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Abstract

The computation of robust regression estimates often relies on minimization of a con-
vex functional on a convex set. In this paper we discuss a general technique for a large
class of convex functionals to compute the minimizers iteratively which is closely related
to majorization-minimization algorithms. Our approach is based on a quadratic approxima-
tion of the functional to be minimized and includes the iteratively reweighted least squares
algorithm as a special case. We prove convergence on convex function spaces for general co-
ercive and convex functionals F and derive geometric convergence in certain unconstrained
settings. The algorithm is applied to TV penalized quantile regression and is compared with
a step size corrected Newton-Raphson algorithm. It is found that typically in the first steps
the iteratively reweighted least squares algorithm performs significantly better, whereas the
Newton type method outpaces the former only after many iterations. Finally, in the setting of
bivariate regression with unimodality constraints we illustrate how this algorithm allows to
utilize highly efficient algorithms for special quadratic programs in more complex settings.
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1 Introduction

The computation of robust parametric and nonparametric regression estimators often requires the

minimization of (convex) functionals on a set C which is determined by a priori information on the

model underlying the data. For example, C can be a linear finite-dimensional space (linear model)

or the set of isotonic vectors m = (m1, ...,md) ∈ R
d, m1 ≤ ... ≤ md, with d ≤ n. To this end

the functional

F (ρ)(m) =
n∑

i=1

ρ(ri(m)) (1)

has to be minimized over C ⊂ R
d. Here r1, . . . , rn denote the (model-dependent) residuals of n

data pairs (Xi, Yi), 1 ≤ i ≤ n, and ρ a given loss function (Huber 1981). Taking ρ(z) = z2/2

gives the ordinary least squares problem, while

ρ(z) = 2|z| ·
{

p z ≥ 0
1− p z < 0

(2)

with 0 < p < 1 yields quantile regression (Koenker & Bassett 1978, Portnoy 1997). Other func-

tions are Huber’s (1964) loss function

ρ(z) =
{

z2/2 |z| ≤ γ
γ|z| − γ2/2 |z| > γ

or the logistic loss function ρ(z) = γz log(cosh(z/γ)) (Coleman et al. 1980) for some γ > 0. An

important extension of (1) are functionals

F (m) = F (ρ)(m) + λP (m) , λ ≥ 0, (3)

where P (m) denotes a penalizing term such as, for instance, the discrete total variation semi-norm

of m ∈ R
d,

P (m) =
d−1∑
j=1

|mj −mj+1| ; (4)

see Künsch (1994), Koenker, Ng & Portnoy (1994) or Mammen & van de Geer (1997). In this

paper a generalization of the iteratively reweighted least squares (IRLS) algorithm - therefore

named GIRLS - is considered for minimization of a functional F as in (3) over any convex subset

C of R
d. This allows us to extend the IRLS algorithm for example to situations where C is defined

as the space of monotone (or k-modal) vectors or to the problem of nonparametric regression

estimates with total variation semi-norm penalization of its discrete derivative.

The general idea of the IRLS algorithm (and variants of it) is to approximate the functional

F in a first step by smooth functionals Fδ such that Fδ → F pointwise as δ ↘ 0. The collection
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(Fδ)δ>0 will be called a regularization of F (cf. Def. 1). In a second step, for each given base point

f ∈ C the functional Fδ will be approximated by Gδ(f, .) (cf. Def. 2). Here Gδ : C × R
d → R

is a functional which is chosen such that a quick and numerically stable minimization can be

performed. The resulting minimizer will serve as an approximation for the minimizer m∗
δ of Fδ

and hence for a minimizer m∗ of F . In particular, if it is possible to choose Gδ as a polynomial of

degree two, the well known iteratively reweighted least squares algorithm may result (Lejeune &

Sarda 1988, McCullagh & Nelder 1989, Dodge & Jurečková 2000).

The GIRLS algorithm can be summarized schematically as follows:

PRELIMINARY STEP: Determine a regularization (Fδ)δ>0 of F and corresponding smooth ap-

proximations Gδ, δ > 0.

STEP 1: Initialize δ > 0 and m
(0)
δ ∈ C.

STEP 2: Repeat the following procedure until δ is sufficiently small: Compute

m
(k)
δ := argmin

m∈C
Gδ(m

(k−1)
δ ,m) for k = 1, 2, 3, . . . (5)

and terminate this iteration for a proper k = k(δ). Then replace (δ,m(0)
δ ) with (δ/2,m(k(δ))

δ ).

OUTPUT: The final m
(k(δ))
δ is our approximate minimizer of F over C.

A more detailed description of this algorithm, including pseudocode and an explicit rule for

k(δ) is provided in Section 3.2.

The IRLS and related algorithms are based on the idea of majorizing functionals by a sequence

of quadratic approximations and subsequent minimization. These have been treated extensively in

the literature, e.g. Kuhn (1972), Katz (1973), Wolke & Schwetlick (1988), O’Leary (1990), de

Leeuw & Michailidis (2000), Hunter & Lange (2000), Lange, Hunter & Yang (2000), Vardi &

Zhang (2000, 2001), and the references therein. However, in most cases convergence is only shown

for C = R
d. This simplifies proofs notably, since the minimizers can be represented as zeros of

the derivatives of the functional. For arbitrary convex C, however, the minimizers are no longer

represented solely by such equality constraints, instead inequalities occur. Notable exceptions for

general convex C are Eckhardt (1980), where however, the convergence results are restricted to a

special class of functionals, requiring e.g. F (m) = O(‖m‖), or Voß & Eckhardt (1980), who show

convergence on convex polyhedral sets under the assumption that F is two times differentiable.

Our findings generalize these results to the case of C being an arbitrary convex closed set as well

as to more general functionals which are only required to be coercive and convex. This appears to

be close to the weakest possible set of assumptions required for a general proof of convergence.
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Our proof adopts various arguments from convex analysis.

It is interesting to note that in the numerical literature the IRLS algorithm is denoted as the

Weiszfeld algorithm (Weiszfeld, 1936,1937) who suggested this algorithm to solve the Fermat-

Steiner-Weber problem (Weiszfeld 1936, 1937, Kuhn 1973, Katz 1974) which is known to the

statistical community as the computation of the spatial median (as mentioned in Brown 1983,

Brown et al. 1997, Ducharme & Milasevic 1987).

The remainder of this paper is organized as follows. First, we motivate the GIRLS algorithm

for the special case of L1-regression in Section 2. Then we present the GIRLS algorithm in a

general framework and prove various results about its convergence in Section 3. Its convergence

to the minimizer m∗
δ and hence to m∗ as δ ↘ 0 will be shown under very general assumptions

(Theorem 2). Furthermore, in Theorem 5 we prove geometric, or, more precisely, at least Q-linear

convergence of the sequence (mk)k to m∗
δ under slightly stronger conditions (cf. Voß & Eckhardt,

1980, and Böhning & Lindsay, 1988), and guidance is provided on the choice of the number of

iterates in (5) and the regularization parameter δ. Finally, we show in Theorem 3 that any convex

and coercive functional F can be regularized by a sequence Fδ s.t. each Fδ admits a quadratic

approximation Gδ from above.

We stress that an advantage of the GIRLS approach is flexibility in the choice of Fδ and Gδ .

This choice can be driven by various aspects, such as computational efficiency or rate of con-

vergence (cf. Theorem 3). In this paper we emphasize the possibility to make use of efficient

algorithms already available for the minimization of Gδ, such as the pool adjacent violators al-

gorithm (PAVA) for isotonic weighted least squares approximation (see Robertson et al. 1988 for

a comprehensive treatment). This is illustrated in Section 4, where we describe the construction

of Fδ and Gδ in some specific cases explicitly. In Section 5 we discuss two numerical examples.

In the first example we investigate in detail numerical performance of the GIRLS algorithm for

the case of total variation (TV) penalized quantile regression. To this end the GIRLS algorithm

is compared with a step size corrected Newton-Raphson algorithm. It is found that typically it

outperforms the latter one in the first iteration steps significantly, in particular when the initial

value is far from the optimum. This finding coincides with other numerical experiments, e.g. when

applying the algorithms to L1-penalized Poisson regression.

In the second example we apply the GIRLS algorithm to a two dimensional TV minimization

where we impose an additional unimodality constraint in one direction. We show that the GIRLS

algorithm allows to include the PAVA for the univariate unimodal subproblem, which is in general
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not possible for regression with two- or higher dimensional predictor. Note also, that PAVA type

methods are not available in general if an additional penalization term as in (3) is added. Again,

the GIRLS algorithm offers a possibility to include them in each updating step.

In summary, the main advantage of the GIRLS algorithm is twofold. First, it is simple to per-

form and offers great flexibility for the choice of the approximating functionals Gδ . Second, it

allows us to combine various restrictions and minimization criteria (such as monotonicity con-

straints and roughness penalties). For such complex minimization problems, simple and quick

algorithms such as PAVA or Newton type algorithms are not available in general, and more com-

plicated and time consuming algorithms such as quadratic programming or interior point methods

become necessary. Here the GIRLS algorithm represents a feasible alternative because it typically

requires in each updating step the computation of minimizers (e.g. a weighted L2 solution), which

can be obtained easily. Further, our numerical experiments have shown that a rather small number

of updating steps give already satisfactory results and the GIRLS algorithm outperfoms competi-

tors in the first iterations, which is in accordance with previous numerical findings (see e.g. Voß

& Eckhard, 1980). Hence, as a practical rule of thumb, we find that the GIRLS algorithm is very

simple to implement and provides a quick improvement of an initial value by a few iterations. It

can be improved additionally by performing subsequent iterations by other, more sophisticated,

optimization algorithms.

2 L1-regression with the GIRLS algorithm

As a motivating example consider the L1 linear regression problem for observations (X1, Y1),

(X2, Y2), . . . , (Xn, Yn) in R
d × R. Assuming that Yi equals X�

i m plus a random error, the goal

is to compute

m := argmin
m∈Rd

n∑
i=1

|Yi −X�
i m| = argmin

m∈Rd

F (m) , (6)

an estimator of the unknown parameter vector m ∈ R
d. Iteratively reweighted least squares is

based on the idea that, in a first step, the L1 norm F , being a convex functional, will be approxi-

mated (regularized) by a family of smooth convex functionals Fδ , δ > 0, e.g.

Fδ(m) =
n∑

i=1

hδ

(
Yi −X�

i m
)

,

where

hδ(z) = [z2 + δ]1/2. (7)
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The regularization of a nonsmooth functional as in (6) by (7) is well known, of course (see e.g.

Vogel & Oman (1996)). It is supposed that minimization of Fδ is numerically better tractable than

minimization of the original functional F in in (6). Then mδ := argminm∈Rd Fδ(m) will be an

approximation of m (cf. Theorem 1). In order to compute mδ the following recursion formula is

iterated:

m
(k+1)
δ = argmin

m∈Rd

n∑
i=1

(Yi −X�
i m)2

hδ(Yi −X�
i m

(k)
δ )

. (8)

Note, that in each updating step the computation of m
(k+1)
δ means solving a simple diagonally

reweighted least squares minimization problem, which can easily be done by using standard meth-

ods such as, e.g., Householder QR decomposition. As a starting value m
(0)
δ any (reasonable)

choice, e.g. the least squares estimator, may serve.

It is instructive to indicate a proof for this simple case. The basic idea is to approximate hδ(z)

from above for any given real number r by a quadratic function gδ(r, z) = c(r) + a(r)z2/2 of z

such that gδ(r, ·) ≥ hδ and gδ(r, r) = hδ(r). This can be achieved indeed with

gδ(r, z) = hδ(r) + hδ(r)−1(z2 − r2)/2 ; (9)

see also Lemma 1 in Section 4. The intrinsic reason is that hδ is an even convex function whose

second derivative h′′δ is non-increasing on [0,∞). Thus m
(k+1)
δ in (8) is the minimizer of

Gδ(m
(k)
δ ,m) :=

n∑
i=1

gδ

(
Yi −X�

i m
(k)
δ , Yi −X�

i m
)

over all m ∈ R
d. Note that Fδ as well as Gδ(m

(k)
δ , ·) are convex functions such that Fδ(m) ≤

Gδ(m
(k)
δ ,m) with equality for m = m

(k)
δ , and their gradients satisfy

∇Fδ(m
(k)
δ ) = ∇Gδ(m

(k)
δ ,m

(k)
δ ).

Here and in the following the gradient of Gδ is defined with respect to the second argument. Thus

Fδ(m
(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k)
δ ) = Fδ(m

(k)
δ ) ,

and the second inequality in the latter display is strict if, and only if, m(k)
δ differs from the solution

mδ. Consequently, Fδ(m
(k)
δ ) is either strictly decreasing in k, or m

(k)
δ = mδ for sufficiently large

k. This fact was established by Lejeune & Sarda (1988) for the particular problem (6). Conver-

gence of m
(k)
δ to mδ as k →∞ follows from our general Theorem 2 below.
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3 The GIRLS algorithm

3.1 Main theorem and convergence analysis

Returning to the general setting, we always assume that our target functional F : R
d → R is

convex and coercive, i.e. F (x) → ∞ as ‖x‖ → ∞. Moreover, let C ⊂ R
d be closed and convex.

This entails that the set

M∗ := argmin
m∈C

F (m)

is a non void, compact and convex subset of C. Now the first step is to approximate F by a family

of strictly convex and smooth functionals Fδ, δ > 0, converging pointwise to F as δ ↘ 0. This is

summarized in the following definition.

Definition 1. A functional Fδ : R
d → R is called regular, if Fδ is strictly convex, continuously

differentiable and coercive. A regularization of F consists of regular functionals Fδ, δ > 0, such

that Fδ converges pointwise to F as δ ↘ 0.

Theorem 4 below shows that there exists always a regularization (Fδ)δ>0 for F . It follows

from strict convexity and coercivity of Fδ that it has a unique minimizer

m∗
δ := argmin

m∈C
Fδ(m)

which serves as an approximation to M∗. The next theorem provides an exact formulation of this

fact.

Theorem 1. (Approximation of M∗).

Let F : R
d → R be a convex and coercive functional, and let (Fδ)δ>0 be a regularization of F .

Then, as δ ↘ 0,

Fδ(m∗
δ)

F (m∗
δ)

}
→ min

x∈C
F (x) and d(m∗

δ ,M
∗) := inf

y∈M∗ ‖m
∗
δ − y‖ → 0 .

Before proving Theorem 1 we summarize some well known facts about convex functionals

(see Rockafellar 1970) which we utilize in the subsequent proofs. A convex functional on R
d is

automatically continuous. If a sequence of convex functionals on R
d converges pointwise, then

the convergence is uniform on arbitrary bounded sets. Finally, if H : R
d → R is convex and

differentiable, and if C ⊂ R
d is closed and convex, then f ∈ C minimizes H over C if, and only if,

∇H(f)�(m− f) ≥ 0 for all m ∈ C . (10)
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Proof of Theorem 1. For any set S ⊂ R
d let ‖F − Fδ‖S be the supremum norm of F − Fδ over

S. Since M∗ is compact, for any fixed ε > 0, the set Bε := {m ∈ C : d(m,M∗) ≤ ε} is compact,

too. Thus ‖F − Fδ‖Bε tends to zero as δ ↘ 0. In particular, for sufficiently small δ > 0,

min
m∈C : d(m,M∗)=ε

Fδ(m) > max
m∈M∗ Fδ(m) . (11)

To verify (11), first note that it holds with F in place of Fδ, by definition of M∗. Since Fδ →
F uniformly on Bε, (11) holds for sufficiently small δ > 0. But (11) implies that Fδ(mo) >

minm∈M∗ Fδ(m) for any mo ∈ C \ Bε, and hence m∗
δ ∈ Bε. For let m∗ be the metric projection

of mo onto M∗ and write mo = m∗ + tv for some unit vector v ∈ R
d and a scalar t > ε. Then it

follows from convexity of the function t �→ Fδ(m∗ + tv) that

Fδ(mo)− min
m∈M∗ Fδ(m) ≥ Fδ(m∗ + tv)− Fδ(m∗)

≥ (t/ε)(Fδ(m∗ + εv)− Fδ(m∗))

> 0

in case of (11). These considerations show already that d(m∗
δ ,M

∗)→ 0 as δ ↘ 0. Note also that

in case of m∗
δ ∈ Bε,

|Fδ(m∗
δ)− F (m∗

δ)| ≤ ‖F − Fδ‖Bε , (12)

and

F (m∗
δ)−min

x∈C
F (x) ≤ max

x,y∈Bε : ‖x−y‖≤ε

∣∣F (y)− F (x)
∣∣ .

Finally, the r.h.s. of the latter inequality tends to 0 as ε↘ 0, by compactness of M∗ and continuity

of F . These findings show that both F (m∗
δ) and Fδ(m∗

δ) tend to minx∈C F (x) as δ ↘ 0. �

The second step is to determine m∗
δ via approximations Gδ(f, ·) of Fδ for various f ∈ C as in

(5). The following definition summarizes our assumptions on Gδ.

Definition 2. Let Fδ : R
d → R be a regular functional. Another functional Gδ : C × R

d → R is

called a smooth approximation of Fδ from above, if it is continuous in both arguments and satisfies

the following additional properties for arbitrary f ∈ C:

(i) Gδ(f, ·) is strictly convex and continuously differentiable,

(ii) Gδ(f,m) ≥ Fδ(m) for all m ∈ R
d with equality for m = f .

The functional Gδ is called a quadratic approximation of Fδ from above if, in addition, Gδ(f, ·) is

always a polynomial of order two, i.e.

Gδ(f,m) = Fδ(f) +∇Fδ(f)�(m− f) + 2−1(m− f)�B(f)(m− f) (13)

8



for some symmetric, positive definite matrix B(f) ∈ R
d×d.

The next theorem is the main result of this paper.

Theorem 2. (Convergence of the GIRLS algorithm).

Let C ⊂ R
d be a closed convex set and Fδ : R

d → R be a regular functional which can be

smoothly approximated from above by Gδ. Then the GIRLS algorithm, defined by (5) with an

arbitrary starting point m
(0)
δ ∈ C, yields a sequence (m(k)

δ )∞k=0 converging to m∗
δ .

Proof. At first we prove that Fδ(m
(k)
δ ) is decreasing in k. It follows from Property (ii) in Defini-

tion 2 that the gradients∇Fδ(m) and∇Gδ(m
(k)
δ ,m) (defined with respect to the second argument)

coincide for m = m
(k)
δ . Thus it follows from the characterization (10), applied to H = Gδ(m

(k)
δ , ·)

and H = Fδ, respectively, that m
(k+1)
δ = m

(k)
δ if, and only if, m

(k)
δ = m∗

δ . Otherwise the mini-

mizer m
(k+1)
δ of Gδ(m

(k)
δ , ·) over C differs from m

(k)
δ , whence Property (ii) in Definition 2 entails

Fδ(m
(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k+1)
δ ) < Gδ(m

(k)
δ ,m

(k)
δ ) = Fδ(m

(k)
δ ) .

By monotonicity of (Fδ(m
(k)
δ ))k, all points m

(k)
δ lie in the set

{
m ∈ C : Fδ(m) ≤ Fδ(m

(0)
δ )

}
,

which is compact by continuity and coercivity of Fδ. Hence it is sufficient to show that any limit

point mo equals m∗
δ . Now, take an arbitrary convergent subsequence (m(k�)

δ )� with limit mo. For

any v ∈ C,

Fδ

(
m

(k�+1)
δ

)
≤ Gδ

(
m

(k�)
δ ,m

(k�+1)
δ

)

≤ Gδ

(
m

(k�)
δ , v

)

→ Gδ(mo, v) as �→∞ ,

by continuity of Gδ. But

lim
�→∞

Fδ

(
m

(k�+1)
δ

)
≥ lim

�→∞
Fδ

(
m

(k�+1)
δ

)
= Fδ(mo) = Gδ(mo,mo) .

Thus Gδ(mo,mo) ≤ Gδ(mo, v) for all v ∈ C, i.e. mo is the unique minimizer of Gδ(mo, ·). As

argued above, this entails that mo = m∗
δ .

The next theorem states that convex and coercive functionals F can always be regularized and

approximated quadratically from above. Hence GIRLS is, in principle, always applicable.

Theorem 3. (Regularization and approximation of F ).

Let F : R
d → R be a convex and coercive functional. Then there exists a regularization (Fδ)δ>0

of F such that each Fδ admits a quadratic approximation Gδ from above.
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In order to prove Theorem 3 we require the following result.

Theorem 4. Let F be a nonnegative, coercive, convex functional on R
d. Then there are strictly

convex and infinitely often differentiable functionals Fδ ≥ F , δ > 0, such that Fδ → F pointwise

as δ ↘ 0.

Proof. Let K(x) := 1{‖x‖ < 1}C exp
(−(1− ‖x‖2)−1

)
, where C is chosen such that K inte-

grates to one. This is a well-known example of an infinitely differentiable, nonnegative, even kernel

function with compact support {x : ‖x‖ ≤ 1}. For δ > 0 we define Kδ(x) := δ−1K(δ−1x) and

Fδ(x) :=
∫

F (y)Kδ(x− y) dy =
∫

F (x + δz)K(z) dz.

It is well known that Fδ is infinitely often differentiable with limit F pointwise (cf. Stein &

Shakarchi, 2005). It is also inherits convexity from F , because for x, y ∈ R
d and λ ∈ (0, 1),

Fδ((1− λ)x + λy) =
∫

Fδ

(
(1− λ)(x + δz) + λ(y + δz)

)
K(z) dz

≤
∫ (

(1− λ)F (x + δz) + λF (y + δz)
)
K(z) dz

= (1− λ)Fδ(x) + λFδ(y).

Moreover, since K is even,

Fδ(x) =
∫

F (x + δz) + F (x− δz)
2

K(z) dz ≥
∫

F (x)K(z) dz = F (x),

again by convexity of F . Finally, if Fδ fails to be strictly convex, we may add to Fδ the strictly

convex function x �→ δ‖x‖2.

We mention that the construction of Fδ given here is mainly for theoretical purposes, and may

in practice be difficult to evaluate numerically due to the high dimensionality of the integral.

Proof of Theorem 3. Let (Fδ)δ>0 be a regularization of F such that D2Fδ is positive definite ev-

erywhere; cf. Theorem 4 and its proof. It may happen that lim sup‖m‖→∞ Fδ(m)/‖m‖2 = ∞,

rendering quadratic approximation of Fδ from above impossible. Thus we modify the functions

Fδ as follows: Let

cδ := max
‖m‖≤δ−1

λmax(D2Fδ(m))

with λmax(A) denoting the largest eigenvalue of a symmetric matrix A ∈ R
d×d. Starting from the

representation

Fδ(m) = Fδ(0) +∇Fδ(0)�m +
∫ 1

0
m�D2Fδ(tm)m (1 − t) dt,
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we define

F̃δ(m) := Fδ(0) +∇Fδ(0)�m +
∫ 1

0
m� min(D2Fδ(tm), cδI)m (1− t) dt.

Here min(A, cδI) ∈ R
d×d is obtained from the spectral representation of A by replacing each

eigenvalue λi(A) with min(λi(A), cδ). Note that F̃δ is twice continuously differentiable with

F̃δ(0) = Fδ(0), ∇F̃δ(0) = ∇Fδ(0) and D2F̃δ = min(D2Fδ, cδI). The hessian matrix is positive

definite with largest eigenvalue never exceeding cδ . In addition, F̃δ = Fδ on {m : ‖m‖ ≤ δ−1}.
Thus for sufficiently small δ > 0, F̃δ is regular, and a quadratic approximation of F̃δ from above

is given by

Gδ(f,m) := F̃δ(f) +∇F̃δ(f)�(m− f) + cδ‖m− f‖2/2.

Remark 1. In Definition 1 we assume that Fδ is strictly convex. This property is only required

for notational convenience, because it guarantees uniqueness of the minimizer m∗
δ . A careful in-

spection of the proof of Theorem 1 shows, however, that convergence continues to hold if strict

convexity is replaced with convexity. Only the assertion d(m∗
δ ,M

∗)→ 0 has to be replaced by

sup
x∈M∗

δ

inf
y∈M∗ ‖x− y‖ → 0,

where M∗
δ := argminm∈C Fδ(m). An analogous modification holds for Theorem 2.

We close the section with the following result, which shows under additional regularity con-

ditions on Fδ and C geometric, or, more precisely, at least Q-linear convergence of the GIRLS

algorithm (cf. Böhning & Lindsay, 1988, Theorem 4.1, for a related result).

Theorem 5. (Geometric convergence of the GIRLS algorithm).

Let Fδ : R
d → R be coercive and twice continuously differentiable with positive definite hessian

matrix D2F (m∗
δ) =: A. Further let Gδ : R

d × R
d be a quadratic approximation of Fδ from

above with hessian matrix B(m∗
δ) =: B as in (13). Then the GIRLS algorithm yields a sequence

(m(k)
δ )∞k=0 converging to m∗

δ = argminC Fδ such that

lim sup
k→∞

‖m(k+1)
δ −m∗

δ‖A
‖m(k)

δ −m∗
δ‖A

≤ 1− λmin

(
B−1A

) ∈ [0, 1).

Here ‖v‖A := (v�Av)1/2, and λmin(B−1A) ∈ (0, 1] denotes the smallest eigenvalue of B−1A.
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Proof. According to Theorem 2, limk→∞ m
(k)
δ = m∗

δ . Since C = R
d,∇Fδ(m∗

δ) = 0 and

m
(k+1)
δ = m

(k)
δ −B(m(k)

δ )−1∇Fδ(m
(k)
δ )

= m
(k)
δ −B(m(k)

δ )−1

∫ 1

0
D2Fδ

(
(1− t)m∗

δ + tm
(k)
δ

)
(m(k)

δ −m∗
δ) dt

= m
(k)
δ −B−1A(m(k)

δ −m∗
δ) + o

(
‖m(k)

δ −m∗
δ‖

)
.

Thus
‖m(k+1)

δ −m∗
δ‖A

‖m(k)
δ −m∗

δ‖A
=
‖(I −B−1A)(m(k)

δ −m∗
δ)‖A

‖m(k)
δ −m∗

δ‖A
+ o(1) ,

and for any vector v ∈ R
d,

‖(I −B−1A)v‖2A
‖v‖2A

=
v�(I −AB−1)A(I −B−1A)v

v�Av

=
w�A−1/2(I −AB−1)A(I −B−1A)A−1/2w

‖w‖2 (with w := A1/2v)

=
w�C2w

‖w‖2 (with C := I −A1/2B−1A1/2)

≤ λmax(C2) .

It follows from property (ii) of Gδ in Definition 2 that B − A is nonnegative definite, which

implies that λi(B−1A) = λi(A1/2B−1A1/2) ∈ (0, 1]. This entails that C is nonnegative definite

with λmax(C2) = λmax(C)2 = (1− λmin(B−1A))2.

3.2 Pseudocode, proper choice of δ and the number of iterations

In practical applications the points m∗
δ are never calculated exactly. Instead after finitely many, say

k(δ), iterations of (5) the iteration is terminated and the regularization parameter δ is decreased,

e.g. replaced with δ/2. An obvious question is how to choose these iteration numbers k(δ). We

found empirically in most cases that for a fixed parameter δ > 0, the values F (m(k)
δ ) are decreas-

ing for k ≤ ko(δ) and increasing in k ≥ ko(δ) for some fixed ko(δ) ∈ N. Hence in case of a

strictly positive target function F we may take

k(δ) := min
({

k ∈ N0 : F (m(k+1)
δ )/F (m(k)

δ ) ≥ 1− ε
}
∪ {kmax}

)
(14)

for a small constant ε > 0 and a large maximal number kmax. In the examples discussed subse-

quently, we found that for ε = 10−5 and kmax = 100, the number k(δ) was never larger than

30, which seems to compensate for the fact that the sequence m
(k)
δ converges only geometrically.

This is similar to numerical findings with an implementation of an algorithm by Lejeune & Sarda

(1988, Section 5) for the median and various parametric regression models.

12



Having determined k(δ) and m
(k(δ))
δ for one particular δ > 0, we define m

(0)
δ/2 := m

(k(δ))
δ

and repeat the same procedure with δ/2 in place of δ, provided that k(δ) > 0. We proceed until

δ/2 would be smaller than a certain threshold δmin. Pseudocode for this algorithm is displayed in

Table 1. Input parameters are F , its regularization (Fδ, Gδ)δ>0 augmented with smooth aproxi-

mations from above, a starting value δo > 0 and a lower threshold δmin ∈ (0, δo) for δ, a starting

point mo ∈ C, and a threshold ε > 0 as well as a maximal iteration number kmax for the inner

while-loop.

Algorithm m� ← GIRLS(F, (Fδ , Gδ)δ>0, δo, δmin,mo, ε, kmax)
δ ← δo

m� ← mo

while δ ≥ δmin do
mnew ← argminm∈C Gδ(m�,m)
k ← 0
while F (mnew)/F (m�) < 1− ε and k < kmax do

m� ← mnew

mnew ← argminm∈C Gδ(m�,m)
k ← k + 1

end while
δ ← δ/2

end while.

Table 1: Generalized iteratively reweighted least squares algorithm (GIRLS)

4 Regularization and quadratic approximation for different types of
regression problems

In the subsequent data examples the target functional F (m) is always of type (1) or (3), i.e.

F (m) =
n∑

i=1

ρ(ri(m)) + λP (m) (15)

with λ ≥ 0, where each residual ri(m) is an affine linear functional of m ∈ R
d. Here each

summand of F is regularized and approximated separately. We will start with an auxiliary result

justifying the quadratic approximation (9).

Lemma 1. Let h : R → R be even and twice differentiable such that h′′ is non-negative and

non-increasing on [0,∞). For r, z ∈ R define

g(r, z) := h(r) + (h′(r)/r)(z2 − r2)/2,

where h′(0)/0 := h′′(0). Then g(r, z) ≥ h(z) with equality if z = ±r.
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Proof. One verifies easily that g(r, z) is even in both arguments with g(r, r) = h(r). Thus it

suffices to show that g(r, z) ≥ h(z) for any r, z ≥ 0. Now,

g(r, z) − h(z) = g(r, z) − h(r)− (h(z) − h(r))

= (h′(r)/r)(z2 − r2)/2− h′(r)(z − r)−
∫ z

r
(h′(t)− h′(r)) dt

= (h′(r)/r)(z − r)2/2−
∫ z

r
(h′(t)− h′(r)) dt

=
∫ z

r

(
h̃(r, 0) − h̃(r, t)

)
(t− r) dt

=
∫ max(r,z)

min(r,z)

(
h̃(r, 0) − h̃(r, t)

)
|t− r| dt, (16)

where h̃(r, t) := (h′(t) − h′(r))/(t − r) for t �= r, and h̃(r, r) := h′′(r). One can deduce easily

from h′′ being non-increasing on [0,∞) that h̃(r, ·) has the same property. Thus the integrand of

(16) is non-negative.

Let us first describe how to approximate ρ itself in three special cases. After this we will

discuss several penalizations P in (15). Finally we comment on isotonic regression, an example

with C �= R
d.

Quantile regression. Let ρ(z) be given by (2). This may be rewritten as

ρ(z) = |z|+ (2p − 1)z.

Hence we utilize the functions hδ and gδ from (7) and (9), which yields the regularization

z �→ hδ(z) + (2p− 1)z

and by means of Lemma 1 the quadratic approximation

z �→ gδ(r, z) + (2p − 1)z = cδ(r) + hδ(r)−1z2/2 + (2p − 1)z

of z �→ ρ(z), where cδ(r) is an irrelevant constant.

Lq–regression. Let ρ(z) := |z|q for some q ∈ [1,∞). If 1 ≤ q < 2, one may generalize

definitions (7) and (9) immediately as follows:

hδ(z) := (z2 + δ)q/2,

gδ(r, z) := hδ(r) + q(r2 + δ)1−q(z2 − r2)/2

= cδ(r) + q(r2 + δ)1−qz2/2.

14



Again it follows from Lemma 1 that gδ(r, z) ≥ hδ(z) with equality for z = ±r.

In case of q > 2, the second derivative of z �→ |z|q is increasing in |z| and unbounded, hence

Lemma 1 cannot be applied directly. To circumvent this problem, one could redefine

hδ(z) :=
{ |z|q if |z| ≤ δ−1

aδ + bδ|z|+ q(q − 1)δ2−qz2/2 otherwise

with constants aδ, bδ such that hδ is twice continuously differentiable, and then use the quadratic

approximation

gδ(r, z) := hδ(r) + h′
δ(r)(z − r) + q(q − 1)δ2−q(z − r)2/2.

Logistic regression. For data sets with a covariable X and a dichotomous response Y ∈
{0, 1}, maximum likelihood estimation of M(X) := log [P (Y = 1 |X)/P (Y = 0 |X)] involves

“residuals” z = (1/2 − Y )M(X) and

ρ(z) := h(z) + z with h(z) := log[ez + e−z] .

Note that h satisfies the conditions of Lemma 1 with h′(r) = tanh(r) and h′′(r) = 1− tanh(r)2.

Thus regularization is superfluous, while quadratic approximation is straightforward. In this case,

the well known IRLS algorithm results (McCullagh & Nelder 1989).

Roughness penalties. Let us start with two particular examples for P (m). For given real

numbers x1 < x2 < · · · < xd let M be a function on [x1, xd] and m := (M(xj))dj=1. Then let

TV(0)(m) :=
d−1∑
j=1

|mj −mj+1| ,

TV(1)(m) :=
d−1∑
j=2

|Δjm| with Δjm :=
mj+1 −mj

xj+1 − xj
− mj −mj−1

xj − xj−1
.

If M is continuous and piecewise linear with knots in {x1, . . . , xd}, then TV(0)(m) and TV(1)(m)

are the total variation of M and its first derivative, respectively. One could also think about

smoother functions M and approximate the total variation of its second or higher order deriva-

tive by suitable divided differences of m.

Generally, let P (m) be a sum of several functionals of the form

m �→ |v�m|

with a given vector v ∈ R
d \ {0}. For instance, TV(0)(m) involves

vi = v
(j)
i :=

⎧⎨
⎩

1 if i = j,
−1 if i = j + 1,
0 else
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for 1 ≤ j < d, while TV(1)(m) involves

vi = v
(j)
i :=

⎧⎪⎪⎨
⎪⎪⎩

(xj − xj−1)−1 if i = j − 1,
−(xj − xj−1)−1 − (xj+1 − xj)−1 if i = j,

(xj+1 − xj)−1 if i = j + 1,
0 else,

for 1 < j < d. Now an obvious strategy is to regularize m �→ |v�m| by m �→ hδ(v�m) and

approximate this quadratically by

m �→ gδ(v�f, v�m) = cδ(v�f) + hδ(v�f)−1
(
v�m

)2
/2.

Often it is desirable to work with quadratic approximations G(f, ·) whose Hessian matrix

B(f) is diagonal. For that purpose one can modify the quadratic term Q(m) :=
(
v�m

)2
as

follows:

Q(m) =
(
v�f

)2
+ 2f�vv�(m− f) +

(
v�(m− f)

)2

≤
(
v�f

)2
+ 2f�vv�(m− f) + ‖v‖2

∑
i:vi 
=0

(mi − fi)2

= c(v, f)− 2w(v, f)�m + ‖v‖2
∑

i:vi 
=0

m2
i

for some irrelevant constant c(v, f) and w(v, f)i := 1vi 
=0‖v‖2fi − v�fvi.

Isotonic regression. In some applications one seeks to minimize a functional such as (15)

over all vectors in C↗ := {m ∈ R
d : m1 ≤ · · · ≤ md}. In the simplest case, d = n and

ρ(ri(m)) = (Yi − mi)q for some q ∈ [1,∞], where q = ∞ corresponds to supremum norm of

Y −m. For this special case it is well-known (see Barlow & Ubhaya 1971) that an explicit solution

exists only for q = 1, 2,∞. In general, via regularization and suitable quadratic approximation

from above, each updating step of the GIRLS algorithm involves minimization of

Gδ(f,m) = C(f) +
d∑

i=1

wi(f)(mi − bi(f))2

over all vectors m ∈ C↗ with certain weights wi(f) > 0, an irrelevant constant C(f) and cer-

tain numbers bi(f). This minimization problem can be solved explicitly by means of the PAVA

(Robertson, Wright & Dykstra, 1988).

5 Numerical examples

In this section we discuss the numerical performance of the GIRLS algorithm in practical ap-

plications. Our first example is about quantile regression and shows that GIRLS outperforms a
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Figure 1: Quantile curves for food expenditure data.

Newton-Raphson type algorithm, at least in the first iterations. In the second example we consider a

unimodal regression problem. For ordinary isotonic regression in one-dimensional settings, PAVA

is known to be highly efficient (cf. e.g. Robertson et al. 1988) in the sense of producing an exact

solution in O(d) steps. Replacing the isotonicity constraint on m with a penalty term TV(0)(m)

leads to minimization problems which can be solved efficiently with the closely related “taut string

algorithm” (cf. Davies and Kovac 2001). However, analogous problems in multidimensional re-

gression settings, or using TV(k)(m) with k ≥ 1, are computationally more involved. We mention

e.g. Hinterberger et al. (2003) for a reformulation as a bilateral contact problem and a rather in-

volved solution by a two level iterative method requiring a semi-smooth Newton method and a

primal dual active set algorithm. GIRLS offers a different strategy: PAVA can be applied after ap-

proximating the target functional suitably by a quadratic program; hence we can also understand

GIRLS as a linking device to apply efficient special purpose algorithms for quadratic programs

such as PAVA to corresponding non-quadratic and/or constrained problems.

Example 1. (estimation of smooth quantile functions)

We applied the GIRLS algorithm and a competitor to a dataset containing the income (X) and the

expenditure for food (Y ) in the year 1973 for 7125 households in Great Britain (Family Expen-

diture Survey 1968–1983). This dataset has also been analyzed by Härdle and Marron (1991). In

order to enhance the visual quality we reduced these data to a random subset of size n = 2000.
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Figure 2: Mean performance of GIRLS and a Newton-Raphson-algorithm. The dashed and dotted curves
show the mean value of the function F (m) in dependence of the iteration number m for the Newton-
Raphson algorithm and GIRLS, respectively, and the solid curve the stepwise rate of improvement
(FGIRLS(m + 1)− FGIRLS(m)) / (FNEWTON(m + 1)− FNEWTON(m)) of F (m) by the two methods.
Here, a value larger than 1 indicates that in the m-th iteration F (m) decreased more for GIRLS than for the
Newton-Raphson-algorithm.

Moreover, since the empirical distributions of both variables are strongly skewed to the right, we

plotted only the 1936 pairs (Xi, Yi) in the range [0, 105] × [0, 3 · 104]. Figure 1 shows the data

together with estimated p–quantile curves Mp for p = 0.1, 0.25, 0.5, 0.75, 0.9. Here we used the

functional

F (m) =
n∑

i=1

ρ(Yi −mC(i)) + λTV(1)(m)

on R
d with ρ given by (2), where x1 < x2 < · · · < xd are the d = 1945 different X–values in the

sample, mj = Mp(xj), Xi = xC(i) and F was regularized as discussed in the last section. The

tuning parameter λ was chosen to be 2 · 106 by visual inspection.

We now turn to the numerical performance of the GIRLS algorithm and compare it to a

Newton-Raphson algorithm (robustified with a standard step-size correction as in Dümbgen et

al. 2006). In the first step we compare the performance of the two algorithms in the particular

setting of our data example; the second step will consist of a small simulation study with artificial

data. All computations where performed with Matlab on a 1.86Ghz Pentium-processor with 1GB

Ram. As starting value of the iterations we used the polynomial regression p-quantile of order 1,

and the tuning parameter δ was selected in a data-driven way from this starting value as the smaller
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of the median of its absolute residuals, and the median of its first order differences, in both cases

divided by 1000. In the first step, we compared the computational efficiency of the GIRLS and

the Newton-Raphson algorithm applied to quantile regression with the family expenditure data.

To this end we recorded the computing times and number of iterations required for determination

of the 25%-quantile curve by GIRLS and the Newton-Raphson algorithm, where we stopped the

iterations as soon as the relative improvement of the function F (m) between two subsequent it-

erations fell below a threshold parameter ε = 10−12. Whereas GIRLS required 5.0s CPU time

and 59 iterations to find the solution, the Newton-Raphson algorithm turned out to be significantly

more expensive with 46.4s CPU time and 425 iterations. We also performed the same computa-

tions for a wide range of threshold parameters ε = 10−6 . . . 10−24, without significant change in

the relative computational expense of the two methods.

In the second step of our analysis we performed 100 simulations of the quantile regression

problem with (artificial) regression data from the model

Yi = sin
(
Xi · π2

)
+ εi, i = 1, . . . , 1000.

Here, Xi ∼ U [0, 1] are uniformly distributed, independent design variables, and εi ∼ N(0, 0.01)

i.i.d. noise terms. We used both GIRLS and the Newton-Raphson method to estimate the 25%-

quantile curve of the data by determining the minimizer of the function F (m). From visual in-

spection of a pilot simulation, we chose the tuning parameter λ = 2 · 104 for the subsequent

simulations.

Figure 2 compares the mean performance of the GIRLS algorithm with the performance of

the Newton-Raphson-method with step-size correction. The two curves in the top show the value

of the function F (m) in dependence of the iteration number m, and the bottom curve represents

the mean improvement (in the simulations) of the solution, measured by the decrease of the target

function F (m). From the figure, we conclude that the first steps of GIRLS are significantly more

efficient than for the Newton-Raphson method, whereas the latter catches up after approximately

the 8th iteration.

In summary, in the computations with the penalized quantile regression problem, GIRLS out-

performed the Newton-Raphson method for the family expenditure data. Moreover, in our simu-

lation we found GIRLS to improve the solution much faster than the Newton-Raphson method in

the first ≈ 8 iterations. Only if the initial value of the Newton algorithm has been chosen very

close to the true minimizer M∗, we found the performance of the Newton algorithm to be su-

perior. Hence, for practical purposes it seems be advisable to combine both algorithms such that
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GIRLS will be used at least as an initial algorithm which efficiently provides a good initial value

for a subsequently performed Newton type algorithm. Moreover, if both GIRLS and the Newton-

Raphson-method are available, it may be useful to compute both a GIRLS and a Newton step, with

subsequent selection of the better one.

Example 2. (GIRLS as a device to utilize efficient algorithms for special quadratic programs in

more complex settings)

In our second example we will briefly illustrate the flexibility of the GIRLS algorithm to

combine several constraints. Precisely, we combine unimodality constraints with TV penalization.

Ordinary isotonic regression and hence unimodal regression involves the solution of a weighted

least squares problem, and efficient algorithms, the PAVA in particular, are available. If we add a

TV penalty, the problem is no longer a quadratic program, and PAVA is not applicable directly.

By replacing the problem to be solved by a sequence of quadratic programs, GIRLS makes it

possible again to apply PAVA for unimodal regression with TV penalization. To this end consider

a two dimensional regression problem where Yij are observations to be fitted by m = (mij)i,j ,

i = 1, ...,m, j = 1, ..., n. We want to minimize the sum F (m) of the quadratic cost functional

‖Y −m‖2 =
∑
ij

(Yij −mij)2 ,

and the total variation penalty λTV(m), where λ > 0 and

TV(m) :=
m∑

i=1

n∑
j=1

|mi+1,j −mij|+
m∑

i=1

n∑
j=1

|mi,j+1 −mij| .

For the regularization Fδ and quadratic approximation Gδ(f, ·), the least squares term is kept

unchanged, while each summand |m(a) − m(b)| of TV(m) is treated as described in section 4:

First we regularize it by hδ(m(a) −m(b)). Then as a first quadratic approximation we may use

gδ(f(a) − f(b),m(a) −m(b)) = Cδ,(a),(b)(f) +
(m(a) −m(b))2

2hδ(f(a) − f(b))
.

For our purposes it turns out to be more suitable to replace the enumerator (m(a) −m(b))2 with

2
(
m(a) −

f(a) + f(b)

2

)2
+ 2

(
m(b) −

f(a) + f(b)

2

)2
,

which is never less than (m(a) − m(b))2 with equality for m = f . The advantages of this latter

quadratic approximation are computational simplicity and feasibility of isotonic (and hence uni-

modal) least squares algorithms. This allows, e.g. to impose in addition unimodality in vertical

direction. Hence, simply in each step for each vertical line the unimodal regression is calculated

by means of some standard variation of the PAVA.

20



ACKNOWLEDGEMENTS

The authors are thankful to three anonymous referees for their constructive criticism that helped to

improve this paper significantly. Moreover, they would like to thank G. Jongbloed and O. Scherzer

for helpful comments. The first author is indebted to Y. Vardi for interesting discussions on a

previous version of this paper. Yehuda Vardi passed away unexpectedly on Jan. 13th 2005, and

we would like to dedicate this work to his memory. Parts of this paper were written while L.
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