Poniatowski, Wladyslaw; Weißbach, Rafael

Working Paper

Strong consistency for delta sequence ratios

Provided in Cooperation with:
Collaborative Research Center ‘Reduction of Complexity in Multivariate Data Structures’ (SFB 475), University of Dortmund

Suggested Citation: Poniatowski, Wladyslaw; Weißbach, Rafael (2008) : Strong consistency for delta sequence ratios, Technical Report, No. 2008,20, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
http://hdl.handle.net/10419/36615

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Strong Consistency for Delta Sequence Ratios

Władysław Poniatowski · Rafael Weißbach

Abstract Almost sure convergence for ratios of delta functions establishes global and local strong consistency for a variety of estimates and data generations. For instance, the empirical probability function from independent identically distributed random vectors, the empirical distribution for univariate independent identically distributed observations, and the kernel hazard rate estimate for right-censored and left-truncated data are covered. The convergence rates derive from the Bennett-Hoeffding inequality.

Keywords kernel smoothing · hazard rate · left-truncation · right-censoring · empirical process

PACS 02.50.Ey

Mathematics Subject Classification (2000) 62G05 · 62G20 · 62N02 · 60G57 · 60G50

1 Introduction

The analysis of continuous univariate observations is frequent in statistical work. Without parametric assumptions, the estimation of the cumulative distribution function with the empirical distribution function is common practice. Consistency may be established by normalizing the empirical process (see e.g. [Shorack and Wellner (1986)]).

If smoothness of the distribution is assumed, further insight can be gained from estimating the density. [Parzen (1962)] introduced the method of kernel estimation, i.e. the convolution of the empirical distribution function with a density centered at the origin, named kernel. Consistency proofs were given for the kernel density estimation with fixed bandwidth.
e.g. by [Parzen(1962)], [Silverman(1978)] and [Stute(1982a)]. A large field of application for distribution estimation was found in connection with survival analysis where the cumulative hazard function distribution is estimated by the method of [Aalen(1978)]. In this context right-censoring is a major concern. The design is typically reflected by analyzing the bivariate, although partly unobservable vector of survival times and censoring times. In connection with survival studies the hazard rate is superior to the density because of its interpretation as ‘instantaneous risk of failure’. Consistency proofs for the hazard rate are given in [Schäfer(1986)]. Combining the estimates, [Weiβbach(2006)] follows a generalized formulation allowing for density, the hazard function and various data designs, including right-censoring. Most of the above work considers the univariate sequence of observations, censored or not, and accounts for the censoring indicator. The aim of this paper is to explore the idea of vector-valued (partly unobserved) random sequences in order to incorporate (i) further data defects such as left-truncation and (ii) further functions, such as the probability function. Whereas the empirical distribution function, the kernel density estimate and the kernel hazard rate are delta sequences [Walter and Bulum(1979)], we generalize to a ratio of delta sequences to accommodate for left-truncation. Using the exponential Bennett-Hoeffding inequality [Hoeffding(1963)], we establish global consistency and, for the smoothed functionals, local convergence rates.

2 Model and Notation

Let \((X_t)_{t \in [0, \infty)}, (Y_t)_{t \in [0, \infty)}\) be finite state space stochastic processes with combined random vector of observations \(S : \Omega \rightarrow \mathbb{R}^d\). For example, in the survival analysis with right-censored observations one may observe only \(X = \min(T, C)\) and \(\delta = 1_{\{T < C\}}\), where \(T\) is a lifetime censored by an independent random variable \(C\).

Suppose that the process \((X_t)_{t \in [0, \infty)}\) has a positive and differentiable functional characteristic \(\Psi(\cdot)\) and its first derivative \(\psi(\cdot)\) to be estimated. We assume that the estimate \(\Psi_n(\cdot)\) for \(\Psi(\cdot)\) is present, where \(\Psi_n(\cdot)\) bases on the series \((S_i)_{i=1}^n\) of i.i.d. vectors of observations. A general approach to the estimation of the derivative \(\psi(\cdot)\) from \(\Psi_n(\cdot)\) is the well-known kernel estimator first proposed for the density function. In further investigations, the kernel density estimator has been extended, and the consistency of a general kernel estimator with variable bandwidth, for instance, was established in [Weiβbach(2006)].

We assume the function \(\Psi : \mathbb{R} \rightarrow \mathbb{R}^d_+\) and the “smoother” \(\tilde{\Psi} : \mathbb{R} \rightarrow \mathbb{R}^d_+\) with first derivatives \(\psi(\cdot), \tilde{\psi}(\cdot)\) and estimates \(\Psi_n(\cdot), \tilde{\Psi}_n(\cdot)\) respectively to be Lipschitz continuous, strictly monotonic increasing and bounded on \([A, B]\).

Moreover, we assume the kernel function \(K(\cdot)\) to be bounded and \(\Psi_n(\cdot)\) to be right continuous and monotonic increasing on \([A, B]\) with \(0 < D < \infty\), so that

\[
P \left\{ \limsup_{n \to \infty} \sup_{J \subseteq [A, B], \Psi(J) \leq p_n} \left\| \frac{\psi(J) - \Psi_n(J)}{\sqrt{\log(n)p_n/n}} \right\| = D \right\} = 1
\]

where \(p_n > 0, p_n \to 0\) and \((np_n)/\log(n) \to \infty\), i.e. the local rate of \(O(\sqrt{\log(n)p_n/n})\) for the measure \(\Psi_n(J)\) is required. The theoretical and empirical measures of the interval \(J := [a, b] \subseteq [A, B]\) are defined as \(\Psi(J) := \int_J \psi(x) dx\) and \((\tilde{\Psi}_n(J) := \tilde{\Psi}_n(b) - \tilde{\Psi}_n(a))\), respectively.

The same assumptions and definitions are valid - with a \(D\) - for \(\Psi(\cdot)\).

The kernel estimator for \(\psi(x)\) with variable bandwidth

\[
\psi_n(x) := \int_{[a, b]} \frac{1}{R_n(t)} K \left(\frac{x - t}{R_n(t)} \right) d\tilde{\Psi}_n(t)
\]

(1)
is uniformly consistent on support \([A,B]\) with rate of \(O\left(\log(n)/(np_n)\right)^{1/2} + p_n\). Here, the general bandwidth bases on the “smoother”

\[
R_n(x) := \inf \left\{ r > 0 : \left| \Psi_n \left(x - \frac{r}{2} \right) - \Psi_n \left(x + \frac{r}{2} \right) \right| \geq p_n \right\}.
\]

and incorporates e.g. fixed bandwidth or nearest neighbor bandwidth [Weiβbach(2006)].

The kernel estimator (1) depends only on the estimate \(\Psi_n(\cdot)\) and not directly upon the observations \((S_i)_{i=1,\ldots,n}\). Hence, of interest is to construct a general estimate of \(\Psi(\cdot)\) and \(\Psi(\cdot)\) with local rate of \(O\left(\sqrt{\log(n)}/p_n/n\right)\) from the present observations. The next goal is to obtain an estimator for \(\psi(\cdot)\) by kernel smoothing.

3 General locally consistent estimator

Some estimates with a local rate of \(O\left(\sqrt{\log(n)}/p_n/n\right)\) have already been described in the literature. The empirical distribution function, the Kaplan-Meier estimator and the Nelson-Aalen estimator attain this rate of convergence (see [Stute(1982b), Schäfer(1986)]). Generalizing these cases allows new local consistent estimates for other stochastic processes or other characteristics \(\Psi(\cdot)\) and \(\psi(\cdot)\).

Let \((S_i)_{i=1,\ldots,n}\) be a series of independent identically distributed random vectors \(S_i : \Omega \rightarrow \mathbb{R}^d\). We assume the function \(G : \mathbb{R} \rightarrow \mathbb{R}^+\) to be continuous and the function \(G_n : \mathbb{R} \times (\mathbb{R}^d)^n \rightarrow \mathbb{R}_+\), \((s_1,\ldots,s_n) \mapsto G_n(x)(s_1,\ldots,s_n)\) to be symmetric for each fixed \(x \in \mathbb{R}\) and \(s_1,\ldots,s_n \in \mathbb{R}^d\). Further, we use the simplified notation \(G_n(x,\omega)\) for \(G_n(x)(S_1(\omega),\ldots,S_n(\omega))\).

Additionally, we define the mapping \(\Delta : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^+_\times (x,s) \mapsto \Delta^x(s)\), with simplified notation \(\Delta^x(s)\) for \(\Delta^x(S_i(\omega))\). The estimate for \(\Psi(\cdot)\) can be constructed as follows:

\[
\Psi_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{S_i^1(x) \leq x\}} \frac{\Delta^x}{G_n(S_i^1)},
\]

(2) where \(S_i^1\) is the first element of the vector \(S_i\).

The local consistency of the estimate (2) needs some assumptions on the function to estimate, on the observed random variables and on the rate of \(G_n(\cdot)\) to \(G(\cdot)\).

1. We assume the interval \([A,B]\) with \(A \in \mathbb{R}, B \in \mathbb{R}\) and \(A < B\).
2. We assume the function \(\Psi : \mathbb{R} \rightarrow \mathbb{R}^+\) to be continuous, positive and strictly monotonic increasing on \([A,B]\).
3. We assume \(0 \leq \Delta^x \leq \Delta_{\text{max}} < \infty\) for each \(x \in [A,B]\).
4. Let a constant \(M := \sup_{x \in [A,B]} |G(x)|^{-1} < \infty\) exist, we assume then \(\left| \mathbf{1}_{\{x \leq a\}} \Delta^x - \mathbf{1}_{\{x \leq b\}} \Delta^x \right| |G(x)|^{-1} < 2\Delta_{\text{max}} M\) for \(i = 1,\ldots,n, a,b \in [A,B], x \in \mathbb{R}\).
5. We assume also \(\left| \mathbf{1}_{\{x \leq a\}} \Delta^x - \mathbf{1}_{\{x \leq b\}} \Delta^x \right| |G(x) - G_n(x)| = 0\) for all \(x \not\in [a,b] \subseteq [A,B]\).
6. Furthermore, we assume \(E\left(\frac{1_{\{x \leq a\}} \Delta^x}{G_n(s_i^1)} \right) = \Psi(x)\) for each fixed \(x \in [A,B]\)
7. We assume \(G(x)\) and \(G_n(x)\) a constant \(0 \leq D \leq D_G < \infty\) to exist, so that \(P\left(\limsup_{n \to \infty} \sup_{x \in [A,B]} \frac{|G(x) - G_n(x)|}{\sqrt{\log(n)/n}} = D \right) = 1\)
8. \(J\) is an interval with \(J := [a,b] \subseteq [A,B]\) and \(a \leq b\).
9. For the series \((p_n)\) we assume \(p_n > 0, p_n \to 0\) and \(np_n/\log(n) \to \infty\).
Theorem 1 Under conditions (L1)-(L9), there exists a constant

\[0 \leq D \leq 2(\sqrt{2} - (2\Delta_{max} M + \Psi(B)) + D_G M) \]

so that

\[P \left\{ \lim_{n \to \infty} \sup_{J \subseteq [A,B]} \frac{\left| \Psi(J) - \Psi_n(J) \right|}{\sqrt{\log(n)p_n/n}} = D \right\} = 1. \]

In order to prove Theorem 1 we specify the help function

\[\Psi_n^*(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{S_i \leq x\}} \cdot \frac{\Gamma_x i}{G(S_i^j)} \]

and the help measure

\[\Psi_n^*(J) := \Psi_n^*(b) - \Psi_n^*(a). \]

The aim is to split the difference \(|\Psi_n(J) - \Psi(J)|\) in two parts using the help measure and to show the bounds almost sure for each term separately. Section A.3 is the detailed proof of Theorem 1.

4 General globally consistent estimator

To complete the construction of the general estimator (2) we need a \(\mathcal{O}(\sqrt{\log(n)/n})\) consistent estimator for the function \(G(x)\). In fact, estimates with this rate of convergence are also known. The rate of \(\mathcal{O}(\sqrt{\log(n)/n})\) has been established for the empirical distribution function by [Földes and Rejtő(1981)].

Let \((S_i)_{i=1}^{n}\) be the series of i.i.d. random vectors from Section 3. We define the mapping \(H: \mathbb{R}^d \to \mathcal{P}(\mathbb{R})\) with simplified notation \(H_i(o) = H(S_i(o))\). A possible construction of \(G_n(x)\) can be derived from the generalization of the empirical distribution function as follows:

\[G_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{x \in H_i(o)\}} \cdot \Gamma_i x, \quad (3) \]

where the definition of \(\Gamma_i x\) is identical to \(\Delta_i x\) from Section 3.

Similar to the local consistent estimate (2), the global consistency of (3) needs some assumptions on the function to estimate and on the observed random variables.

(G1) We assume the interval \([A, B]\) with \(A \in \mathbb{R}, B \in \mathbb{R}\) and \(A < B\).

(G2) We assume \(0 \leq \Gamma_i x \leq \Gamma_{max} < \infty\) for each \(x \in [A, B]\).

(G3) We assume the function \(G: \mathbb{R} \to \mathbb{R}^+\) to be nonnegative with \(G(x) \leq G_{max} < \infty\) for each \(x \in [A, B]\).

(G4) Furthermore, we assume \(E(\mathbf{1}_{\{x \in H_i(o)\}} \cdot \Gamma_i x) = G(x)\) for each fixed \(x \in [A, B]\).

Theorem 2 Under the conditions (G1)-(G4), there exists a constant

\[0 \leq D \leq \sqrt{2G_{max} \cdot (\Gamma_{max} + G_{max})} \]

so that

\[P \left\{ \lim_{n \to \infty} \sup_{x \in [A,B]} \frac{|G(x) - G_n(x)|}{\sqrt{\log(n)/n}} = D \right\} = 1. \]
The proof of Theorem 2 is similar to that of Theorem 1 and is presented in Section A.4 in more detail.

5 Applications

Despite the simplicity of the general estimators (2) and (3), these can be applied on some known stochastic processes. The advantage here is the known rate of convergence. In this paper we show the rate of convergence for the well-known empirical distribution function, the kernel density estimator and the hazard rate estimator for left-truncated and right-censored data.

5.1 Convergence of empirical time-dependent probability functions

In this section we present the general approach to estimate time-dependent probability functions. The results of this section will be used in the further sections to simplify the proofs.

Let \((S_i)_{i=1,...,n} \) be the series of i.i.d. vectors \(S : \Omega \rightarrow \mathbb{R}^d \) from Section 3, where \(S_i^d \in \{s_1,...,s_k \in \mathbb{R} \} \) for \(i = 1,...,n \) is assumed. We define also a random set \(H_i \) like in Section 4.

We assume \(G(x) := P(x \in H_i, S_i^d = S_C) \leq 1 =: G_{\text{max}} \) to be a nonnegative function on \([A,B] \) and \(G_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(x \in H_i, S_i^d = S_C)} \) to be an estimate for \(G(x) \), where \(S_C \in \{s_1,...,s_k \in \mathbb{R} \} \) is a constant. Then a constant \(D \leq 2 \) exists, so that

\[
P \left\{ \limsup_{n \to \infty} \frac{\sup_{x \in [A,B]} |G(x) - G_n(x)|}{\sqrt{\log(n)/n}} = D \right\} = 1. \tag{4}
\]

To prove this convergence we define the random variables \(\Gamma_i^x = 1_{(S_i^d = S_C)} \leq 1 \) := \(\Gamma_{\text{max}} \) for each fixed \(x \in \mathbb{R} \). We get then the following expectation for each fixed \(x \in [A,B] \):

\[
E(1_{(x \in H_i)} \cdot \Gamma_i^x) = E(1_{(x \in H_i)} \cdot 1_{(S_i^d = S_C)}) = E(1_{(x \in H_i, S_i^d = S_C)}) = P(x \in H_i, S_i^d = S_C) = G(x)
\]

The assumptions (G1)-(G4) are fulfilled and the convergence follows from Theorem 2.

5.2 Convergence of empirical probability distribution and kernel density estimator

Let \(S_1,...,S_n \) be univariate i.i.d. random variables with a strictly positive and Lipschitz continuous distribution \(F(x) \) and density \(f(x) \) functions on \([A,B] \). First, we examine the rate of convergence of the empirical distribution function \(F_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(S_i \leq x)} \).

Theorem 3 Let \((S_i \in \mathbb{R})_{i=1,...,n} \) be a series of i.i.d. random variables with a distribution function \(F(x) := P(S_i \leq x) \) on \([A,B] \).

Then a constant \(D \leq 2 \) exists, so that

\[
P \left\{ \limsup_{n \to \infty} \frac{\sup_{x \in [A,B]} |F(x) - F_n(x)|}{\sqrt{\log(n)/n}} = D \right\} = 1
\]
Proof We define i.i.d. random vectors \((S_i \in \mathbb{R}, S_C)_{i=1,...,n}\), where \(S_C < \infty\) is a constant. We define also the mapping \(H(x_1, x_2) := \{y : x_1 \leq y\}\) and random sets \(H_i = \{y \in \mathbb{R} : S_i \leq y\}\), \(i = 1,\ldots,n\). Similar to Section 5.1 we define a time-dependent probability function \(G(x) := P(x \in H_i, S_C = S_C)\) and its estimate \(G_n(x) := \frac{1}{n} \sum_{t=1}^{n} 1_{x \in H_i, S_C = S_C}\).

The convergence of \(F_n(x)\) results from equalities \(F(x) = G(x)\) and \(F_n(x) = G_n(x)\) and the convergence formulation (4).

From the general kernel estimator (1) we obtain now the following density kernel estimator:

\[
f_n(x) := \frac{1}{n} \sum_{i=1}^{n} K \left(\frac{x - S_i}{R_n(S_i)} \right) 1_{\{S_i \leq x\}}, \tag{5}
\]

where the “smoother” is the same distribution function \(F(x)\).

The convergence of the estimate (5) needs additionally to assume the Lipschitz continuity of \(F(\cdot)\) and \(f(\cdot)\) on \([A, B]\). We define now the measures \(F(J) := \int_{J} f(x)dx = F(b) - F(a)\) and \(E_n(J) := E_n(b) - E_n(a)\) for an interval \(J := [a, b] \subseteq [A, B]\). As we know, the local convergence of \(F_n(x)\), i.e. the convergence of the empirical measure \(F_n(J)\), must be proven to show the convergence of \(f_n(x)\).

Theorem 4 Let \((S_i \in \mathbb{R})_{i=1,...,n}\) be a series of i.i.d. random variables with Lipschitz continuous and strictly monotonic increasing on \([A, B]\) distribution function \(F(x) := P(S_i \leq x)\) and the series \((p_n)\) fulfills the assumption (L9).

Then a constant \(D \leq 2\sqrt{6}\) exists, so that

\[
P \left(\limsup_{n \to \infty} \sup_{x \in [A, B]} \frac{|F(J) - F_n(J)|}{\sqrt{\log(n)p_n/n}} = D \right) = 1 \tag{6}
\]

Proof We use the following assumptions to prove Theorem 4:

- We assume \(\Delta_i^a, i = 1,\ldots,n\) to be a constant \(\Delta_i^a = \Delta_{\text{max}} := 1\) for each fixed \(x \in [A, B]\).
- We define \(\Psi(x) := P(S_i \leq x) = F(x)\).
- The functions \(G(x)\) and \(G_n(x)\) will be also assumed to be constant: \(G(x) = M := 1\) and \(G_n(x) := 1\).
- Moreover, we define a constant \(D_G := 0\).

Our goal now is to show the assumptions (L1)-(L9).

From Section A.1 follows \(|G(x) - G_n(x)| = 0 \leq C_G \sqrt{\log(n)/n}\) for all \(n > 0, x \in [A, B]\) and \(C_G > D_G\), so that the assumptions (L5) and (L7) are fulfilled.

With constant \(\Delta_i^a\) we get the assumption (L4) for all \(a, b \in [A, B], x \in \mathbb{R}\) as follows:

\[
|1_{\{S_i \leq a\}} \Delta_i^a - 1_{\{S_i \leq b\}} \Delta_i^b||G(x)|^{-1} = 1_{\{a \leq x \leq b\}} \Delta_{\text{max}} M < 2 \Delta_{\text{max}} M,
\]

where \(M = |G(x)|^{-1} = 1\).

The assumption (L6) can be obtained for each fixed \(x \in [A, B]\) trivially as follows:

\[
E \left(1_{\{S_i \leq a\}} \Delta_i^a \right) = E \left(1_{\{S_i \leq a\}} \right) = \Psi(x).
\]

The assumptions (L1)-(L9) are fulfilled and the convergence (6) follows from Theorem 1.

As we know from Section 2, the rate of \(O([\log(n)/p_n]^{1/2} + p_n)\) on \([A, B]\) results for the density kernel estimator (5) from Theorem 4.
5.3 Convergence of hazard rate estimate from left-truncated and right-censored data

As a more complicated case we examine now a survival process with left-truncated and right-censored observations. We assume \((T_i \in \mathbb{R}_+^0)_{i \in \mathbb{N}}, (C_i \in \mathbb{R}_+^0)_{i \in \mathbb{N}} \) and \((L_i \in \mathbb{R})_{i \in \mathbb{N}} \) to be independent series of i.i.d. random variables with Lipschitz continuous distributions \(F_T(x) \), \(F_C(x) \) and \(F_L(x) \) respectively, where \(T_i \) are the lifetimes and pairs \([L_i, C_i]\) represent bounds of observations under condition \(L_i < C_i \) for \(i \in \mathbb{N} \). Because of the variable left bound of observation \(L_i \), only objects with \(L_i < T_i \) can be observed.

As we can see in Fig. 1, the right bound of observation \(C_i \) can cut the lifetime on the right side, so that \(T_i \) is not always to observe. Hence, we define the observable censoring random variable \(X_i = \min(T_i, C_i) \) and censoring index \(\delta_i = 1_{\{T_i < C_i\}} \). Thus, one can observe only vectors \((L_i, X_i, \delta_i)\) with \(L_i < X_i \) in a survival process with left-truncated and right-censored data.

A survival process can be described with a bent for a change of state (death or insolvency) or in the hazard rate [Andersen et al(1993)Andersen, Borgan, Gill, and Keiding] as follows:

\[
\lambda(t) dt = P(t \leq T < t + dt \mid t \leq T) = \frac{dF_T(t)}{1 - F_T(t)}.
\]

Another way to describe a survival process is to use the cumulative hazard rate:

\[
A(t) := \int_0^t \lambda(s)ds = \int_0^t \frac{dF_T(s)}{1 - F_T(s)} = -\log[1 - F_T(t)]
\]

The advantage of the cumulative hazard rate is expressed in the possibility of its estimation by the left-truncated and right-censored observations [Cao et al(2005)Cao, Janssen, and Veraverbeke] as follows:

\[
A_n(t) := \sum_{i=1}^n \frac{1_{\{X_i \leq t, \delta_i = 1_{L_i < X_i}\}}}{nG_n(X_i)} = \sum_{i:X_i \leq t} \delta_i \sum_{j:L_j \leq X_{(j)} \leq X_i} \right]
\]
where $G_n(t) = n^{-1} \sum_{i=1}^{n} I_{[t_i \leq t \leq X_i]}$ is the consistent estimate of the probability function $G(x) = P(L_i \leq X_i | L_i \leq X_i)$.

Theorem 5 Let $(L_i, X_i)_{i=1,...,n}$ with $L_i \leq X_i$ be i.i.d. random vectors of observations.

Then a constant $D \leq 2$ exists, so that

$$\mathbb{P}\left\{ \limsup_{n \to \infty} \frac{\sup_{t \in [A,B]} |G(t) - G_n(t)|}{\sqrt{\log(n)/n}} = D \right\} = 1.$$ (8)

Proof The trick of the proof is to define the random sets $H_i := \{ y \in \mathbb{R} : L_i \leq y \leq X_i \} \cap \{ L_i \leq X_i \}$, constants Z_i and a constant Z_C, so that $Z_i = Z_C$ for $i = 1, \ldots, n$. We can express then the functions $G(t)$ and $G_n(t)$ as follows:

$$G(t) = P(L_i \leq t \leq X_i | L_i \leq X_i)$$

$$= P(L_i \leq t \leq X_i, Z_i = Z_C | L_i \leq X_i) = P(t \in H_i, Z_i = Z_C)$$

and

$$G_n(t) = n^{-1} \sum_{i=1}^{n} I_{[L_i \leq t \leq X_i]}$$

$$= \sum_{i=1}^{n} I_{[L_i \leq t \leq X_i]} \mathbb{P}(Z_i = Z_C | L_i \leq X_i) = n^{-1} \sum_{i=1}^{n} I_{[t \in H_i, Z_i = Z_C]}.$$

The convergence (8) follows from Section 5.1. \qed

Unfortunately, some calculations need also an estimate of the hazard rate. Hence, the goal is here to estimate the hazard function from the equation (7). As a possible solution we apply the kernel estimator (1) with “smoother” $\Lambda(t)$ for the hazard rate as follows:

$$\hat{\lambda}_n(t) := \sum_{i:X_i(t) \leq t} \frac{1}{R_n(X_i(t))} K \left(\frac{t - X_i(t)}{R_n(X_i(t))} \right) \delta_{1 \{ t \geq L_i \leq X_i \}}.$$ (9)

We define now an interval $[A, B]$ so that $F_L(A) > 0$ and $F_X(B) < 1$ and assume $\Lambda(t)$ and $\hat{\lambda}(t)$ to be strictly positive and Lipschitz continuous on $[A, B]$. The convergence of $\hat{\lambda}_n(t)$ can be easily shown, if the theoretical measure $A_0(J) := A_0(b) - A_0(a)$ converges to $\Lambda(J) := \int_{J} \lambda(t) dt$ with local rate of $O(\sqrt{\log(n)/n})$, where $J := [a, b] \in [A, B]$.

Theorem 6 Let $(L_i, X_i, \delta_i)_{i=1,...,n}$ with $L_i \leq X_i$ be i.i.d. random vectors of observations and the series (p_n) fulfills the assumption (L9).

Then a constant $D \leq 2(\sqrt{2} \cdot (M + \Lambda(B)) + 2M)$ exists, so that

$$\mathbb{P}\left\{ \limsup_{n \to \infty} \frac{\sup_{t \in [A,B]} |A(J) - A_n(J)|}{\sqrt{\log(n)/n}} = D \right\} = 1.$$ (10)

where $M := \sup_{t \in [A,B]} |G(t)|^{-1}$.

Proof First, we check the assumptions (L1)-(L9) for the local convergence. The random variable Δ_i can be defined as a constant $\Delta_i = 1_{|\delta_i - 1|L_i \leq X_i} \leq 1 =: \Delta_{\text{max}}$. Additionally, we define $\Psi(x):= \Lambda(x)$ and $D_G := 2$.

From Theorem 5 and Section A.1 we know that $|G(x) - \hat{G}_n(x)| \leq C\sqrt{\log(n)}/n$ a.s. for large $n, x \in \mathbb{R}$ and $C > D_G$.

We examine now the function $G(x)$ and write it as

$$G(x) = \alpha^{-1}F^L(x)(1 - F^T(x))(1 - F^C(x))$$
$$= \int_{-\infty}^{x} \alpha^{-1}(1 - F^T(x))(1 - F^C(x))f^L(x)ds,$$

where $\alpha = P(L_i \leq X_i)$.

Since the distribution functions $F^T(x), F^C(x)$ and $F^L(x)$ are Lipschitz continuous the functions $G(x)$ and $\Lambda(x)$ are also Lipschitz continuous for all $x \in [A, B]$. The assumptions (L4) and (L5) are fulfilled because of the constant Δ_i.

Now we prove the assumption (L6) as follows:

$$E\left(\frac{1_{\{x_i \leq L_i \leq X_i\}} \Delta_i}{G(X_i)}\right) = E\left(\frac{1_{\{x_i \leq L_i \leq X_i\}}}{G(X_i)}\right)$$
$$= \sum_{\delta_i = 0}^{1} \int_{-\infty}^{\infty} \frac{1_{\{x_i \leq L_i \leq X_i\}}}{G(x_1)}dF^X,\delta(x_1, \delta_i) = \int_{-\infty}^{x} \frac{dF^X,\delta(x_1, 1)}{G(x_1)},$$

where $F^X,\delta(x, y)$ is the distribution function of random vectors (X_i, δ_i) under condition $L_i \leq X_i, i = 1, \ldots, n$.

For the intervals $J \subseteq [A, B]$ we can get the derivative $dF^X,\delta(x_1, 1)$ from the probability $P(X_i \in J, \delta_i = 1 | L_i \leq X_i)$ as follows:

$$P(X_i \in J, \delta_i = 1 | L_i \leq X_i) = \alpha^{-1}P(X_i \in J, \delta_i = 1, L_i \leq X_i)$$
$$= \alpha^{-1}[P(T_i \in J, T_i \leq C_i, L_i \leq T_i, T_i \leq C_i)$$
$$+ P(C_i \in J, T_i \leq C_i, L_i \leq C_i, C_i < T_i)] = \alpha^{-1}P(T_i \in J, L_i \leq T_i \leq C_i).$$

The probabilities $P(X_i \in J, \delta_i = 1 | L_i \leq X_i)$ and $P(T_i \in J, L_i \leq T_i \leq C_i)$ can be written as

$$P(X_i \in J, \delta_i = 1 | L_i \leq X_i) = E(1_{\{X_i \in J, \delta_i = 1, L_i \leq X_i\}})$$
$$= \sum_{\delta_i = 0}^{1} \int_{-\infty}^{\infty} 1_{\{x_i \in J, \delta_i = 1\}}dF^X,\delta(x_1, \delta_i) = \int_{x_1 \in J} dF^X,\delta(x_1, 1)$$

and

$$\alpha^{-1}P(T_i \in J, L_i \leq T_i \leq C_i) = \alpha^{-1}E(1_{\{T_i \in J, L_i \leq T_i \leq C_i\}})$$
$$= \int_{t \in \mathbb{R}} \int_{\delta_i \leq \delta \leq 1} \alpha^{-1}1_{\{t \leq \delta\}}1_{\{t \leq \delta\}}dF^T(t)dF^C(c)dF^L(t).$$

$$= \int_{J \cap \mathbb{R}} \alpha^{-1}F^L(t)(1 - F^C(t))dF^T(t).$$
The derivative $dF^X, \delta(x_1, 1)$ follows then for the one-element intervals $J = [j, j]$, $j \in [A, B]$ from the equations (12), (13) and (14):

$$
\int_{x_1 \in J} dF^X, \delta(x_1, 1) = \int_{t \in J} \alpha^{-1} F^L(t)(1 - F^C(t))dF^T(t)
$$

$$
= dF^X, \delta(j, 1) = \alpha^{-1} F^L(j)(1 - F^C(j))dF^T(j).
$$

We substitute (15) in (11) and get the assumption (L6):

$$
E \left(\frac{1_{\{X_i \leq \delta \leq X_{i+1}\}} \cdot \Delta^I}{G(X_i)} \right) = \int_{-\infty}^x \frac{dF^X, \delta(x_1, 1)}{G(x_1)}
$$

$$
= \int_{-\infty}^x \frac{\alpha^{-1} F^L(x_1)(1 - F^C(x_1))dF^T(x_1)}{G(x_1)}
$$

$$
= \int_{-\infty}^x \frac{\alpha^{-1} F^L(x_1)(1 - F^C(x_1))dF^T(x_1)}{\alpha^{-1} F^L(x_1)(1 - F^C(x_1))(1 - F^T(x_1))} = \int_{-\infty}^x \frac{dF^T(x_1)}{1 - F^T(x_1)} = \Lambda(x) = \Psi(x)
$$

The assumptions (L1)-(L9) are fulfilled and the convergence (10) follows from Theorem 1. □

One can see that the observations $L_i \leq 0$, $i = 1, \ldots, n$ are present in the right-censored case. The Nelson-Aalen estimator is then the special case of the presented here estimate (7).

As known from Section 2, the rate of convergence of the estimate (9) follows from Theorem 6 and is $O((\log(n)/(np_0)^{1/2} + p_0)$ on $[A, B]$.

Acknowledgements The work of the authors was supported by the Deutsche Forschungsgemeinschaft (SFB 475, ‘Reduction of complexity in multivariate data structures’).

References

A Proofs

A.1 Limes superior formulation of the convergence

As a result of Hewitt and Savage [Hewitt and Savage(1955)], it is equivalent to state there exists a constant $D \leq 1$ s.t.

$$P \left(\limsup_{n \to \infty} \frac{S_n(Y_1(\omega), \ldots, Y_n(\omega))}{a_n} \right) = 1.$$

As for all $a > 1$, it holds that

$$P \left(\omega \mid \exists N \in \mathbb{N} \forall n > N: S_n(Y_1(\omega), \ldots, Y_n(\omega)) \leq a \alpha_n \right) = 1.$$

With positive zero-sequence a_n, a sequence of i.i.d. random d-vectors $Y_i: \Omega \to (\mathbb{R})^d$ and a sequence of measurable symmetric mappings $S_n: \mathbb{R}^n \to \mathbb{R}^d_+.$

A.2 Distribution of the mean value

We assume T_1, \ldots, T_n to be independent bounded random variables with expectation 0 and dispersion σ^2, so that

$$E(T) = 0$$

$$\left| T_i \right| \leq b$$

$$\sigma^2 := \text{Var}(T_i)$$

for $i = 1, \ldots, n$.

From the two sided version of Theorem 3 from [Hoeffding(1963)] and the inequality $\log(1 + x) \geq 2x/(2 + x), x \geq 0$ results the following inequality for each $\varepsilon > 0$:

$$P(|T_i| \geq \varepsilon) \leq 2 \exp \left(-\frac{n \sigma^2}{2\sigma^2 + 2b \varepsilon} \right).$$

A.3 Local convergence

The proof of Theorem 1 follows in four steps.

First, we show the exponential bounds for the following distribution of the difference $|\Psi_n^p(J) - \Psi(J)|$:

$$P(|\Psi_n^p(J) - \Psi(J)| > \varepsilon) < 2 \exp \left(-\frac{n \varepsilon^2}{2(2\Lambda_{\text{min}}M + \Psi(B))(p + \varepsilon)} \right)$$

for all $p > 0, \varepsilon > 0, n \in \mathbb{N}_{>0}$ and each fixed $J \subseteq [A, B]$ with $\Psi(J) \leq p.$
Because of the definition (2) and the assumption (L3) is
\[
\Psi_n(J) - \Psi(J) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} - \frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} - \Psi(J) \right)
\]
the arithmetical mean of the \(n \) independent, bounded and like \(R_J \) distributed random variables for each fixed \(J \subseteq [A, B] \), where
\[
R_J := \frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} - \frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} - \Psi(J).
\]

The expectation, the dispersion and the bounds of \(R_J \) can be then calculated for fixed \(J \subseteq [A, B] \) with \(\Psi(J) \leq p \).

The expectation of \(R_J \) follows from the assumption (L6):
\[
E(R_J) = E \left(\frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} \right) - E \left(\frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} \right) - \Psi(b) + \Psi(a) = 0. \tag{18}
\]

From assumption (L4), we get the following bounds of \(|R_J| \) on \([A, B]\):
\[
|R_J| = \left| \frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} - \frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} - \Psi(J) \right| < 2\Delta_{\text{max}}M + \Psi(B) - \Psi(A) < 2\Delta_{\text{max}}M + \Psi(B) = g. \tag{19}
\]

The dispersion of \(R_J \) can be obtained from the expectation (18) and bounds (19) as follows:
\[
\sigma^2_J := \text{Var}(R_J) = E \left(\left(\frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} - \frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} - \Psi(J) \right)^2 \right) < 2\Delta_{\text{max}}M \cdot E \left(\frac{1_{[S_i \leq \phi]} \cdot \Delta^b_i}{G(S_i)} - \frac{1_{[S_i \leq \phi]} \cdot \Delta^e_i}{G(S_i)} \right)
\]
\[
= 2\Delta_{\text{max}}M \cdot \Psi(J) < g \cdot p. \tag{20}
\]

From the equations (17), (18), (19), (20) and the inequality from Section A.2 result the following right bounds:
\[
P(|\Psi_n(J) - \Psi(J)| > \varepsilon) < 2 \exp \left(\frac{-n\varepsilon^2}{2(\sigma^2_J + \Phi(\varepsilon))} \right) < 2 \exp \left(\frac{-n\varepsilon^2}{2\Phi(\varepsilon)} \right)
\]
for each fixed interval \(J \subseteq [A, B] \) with \(\Psi(J) \leq p \).

On the second step we show the inequality
\[
\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n(J) - \Psi(J)| \leq C \sqrt{\log(p_n)} p_n/n \tag{21}
\]
almost sure for a constant \(C > \sqrt{\frac{2\Delta_{\text{max}}M + \Psi(B)}{2\Delta_{\text{max}}M}} \) and large \(n \).

On the right side of the inequality (16) \(p \) and \(\varepsilon \) could be substituted with \(p_n \) and \(\varepsilon_n := C \sqrt{\log(p_n)} p_n/n \).

\[
C > 0, n > 1 \text{ respectively as follows:}
\]
\[
< 2 \cdot \exp \left(-\log(n) \frac{C^2}{2g} \frac{p_n}{p_n + \varepsilon_n} \right) = 2n \cdot \frac{C^2}{2g} \frac{p_n}{p_n + \varepsilon_n} =: A_n.
\]

The series \((A_n) \) is then summable starting from some large \(n < \infty \) only for
\[
B_n := \frac{C^2}{2g} \frac{p_n}{p_n + \varepsilon_n} > 1.
\]
From $\varepsilon_n/p_n = C/\sqrt{\log(n)/(np_n)}$ and the assumption (L9) follow $\varepsilon_n/p_n \to 0$ and $p_n/(p_n + \varepsilon_n) \to 1$ for large

n. The condition $\beta_n > 1$ can then be achieved with $C/2 > 1$ or $C > \sqrt{2\gamma}$.

Consequently, the series (A_n) is summable from some large $n < \infty$ and only for $C \geq \sqrt{2\gamma}$. For each $J \subseteq [A, B]$ with $\Psi(J) \leq p_n$ we get then

$$\exists C > \sqrt{2\gamma} \exists m < \infty, m \in \mathbb{N} : \sum_{n=m}^{\infty} P(|\Psi_n^* (J) - \Psi(J)| > \varepsilon_n) < \sum_{n=m}^{\infty} A_n < \infty$$

and

$$\forall m < \infty, m \in \mathbb{N} : \sum_{n=m}^{\infty} P(|\Psi_n^* (J) - \Psi(J)| > \varepsilon_n) \leq m < \infty$$

Because of the summability of $P(|\Psi_n^* (J) - \Psi(J)| > \varepsilon_n)$, the following probability results from Borel-Cantelli lemma for $C > \sqrt{2\gamma}$:

$$P \left(\limsup_{n \to \infty} |\Psi_n^* (J) - \Psi(J)| > \varepsilon_n \right) = 0,$$

i.e $|\Psi_n^* (J) - \Psi(J)|$ doesn’t exceed ε_n for the most n. For large n and for all $J \subseteq [A, B]$ with $\Psi(J) \leq p_n$, we get almost surely

$$|\Psi_n^* (J) - \Psi(J)| \leq C\sqrt{\log(n)/p_n}/n$$

The same inequality is valid for the supremum of $|\Psi_n^* (J) - \Psi(J)|$ on $[A, B]$:

$$\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n^* (J) - \Psi(J)| \leq C\sqrt{\log(n)/p_n}/n$$

for $C > \sqrt{2\gamma}$ and large n almost surely.

On the third step we prove the following inequality on the basis of the previous results:

$$\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n^* (J) - \Psi_n (J)| \leq C \cdot p_n \sqrt{\log(n)/n}$$

almost sure for some $C > D_{D_2} \cdot M$ and large n.

From the assumption (L7) and the limes superior formulation from Section A.1 we get the following right bounds for $G(x) - G_n(x)$:

$$G(x) - G_n(x) \leq |G(x) - G_n(x)| \leq \sup_{x \in [A, B]} |G(x) - G_n(x)| \leq C_1 \cdot \sqrt{\log(n)/n}$$

almost sure for $C_1 > D_{D_2}$, large n and all $x \in [A, B]$. These bounds can be rewritten for $G_n(x)$ as follows:

$$G_n(x) \geq G(x) - C_1 \cdot \sqrt{\log(n)/n} \geq \inf_{t \in [A, B]} G(t) - C_1 \cdot \sqrt{\log(n)/n}.$$

From the assumption (L7) follows $\inf_{t \in [A, B]} G(t) > 0$. Because of $\sqrt{\log(n)/n} \to 0$, the following inequalities are fulfilled for $x \in [A, B]$ and large n:

$$\inf_{t \in [A, B]} G(t) - C_1 \cdot \sqrt{\log(n)/n} > 0,$$

$$\frac{1}{G_n(x)} \leq \frac{1}{\inf_{t \in [A, B]} G(t) - C_1 \cdot \sqrt{\log(n)/n}}$$
and
\[
\frac{|G(x) - G_n(x)|}{G_n(x)} \leq \inf_{\tau \in [A, B]} \frac{C_2 \cdot \sqrt{\log(n)/n} - 1}{G(t) - C_1 \cdot \sqrt{\log(n)/n}}.
\]

The following bounds for \(\Psi_n^*(J) - \Psi(J) \) and \(\Psi_n^*(J) \) result from the equation (21) almost sure for \(J \subseteq [A, B] \) with \(\Psi(J) \leq p_n \), large \(n \) and \(C_2 > \sqrt{1/D_{\max} + \Psi(B)} \):
\[
\Psi_n^*(J) - \Psi(J) \leq \sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n^*(J) - \Psi(J)| \leq C_2 \sqrt{\log(n)/p_n/n}
\]
and consequently
\[
\Psi_n^*(J) \leq \Psi(J) + C_2 \sqrt{\log(n)/p_n/n} \leq p_n + C_2 \sqrt{\log(n)/p_n/n}.
\]

We obtain then the following equation from the assumption (L5) almost sure for each \(J \subseteq [A, B] \) with \(\Psi(J) \leq p_n \) and large \(n \):
\[
|\Psi_n(J) - \Psi_n^*(J)| \leq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{G_n(S_i)} \left| \frac{G_n(S_i)}{\Psi_n(S_i)} \right| \Delta_i - \left| \frac{G_n(S_i)}{\Psi_n(S_i)} \right| \Delta_i
\]
\[
\leq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{G_n(S_i)} \left| \frac{G_n(S_i)}{\Psi_n(S_i)} \right| \Delta_i - \left| \frac{G_n(S_i)}{\Psi_n(S_i)} \right| \Delta_i
\]
\[
\leq C_2 \sqrt{\log(n)/n} \cdot \Psi_n^*(J) \leq \inf_{r \in [A, B]} G(\phi_t) - C_1 \sqrt{\log(n)/n} \leq \sup_{r \in [A, B]} G(\phi_t) - C_1 \sqrt{\log(n)/n}.
\]

The transformation \(p_n + C_2 \sqrt{\log(n)/p_n/n} \leq p_n \) is evident, where the term \(C_2 \sqrt{\log(n)/p_n/n} \) can not be neglected for large \(n \) because of the assumption (L9). For large \(n \), we can also neglect the term \(\sqrt{\log(n)/n} \) in numerator. For all \(J \subseteq [A, B] \) with \(\Psi(J) \leq p_n \) and for large \(n \), we get then the following inequality almost sure:
\[
|\Psi_n(J) - \Psi_n^*(J)| \leq C_1 \sqrt{\log(n)/n} = C_1 \cdot \sqrt{\log(n)/n}.
\]

The following right bound results for some \(C > D_{\max} \cdot M \) and large \(n \) almost sure:
\[
\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n(J) - \Psi_n^*(J)| \leq C \cdot p_n \sqrt{\log(n)/n}.
\]

On the last step we examine the expression \(\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n(J) - \Psi(J)| \). This overall difference can be represented by the sum of the deviations of the theoretical and empirical measures \(\Psi(J) \) and \(\Psi_n(J) \) from the help measure \(\Psi_n^*(J) \) as follows:
\[
\sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n(J) - \Psi(J)|
\leq \sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n(J) - \Psi_n^*(J)| + \sup_{J \subseteq [A, B], \Psi(J) \leq p_n} |\Psi_n^*(J) - \Psi(J)|
\]

Because of the assumption (L9), \(p_n \sqrt{\log(n)/p_n/n} \) approaches zero, i.e. \(p_n \sqrt{\log(n)/n} \leq \sqrt{\log(n)/p_n/n} \) is valid for large \(n \).

From the previously mentioned right bounds of \(|\Psi_n(J) - \Psi_n^*(J)| \) and \(|\Psi_n^*(J) - \Psi(J)| \) follows the existence of the constant
\[
C > \sqrt{2 \cdot (2\Delta_{\max} + \Psi(B)) + D_{\max} \cdot M},
\]
so that
\[
\sup_{x \in [A, B], \Psi(J) \leq p_n} |\Psi(J) - \Psi(J)| \leq C \left(\sqrt{\log(n) p_n / n} + p_n \sqrt{\log(n) / n} \right)
\]
\[
\leq 2C \sqrt{\log(n) p_n / n}
\]
is valid almost surely for large \(n\). Because of the symmetry of \(\Psi(J)\) the limes superior formulation of the convergence follows from Section A.1.

A.4 Global convergence

The proof of Theorem 3 follows in two steps.

First, we take a look at the difference \(|G_n(x) - G(x)|\) and show exponential bounds of its distribution:
\[
P(|G_n(x) - G(x)| > \varepsilon) < 2 \exp \left(\frac{-\varepsilon^2}{2 \text{Var}(E \cdot \Gamma^*)} \right)
\]
for \(\varepsilon \in \mathbb{R}, n \in \mathbb{N}_{>0}\) and each fixed \(x \in [A, B]\).

From the definition of the estimate (3) and the assumption (G2) follows the construction of the aforesaid deviation:
\[
G_n(x) - G(x) = \frac{1}{n} \sum_{i=1}^{n} (1_{i \in [H_i]} \cdot \Gamma^* - G(x))
\]
as the arithmetical mean of \(n\) independent, bounded and like \(R_i\) distributed random variables for each fixed \(x \in [A, B]\), where \(R_i := 1_{i \in [H_i]} \cdot \Gamma^* - G(x)\).

The expectation of \(R_i\) follows for fixed \(x \in [A, B]\) from the assumption (G4):
\[
E(R_i) = E(1_{i \in [H_i]} \cdot \Gamma^* - G(x))
\]
\[
= E(1_{i \in [H_i]} \cdot \Gamma^*) - G(x) = 0
\]
Further, the bounds of \(|R_i|\) on \([A, B]\) can be calculated as follows:
\[
|R_i| = |1_{i \in [H_i]} \cdot \Gamma^* - G(x)| < \Gamma_{\max} + \Gamma_{\max} =: \varepsilon.
\]
We get then the following bounds for the disperse of \(R_n\) on \([A, B]\):
\[
\sigma^2 := \text{Var}(R_n) = E \left[(1_{i \in [H_i]} \cdot \Gamma^* - G(x))^2 \right]
\]
\[
= E(1_{i \in [H_i]} \cdot (\Gamma^*)^2) - G(x)^2 \leq E(1_{i \in [H_i]} \cdot (\Gamma^*)^2)
\]
\[
= \Gamma_{\max} \cdot E(1_{i \in [H_i]} \cdot \Gamma^*) = \Gamma_{\max} \cdot G(x) < \varepsilon \cdot \Gamma_{\max}
\]
From the equations (23), (24), (25), (26) and the inequality from Section A.2 result the following right bounds:
\[
P(|G_n(x) - G(x)| > \varepsilon) < 2 \exp \left(\frac{-\varepsilon^2}{2 \text{Var}(E \cdot \Gamma^*)} \right)< 2 \exp \left(\frac{-\varepsilon^2}{2 \Gamma_{\max} \varepsilon} \right)
\]
for each fixed \(x \in [A, B]\).

On the second step we transform the right side of the inequality (22) by substituting \(\varepsilon := C' \sqrt{\Gamma_{\max} \cdot \log(n) / n}\), \(C' > 0, n > 1\) respectively as follows:
\[
= 2 \exp \left(-\log(n) \cdot \left(\frac{C^2}{2\varepsilon} \frac{\Gamma_{\max} \varepsilon}{\Gamma_{\max} + \varepsilon} \right) \right) = 2n \left(\frac{\varepsilon^2}{\Gamma_{\max}^2} \right) \leq A_n.
\]
where \(g = \Gamma_{\text{max}} + G_{\text{max}} \).

The summability of the series \((A_n)\) is evident starting from some large \(n \) only for

\[
\beta_n := \frac{(C')^2}{2g} \frac{G_{\text{max}}}{G_{\text{max}} + \varepsilon_n} > 1
\]

The condition \(\beta_n > 1 \) can be valid only for \((C')^2/2g > 1\) because of \(G_{\text{max}}/(G_{\text{max}} + \varepsilon_n) < 1 \) and \(G_{\text{max}}/(G_{\text{max}} + \varepsilon_n) \to 1 \).

Consequently, the series \((A_n)\) is summable starting from some large \(n < \infty \) and only for \(C' > \sqrt{2g} \). Similar to Section A.3 the following bounds for \(|G_n(x) - G(x)| \) and its supremum can be shown by the Borel-Cantelli lemma:

\[
\sup_{x \in [A,B]} |G_n(x) - G(x)| \leq C \sqrt{\log(n)/n}
\]

for \(C > \sqrt{2gG_{\text{max}}} \) and large \(n \) almost surely.

Because of symmetry of \(G_n(x) \), we obtain from Section A.1 the limes superior formulation of the convergence:

\[
P \left\{ \limsup_{n \to \infty} \sup_{x \in [A,B]} \frac{|G_n(x) - G(x)|}{\sqrt{\log(n)/n}} = D \right\} = 1
\]

where a constant \(0 \leq D \leq \sqrt{2G_{\text{max}}/(\Gamma_{\text{max}} + G_{\text{max}})} \) exists. \(\square \)