
Krämer, Walter; Hanck, Christoph

Working Paper

More on the F-test under nonspherical disturbances

Technical Report, No. 2008,14

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB
475), University of Dortmund

Suggested Citation: Krämer, Walter; Hanck, Christoph (2008) : More on the F-test under
nonspherical disturbances, Technical Report, No. 2008,14, Technische Universität Dortmund,
Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen,
Dortmund

This Version is available at:
https://hdl.handle.net/10419/36618

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/36618
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


More on the F-test under nonspherical disturbances∗
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May 29, 2008

Abstract

We show that the F-test can be both liberal and conservative in the

context of a particular type of nonspherical behaviour induced by spatial

autocorrelation, and that the conservative variant is more likely to occur for

extreme values of the spatial autocorrelation parameter. In particular, it will

wipe out the progressive one as the sample size increases.
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1 Introduction and summary

The robustness of the F-test to nonspherical disturbances has concerned applied

statisticians for many decades. The present paper considers the F-test in the context

of the linear regression model

y = Xβ + u = X(1)β(1) +X(2)β(2) + u, (1)

where y and u are T × 1, X is T ×K and nonstochastic of rank K < T , β is K × 1,

and the disturbance vector u is multivariate normal with mean zero and (possibly)

nonscalar covariance matrix V . The design matrix is partioned into X(1)(T × q) and

X(2)(T × (K − q)) and the null hypothesis to be tested is H0 : β(1) = b(1).

The standard F-test assumes that V = σ2I and rejects for large values of

F =
(ũ′ũ− û′û)/q

û′û/(T −K)
, (2)

where û = y − Xβ̂, β̂ = (X ′X)−1X ′y, ũ = y − X(1)b(1) − X(2)β̃(2),

β̃(2) = (X(2)′X(2))−1X(2)′(y −X(1)b(1)). Its null distribution is central F with q and

T −K degrees of freedom and the problem to be studied here is the robustness of

this null distribution to deviations from V = σ2I.

Vinod (1976) and Kiviet (1980) address this problem for a given disturbance covari-

ance matrix V , and derive bounds for the size of the test when the design matrix

X varies across all T ×K matrices of rank K, while Banerjee and Magnus (2000)

and Hillier and King (1982) consider the test statistics themselves. Below we follow

Krämer (1989), Krämer et al. (1990) and Krämer (2003) by fixing X and letting

V vary across certain subsets of possible disturbance covariance matrices which are

likely to occur in practice. This seems the more natural approach, as X is always

known in applications, whereas V is an unknown T × T parameter matrix.

The subset of disturbance covariance matrices under study here is implicitly defined

by the spatial autoregressive scheme

u = ρWu+ ε, (3)

where ε is a T × 1 normal random vector with mean zero and scalar covariance

matrix σ2
εI, and W is some known T ×T -matrix of nonnegative spatial weights with
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wii = 0 (i = 1, . . . , T ). Although there are many other patterns of spatial dependence

which have been suggested in the literature (see Anselin and Florax (1995) for an

overview), the one defined by (3) is by far the most popular, so it seems worthwhile

to investigate the behaviour of parameter estimates and tests when the regression

disturbances “misbehaves” according to this particular scheme.

Below we build on Krämer (2003), who shows that the size of the test can tend to

both one and zero as the parameter ρ varies across its allowable range. While Krämer

(2003) is silent on the respective empirical relevance of the two extreme cases, we

show here that the conservative variant is far more likely to occur in practice, and

will wipe out the liberal one as sample size increases.

2 The null distribution under spatial

autocorrelation

The coefficient ρ in (3) measures the degree of correlation, which can be both positive

and negative. There is no disturbance autocorrelation where ρ = 0. Below we focus

on the empirically more relevant case of positive disturbance correlation, where

0 ≤ ρ <
1

λmax

and where λmax is the Frobenius-root of W (i.e. the unique positive real eigenvalue

such that λmax ≥ |λi| for arbitrary eigenvalues λi). The disturbances are then given

by

u = (I − ρW )−1ε, (4)

so V := Cov(u) = σ2
ε [(I − ρW )(I − ρW )′]−1 and V = σ2

εI whenever ρ = 0.

The behaviour of the test statistic (2) when disturbances are given by (3) is best

seen by first rewriting it as

F =
u′(M (2) −M)u/q

u′Mu/(T −K)
, (5)
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where M = I − X(X ′X)−1X ′ and M (2) = I − X(2)(X(2)′X(2))−1X(2)′. Let Fα
q,T−K

be the (1 − α) quantile of the central F-distribution with q and T − K degrees of

freedom, respectively, where α is the nominal size of the test. Then

P (F ≥ Fα
q,T−K) = P (u′(M (2) −M)u− q

T −K
Fα
q,T−Ku

′Mu ≥ 0)

= P (u′(M (2) − dM)u ≥ 0)

(where d = 1 +
q

T −K
Fα
q,T−K)

= P (η′(I − ρW )′(M (2) − dM) (I − ρW ) η ≥ 0)

(where η =
1

σε
ε ∼ N(0, I))

= P (
T∑
i=1

λiξ
2
i ≥ 0)

= P ((1− ρλmax)2

T∑
i=1

λiξ
2
i ≥ 0), (6)

where the ξ2
i are iid χ2

(1) and the λi are the eigenvalues of

(I − ρW )′(M (2) − dM) (I − ρW ), and therefore also of V (M (2) − dM).

The limiting rejection probability as ρ → 1/λmax depends upon the limiting be-

haviour of (1− ρλmax)2V . We confine ourselves to the case where W is symmetric,

which appears to be the more important one in practice. This will for instance occur

if spatial dependence follows the j-ahead-and-j-behind or the equal-weight criteria

(see section 3 below). Then W admits a spectral decomposition

W =
T∑
i=1

λiωiω
′
i, (7)

where we have without loss of generality arranged the eigenvalues λi in increasing

order, and

V =
T∑
i=1

σ2
ε

(1− ρλi)2
ωiω

′
i (8)

is the resulting spectral decomposition of V , which always exists as V is symmetric.

The point of our argument now is that

lim
ρ→1/λmax

(1− ρλmax)2V = σ2
εωTω

′
T , (9)
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a matrix of rank 1. Therefore, all limiting eigenvalues of

(1− ρλmax)2V (M (2) − dM) (10)

are zero except one, which is given by

cT = tr(ωTω
′
T (M (2) − dM)) = ω′T (M (2) − dM)ωT . (11)

This constant cT is crucial for our analysis. It determines whether the F-test will

eventually be conservative or liberal. If cT is positive, the rejection probability of the

F-test will tend to 1 as ρ approaches 1/λmax. The test is then liberal in the extreme,

at least for values of ρ close to the edge of the parameter space.

If cT is negative, the rejection probability will tend to zero, and the test will

eventually be extremely conservative. And if cT = 0, the limiting behaviour of

the test cannot be determined from the limiting behaviour of the eigenvalues of

(1− ρλmax)2V (M (2) − dM) (which are all zero). Section 3 now sheds some light on

which of these cases is more likely to occur in empirical applications.

3 Exact rejection probabilities in finite samples

The first important point to make is that the crucial constant cT depends only on

X and W and the nominal size of the test, all of which are known. Therefore, cT is

known as well and can guide the user in interpreting a test: If cT < 0, one has to

beware of a loss in power, and if cT > 0, one has to beware of spurious rejections.

The following argument shows that the first problem is far more likely to occur in

practice: Rewrite the critical constant as

cT = ω′TM
(2)ωT − ω′T

T −K + q

T −K
Fα
q,T−KMωT . (12)

Then it is easily seen that in general cT < 0 (i.e. except in very contrived cases).

This follows from the fact that

T −K + q

T −K
Fα
q,T−K → χ2,α

q /q (13)

as T → ∞, which is larger than 2 for moderate values of α and q. (It takes the

values 3.84, 2.99 and 2.60 for α = 0.05 and q =1, 2 und 3, respectively). This will in

general be more than enough to counterbalance the fact that ω′TM
(2)ωT > ω′TMωT .
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Figure 1: An example of the queen matrix

W =



0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0 0

0 1 0 0 1 1 0 0 0

1 1 0 0 1 0 1 1 0

1 1 1 1 0 1 1 1 1

0 1 1 0 1 0 0 1 1

0 0 0 1 1 0 0 1 0

0 0 0 1 1 1 1 0 1

0 0 0 0 1 1 0 1 0



Of course one can always construct a weighting matrix and regressor matrices W ,

X and X(2) such that ω′TM
(2)ωT = 1 and ω′TMωT = 0 and therefore cT > 0. For

instance, let ι = (1, . . . , 1)′ be a (T × 1)-vector and choose X(2) orthogonal to ι.

E.g., for T even, pick X(2) = (1,−1, 1,−1, . . . , 1,−1)′. Let

X =
[
ι

... X(2)
]

(14)

(that is, test H0 : β(1) = 0) and let

W = WEW = (wEWij ) =

1 for i 6= j

0 for i = j
, (15)

the equal weight matrix. This and similar cases will however rarely happen in the

natural course of events, and will become ever more unlikely as sample size increases.

Figure 2 gives an example where W is derived from the queen-criterion (see Figure 1

for an illustration of the criterion with N = 9): There is a square of cells, and all cells

around a given cell obtain a weight of 1. The sample size is then a square number.

We choose X to have K = 2 and T = 16 or 25 such that, for T = 16, the second

column is the (normalized) eigenvector corresponding to the largest eigenvalue of

W , (which happens to be λmax = 5.85), and the first column is any (16× 1)-vector
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Figure 2: Rejection probabilities for the queen matrix

orthogonal to ω16. For t > 16, xt1 = 1 and xt2 = t−16. Then we have c16 = 0.316 and

c25 = −0.850, and so our theoretical result predicts that the rejection probabilities

will tend to one as ρ→ 1/λmax for T = 16 and will tend to zero as ρ→ 1/λmax for

T = 25. Figure 1 shows that this is indeed the case.

The case cT = 0, where our analysis does not apply, will occur for instance whenever

ωT is in the column space of X(2). The most important special case is when W is row-

normalized and therefore ωT = 1√
T

(1, . . . , 1)′ and where in addition X(2) contains

an intercept. However, row-normalization will often destroy the symmetry of W , so

this case is not covered by our discussion above.
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