A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Krämer, Walter; Hanck, Christoph #### **Working Paper** More on the F-test under nonspherical disturbances Technical Report, No. 2008,14 #### **Provided in Cooperation with:** Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475), University of Dortmund Suggested Citation: Krämer, Walter; Hanck, Christoph (2008): More on the F-test under nonspherical disturbances, Technical Report, No. 2008,14, Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund This Version is available at: https://hdl.handle.net/10419/36618 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # More on the F-test under nonspherical disturbances* Walter Krämer[†] Christoph Hanck[‡] May 29, 2008 #### Abstract We show that the F-test can be both liberal and conservative in the context of a particular type of nonspherical behaviour induced by spatial autocorrelation, and that the conservative variant is more likely to occur for extreme values of the spatial autocorrelation parameter. In particular, it will wipe out the progressive one as the sample size increases. Key words: F-test, spatial autocorrelation. ^{*}Research supported by Deutsche Forschungsgemeinschaft (DFG) under SFB 475. We are grateful to Anurag Banerjee for providing us the Gauss routines for our calculations. $^{^\}dagger Fakultät Statistik, TU Dortmund, D-44221 Dortmund, Germany, walterk@statistik.unidortmund.de$ $^{^{\}ddagger}$ Department Quantitative Economics, Universiteit Maastricht, NL-6211 LM Maastricht, c.hanck@ke.unimaas.nl ### 1 Introduction and summary The robustness of the F-test to nonspherical disturbances has concerned applied statisticians for many decades. The present paper considers the F-test in the context of the linear regression model $$y = X\beta + u = X^{(1)}\beta^{(1)} + X^{(2)}\beta^{(2)} + u,$$ (1) where y and u are $T \times 1$, X is $T \times K$ and nonstochastic of rank K < T, β is $K \times 1$, and the disturbance vector u is multivariate normal with mean zero and (possibly) nonscalar covariance matrix V. The design matrix is partioned into $X^{(1)}(T \times q)$ and $X^{(2)}(T \times (K - q))$ and the null hypothesis to be tested is $H_0: \beta^{(1)} = b^{(1)}$. The standard F-test assumes that $V = \sigma^2 I$ and rejects for large values of $$F = \frac{(\tilde{u}'\tilde{u} - \hat{u}'\hat{u})/q}{\hat{u}'\hat{u}/(T - K)},\tag{2}$$ where $\hat{u} = y - X\hat{\beta}$, $\hat{\beta} = (X'X)^{-1}X'y$, $\tilde{u} = y - X^{(1)}b^{(1)} - X^{(2)}\tilde{\beta}^{(2)}$, $\tilde{\beta}^{(2)} = (X^{(2)'}X^{(2)})^{-1}X^{(2)'}(y - X^{(1)}b^{(1)})$. Its null distribution is central F with q and T - K degrees of freedom and the problem to be studied here is the robustness of this null distribution to deviations from $V = \sigma^2 I$. Vinod (1976) and Kiviet (1980) address this problem for a given disturbance covariance matrix V, and derive bounds for the size of the test when the design matrix X varies across all $T \times K$ matrices of rank K, while Banerjee and Magnus (2000) and Hillier and King (1982) consider the test statistics themselves. Below we follow Krämer (1989), Krämer et al. (1990) and Krämer (2003) by fixing X and letting V vary across certain subsets of possible disturbance covariance matrices which are likely to occur in practice. This seems the more natural approach, as X is always known in applications, whereas V is an unknown $T \times T$ parameter matrix. The subset of disturbance covariance matrices under study here is implicitly defined by the spatial autoregressive scheme $$u = \rho W u + \varepsilon, \tag{3}$$ where ε is a $T \times 1$ normal random vector with mean zero and scalar covariance matrix $\sigma_{\varepsilon}^{2}I$, and W is some known $T \times T$ -matrix of nonnegative spatial weights with $w_{ii} = 0$ (i = 1, ..., T). Although there are many other patterns of spatial dependence which have been suggested in the literature (see Anselin and Florax (1995) for an overview), the one defined by (3) is by far the most popular, so it seems worthwhile to investigate the behaviour of parameter estimates and tests when the regression disturbances "misbehaves" according to this particular scheme. Below we build on Krämer (2003), who shows that the size of the test can tend to both one and zero as the parameter ρ varies across its allowable range. While Krämer (2003) is silent on the respective empirical relevance of the two extreme cases, we show here that the conservative variant is far more likely to occur in practice, and will wipe out the liberal one as sample size increases. # 2 The null distribution under spatial autocorrelation The coefficient ρ in (3) measures the degree of correlation, which can be both positive and negative. There is no disturbance autocorrelation where $\rho = 0$. Below we focus on the empirically more relevant case of positive disturbance correlation, where $$0 \le \rho < \frac{1}{\lambda_{max}}$$ and where λ_{max} is the Frobenius-root of W (i.e. the unique positive real eigenvalue such that $\lambda_{max} \geq |\lambda_i|$ for arbitrary eigenvalues λ_i). The disturbances are then given by $$u = (I - \rho W)^{-1} \varepsilon, \tag{4}$$ so $$V := Cov(u) = \sigma_{\varepsilon}^2 \left[(I - \rho W)(I - \rho W)' \right]^{-1}$$ and $V = \sigma_{\varepsilon}^2 I$ whenever $\rho = 0$. The behaviour of the test statistic (2) when disturbances are given by (3) is best seen by first rewriting it as $$F = \frac{u'(M^{(2)} - M)u/q}{u'Mu/(T - K)},\tag{5}$$ where $M = I - X(X'X)^{-1}X'$ and $M^{(2)} = I - X^{(2)}(X^{(2)'}X^{(2)})^{-1}X^{(2)'}$. Let $F_{q,T-K}^{\alpha}$ be the $(1 - \alpha)$ quantile of the central F-distribution with q and T - K degrees of freedom, respectively, where α is the nominal size of the test. Then $$P(F \ge F_{q,T-K}^{\alpha}) = P(u'(M^{(2)} - M)u - \frac{q}{T - K}F_{q,T-K}^{\alpha}u'Mu \ge 0)$$ $$= P(u'(M^{(2)} - dM)u \ge 0)$$ $$(\text{where } d = 1 + \frac{q}{T - K}F_{q,T-K}^{\alpha})$$ $$= P(\eta'(I - \rho W)'(M^{(2)} - dM)(I - \rho W)\eta \ge 0)$$ $$(\text{where } \eta = \frac{1}{\sigma_{\varepsilon}}\varepsilon \sim N(0, I))$$ $$= P(\sum_{i=1}^{T} \lambda_{i}\xi_{i}^{2} \ge 0)$$ $$= P((1 - \rho\lambda_{max})^{2} \sum_{i=1}^{T} \lambda_{i}\xi_{i}^{2} \ge 0),$$ (6) where the ξ_i^2 are iid $\chi_{(1)}^2$ and the λ_i are the eigenvalues of $(I - \rho W)'(M^{(2)} - dM)(I - \rho W)$, and therefore also of $V(M^{(2)} - dM)$. The limiting rejection probability as $\rho \to 1/\lambda_{max}$ depends upon the limiting behaviour of $(1 - \rho \lambda_{max})^2 V$. We confine ourselves to the case where W is symmetric, which appears to be the more important one in practice. This will for instance occur if spatial dependence follows the j-ahead-and-j-behind or the equal-weight criteria (see section 3 below). Then W admits a spectral decomposition $$W = \sum_{i=1}^{T} \lambda_i \omega_i \omega_i', \tag{7}$$ where we have without loss of generality arranged the eigenvalues λ_i in increasing order, and $$V = \sum_{i=1}^{T} \frac{\sigma_{\varepsilon}^2}{(1 - \rho \lambda_i)^2} \omega_i \omega_i' \tag{8}$$ is the resulting spectral decomposition of V, which always exists as V is symmetric. The point of our argument now is that $$\lim_{\rho \to 1/\lambda_{max}} (1 - \rho \lambda_{max})^2 V = \sigma_{\varepsilon}^2 \omega_T \omega_T', \tag{9}$$ a matrix of rank 1. Therefore, all limiting eigenvalues of $$(1 - \rho \lambda_{max})^2 V(M^{(2)} - dM) \tag{10}$$ are zero except one, which is given by $$c_T = tr(\omega_T \omega_T'(M^{(2)} - dM)) = \omega_T'(M^{(2)} - dM)\omega_T.$$ (11) This constant c_T is crucial for our analysis. It determines whether the F-test will eventually be conservative or liberal. If c_T is positive, the rejection probability of the F-test will tend to 1 as ρ approaches $1/\lambda_{max}$. The test is then liberal in the extreme, at least for values of ρ close to the edge of the parameter space. If c_T is negative, the rejection probability will tend to zero, and the test will eventually be extremely conservative. And if $c_T = 0$, the limiting behaviour of the test cannot be determined from the limiting behaviour of the eigenvalues of $(1 - \rho \lambda_{max})^2 V(M^{(2)} - dM)$ (which are all zero). Section 3 now sheds some light on which of these cases is more likely to occur in empirical applications. ## 3 Exact rejection probabilities in finite samples The first important point to make is that the crucial constant c_T depends only on X and W and the nominal size of the test, all of which are known. Therefore, c_T is known as well and can guide the user in interpreting a test: If $c_T < 0$, one has to beware of a loss in power, and if $c_T > 0$, one has to beware of spurious rejections. The following argument shows that the first problem is far more likely to occur in practice: Rewrite the critical constant as $$c_T = \omega_T' M^{(2)} \omega_T - \omega_T' \frac{T - K + q}{T - K} F_{q, T - K}^{\alpha} M \omega_T.$$ $$\tag{12}$$ Then it is easily seen that in general $c_T < 0$ (i.e. except in very contrived cases). This follows from the fact that $$\frac{T - K + q}{T - K} F_{q, T - K}^{\alpha} \to \chi_q^{2, \alpha} / q \tag{13}$$ as $T \to \infty$, which is larger than 2 for moderate values of α and q. (It takes the values 3.84, 2.99 and 2.60 for $\alpha = 0.05$ and q = 1, 2 und 3, respectively). This will in general be more than enough to counterbalance the fact that $\omega_T' M^{(2)} \omega_T > \omega_T' M \omega_T$. Figure 1: An example of the queen matrix | 1 | 2 | 3 | |---|---|---| | 4 | 5 | 6 | | 7 | 8 | 9 | $$W = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$ Of course one can always construct a weighting matrix and regressor matrices W, X and $X^{(2)}$ such that $\omega_T' M^{(2)} \omega_T = 1$ and $\omega_T' M \omega_T = 0$ and therefore $c_T > 0$. For instance, let $\iota = (1, \ldots, 1)'$ be a $(T \times 1)$ -vector and choose $X^{(2)}$ orthogonal to ι . E.g., for T even, pick $X^{(2)} = (1, -1, 1, -1, \ldots, 1, -1)'$. Let $$X = \left[\iota : X^{(2)}\right] \tag{14}$$ (that is, test $H_0: \beta^{(1)} = 0$) and let $$W = W^{EW} = (w_{ij}^{EW}) = \begin{cases} 1 & \text{for } i \neq j \\ 0 & \text{for } i = j \end{cases},$$ (15) the equal weight matrix. This and similar cases will however rarely happen in the natural course of events, and will become ever more unlikely as sample size increases. Figure 2 gives an example where W is derived from the queen-criterion (see Figure 1 for an illustration of the criterion with N=9): There is a square of cells, and all cells around a given cell obtain a weight of 1. The sample size is then a square number. We choose X to have K=2 and T=16 or 25 such that, for T=16, the second column is the (normalized) eigenvector corresponding to the largest eigenvalue of W, (which happens to be $\lambda_{max}=5.85$), and the first column is any (16×1) -vector Figure 2: Rejection probabilities for the queen matrix orthogonal to ω_{16} . For t > 16, $x_{t_1} = 1$ and $x_{t_2} = t - 16$. Then we have $c_{16} = 0.316$ and $c_{25} = -0.850$, and so our theoretical result predicts that the rejection probabilities will tend to one as $\rho \to 1/\lambda_{max}$ for T = 16 and will tend to zero as $\rho \to 1/\lambda_{max}$ for T = 25. Figure 1 shows that this is indeed the case. 0.08 0.10 0.12 0.00 0.02 0.04 0.06 O 0.16 The case $c_T = 0$, where our analysis does not apply, will occur for instance whenever ω_T is in the column space of $X^{(2)}$. The most important special case is when W is rownormalized and therefore $\omega_T = \frac{1}{\sqrt{T}} (1, \dots, 1)'$ and where in addition $X^{(2)}$ contains an intercept. However, row-normalization will often destroy the symmetry of W, so this case is not covered by our discussion above. ## References - Anselin, L. and Florax, R. (eds.) (1995): New directions in spatial econometrics. Berlin (Springer). - Banerjee, A. N. and Magnus, J. (2000): "On the sensitivity of the usual t-and F-tests to covariance misspecifications." *Journal of Econometrics* 95, 157 176. - Hillier, O.H. and King, M.L (1982): "Linear regression with correlated errors: bounds on coefficient estimates and t-values" In: King, M. L. and Giles, D. E. A. (editors): Specification Analysis in the Linear Model. London (Routledge and Kegan-Paul), 74 80. - Kiviet, J.F. (1980): "Effects of ARMA errors on tests for regression coefficients: comments on Vinod's article, improved and additional results." *Journal of the American Statistical Association* 75, 333 358. - Krämer, W. (1989): "On the robustness of the F-test to autocorrelation among disturbances." *Economics Letters* 30, 37 40. - Krämer, W. (2003): "The robustness of the F-test to spatial autocorrelation among regression disturbances" *Statistica* 63, 435-440. - Krämer, W.; Kiviet, J. and Breitung, J. (1990): "The null distribution of the F-test in the linear regression model with autocorrelated disturbances." $Statistica\ 50,\ 503-509.$ - Vinod, H.D. (1976): "Effects of ARMA errors on the significance tests for regression coefficients." *Journal of the American Statistical Association* 71, 929 933.