a set of scales A = {a1, . . . , aJ}, which reads as

aj = a02jδj j = 0, 1, . . . , J, and J =
⌊
δj−1 log2 (T/a0)

⌋
+ 1, (3.3)

where a0, δj ∈ R+. The grid is finer for lower scales, which means that for higher
frequencies we look closer at the process. This makes sense as we expect to have more
detail information there than in lower frequencies (i.e. higher scales). This is also
why we want to avoid computing (3.2) for higher scales as this implies unnecessary
high numerical effort. The goal is to aggregate the influence of all scales larger than
a∗ > 0 on St and we can do this by introducing a scaling function φ that behaves
like a low-pass filter. There is a huge variety of scaling functions (see e.g. Ahuja et
al., 2005) but when operating together with a wavelet Ψ it has to fulfill∣∣∣φ̂(ω)

∣∣∣2 =
∫ ∞

ω

∣∣∣Ψ̂(ξ)
∣∣∣2 /ξdξ.

Now allowing for a rescale and a shift, i.e. set φa,b(t) = φ((t−b)/a)/
√

a, a > 0, b ∈ Z,
we are able write for a time series St and a scale a∗ ∈ A

St =
1

CΨ

∑
b∈Z

〈S, φa∗,b〉φa∗,b(t) +
1

CΨ

∑
b∈Z

∑
a∈A∧a>a∗

〈S, Ψa,b〉Ψa,b(t)
1
a2

∀ t (3.4)

(see Mallat, 2003). In (3.4) we see the reduced effort as for scales larger than a∗ the
double sum is substituted by a simple sum.

However, the CWT is still computationally very intensive. Depending on the
application scenario a more efficient technique, the à trous algorithm of Holschneider
et al. (1989), may be applied. Below we describe how it works: Let (St)t∈Z be
a discrete time process and (gk, hk)k∈Z filter banks with dm

n = 〈S, Ψm,n〉 , cm
n =

〈S, φm,n〉 and

dm
n =

∑
k∈Z

gkc
m−1
k , cm

n =
∑
k∈Z

hkc
m−1
k

for a set of scaling functions
{
φm,n(•) = φ (•/2m − n) /

√
2m : m,n ∈ Z

}
and a corre-

sponding set of wavelet functions
{
Ψm,n(•) = Ψ (•/2m − n) /

√
2m : m,n ∈ Z

}
. Set

dm = {dm
n : n ∈ Z} ∈ L2(Z) and cm = {cm

n : n ∈ Z} ∈ L2(Z). Let now hr, gr be
recursive filters with g0 = h, h0 = g. The gr, hr are computed by introducing zeros
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between each component of gr−1, hr−1. Two operators Gr,Hr are defined as follows

Gr : L2(Z) → L2(Z) with c 7→

{
(Grc)n =

∑
k∈Z

gr
k−nck

}

Hr : L2(Z) → L2(Z) with c 7→

{
(Hrc)n =

∑
k∈Z

hr
k−nck

}

The adjoint functions Gr∗,Hr∗ are defined analogously to invert this mapping.
The à trous decomposition algorithm is performed as follows: As input we need
c0 = {cn : n ∈ Z} and a M ∈ N, where 2M is the maximal scale. We then grad-
ually compute ∀ m = 1, . . . ,M : dm = Gm−1cm−1, cm = Hm−1cm−1 and yield
cM , dm,m = 1, . . . ,M , i.e. a multiscale decomposition of the time series with cM

containing the information about the highest scale (the long-term component).
For the reconstruction of the time series we start with M, cM , dm,m = 1, . . . ,M

and gradually compute ∀ m = M,M − 1, . . . , 1 : cm−1 = Hm∗cm + Gm∗dm. The
result is c0 and from that we yield the time series via inversion of the respective
convolution.

3.2 Wavelet Based Forecasting Methods

Basically there are four different methods: One is to use wavelets for eliminating
noise in the data or to estimate the compoents in a STSM. Another one is to do the
forecasting directly on the wavelet generated time series decomposition, or we can
use locally stationary wavelet processes.

3.2.1 Wavelet Denoising

Wavelet denoising is based on the assumption that a data set (St)t=1,...,T is the sum
of a deterministic function Yt and a white noise component εt ∼ N (0, σ2), σ > 0,
i.e. St = Yt + εt. Reducing the noice yields a modified St on which the forecasting
methods from Section 2 can be applied (see Alrumaih & Al-Fawzan, 2002).

The denoising is accomplished as follows: Initially, the wavelet transform is
applied to St with a scale discretization A = {a1, . . . , an} and b = 1, . . . , T with
n ∈ N. The result is a matrix of wavelet coefficients WT ∈ Rn×T . These indicate
how much of St is described by a scaled and translated wavelet Ψa,b. Nason (2008)
shows that per definition the noise term has impact on each coefficient, whereas the
information of Yt is concentrated only in a few coefficients. So if WT (a, b) from
(3.1) is relatively large, it contains information about both Yt and εt, whereas small
coefficients indicate a motion solely caused by the noise term. Therefore we set
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all coefficients below a certain threshold λ ≥ 0 to zero, and eventually invert the
modified coefficients WT ′(a, b) using (3.2) to obtain the modified time series S′t.
Donoho & Johnstone (1994) propose two different thresholds:

(a) WT ′(a, b) = WT (a, b)1{|WT (a,b)|>λ} (hard threshold),

(b) WT ′(a, b) = sgn(WT (a, b))(|WT (a, b)| − λ)1{|WT (a,b)|>λ} (soft threshold),

where sgn denotes the signum function. The larger λ, the more noise but also more
of Yt is cut out, and vice versa. Donoho & Johnstone (1994) propose λuniversal =
σ̂
√

2 log T , where σ̂ is an estimator for σ. Using λuniversal in the hard threshold
function is called VisuShrink. This procedure is quite smoothing as it cuts off a
relatively large number of coefficients.

Donoho & Johnstone (1994) derive another threshold based on the SURE1 es-
timation method developed by Stein (1981). They derive for a scale a the optimal
threshold λSURE by solving

λSURE = arg min
0≤λ≤λuniversal

SURE(WT, λ)

with SURE(WT, λ) = T −# {t : |WT (a, t)| ≤ λ}+
T∑

t=1

min(|WT (a, t)|, λ)2.

As the SURE-method works not very good for sparsely ocuppied matrices, Donoho
& Johnstone (1994) unite both concepts in the SureShrink method, which uses
λuniversal as threshold if

∑
t (WT (a, t)2 − 1) ≤ log2 T 3/2 for a ∈ A and λSURE

otherwise. Gao & Bruce (1997) or Breiman (1996) propose further threshold rules.

3.2.2 Wavelet-based Estimation of the Three Components Model

Wong et al. (2003) use wavelets to estimate the components in the STSM from
Section 2.1, i.e. they model a process (St)t∈Z as the sum of a trend Tt, a season Xt

and a noise εt, i.e.

St = Tt + Xt + εt t ∈ Z.

They give estimators T̂t, X̂t for trend and seasonality, and do the forecasting by
extrapolating from polynomial functions fitted to T̂t and X̂t. To ε̂t = St − T̂t − X̂t

they fit an ARMA(1,0) to compute a forecast.

1Stein’s Unbiased Risk Estimator
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The T̂t is computed by aggregating the high-scale patterns using a scaling func-
tion φ as described in Section 3.1, i.e.

T̂t =
1

CΨ

∑
b∈Z

〈S, φa∗,b〉φa∗,b(t),

which is for discret-time data a linear combination of the price’s observations, as
the convolution integral is approximated by a sum. It remains to choose a scaling
function and the optimal scale a∗, which should be small enough to capture the
whole trend, but large enough not to cut through some short-term oscillations.

For estimating Xt, Wong et al. (2003) use the hidden periodicity analysis (see
Appendix B).

3.2.3 Forecasting Based on a Wavelet Decomposition

The time series (St)t=1,...,T is transformed via (3.1) to obtain the wavelet coefficients
WT (a, b), a ∈ A, b = 1, . . . , T , where A denotes a scale discretization. For each a
the corresponding vector WT (a) = (WT (a, 1), . . . ,WT (a, T )) is treated as a time
series, and standard techniques like ARMA-based forecasting are applied to obtain
wavelet coefficient forecasts, which are subsequently added to the matrix WT (see
Conejo et al., 2005, or Yousefi et al., 2005). Renauld et al. (2005) use only specific
coefficients for this forecast which is very efficient but increases the forecasting error.
The extended matrix WT ′ is then inverted according to (3.4) and we yield a forecast
Ŝt+1 for the St in the time space.

There are a few arguments that speak in favour of this way of forecasting. Among
others, Soltani et al. (2000) show that when decomposing time series with long-term
memory, the processes of wavelet coefficients at each scale lack this feature. There
is also no long-term dependence between different scales. Abry et al. (1995) come
to a similar result for fractional brownian motions.

3.2.4 Locally Stationary Wavelet Processes

The locally stationary wavelet process is a model developed to handle second-order
dependence structure, i.e. time-varying variance, and is based on a general class of
instationary processes developed by Dahlhaus (1997). Let (St)t=1,...,T be a set of
realizations of a process (St)t∈Z. For a fixed T ∈ N we define a locally stationary
wavelet process for a wavelet Ψ with compact support of length sm ∈ R as

St,T =
M(t)∑
m=1

∑
n∈Z

ωm,n;T Ψm,n(t)ξm,n, with St,T = a

(
t

T

)
St−1,T . (3.5)
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Thereby a(•) ∈ (0, 1] , ωm,n ∈ R, M(T ) = max {m ∈ N : sm ≤ T} and E [St,T ] =
0 ∀ t, T . The random variable ξm,n and the whole process have to fulfill some
regularity conditions (see Appendix C and Nason et al., 2000). The problem now
is that (3.5) is not unique as Ψ doesn’t have to be orthogonal. We therefore can’t
simply use (3.5) to compute the coeffients (b1,T , . . . , bN,T ) of our linear forecasting
function

ŜN+1,T =
N∑

n=1

bN+1−n,T Sn,T , N < T. (3.6)

Instead of Ψ we use the local autocovariance fuction

c(z, τ) =
∞∑

m=1

WSm(z)Ψm(τ), Ψm(τ) =
∑
n∈N

Ψm,n(0)Ψm,n(τ), z ∈ (0, 1] , τ ∈ Z,

which is based on the unique wavelet spectrum WSm(z),m ∈ N, z ∈ (0, 1] and
converges against the autocovariance function of the process itself (see Nason et al.,
2000). This autocovariance is estimated by Nason et al. (2000) via

ĉ
( n

T
, τ

)
=

M(T )∑
m=1

(∑
j = 1M(T )A−1

m,jΨj(τ)
)

WT 2
m,n;T , n = 1, . . . , N,

with Am,j =
∑

τ Ψm(τ)Ψj(τ) and Ψm(τ) =
∑

n∈N Ψm,n(0)Ψm,n(τ). Fryzlewicz et
al. (2003) now show that the parameter vector which minimizes the mean squared
error is the vector which minimizes

N∑
k=1

bN+1−k;T c

(
k + p

2T
, k − p

)
= c

(
N + 1 + p

2T
,N + 1− p

)
, p = 1, . . . , N. (3.7)

The forecasting procedure is as follows: Initially, the wavelet transform is applied to
the time series, the local autocovariance is estimated and used to solve (3.7). The
minimum argument of this equation is an estimate for (b1,T , . . . , bN,T ) in (3.6).

4 Comparing Forecasting Methods Empirically

The presented methods are applied to real data in order to evaluate how wavelet
based techniques perform compared to the classical ones. We first present the chosen
time series, describe the test design and then comment on the estimation results.
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Figure 2: The Analyzed Data Sets

4.1 The Data Sets

The forecasting is done based on four time series displayed in Figure 2, each having
its own characteristics. One data set is the West Texas Intermediate (WTI) oil
price which serves as an example for commodity prices. It shows a comparatively
strong long-term pattern which dominates the short-term oscillation. The Deutsche
Bank stock prices clearly show a long-term trend, only a few minor price jumps
and some medium-term oscillations. From the foreign exchange market we take
the Euro/Dollar exchange rate which has a visible long-term component, a minor
medium-term structure but some distinct price jumps. The UK day ahead power
prices (provided by the APX Group) represent the recently evolving electricity mar-
kets. They show only a minor upward trend, but a strong daily oscillation. For the
first three time series we have weekday closing prices from January 1st 2007 until
June 30th 2009. The UK power prices include weekends and range from July 7th
2007 until March 13th 2009.
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4.2 Test Design and Goodness of Fit Measures

We compute one day ahead and one week ahead forecasts, which is a step of seven
days for the power prices and of five days for the other three data sets as these
exclude weekends. We use the Census X-12 method of Findley et al. (1988) to
implement the STSM, and test the ARMA and the ARIMA model. To separate
ARIMA from ARMA we set the difference order to one.

To implement the wavelet based methods we choose three widely used functions:
the Haar wavelet (see Appendix D), which is the simplest wavelet and orthogonal
to a scale-dependend moving average (see Stollnitz et al., 2005), the Morlet wavelet,
which has the best time-frequency resolution, and the Daubechies D4 wavelet (see
Appendix D) which works well with efficient techniques like the à trous algorithm
(see Daubechies, 1992). For the Morlet wavelet we set a0 = 2, δj = 0.6 in (3.3) and
for Haar’s function we choose a0 = 1, δj = 1.

We try the denoising and use the SureShrink method once together with the
Haar and once with Morlet’s wavelet. To the modified time series we apply the
three classical forecasting methods. In addition we try the multiscale forecasting,
which is done based on the Haar and the Daubechies D4 wavelet as both work
with the à trous algorithm. To forecast the decomposed time series we use Census
X-12, ARMA and ARIMA. Eventually we try a wavelet based STSM and locally
stationary wavelet processes. For both techniques we use the Haar wavelet.

We do out of sample forecasts for the last n data points of each time series,
where n = 14 for the power prices and 10 for the rest. The results are evaluated
using three error measures, namely the root mean squared error (RMSE), the mean
absolute deviation (MAD) and the mean average percentage error (MAPE). The
latter two are defined as

MAD(S, Ŝ) =

√√√√ T∑
i=T−n+1

∣∣∣Si − Ŝi

∣∣∣/n, MAPE(S, Ŝ) =

√√√√ T∑
i=T−n+1

∣∣∣Si − Ŝi

∣∣∣/Sin,

for St, t = 1, . . . , T being a data set and Ŝt, t = 1, . . . , T the corresponding estimates.

4.3 Presenting and Evaluating the Estimation Results

The result of our empirical study is given in Appendix E in tabular form. We see
that for each data set the methods perform differently:
Deutsche Bank stock price: The Haar multiscale ARIMA model is the best in
the one step ahead forecast regarding all three error measures, although the APE
is equally low for the simple ARIMA model and the Haar multiscale ARMA fore-
cast. Actually, the classical ARIMA forecast gives comparably well forecasts, which
are better than all wavelet based ones except those mentioned above. The results
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change a bit when looking at the one week ahead forecast. The best method is now
the Daubechies D4 multiscale Census X-12 forecast, although the same procedure
but an ARIMA forecast produces only slightly higher error values.
Euro/Dollar exchange rate: In the one day ahead forecast all Haar multiscale
decompositions perform better than the classical ones. The lowest errors produce
the multiscale ARIMA forecast. The Daubechies D4 multiscale forecasts perform
about equal to the classical methods, whereas all further techniques show higher
errors. Things change for the one week ahead forecast. Only wavelet based denois-
ing procedures achieve lower errors than the classical forecating methods. Among
those, a Morlet or Haar based denoising plus ARMA forecast performs best.
The WTI oil price: In the one day ahead forecast, denoising proves to be the
method of choice whereby the ARIMA forecast gives the lowest errors. The Haar
multiscale ARMA forecast does also reasonably well, whereas the other wavelet
methods perform not as good as the classical ones. In the one week ahead fore-
cast, denoising still helps to lower the error, but now the Daubechies D4 multiscale
forecast shows the smallest errors whereby ARIMA and Census X-12 forecasting
produce almost equally low errors.
UK power prices: In case of the UK day ahead power prices, the classical ARIMA
model does fairly well both in the one day ahead and in the one week ahead fore-
cast. In the one step ahead forecast it achieves the lowest APE and is slightly worse
than a Daubechies D4 multiscale Census X-12 forecast regarding MAD and RMSE.
The further wavelet based methods perform worse. In the one week ahead forecast
it again shows the smallest RMSE and APE, and only the MAD of a Haar based
denoising plus Census X-12 forecast is lower.

The above estimation results indicate a few things about the tested forecasting
techniques. We see that the classical STSM and the Census X-12 technique as
its numerical implementation produces less exact forecasts than an ARIMA model.
This shows that trends and seasonality are better treated by computing differences
than modeling them as individual components. Wavelet based denoising doesn’t
help to improve the power of the STSM. Combined with an ARMA or ARIMA
forecast, however, denoising substantially helps to improve the models quality as we
can see for the oil prices and the exchange rate time series.

Multiscale forecasts also improve the forecasting quality in almost all scenarios.
However, it varies from time series to time series which wavelet and which forecast-
ing method gives the best estimation results. ARIMA is doing reasonably well in
contrary to the Census X-12, whose performance is unstable: in some cases it helps
to lower the forecasting errors but in most scenarios it is even not as good as the
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classical ARIMA model.
The forecasting power of locally stationary wavelet processes and wavelet based

STSMs is not convincing. The error measures are always and in most cases signifi-
cantly higher than those of the classical methods and also of the other wavelet based
techniques.

5 Summary and Conclusion

The purpose of this paper was to compare the power of the main classical forecasting
methods and wavelet based extensions of them. For this purpose we first presented
the classical structural time series model and the ARMA/ARIMA approach. We also
gave a brief introduction into wavelet theory and described how wavelet functions
can be used in time series forecasting. For our empirical empirical study we chose
four time series with different characteristics. We tested two different forecasting
horizons (one day, one week) and compared the results using three standard error
measures.

The results cannot confirm the statements of Wong et al. (2003) or Fryzlewicz
et al. (2003), who say that wavelet based STSMs or locally stationary wavelet pro-
cesses improve the forecasting quality. Besides that, in all scenarios, we were able
to find a wavelet based method that performs better than the classical techniques,
however, the method of choice depends on the time series characteristics. We see
that for time series with a strong random component like the UK power prices
wavelets generate only little improvements. If the long-term structure is more im-
portant than the short-term oscillation, as we can see in the oil prices, then denoising
plus ARIMA forecasting is the method of choice. If again, the prices consist of a
mixture-term structure and an important oscillation – see the exchange rates and
the Deutsche Bank stock prices– then the Multiscale ARIMA forecasting delivers
quite good results.
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A The Time-Scale Window of Morlet’s Wavelet

For a > 0 and b ∈ R the time-scale window of ΨM (t) is (see Fabert, 2004)

τ(a, b) =
[
b− aσ√

2
, b +

aσ√
2

]
×

[
a · 2

√
2πσ

ω0

√
2σ + 1

, a · 2
√

2πσ

ω0

√
2σ − 1

]
.

B Hidden Periodicity Analysis

Let (St)t=1,...,T be a time series with an estimated trend T̂ . Let Ŷt = St − T̂t and
assume

Ŷt =
N∑

n=1

αnenλnt + ξt, −π < λ1 < . . . < λn < π, n ∈ N

with a complex random variable αn, n = 1, . . . , N , which has finite variance, no
autocorrelation and it holds 0 < α < ‖αn‖2 , α ∈ C. The random variable ξt is a
linear combination of ergodic processes ηt: ξt =

∑∞
i=1 βiηt−i with

∑∞
j=1

√
j|βj | < ∞.

Having T observations for ν̂t Wong et al. (2003) identify hidden periodicities using
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a wavelet function whose Fourier transform has finite support and integrates to a
nonnegative but finite constant.

The idea is to compute the wavelet coefficients of the periodogram IT (λ) =∣∣∣∑ Ŷte
−itλ

∣∣∣2 /2πT for λ ∈ [−π, π]. Large coefficients for a specific scale indicate a
hidden perodicity. Wong et al. (2003) use a dyadic wavelet decomposition scheme
similar to (3.3), i.e. their set of scales is A = {2m,m ∈ Z}. The algorithm to identify
hidden periodicities is as follows:

(1) Let M =
{
0, 1, . . . , 2|m| − 1

}
. Compute

{WTIN
(m, bm) : m = m0,m0 − 1, . . . ,−∞, bm ∈ M} for a m0 ∈ Z. Set n = 1.

(2) Let b(m) = arg maxb∈M (WTIN
(m, b)) , MW (m) = maxb∈M (WTIN

(m, b)) .

(i) If MW (m) ∼ c with m = m0,m0 − 1, . . . ,−∞ and a constant c ∈ (R),
then λ̂n = 2m′+1πb(m) − 0.5 where m′ ∈ Z is sufficiently small. Go to
Step (3).

(ii) If MW (m) → 0 for m = m0,m0 − 1, . . . ,−∞, then there are no further
perodicities. Stop the algorithm.

(3) Is λ̂n an estimate for a hidden periodicity, then set α̂n =
∑T

t=1 Ŷte
−iλ̂nt and

Ŷ ′
t = Ŷt − α̂te

iλ̂nt ∀ t = 1, . . . , T . Go to Step (1).

C Regularity Conditions for Locally Station-

ary Wavelet Processes

• For ξm,n holds E [ξm,n] = 0 ∀ m ∈ N, n ∈ Z and Cov [ξm,n, ξo,p] = δm,oδn,p ∀ m, o ∈
N, n, p ∈ Z, where δ is the Kroenecker delta,

• For all m = 1, . . . ,M(T ) exits a function Wm(z) which is Lipschitz-continuous
on (0, 1] with constant Lm ∈ R+ and

–
∑∞

m=1 ‖Wm(z)‖2 < ∞ for all z ∈ (0, 1];

– ∃(Cm)m∈N ∈ R+ s.t. each T fulfills ∀ m ∈ N, n ∈ Z:

sup
k=1,...,T

|ωm,n;T −Wm(k/T )| ≤ Cm/T,

and for Cm, Lm holds
∑∞

m=1 sm(Cm + smLm) < ∞.
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D The Haar and Daubechies D4 Wavlet

The Haar scaling function φH and the corresponding Haar wavelet ΨH are defined
as (see Stollnitz et al., 1995)

φH(x) =

 1 0 ≤ x < 1

0 else
, φH(x) =


1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 else.

The ΨH is in fact part of the wavelet family introduced by Daubechies (1992),
the Daubechies D2 wavelet. Another one is the Daubechies D4 wavelet ΨD and its
corresponding scaling function φD, for which no closed form is be given. It is defined
iteratively using the relations

h(n) =
1√
2

〈
φD

(
t

2

)
, φD(t− n)

〉
, n = 0, . . . , 1,

1√
2
φD

(
t

2

)
=

3∑
n=0

h(n)φD(t− n),
1√
2
ΨD

(
t

2

)
=

3∑
n=3

(−1)1−nh(1− n)φD(t− n),

where for the coefficients h(0), . . . , h(3) holds

h(0) =
1 +

√
3

4
√

2
, h(1) =

3 +
√

3
4
√

2
, h(2) =

1−
√

3
4
√

2
, h(3) =

1−
√

3
4
√

2
.

For further properties or numerical issues see Daubechies (1992) or Mallat (2003).

E Estimation Results
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Table 1: Errors of the One Day Ahead Forecast of Deutsche Bank Stock Prices

h=1

Classical methods: MAD RMSE APE

X-12 1,6077 2,8988 0,0606

ARMA 1,1712 1,7396 0,0323

ARIMA 1,1620 1,5672 0,0316

Haar wavelet: MAD RMSE APE

Denoising (X-12) 1,2713 2,2147 0,0383

Denoising (ARMA) 1,1791 1,8287 0,0331

Denoising (ARIMA) 1,1633 1,7893 0,0322

Multiscale Forecasting (X-12) 1,3185 1,9284 0,0402

Multiscale Forecasting (ARMA) 1,1595 1,5682 0,0316

Multiscale Forecasting (ARIMA) 1,1587 1,5619 0,0316

Wavelet based STSM 3,4215 13,4808 0,2275

Locally stationary wavelet process 4,4468 19,8275 0,4618

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 1,2713 2,2147 0,0383

Denoising (ARMA) 1,1791 1,8287 0,0331

Denoising (ARIMA) 1,1633 1,7893 0,0332

Multiscale Forecasting (X-12) 1,2175 1,8147 0,0344

Multiscale Forecasting (ARMA) 1,2165 1,8130 0,0344

Multiscale Forecasting (ARIMA) 1,2166 1,8132 0,0344
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Table 2: Errors of the One Week Ahead Forecast of Deutsche Bank Stock
Prices

h=5

Classical methods: MAD RMSE APE

X-12 2,6679 12,9264 0,1643

ARMA 2,7552 9,7621 0,1753

ARIMA 1,6705 3,2222 0,0655

Haar wavelet: MAD RMSE APE

Denoising (X-12) 2,6659 8,8941 0,1663

Denoising (ARMA) 2,6799 8,9580 0,1702

Denoising (ARIMA) 1,7231 3,4029 0,0702

Multiscale forecasting (X-12) 2,3495 6,8411 0,1288

Multiscale forecasting (ARMA) 6,4417 55,0096 0,9713

Multiscale forecasting (ARIMA) 3,5912 14,9590 0,3019

Wavelet based STSM 2,4375 7,3828 0,1380

Locally stationary wavelet process 9,2196 160,9949 1,9856

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 2,6659 8,8941 0,1663

Denoising (ARMA) 2,6799 8,9580 0,1702

Denoising (ARIMA) 1,7231 3,4029 0,0702

Multiscale forecasting (X-12) 1,5947 2,8977 0,0594

Multiscale forecasting (ARMA) 6,7320 46,3410 1,0574

Multiscale forecasting (ARIMA) 1,6473 3,0939 0,0637
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Table 3: Errors of the One Day Ahead Forecast of the Euro/Dollar Exchange
Rate

h=1

Classical Methods: MAD RMSE APE

X-12 0,1020 0,0126 0,0075

ARMA 0,0863 0,0084 0,0053

ARIMA 0,0873 0,0085 0,0054

Haar wavelet: MAD RMSE APE

Denoising (X-12) 0,0970 0,0111 0,0067

Denoising (ARMA) 0,1008 0,0124 0,0072

Denoising (ARIMA) 0,1008 0,0124 0,0072

Multiscale forecasting (X-12) 0,0846 0,0092 0,0051

Multiscale forecasting (ARMA) 0,0843 0,0080 0,0051

Multiscale forecasting (ARIMA) 0,0840 0,0080 0,0050

Wavelet based STSM 0,1477 0,0234 0,0156

Locally stationary wavelet process 0,0990 0,0118 0,0070

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 0,0970 0,0111 0,0067

Denoising (ARMA) 0,1008 0,0124 0,0072

Denoising (ARIMA) 0,1008 0,0124 0,0072

Multiscale forecasting (X-12) 0,0871 0,0086 0,0054

Multiscale forecasting (ARMA) 0,0866 0,0085 0,0054

Multiscale forecasting (ARIMA) 0,0866 0,0085 0,0054
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Table 4: Errors of the One Week Ahead Forecast of the Euro/Dollar Exchange
Rate

h=5

Classical Methods: MAD RMSE APE

X-12 0,1797 0,0419 0,0232

ARMA 0,1092 0,0144 0,0085

ARIMA 0,1129 0,0153 0,0091

Haar wavelet: MAD RMSE APE

Denoising (X-12) 0,1293 0,0240 0,0119

Denoising (ARMA) 0,0949 0,0114 0,0064

Denoising (ARIMA) 0,0996 0,0123 0,0071

Multiscale forecasting (X-12) 0,1587 0,0312 0,0181

Multiscale forecasting (ARMA) 0,4390 0,2466 0,1382

Multiscale forecasting (ARIMA) 0,2765 0,1037 0,0548

Wavelet based STSM 0,1403 0,0266 0,0141

Locally stationary wavelet process 0,1130 0,0156 0,0091

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 0,1293 0,0240 0,0119

Denoising (ARMA) 0,0949 0,0114 0,0064

Denoising (ARIMA) 0.0996 0.0123 0,0071

Multiscale forecasting (X-12) 0,1103 0,0147 0,0087

Multiscale forecasting (ARMA) 0,6091 0,3754 0,2655

Multiscale forecasting (ARIMA) 0,1207 0,0158 0,0104
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Table 5: Errors of the One Day Ahead Forecast of the WTI Oil Prices

h=1

Classical methods: MAD RMSE APE

X-12 1,5744 2,8091 0,0355

ARMA 1,1327 1,6256 0,0185

ARIMA 1,0768 1,4420 0,0167

Haar wavelet: MAD RMSE APE

Denoising (X-12) 1,2967 2,2076 0,0243

Denoising (ARMA) 0,9625 1,4243 0,0134

Denoising (ARIMA) 0,9306 1,3208 0,0125

Multiscale forecasting (X-12) 1,1203 1,5331 0,0179

Multiscale forecasting (ARMA) 1,0624 1,4420 0,0163

Multiscale forecasting (ARIMA) 1,0754 1,4880 0,0167

Wavelet based STSM 2,3485 6,6597 0,0793

Locally stationary wavelet process 2,7627 7,8032 0,1094

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 1,2967 2,2076 0,0243

Denoising (ARMA) 0,9625 1,4243 0,0134

Denoising (ARIMA) 0,9306 1,3208 0,0125

Multiscale forecasting (X-12) 1,1620 1,5536 0,0194

Multiscale forecasting (ARMA) 1,1595 1,5465 0,0193

Multiscale forecasting (ARIMA) 1,1598 1,5467 0,0193
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Table 6: Errors of the One Week Ahead Forecast of the WTI Oil Prices

h=5

Classical methods: MAD RMSE APE

X-12 2,9017 14,4185 0,1193

ARMA 2,6720 7,3716 0,1025

ARIMA 1,6117 2,9530 0,0372

Haar wavelet: MAD RMSE APE

Denoising (X-12) 2,5311 7,6044 0,0914

Denoising (ARMA) 2,2159 5,5404 0,0704

Denoising (ARIMA) 1,5974 2,9820 0,0368

Multiscale forecasting (X-12) 1,6987 3,6149 0,0412

Multiscale forecasting (ARMA) 5,5166 36,7273 0,4318

Multiscale forecasting (ARIMA) 3,0311 11,1294 0,1317

Wavelet based STSM 6,9384 49,1278 0,6874

Locally stationary wavelet process 4,8573 42,8949 0,3399

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 2,5311 7,6044 0,0914

Denoising (ARMA) 2,2159 5,5404 0,0704

Denoising (ARIMA) 1,5974 2,9820 0,0368

Multiscale forecasting (X-12) 1,3957 2,3575 0,0280

Multiscale forecasting (ARMA) 8,6661 81,2465 1,0756

Multiscale forecasting (ARIMA) 1,4060 2,2636 0,0284

26



Table 7: Errors of the One Day Ahead Forecast of the UK Power Prices

h=1

Classical methods: MAD RMSE APE

X-12 3,0506 10,6172 0,3066

ARMA 2,1824 5,5884 0,1539

ARIMA 2,1462 5,4182 0,1459

Haar wavelet: MAD RMSE APE

Denoising (X-12) 3,0503 10,6041 0,3077

Denoising (ARMA) 2,2869 6,1913 0,1740

Denoising (ARIMA) 2,2438 5,6306 0,1605

Multiscale forecasting (X-12) 2,1715 6,6690 0,1575

Multiscale forecasting (ARMA) 2,2282 5,6552 0,1521

Multiscale forecasting (ARIMA) 2,2604 5,7186 0,1557

Wavelet based STSM 3,5868 15,6367 0,3823

Locally stationary wavelet process 4,1682 19,4502 0,5731

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 3,0573 10,6209 0,3092

Denoising (ARMA) 2,2869 6,1913 0,1740

Denoising (ARIMA) 2,2438 5,6306 0,1605

Multiscale forecasting (X-12) 2,1237 5,2731 0,1469

Multiscale forecasting (ARMA) 2,2921 6,1814 0,1566

Multiscale forecasting (ARIMA) 2,2921 6,1810 0,1566
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Table 8: Errors of the One Week Ahead Forecast of the UK Power Prices

h=7

Classical methods: MAD RMSE APE

X-12 6,6911 74,2138 1,4268

ARMA 3,6601 14,6317 0,4461

ARIMA 2,5220 7,4728 0,2092

Haar wavelet: MAD RMSE APE

Denoising (X-12) 2,5025 88,4410 1,7801

Denoising (ARMA) 3,7977 15,4610 0,4752

Denoising (ARIMA) 2,6670 8,2682 0,2336

Multiscale forecasting (X-12) 5,1985 36,2447 0,8189

Multiscale forecasting (ARMA) 24,2213 806,9786 18,2407

Multiscale forecasting (ARIMA) 9,0070 111,1019 2,4665

Wavelet based STSM 9,2260 90,2059 2,6168

Locally stationary wavelet process 8,5246 148,7063 1,9484

Daubechies D4/ Morlet wavelet: MAD RMSE APE

Denoising (X-12) 7,5025 88,4410 1,7801

Denoising (ARMA) 3,7977 15,4610 0,4752

Denoising (ARIMA) 2,6670 8,2682 0,2336

Multiscale forecasting (X-12) 2,6213 9,1848 0,2492

Multiscale forecasting (ARMA) 14,0224 217,6205 6,2754

Multiscale forecasting (ARIMA) 4,1623 34,8051 0,6011
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