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Abstract

We consider data consisting of photon counts of diffracted X-rays as a func-
tion of the angle of diffraction. The problem is to determine the positions,
powers and shapes of the relevant peaks. An additional difficulty is that the
power of the peaks is to be measured from a baseline which itself must be iden-
tified. Most methods of de-noising data of this kind do not explicitly take into
account the modality of the final estimate. The procedure we propose is based
on the so called taut string method which minimizes the number of peaks sub-
ject to a tube constraint on the integrated data. The baseline is identified by
combining the result of the taut string with an estimate of the first derivative
of the baseline obtained using a weighted smoothing spline. Finally each indi-
vidual peak is expressed as the finite sum of kernels chosen from a parametric
family.

1 The data

X-ray diffraction is an important tool to analyze the morphology of thin films. When
thin films are prepared on glass substrates they are usually polycrystalline and may
even contain different crystalline phases. The experimental data are usually ob-
tained in the form: Intensity versus diffraction angle 2θ. The physically relevant
information lies in the position, the power, and the half-width of the peaks.
The peak positions are characteristic for the crystalline structures present in the
sample. Small shifts of the peaks with respect to the ideal positions are related to
mechanical strain in the crystalline lattice arising from lattice imperfections intro-
duced during thin film preparation.
From the peak power the relative abundance of a specific crystalline orientation can
be estimated allowing the determination of the texture of crystalline orientations.
Such an analysis has been performed e.g. in the case of thin films of In2O3:Sn
prepared by various deposition techniques (Mergel et. al, 2005).
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The half-width of the peak is related to the crystallite size and to inhomogeneous
strain within the crystallites. These parameters are strongly influenced by the prepa-
ration conditions and determine to a large degree the optical and electrical properties
of the thin films.
In our laboratory practice, we have so far used an ad-hoc method to evaluate the
X-ray diffractograms that proved to be adequate when the potential peak positions
were a-priori known, i.e. in cases where the produced material was already identified
(Mergel et. al, 2005). With this method, the baseline of the data, arising from
the noise level of the signal channel, was taken as a piecewise linear interpolation
between the intensity values at positions in the middle between two neighbouring
theoretical positions. Denoising was done by averaging the data in a pre-defined
abszissa interval. The peak position was then looked for in the vicinity of the
theoretical positions and the shape of the peak was fitted with a Gaussian.
This method uses optimization criteria for noise that are statistically not well founded
and shape functions that are often inadequate for X-ray peaks. Furthermore, in the
general case, the crystalline structures in the films are not known and the search pro-
cedure as a whole is not applicable. Therefore, we looked for an alternative model
that does not rely on a-priori knowledge of peak positions, applies a statistically
better founded noise model and a more general function for the peak shape.
The new method presented in this paper is based upon five steps:

1. The data are approximated by the right-hand derivative of the taut string.
This yields a first estimate of the number, the position and the height of the
peaks.

2. An estimate of the first derivative is obtained from a weighted smoothing spline
fitted to the original data.

3. The peak intervals are determined from (a) the positions of peaks according
to (1) and (b) a threshold for the derivative obtained in (2).

4. The baseline is obtained by fitting a spline to the remaining data set after
removing the peak intervals.

5. The peaks (baseline subtracted) are fitted within their respective intervals by
a sum of Pearson Type VII curves. A sum is necessary because the actual
peak may be the result of different overlapping X-ray reflexes (subpeaks). The
subpeaks may have different widths. In many cases, different solutions may
explain the experimental data equally well. Then, alternative solutions have
to be delivered as a result and the user has to choose the best one based on
additional physical knowledge.

A typical data set is shown in Figure 1. Although it is not obvious from the figure,
the data, being counts of photons, are integers. A simple stochastic model for the
counts at an angle of diffraction 2θ is the Poisson distribution with mean f(2θ) for an
appropriate function f. The noise present in the data does not exhibit any obvious
dependencies so that a model is completely specified by fixing f and then taking the
observations at each 2θ to be independently distributed. Throughout this paper, we
use some different notations in place of 2θ, depending on which is most convenient.
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Figure 1: The intensity of diffracted X-rays as a function of the angle of diffraction
(2θ).

Since the angles themselves are only of interest when either deciding whether some
values are physically meaningful or when calculating physical parameters after the
curve has been fitted, we usually use generic indices ti, i = 1, . . . , n with ti ∈
[0, 1] when describing the method from a more mathematical point of view. Since
in thin-film diffractometry measurements are usually taken for equidistant angles,
we will keep notation simple by considering only the equidistant case. Of course,
with appropriate modifications, the method should also work for non-equispaced
measurements, if needed.
All estimates fn of the function f given in this paper are based on the idea of
obtaining a simplest function which could in principle have generated the data.
This concept is described in detail in section 2. It is based on the considerations
in Davies (1995) and Davies, Kovac and Meise (2007) . The procedure we propose
determines the number, positions, powers and shapes of the relevant peaks and their
components in a fully automatic manner. As mentioned above it consists of five
different steps. In sections 3 and 4 we explain respectively the taut string, which
was established in Davies and Kovac (2001), and the weighted smoothing spline
methods. For more details about weighted smoothing splines see Davies and Meise
(2005). An informative introduction to smoothing splines in general was for example
given by Green and Silverman (1994). In section 5 the results of the two methods
are combined to isolate the peaks and to provide an estimate of the baseline. Finally
in section 6 we describe how the individual peaks are expressed as a finite sum of
kernels chosen from a parametric family of kernels.
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2 The confidence region

The canonical model for the data yn = {(ti, y(ti)), i = 1, . . . , n} is the Poisson model
with mean f(ti). For large y(ti) this accurately describes the noise level but for small
y(ti) this model underestimates the noise level as there is also a ground noise due
to the electronics. In practice the standard deviation of the noise is at least 7 which
in the Poisson model corresponds to a mean of about 50. For such large parameter
values the Poisson distribution can be modelled by a normal distribution with mean
and variance 50. This leads to the model

Y (t) = f(t) + σ(t)Z(t), 0 ≤ t ≤ 1 (1)

where f : [0, 1] → R and Z(t) is standard Gaussian white noise. Initially we consider
a constant noise level σ(t) = σn which is estimated from the data. This gives us
an initial estimate fn of f and in a second stage we put σ(t) = max(

√
fn(t), σn)

and re-estimate f . This removes unwanted side lobes on the peaks due to the initial
underestimate of the noise level by σn.
We now explain the construction of the confidence region which provides the basis of
our concept of approximation. Suppose we have data Yn = {(ti, Y (ti)), i = 1, . . . , n}
with 0 ≤ t1 < · · · < tn ≤ 1 which are generated under the model (1). For any
function g : [0, 1] → R we define the residuals by

r(Yn, ti, g) = Y (ti)− g(ti) (2)

and the standardized sums of the residuals over intervals I ⊂ {1, . . . , n} by

w(Yn, I, g) =
1√
|I|

∑
i∈I

r(Yn, ti, g) (3)

where |I| denotes the number of points in I. For a given family In of intervals of
{1, . . . , n} an α-confidence region for f is given by

An = A(Yn, σ, In, τn) =
{

g : max
I∈In

|w(Yn, I, g)| ≤ σ
√

τn log n
}

, (4)

where τn = τn(α) is chosen such that

P
(

max
I∈In

1√
|I|

∣∣∣ ∑
ti∈I

Z(ti)
∣∣∣ ≤ σ

√
τn log n

)
= α. (5)

To see this we note that if the data were generated under (1) then (5) implies that
P (f ∈ An) = α. The family In we use will be a dyadic multiresolution scheme as for
wavelets. It will consist of all single points {i}, the pairs {1, 2}, {3, 4}, . . ., the sets of
four {1, 2, 3, 4}, {5, 6, 7, 8} etc. and including all final intervals whether or not they
are of this form. The procedure is therefore not restricted to sample sizes n which
are a power of 2. The number of such intervals is at most 2n and this collection has
proved sufficiently fine for X-ray diffractograms. The use of such a scheme In forces
any function g in An to adapt to the data at all resolution levels from single points
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to the whole interval. Since the noise level σ of the data usually is not known in
advance we derive it from the data by using

σn = 1.4826 Median
{
|Y (ti)− Y (ti−1)|, 2 ≤ i ≤ n− 1

}
/
√

2. (6)

Now An = A(Yn, σn, In, τn) is no longer exact but it is honest in that the coverage
probability is now at least α. Any function gn ∈ A(Yn, σn, In, τn) will be regarded
as an adequate approximation to the data Yn. Depending on the context in the
following we also use An = A(yn, σn, In, τn) to specify the analogue confidence
region for the data yn of an X-ray diffractogram.
As mentioned above the estimate σn underestimates the noise level for large values
of y(ti) which is of the order

√
y(ti). At the same time for small values of y(ti) the

noise is underestimated by
√

y(ti) but correctly estimated by σn. We overcome both
problems by obtaining a first estimate fn of f using the constant noise σn of (6) and
then taking the noise level at the angle of diffraction ti to be

Σn(ti) = max
(
σn,

√
fn(ti)

)
. (7)

Now we replace (2) by

r̃(yn, ti, g,Σn) =
y(ti)− g(ti)

Σn(ti)
(8)

and (3) by

w̃(yn, I, g,Σn) =
1√
|I|

∑
i∈I

r̃(yn, ti, g,Σn). (9)

The resulting confidence region Ãn is then given by

Ãn = Ã(yn,Σn, In, τn) =
{

g : max
I∈In

|w̃(yn, I, g,Σn)| ≤
√

τn log n
}

. (10)

The value of τn for any n and α can always be determined by simulations. It follows
however from a result of Dümbgen and Spokoiny (2001) on the uniform modulus
of continuity of the Brownian motion that limn→∞ τn = 2 whatever α. In practice
we use the default value τn = 2.5 The confidence regions An and Ãn include many
functions which are of no interest. For example all functions g which interpolate the
data belong to both. Interest always centres on the simplest functions where the
definition of simplicity depends on the problem at hand. To detect peaks we are
interested in minimizing the number of peaks subject to the function lying in An or
Ãn. We accomplish this by using the taut string method which is described in the
next section. The taut string estimate is a piecewise constant function which is not
suitable for identifying the baseline. The baseline is a slowly varying function which
can be associated with a small first derivative. The second concept of simplicity we
use is therefore based on smoothness and is defined by∫ 1

0
g′′(t)2 dt. (11)

To minimize (11) we use an approximate procedure based on a weighted smoothing
spline. The solution is a cubic spline and we use its first derivative to identify the
baseline.
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3 The taut string method

In this section we give a short description of the taut string method based on a
small artificial data set. Panel 1 of Figure 2 shows data generated under (1) with
f(t) = 2.5 sin(4πt) evaluated at the points ti = i/32, i = 1, . . . , 32 and with σ = 1.
The first step is to calculate the partial sums of the observations Y (ti)

SY (ti) =
1
n

i∑
j=1

Y (ti), i = 1, . . . , n, SY (0) = 0. (12)

These are shown in Panel 2 of Figure 2. We now form a tube centered on the
cumulative sums with an upper bound U and a lower bound L defined by

U(ti) = SY (ti) + ε, 1 ≤ i ≤ n− 1, U(0) = 0, U(1) = SY (1) (13)
L(ti) = SY (ti)− ε, 1 ≤ i ≤ n− 1, L(0) = 0, L(1) = SY (1). (14)

The boundary conditions U(0) = L(0) = 0 and U(1) = L(1) = SY (1) are chosen
to reduce edge effects. The resulting tube is shown in Panel 3 of Figure 2. The
taut string function TS is best understood by imagining a string constrained to lie
within the tube and tied down at (0, 0) and (1, SY (1)) which is then pulled until
it is taut (cf. Panel 4 of Figure 2). There are several equivalent analytic ways of
defining this. The taut string is a linear spline with automatic choice of knots.
Panel 5 of Figure 2 shows the knot locations. As an estimate fts,n of f we take the
right derivative of the taut string, except at the last point where we take the left
derivative. Closer consideration shows that this can be improved. The derivative of
the taut string has a local maximum when the taut string switches from the upper
to the lower boundary. The value of the derivative on this section is therefore less
than the mean of the Y -values. Thus if we define the estimate at cross-over intervals
as the mean of the Y -values between the knots we obtain a better approximation
without altering the number of local extremes. The same reasoning applies to local
minima. The function fts,n obtained in this manner is shown in Panel 6 of Figure
2. The connection with the number of local extremes which explains the efficacy of
the method is the following. Consider all absolutely continuous functions H which
are constrained to lie within the tube. Then the derivative of the taut string fts,n

has the smallest number of local extreme values and in particular it has the smallest
number of peaks.
This still leaves open the question of the diameter of the tube. Since ε controls the
closeness to the data the basic idea is to start with a very large ε which contains
the integral of the mean of the data which, in this case, is the taut string solution
f1

ts,n. Using the confidence region An we determine those intervals I ∈ In for which
|w(Yn, I, f1

ts,n)| > σn
√

τn log n. For any point i which lies in any such interval we
reduce the diameter of the taut string by a fixed factor q < 1 at the points i and
i + 1. The default value of q which we use is 0.9. A new taut string estimate f2

ts,n

is calculated and the procedure repeated in the obvious manner until the estimate
lies in An. As σn is specified by (6), τn = 2.5 and In is the dyadic multiresolution
scheme defined above. The method is fully automatic and does not require the
choice of a tuning parameter. As In contains at most 2n intervals and the taut
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Figure 2: Panel (1) shows some noisy sine data. Panel (2) shows the cumulative
sums of the data. Panel (3) shows the tube derived from the cumulative sums.
Panel (4) shows the taut string through the tube. Panel (5) shows the taut string
through the tube with marked knots. Panel (6) shows the data with the right-hand
derivative of the taut string.
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Figure 3: Top: One de-noised X-ray diffractogram, using the constant noise estimate
given in (6) and a section (bottom left). Bottom right: The same section for the
approximation using the local noise estimate given in (7).

string has an algorithmic complexity of O(n) it follows that the whole procedure
has an algorithmic complexity of order O(n log n) when the squeezing of the tube
is taken into account. Large data sets with n = 106 and more can be calculated
processed in less than one minute.
Panel 1 of Figure 3 shows the result of applying this procedure to an X-ray diffrac-
togram with σn given by (6). As mentioned above this underestimates the noise level
for large values of y(t) and this results in side lobes on the large peaks as shown
in Panel 2 of Figure 3. We denote this initial estimate by f̃ts,n and use it in the
definition of Σn of (7). This gives rise to the confidence interval Ãn of (10) and we
can now repeat the taut string procedure. The result is denoted by f?

ts,n. Figure 4
shows f?

ts,n for the data set of Figure 1. As it can be seen in Panel 3 of Figure 3,
which shows f?

ts,n of the same section as f̃ts,n in Panel 2, the side lobes have been
removed whilst leaving the rest of the initial estimate unaltered. It is clear that the
automatic taut string method as just described has produced very good resolution
of the peaks and it has not created peaks where none should be.

4 Weighted Smoothing Splines

After having determined the number and locations of the peaks the next step is to
identify the baseline. We do this by fitting a smooth function to the data and then
identifying the baseline by the size of the first derivative. As mentioned above ideally
we would like to minimize (11) subject to g ∈ Ãn, using f?

ts,n in (7). As Ãn is defined

8



20 30 40 50 60 70 80

0
50

0
10

00
15

00

47 48 49 50 51 52 53

0
10

0
30

0
50

0

Figure 4: The de-noised data of Figure 1.

by a series of linear inequalities this, after discretization, leads to a quadratic pro-
gramming problem. This is in principle solvable but for large data sets and/or data
with large variations in local smoothness there are considerable numerical problems.
Because of this we take an approach based on weighted smoothing splines which
is as follows. For given weights λ = (λ1, . . . , λn) we consider the solution of the
following minimization problem

Sλ(g) :=
n∑

i=1

λi(Y (ti)− g(ti))2 +
∫ 1

0

(
g(2)(t)

)2
dt −→ min! (15)

The solution is a natural cubic spline which we denote by fwss,n. The weights λ are
data dependent and chosen to ensure that fwss,n ∈ Ãn. As the smoothness of the
solution of (15) increases when the values of the λi decrease we wish to choose the
weights λ to be as small as possible subject to fwss,n ∈ Ãn. We do this in a manner
similar to that used in the taut string procedure. We start with very small weights λi

so that the solution is almost a straight line which we denote by f1
wss,n. We determine

those points ti which lie in intervals I for which |w̃(yn, I, f1
wss,n,Σn)| >

√
τn log n.

At such points we increase the λi by a factor of q > 1. The default value we use
is q = 2. The solution f2

wss,n is calculated and the procedure is continued in the
obvious manner until the solution lies in Ãn. The first Panel of Figure 5 shows the
result of the weighted smoothing spline, fwss,n, for the data set of Figure 1. The
second Panel shows the first derivative f

(1)
wss,n. The smoothness of the solution can

be seen from the third panel of Figure 5 which shows the same section of the data
as Figure 4.
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Figure 5: The upper Panel shows the weighted smoothing spline estimate fwss of
the data of Figure 1. The middle Panel shows the first derivative f

(1)
wss together with

the used threshold (dotted line) and the bottom Panel shows a section of fwss.

5 Identifying the baseline

To identify the baseline we combine the results of the taut string, f?
ts,n, and the

weighted smoothing spline approximation, fwss,n. The baseline is a slowly varying
function so we identify it by the size of the derivative f

(1)
wss,n of fwss,n. The taut

string estimate is piecewise constant so firstly we identify those intervals which
correspond to the local maxima of f?

ts,n. For each specified interval we find t0 with

f
(1)
wss,n(t0) ≈ 0 and t0 inside or close to the actual interval. Afterwards we determine

tl2 ≤ tl1 ≤ t0 ≤ tr1 ≤ tr2 with

|f (1)
wss,n(tli)| ≈ |f (1)

wss,n(tri)| ≈ Median(|f (1)
wss,n|), for i = 1, 2 (16)

and f
(1)
wss,n(t) ≥ 0 for t ∈ [tl2 , tl1 ] and f

(1)
wss,n(t) ≤ 0 for t ∈ [tr1 , tr2 ]. The initial interval

is then extended to [tl2 , tr2 ]. The final intervals are taken as delimiting the peak.
Peaks for which tli , tri do not exist are ignored. The increased intervals delimit the
peaks and are removed from the data. The remaining data set is approximated again
using a weighted smoothing spline and the result fbl,n is the estimate of the baseline.
The upper panel of Figure 6 shows the dataset of Figure 1 with automatically fitted
baseline. The lower panel shows the data after the baseline has been subtracted.
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Figure 6: Baseline approximation and data with removed baseline.

6 The decomposition of the peaks

We now address the third problem which is to decompose each peak into a finite
sum of kernels chosen from a parametric family. This is shown in Figure 7 where the
peaks in the left column have been decomposed into one, two and two components
as shown in the right column. The decomposition is an ill–posed problem which we
regularize by looking for a solution with the smallest number of components. The
exact mathemtical formulation leads to a non–convex minimization problem and we
describe our algorithm below. We treat the intervals defined by (16) separately.
Let {tl, tl+1, . . . , tm} ⊆ {t1, . . . , tn} ⊆ [0, 1] be the segment under consideration and
L := m− l + 1 its length. We denote by

ỹ(ti) = y(ti)− fbl,n(ti) for i = l, . . . ,m

the measurements in the interval, where the baseline fbl,n has been subtracted and
will subsequently only be used for standardization of residuals. We now construct
an approximation to the data ỹ(tl), . . . , ỹ(tm) which we will denote by fpk,n(t). Note
that fpk,n is only defined on the peak intervals.
The main difficulty now is that not only location, power and shape of the components
are unknown, but also their number within an interval, as they may be strongly
overlapping. The individual components are chosen from a parametric family of
kernel functions with one kernel for each component. In much the same way as in
the previous sections, we start with the simplest model (1 kernel) and then check
whether an adequate approximation fpk,n(tl), . . . , fpk,n(tm) to the data exists, i.e.

11



whether the appropriately standardized residuals satisfy

|w̃(ỹ, I, fpk,n, Σ̃n)| ≤ CL (17)

for all intervals I ⊆ {tl, . . . , tm}. We give details on the choice of the set of intervals,
the noise level Σ̃n and the threshold CL below, after the description of the procedure.
Model complexity (number of kernels) is increased until the criterion is satisfied.
Physical characteristics of interest like power, full width at half maximum (FWHM)
and exact location of the peak components can be calculated from the obtained
estimated components.
Each decomposition is of the form

f(t) =
k∑

i=1

γip(t;βi) (18)

where k denotes the number of kernels (starting with k = 1) and γi are nonnegative
weights. The kernels p depend on a vector of parameters βi including location and
shape parameters. Depending on the parametrization, the weights γi correspond
either to the maximum height or to the power of the peak component. The num-
ber and interpretation of the parameters as well as the range of admissible values
depend on the family of curves used. Several choices of kernels are possible, but
the most widely used families all include densities of the Gaussian and Cauchy (also
known as Lorentz) distributions as, in some sense, extreme cases cf. [12]. Among
these families are Voigt functions, which are convolutions of Gaussian and Cauchy
densities, so-called Pseudo Voigt functions, which are convex combinations of Gaus-
sian and Cauchy densities, and Pearson Type VII curves. However, the approach
presented here is not limited to these families of curves, and should work for any
suitably chosen parametric family of kernels including asymmetric ones.
In the following, we will only consider the Pearson Type VII family, since it works
well for our data and prevents some numerical difficulties that occur when using
Voigt or pseudo-Voigt functions. The curves have the form

p(t;β) = p(t;µi,mi, ai) =
(

1 +
(t− µi)2

a2
i mi

)−mi

(19)

where µi is the location parameter, ai measures the width, and mi ≥ 1 deter-
mines the shape of the curve. For mi = 1, p is the Cauchy density, and since
(1 + x2

m )−m m→∞−→ exp(−x2), the shape becomes finally Gaussian for large mi. The
kernel is not normalized, so it is not necessarily a probability density. We have
p(µi;µi,mi, ai) = 1, so the weight γi is the height at the maximum. For each Pear-
son VII kernel, we have to estimate four parameters: µi, mi, ai, and the weight
γi.
For fixed k (starting with k = 1) we consider signals of the form

fpk,n(t) = β0 + β1t +
k∑

i=1

γip(t;mi, µi, ai) (20)

where p(t;mi, µi, ai) is the Pearson VII function with parameters as described above.
The parameters β0 and θ1 are added to allow small changes in the baseline estimate
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and should only have small values, e.g. values between ±d0 := ±5% of the height of
the initial baseline estimate for β0 and between −d1 and d1 for β1. We choose d1 so
that the slope of the baseline estimate can change by at most 5 counts per 2θ. The
parameter vector

β = (β0, β1, γ1, µ1,m1, a1, . . . , γk, µk,mk, ak)

now completely determines the shape. Since it is not possible to check directly
whether an adequate approximation of given complexity k exists which satisfies
our criterion, we have to focus on one or several promising candidates. Since the
estimate should be “close” to the data, a natural choice is the nonlinear weighted
least squares estimate, which leads to the following optimization problem:

R(β) =
m∑

j=l

(
fpk,n(tj ;β)− ỹ(tj)

Σn(tj)

)2

−→ min! (21)

with

fpk,n(t;β) = β0 + β1t +
k∑

i=1

γip(t;mi, µi, ai)

subject to

− dj < βj < dj (j = 0, 1)
γi, ai > 0 (i = 1, . . . , k)
tl < µ1 < · · · < µk < tm (i = 1, . . . , k)
mi ≥ 1 (i = 1, . . . , k)

Simple re-parametrizations can be used to eliminate the interval constraints, for
example logarithms and affine transformations of the logit-function. For k > 1
every signal has k! different parameterizations because of interchangability of the
kernels, and a reduction of the search space is achieved by enforcing an ordering in
the location parameters µ1 < · · · < µk. An appropriate transformation is given by
Jupp [10].
Since (21) generally has a large number of local minima, we proceed iteratively
in the following manner. We choose a starting value at random from a uniform
distribution over a suitably chosen rectangular set which contains all reasonable
parameter values. This is followed by a Newton-type procedure to find the nearest
local minimum of R. We use the so-called BFGS-Method as described in chapter
3.2 of [7], but any similar algorithm should suffice. The local minimum of R is
then compared to the lowest value previously found. If it is lower, we check the
conditions (17) (see below), and stop if they are fulfilled. In this case, an adequate
approximation with given complexity has been found. Otherwise, we draw a new
starting value and repeat these steps. If no adequate approximation is found within
a specified number of iterations (e.g. 7500), the output is the best local minimum
of R that has been found. The number of kernels is then increased by one, and the
procedure is started anew.

13
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Figure 7: Some intervals of the data and fitted curves (left column). The right
column displays the single peaks.

Note that this optimization algorithm does not directly aim at obtaining an ade-
quate approximation in the sense of the criterion (17) but tries to find local optima
of the weighted least squares residual function (which is less difficult, since R is
infinitely differentiable). In general, a solution of complexity k that fulfills (17) is
not necessarily a local or global optimum of the least squares function. However,
our experience indicates that this heuristic works sufficiently well. In addition, the
algorithm need not find the best solution (or something reasonably close) in a given
number of iterations. For these reasons, the number of necessary kernels may be
overestimated in some cases. Since the search algorithm is in part stochastic, another
run might produce a better result.
When checking (17), we standardize the residuals using

Σ̃n(t) =
√

fbl,n(t) + fpk,n(t).

This is similar to (7), but now we have a much smaller number of observations. This
allows us to use all subintervals of tl, . . . , tm in (17). We use an efficient algorithm
given by Bernholt and Hofmeister [1] for this. However, special care has to be taken
in choosing the critical value CL, since the asymptotic choice given in section 2 is
not valid here. We estimate a suitable threshold by means of simulation: We draw
L = m − l + 1 independent and identically distributed random variables Zi from a
standard normal distribution and calculate

max
1≤q≤r≤L

1√
|I|

∣∣∣ r∑
i=q

Zi

∣∣∣. (22)
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We then use the upper 0.95-quantile from 10000 replications. Note that CL depends
on the interval only through its length L.
Figure 7 shows some examples of intervals where a successful decomposition is ob-
tained with only one or two components.
Once a solution is found the characteristics of the peak components can be estimated
by calculating the values for the fitted curves. For Pearson VII curves as used here,
the corresponding weight parameter γi equals the maximum height. The integrated
intensity Ii of the i-th component is obtained by

Ii =
Γ(mi − 1/2)

√
πmiai

Γ(mi)
γi,

cf. [9]. The full width at half maximum of the i-th kernel depends only on the shape
and scale parameters mi and ai, and can be calculated explicitly by

FWHM i = 2ai

√
mi(

mi
√

2− 1),

cf. [9]. Of course, Ii and FWHMi must be scaled appropriately according to the grid
width. If an interval contains two or more strongly overlapping peak components,
or if the components have very low intensities, the values calculated may not be
reliable.

7 Discussion

In this article, we propose a fully automatic five-step procedure that determines the
number, positions, powers and shapes of the relevant peaks and their components
in X-ray diffractograms. It can be applied when little or no prior knowledge of
approximate peak positions is available, as is often the case in the analysis of the
morphology of thin films. The whole procedure is based on the principle of choosing
the simplest possible fit that is an adequate explanation of the data. We employ
a criterion based on residuals to formalize the latter, while simplicity is measured
by the number of peaks or in terms of smoothness. This ensures that all relevant
aspects of the data are captured while at the same time overfitting is avoided.
The procedure is based on recent advances in nonparameteric regression and denois-
ing techniques like the taut string method and weighted smoothing splines. These
two different data approximation methods are normally used in Gaussian white
noise settings. Here they are modified in order to deal with Poisson-noise. Both
yield approximations of data with different properties, and they are combined to
take advantage of this. The taut string method is very successful in producing ap-
proximations with a small number of local extremes and is therefore used in step
one to determine the positions of the peaks. However, the approximation is piece-
wise constant and thus cannot be used for the detection of the boundaries of the
peaks, which are necessary for a separate fit of the baseline. On the other hand
the weighted smoothing splines - used in step two - give an approximation to the
data which is twice continuously differentiable but tends to overfit the data. Hence
a restriction to smoothing splines would possibly cause a large number of spurious
peaks. Therefore, based on the peak locations from the taut string result the first

15



●●●●
●
●●●●●●●

●●●●●●●
●●
●
●●●

●●●●●●●
●
●●
●●
●
●●

●
●
●
●●●

●
●
●

●
●
●●

●●
●●

●●

●●

●●
●

●●
●

●
●
●●
●

●●

●

●

●

●
●●

●
●
●●
●
●●

●

●

●
●

●●●●

●
●●●●

●●●●●
●●●●●

●
●
●●
●
●●●●●●

●
●●●

●
●

●
●●

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
30

0
50

0

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
20

0
30

0
40

0

●●●●
●
●●●●●●●

●●●●●●●
●●
●
●●●

●●●●●●●
●
●●
●●
●
●●

●
●
●
●●●

●
●
●

●
●
●●

●●
●●

●●

●●

●●
●

●●
●

●
●
●●
●

●●

●

●

●

●
●●

●
●
●●
●
●●

●

●

●
●

●●●●

●
●●●●

●●●●●
●●●●●

●
●
●●
●
●●●●●●

●
●●●

●
●

●
●●

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
30

0
50

0

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
20

0
30

0
40

0

●●●●
●
●●●●●●●

●●●●●●●
●●
●
●●●

●●●●●●●
●
●●
●●
●
●●

●
●
●
●●●

●
●
●

●
●
●●

●●
●●

●●

●●

●●
●

●●
●

●
●
●●
●

●●

●

●

●

●
●●

●
●
●●
●
●●

●

●

●
●

●●●●

●
●●●●

●●●●●
●●●●●

●
●
●●
●
●●●●●●

●
●●●

●
●

●
●●

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
30

0
50

0

50.0 50.2 50.4 50.6 50.8 51.0 51.2

0
10

0
20

0
30

0
40

0

Figure 8: Three different approximations with two kernels to the same data. The
resulting curves (left column) are very similar, but the seperated peaks are very
different (right column)

derivative of the fitted spline is used in step three to determine baseline and peak
regions of the data set. For this purpose a threshold is needed which possibly would
have to be varied in a different setting. The choice might also depend on additional
knowledge about the data. In step four of the procedure weighted smoothing splines
are used to estimate the baseline which is necessary to determine the power of the
peaks.
The last step of the procedure - decomposition of the peaks - requires the solution of
a nonlinear least-squares problem. It is in the nature of this problem that multiple
solutions may exist, especially when fitting two or more kernels. Figure 8 shows such
a problematic case: No adequate approximation with one kernel is found, but there
exist different combinations of two kernels which give an adequate approximation to
the data. The method picks just one of them, possibly different ones in different runs.
This could in part be remedied by proceeding as follows: After an approximation
that satiesfies (17) is found, try again to find a solution with the same number
of kernels several times. This will provide some idea of the variability of possible
solutions for this particular segment of the data. In some cases these will be very
similar, but they might also differ strongly. The experimenter may then either
choose the solution that is the most meaningful, based on partial prior knowledge
about possible components of the material under consideration or on the results
for the other peak intervals, or decide that no physically meaningful, unambigous
interpretation of this part of the data is possible.
This makes the fifth part of the procedure somewhat less automatic than the others,
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as the judgement of the experimenter is still required to select one of the explanations
offered by the procedure. However, this is done based on the output of the procedure,
and no choices or interactions of the experimenter are required while it is running.
Without utilizing prior knowledge about possible crystal structures of the material,
no automatic procedure can fully avoid these problems, since the data by itself may
not contain enough information to decide between several possible explanations.
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