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Abstract

This paper proposes a new panel unit root test based on Simes’ [Biometrika 1986,
“An Improved Bonferroni Procedure for Multiple Tests of Significance”] classical
intersection test. The test is robust to general patterns of cross-sectional dependence
and yet straightforward to implement, only requiring p-values of time series unit root
tests of the series in the panel, and no resampling. Monte Carlo experiments show
good size and power properties relative to existing panel unit root tests. Unlike
previously suggested tests, the new test allows to identify the units in the panel for
which the alternative of stationarity can be said to hold. We provide two empirical
applications to panels of real gross domestic product (GDP) and real exchange rate
data.

Keywords: Multiple Testing, Panel Unit Root Test, Cross-Sectional Dependence

JEL classification: C12, C23

∗Research supported by DFG under Sonderforschungsbereich 475, Technische Universität Dortmund.
Vogelpothsweg 78, 44221 Dortmund, Germany. Tel. (+49) 0231-7553127, Fax (+49) 0231-7555284,
christoph.hanck@uni-dortmund.de.



1 Introduction

The problem of testing for unit roots in heterogeneous panels has attracted much attention

in recent years.1 So called ‘first generation’ tests [Maddala and Wu, 1999; Im, Pesaran,

and Shin, 2003; Levin, Lin, and Chu, 2002] rely on the assumption that the individual

time series in the panel are cross-sectionally independent. It is, however, now widely

recognized that this assumption is not met in typical macroeconometric panel data sets.

For instance, common global shocks induce cross-sectional dependence among the test

statistics [see, e.g., O’Connell, 1998].

The aim of ‘second generation’ panel unit root tests therefore is to provide reliable in-

ference in the presence of cross-sectional dependence. Phillips and Sul [2003], Moon and

Perron [2004], and Bai and Ng [2004] assume the dependence to be driven by (multiple)

factors in the error terms. Suitably ‘de-factoring’ the observations, e.g. by the principal

component method, asymptotically removes the common factors, then allowing for the

application of standard panel unit root tests. Breitung and Das [2005], in turn, propose

a feasible generalized least-squares approach that can be applied when T > n, where T

denotes the number of time series observations on each of the n series. Pesaran [2007]

adds the cross-section averages of lagged levels and of first-differences of the individual

series to Augmented Dickey-Fuller 1979 (ADF) regressions. Panel unit root tests can then

be based on the simple averages of the individual cross-sectionally augmented ADF statis-

tics. Chang [2004] uses a bootstrap approach to condition on the dependence structure

in the dataset. The approach most closely related to the one to be put forward here is

by Demetrescu, Hassler, and Tarcolea [2006], who draw on the meta-analytic literature

to derive their p-value combination tests.

In view of the additional complexities induced by the cross-sectional panel dimension,

many of these tests require non-trivial decisions by the user, which complicate implemen-

tation and often impact the test outcome. These concern, for instance, the choice of the

number of factors, of a joint lag length in pooled regressions, or of a suitable resampling

scheme in bootstrap tests. In addition, as pointed out in the review article of Breitung

1Banerjee [1999] provides an early review.
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and Pesaran [2008], available tests do not provide guidance as to the size of the fraction

or the identity of the cross section units that are stationary. Hence, it can be difficult to

properly interpret the rejection of a panel test.

Our goal therefore is to provide a new panel unit root test that alleviates these potential

shortcomings. The test is based on Simes’ [1986] classical intersection test of the ‘global’

null hypothesis H0 that all individual null hypotheses Hi,0, i = 1, . . . , n, are true. (Here,

that all n time series are unit root processes.) Simes’ [1986] test is widely applied in, among

many other areas, genetical micro-array experiments [e.g., Dudoit, Shaffer, and Boldrick,

2003]. See Hochberg and Tamhane [1987] for a classical reference. The test is robust to

general patterns of cross-sectional dependence and yet straightforward to implement, only

requiring p-values of n time series unit root tests on the series in the panel. It compares

the ordered p-values to suitably increasing critical points and rejects the panel unit root

null whenever at least one of the p-values is smaller than the corresponding critical point.

Importantly, the new test allows to identify the units in the panel for which the alternative

of stationarity appears to hold. Doing so, it still controls the ‘Familywise Error Rate’

(FWER), i.e. the probability to falsely reject at least one true individual time series null

hypothesis, at some chosen level α. This would not be achieved by the widely applied

strategy to reject for all those time series unit root tests statistics that exceed some fixed

level-α critical value, as this latter approach ignores the multiple testing nature of the

problem.2

The next section develops the new test. Section 3 reports results of a Monte Carlo study

of the new test as well as some other popular panel unit root tests. Section 4 presents two

applications of the tests to GDP data of OECD countries and to a panel of real exchange

rates. The last section concludes.

2Recently, procedures taking multiplicity into account have begun to find their way into the econo-
metrics literature. Romano and Wolf [2008] provide a survey of available methods and Hanck [2008] an
application.
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2 The Panel Unit Root Test

This section develops the Simes [1986]-type panel unit root test. We consider the following

dynamic panel model:

yi,t = µi(1− φi) + φiyi,t−1 + εi,t (i ∈ Nn, t ∈ NT ), (1)

where j ∈ Na is shorthand for j = 1, . . . , a, φi ∈ (−1, 1], i ∈ Nn, and n denotes the number

of series in the panel. Equation (1) says that the time series {yi,0, . . . , yi,T} are generated

by a simple first-order autoregressive process for each cross section unit i. The panel unit

root null hypothesis states that all time series are unit-root nonstationary [Breitung and

Pesaran, 2008]. Formally,

H0 : φ1 = φ2 = . . . = φn = 1

Put differently, H0 states that all single time series hypotheses Hi,0 : φi = 1 are true,

H0 =
⋂

i∈Nn

Hi,0, (2)

where
⋂

i∈Nn
denotes the intersection over the n individual time series hypotheses. Simes

[1986] provides a simple test for testing the ‘global’ or ‘intersection’ null hypothesis (2).

Suppose p-values pi, i ∈ Nn, of suitable test statistics for the individual time series

hypotheses Hi,0 are available. Denote by p(1), . . . , p(n) the ordered p-values p(1) 6 . . . 6

p(n). Then, Simes’ intersection test (henceforth S test, for short) rejects H0 at level α if

and only if

p(j) 6 j · α/n for some j ∈ Nn. (3)

That is, one sorts the p-values from most to least significant and compares these to grad-

ually less challenging critical points jα/n. If there exists at least one p-value sufficiently

small so as to be smaller than the corresponding critical point, the S test rejects the panel

unit root null. Simes [1986, Thm. 1] proves that the S test has type I error probability

equal to α when the test statistics are independent. As argued in the Introduction, the

assumption of independence is unlikely to be met in most, if not all, applications of panel

unit root tests. Fortunately, Sarkar [1998] shows that the assumption of independence is

not necessary and can, in fact, be weakened substantially. The following is adapted from

Sarkar [1998, Prop. 3.1]
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Proposition 1.

If the test statistics for testing the Hi,0, i ∈ Nn, are multivariate totally positive of order

2 (MTP2), then

PH0(∃ j ∈ Nn : p(j) 6 jα/n) = PH0(S rejects) 6 α,

where PH0 denotes the probability under (2).

A vector of random variables T = (T1, . . . , Tn)′ is said to be MTP2 if its joint density f

satisfies

f
(
min(T1, U1), . . . , min(Tn, Un)

)
· f

(
max(T1, U1), . . . , max(Tn, Un)

)
>

f(T1, . . . , Tn) · f(U1, . . . , Un),

for any two points (T1, . . . , Tn) and (U1, . . . , Un). The MTP2 class is rather large, including

the multivariate normal with nonnegative correlations, the absolute-valued multivariate

normal with some specific covariance structures, multivariate gamma, absolute-valued

central multivariate t, and central multivariate F distributions. Sarkar [1998] further

verifies that even the MTP2 assumption of Proposition 1 is not necessary. The following

Section shows that the S test controls size for patterns of cross-sectional dependence that

are typically assumed in dynamic panel data models.

As emphasized for instance by Breitung and Pesaran [2008], it is important to properly

interpret test outcomes if the panel unit root null is rejected. Some tests have the alterna-

tive of a completely stationary panel [e.g., Levin et al., 2002], i.e. maxi |φi| < 1, suggesting

that a rejection of the null allows to conclude that the entire panel is stationary. However,

these panel tests also have power against ‘mixed’ panels, where only some fraction of the

units is actually stationary [see Taylor and Sarno, 1998; Boucher Breuer, McNown, and

Wallace, 2001]. To caution against unwarranted conclusions, it may therefore be more

appropriate to formulate panel unit root tests that have the more conservative alternative

that some nonzero fraction of the panel is stationary,

HA : |φ(`)|, ` ∈ Nn1 , n1 6 n

The S test belongs to this latter category, as is easily seen from the elementary relationship

HA = Hc
0 =

( ⋂
i∈Nn

Hi,0

)c

=
⋃

i∈Nn

Hc
i,0 =

⋃
i∈Nn

Hi,A,
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where c denotes the complement and Hi,A the individual alternative |φi| < 1.

Importantly, the S test is consistent, as T →∞.

Lemma 1.

If, for any given n < ∞, |φi| < 1 for at least one i ∈ Nn, then limT→∞ P(S rejects) = 1.

Proof. Let IA the index set of the wrong hypotheses. Under the maintained assumptions,

IA 6= ∅. Using consistent unit root test statistics to construct the p-values in S, there

exists some pj, j ∈ IA, such that pj ≡ p(1) →p 0. Hence, limT→∞ P(p(1) < α/n) = 1.

Remark 1. Unlike other panel unit root tests [e.g., Im et al., 2003; Pesaran, 2007], the S

test does not require that n1/n → κ > 0 as n → ∞ for test consistency, see the proof

of Lemma 1. It does, however, require p(n`) = op(n`/n) as n, T → ∞, for some ` ∈ Nn1 .

That is, the fraction of stationary series is allowed to tend to zero, but not too fast.

Existing panel unit root tests are not informative about the size of the fraction or the

identity of the cross section units that are stationary. Using the p-values from the S test,

one can easily determine those units in the panel for which the alternative can be said to

hold, once the null hypothesis is rejected. Hommel [1988, Sec. 2] proves that the following

procedure controls the FWER, i.e. the probability to falsely reject at least one true Hi,0,

at multiple level α whenever the S test is a level-α test for the intersection hypothesis.

Hommel’s Procedure

A. Compute

j = max{i ∈ Nn : p(n−i+k) > kα/i for k ∈ Ni}. (4)

B1. If the maximum does not exist, reject all Hi,0 (i ∈ Nn).

B2. If the maximum exists, reject all Hi,0 with pi 6 α/j.

For concreteness, consider an illustrative example where n = 3. We find j as the largest i

such that all adjacent conditions in Table I hold. If j does not exist, then even p(n) 6 α, so

that we can ‘safely’ reject all hypotheses. If the p-values are given by, say, 3α/5, 2α, α/5,

then j = 2 such that we only reject H3,0.
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Table I.—Hommel’s [1988] procedure for n = 3

i = 1: k = 1 p(3−1+1) = p(n) > α

i = 2: k = 1 p(3−2+1) = p(n−1) > α/2
k = 2 p(3−2+2) = p(n) > α

i = 3: k = 1 p(3−3+1) = p(1) > α/3
k = 2 p(3−3+2) = p(n−1) > 2α/3
k = 3 p(3−3+3) = p(n) > α

3 Monte Carlo Evidence

This section investigates the size and power of the S test discussed in the previous section.

For comparison, we also include some other popular ‘second generation’ panel unit root

tests.3 More specifically, we consider the tests put forward by Demetrescu et al. [2006]

(tρ̂∗,κ), Moon and Perron [2004] (t∗a and t∗b), Pesaran [2007] (CIPS ∗, denoted C∗ here) and

Breitung and Das [2005] (trob). (The Appendix provides a concise description of these

tests.) To gauge the effect of cross-sectional dependence on first generation panel unit

root tests, we also include the Fisher-type test of Maddala and Wu [1999], defined by

Pχ2 = −2
∑n

i=1 ln(pi)
H0∼ χ2(2n).

We use the following simple data generating process:

yi,t = µi + xi,t

xi,t = φixi,t−1 + εi,t

(i ∈ Nn, t ∈ NT )

We run the recursion for 30 initial observations before using the yi,t to mitigate the effect of

initial conditions under HA. We consider two different schemes to generate cross-sectional

correlation among the error terms εi,t.

A. Equicorrelation: Let εt = (ε1,t, . . . , εn,t)
′. Then, εt ∼ N (0, Σ), where Σ = δını

′
n +

(1− δ)In with ın = (1, . . . , 1)′, (n× 1), and In the (n× n) identity matrix.

B. Factor Structure: εi,t = λi · νt + ξi,t, where ξi,t and νt are i.i.d. N (0, 1) and λi ∼
U(−1, 3), with U denoting the uniform distribution.

3See, e.g., Breitung and Pesaran [2008] or Gengenbach, Palm, and Urbain [2006] for comprehensive
recent surveys of panel unit root tests.

6



Table II.—Size results, µi = 0.

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation.

S .045 .040 .039 .040 .040 .040 .035 .038 .037 .037 .034 .032
Pχ2 .179 .181 .178 .172 .219 .230 .238 .232 .288 .275 .286 .282
C∗ .059 .057 .064 .059 .056 .068 .066 .063 .073 .071 .072 .073
trob .115 .094 .092 .093 .057 .047 .043 .039 .060 .045 .043 .046
tρ̂∗,κ .067 .060 .062 .056 .067 .071 .064 .060 .067 .067 .063 .066
t∗a .110 .135 .156 .167 .042 .132 .152 .166 .027 .045 .133 .136
t∗b .092 .106 .108 .106 .053 .104 .116 .119 .038 .053 .110 .098

B. Factor Structure

S .055 .056 .054 .048 .050 .055 .049 .052 .059 .053 .049 .052
Pχ2 .068 .066 .066 .065 .084 .086 .088 .085 .123 .123 .125 .127
C∗ .043 .048 .050 .050 .045 .047 .049 .055 .054 .047 .052 .056
trob .126 .103 .096 .096 .067 .052 .053 .049 .069 .060 .058 .045
tρ̂∗,κ .063 .061 .061 .060 .064 .066 .070 .064 .079 .075 .073 .074
t∗a .052 .079 .115 .145 .021 .045 .077 .105 .012 .028 .053 .078
t∗b .068 .077 .084 .094 .051 .062 .069 .080 .048 .055 .061 .068

Rejection rates of the panel unit root tests at nominal level α = 0.05, using M = 5000
replications. In A, δ = 0.98. S is Simes [1986] test, Pχ2 is by Maddala and Wu [1999],
C∗ is by Pesaran [2007], trob is from Breitung and Das [2005], tρ̂∗,κ is from Demetrescu
et al. [2006] and t∗a and t∗b are by Moon and Perron [2004].

When φn ≡ (φ1, . . . , φn)′ = ı, H0 =
⋂

i∈Nn
Hi,0 is true, allowing us to study the size of the

tests. Choosing φn such that mini |φn| < 1, we analyze power of the tests. More specif-

ically, we let φn = 0.95 × ı to analyze a homogenous alternative and φn = (ı′n/2, φ̃
′
n/2)

′,

φ̃n =
(
ı ′3n/4, φ̃

′
n/4

)′
as well as φn = φ̃n to investigate heterogeneous alternatives. The

components of φ̃ are distributed as (φ̃)i ∼ U(3/4, 1). When µi = 0 for all i ∈ Nn,

we calculate n Dickey and Fuller [1979] τ -statistics from regressions of yi,t on yi,t−1. To

investigate the case with non-zero intercept, we simulate µi ∼ U [0, 0.2] and calculate

τ -statistics from regressions of yi,t on 1, yi,t−1.
4 The p-values are then calculated using

MacKinnon [1994]-type response surface regressions.

The major findings of our experiments, reported in Tables II to IV, can be summarized as

follows. The Pχ2 , being a first generation test, exhibits an expected size distortion. The

4The results with intercept, which we do not report for brevity but which are available upon request,
are qualitatively similar to those to be reported below. As one would expect, fitting a constant results in
loss of power for the tests considered.
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Table III.—Power results for partially
stationary heterogeneous panels, µi = 0,

φ̃n =
(
ı ′
n/2, φ̃

′
n/2

)′
and (φ̃n/2)i ∼ U(.75, 1).

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation

S .158 .319 .835 1.000 .152 .339 .875 1.000 .118 .257 .801 1.000
C∗ .147 .170 .249 .313 .151 .192 .244 .315 .142 .171 .229 .284
trob .689 .914 .995 1.000 .738 .943 .999 1.000 .642 .903 .998 1.000
tρ̂∗,κ .293 .512 .888 .987 .333 .591 .903 .985 .255 .449 .842 .962
t∗a .244 .282 .295 .289 .177 .348 .372 .420 .188 .226 .362 .363
t∗b .225 .251 .263 .245 .170 .330 .344 .399 .195 .227 .350 .343

B. Factor Structure

S .211 .430 .943 1.000 .252 .547 .989 1.000 .202 .434 .974 1.000
C∗ .190 .259 .336 .386 .210 .272 .381 .459 .221 .276 .373 .474
trob .252 .360 .640 .897 .204 .344 .697 .956 .176 .316 .676 .964
tρ̂∗,κ .411 .717 .975 .999 .595 .892 .992 1.000 .554 .845 .983 .999
t∗a .194 .263 .339 .364 .153 .253 .348 .386 .154 .253 .395 .463
t∗b .195 .232 .272 .279 .189 .253 .315 .329 .235 .293 .388 .430

Rejection rates of the panel unit root tests at nominal level α = 0.05, using M = 5000
replications. In A, δ = 0.98. S is Simes [1986] test, C∗ is by Pesaran [2007], trob is from
Breitung and Das [2005], tρ̂∗,κ is from Demetrescu et al. [2006] and t∗a and t∗b are by Moon
and Perron [2004].

performance of the Moon and Perron [2004] tests is also not entirely satisfactory in many

configurations. In particular, they perform poorly under equicorrelation (for which they

are not designed, of course). The S test is a level-α test throughout, though it is slightly

conservative under equicorrelation (panel A). Its size is very accurate in the factor model

experiment (panel B). C∗ and tρ̂∗,κ also perform very well throughout. The trob test

controls size reasonably well, at least for T and n sufficiently large.

Some results for the power experiments are reported in Tables III and IV. First, we

report results for φn = (ı′n/2, φ̃
′
n/2)

′ in Table III. In view of its substantial upward size

distortion, we do not report results for the Pχ2 test. The excellent performance of the

Breitung and Das [2005] test in the heterogeneous scenario is noteworthy (though to some

extent due to its upward size distortion), as it is designed for homogenous alternatives (see

the Appendix). Similarly, the test by Demetrescu et al. [2006] delivers high power in the

present setup. For small T , the power of the S test is somewhat lower than that of these
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Table IV.—Power results for partially
stationary heterogeneous panels, µi = 0,
φ̃n =

(
ı ′
3n/4, φ̃

′
n/4

)′
and (φ̃n/4)i ∼ U(.75, 1).

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation

S .081 .128 .430 .959 .106 .216 .788 1.000 .080 .181 .753 1.000
C∗ .099 .107 .130 .145 .094 .100 .118 .134 .095 .104 .119 .135
trob .688 .882 .990 1.000 .528 .765 .944 .996 .447 .722 .936 .995
tρ̂∗,κ .106 .167 .401 .708 .109 .169 .449 .699 .095 .146 .336 .685
t∗a .128 .223 .229 .196 .089 .207 .216 .228 .104 .108 .209 .213
t∗b .120 .189 .178 .144 .068 .158 .151 .160 .095 .086 .169 .152

B. Factor Structure

S .107 .184 .543 1.000 .142 .273 .818 1.000 .125 .250 .816 .992
C∗ .095 .112 .137 .184 .092 .106 .141 .171 .094 .123 .156 .166
trob .139 .167 .267 .456 .104 .130 .223 .430 .101 .125 .222 .482
tρ̂∗,κ .185 .300 .604 .880 .220 .379 .685 .891 .235 .397 .723 .849
t∗a .069 .113 .156 .190 .057 .103 .148 .183 .040 .079 .152 .196
t∗b .089 .113 .128 .165 .086 .116 .134 .144 .092 .124 .157 .145

Rejection rates of the panel unit root tests at nominal level α = 0.05, using M = 5000
replications. In A, δ = 0.98. S is Simes [1986] test, C∗ is by Pesaran [2007], trob is from
Breitung and Das [2005], tρ̂∗,κ is from Demetrescu et al. [2006] and t∗a and t∗b are by Moon
and Perron [2004].

two tests, although it outperforms the tests by Pesaran [2007] and Moon and Perron [2004],

whose power is rather disappointing here. That the S test has relatively lower power for

small T is not surprising since the p-values cannot yet be close to their probability limit

of 0 under the alternative. Hence, condition (3) is less likely to be satisfied. We feel that

this may well be a price worth paying in view of the S test’s additional ability to identify

individual false hypotheses. Moreover, for large T , the power of the S test is highest

among all tests considered here.

Table IV increases the fraction of nonstationary series to 3/4 and further corroborates the

excellent performance of the S test. Of course, all tests are now uniformly less powerful.

However, it is noteworthy that the loss of power relative to Table III is smallest for the

S test; its performance is now the best among all tests considered for many practically

relevant configurations.5

5Results for the remaining power experiments described above, which were qualitatively similar, are
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4 Applications

We now present an application of the tests discussed here to two longstanding questions

in empirical macroeconomics. First, we investigate the null hypothesis that there is a

unit root in the (logarithms of) GDPs in a panel of OECD countries. Second, we test for

stationarity in a panel of real exchange rate indices.

As should be clear from the previous discussion, any unit root test for which p-values are

available can be used to compute the S test. In order to maximize the ability of the S test

to reject a false null, preference should therefore be given to the most powerful time series

unit root tests available. The test regressions in the present PPP and GDP applications

are known to require an intercept and an intercept plus time trend, respectively. Thus,

the power of the tests can be increased by efficient GLS demeaning and detrending, using

the unit root tests proposed by Elliott, Rothenberg, and Stock [1996] (ERS). The limit

distributions of the ERS test statistics are functionals of Brownian motions that cannot be

evaluated analytically to obtain p-values. We therefore rely on response surface regressions

suggested by MacKinnon [1994, 1996] to obtain numerical distribution functions of the

test statistics.

4.1 GDP convergence

This subsection applies the panel unit root tests from the last section to logarithms of

annual real per capita GDP data of OECD countries. The data are from the Penn World

Tables 6.2.6 Testing for a unit root in real GDPs is important, because acceptance of the

null lends empirical support to certain real business-cycle models [see Nelson and Plosser,

1982]. Backus and Kehoe [1992] have established the stylized fact that real GDPs are

available upon request. The performance of the C∗ test improves markedly in the other scenarios, as
the average of the individual augmented ADF statistics is now of course more negative. Similar results
obtain for the Moon and Perron [2004] tests. For near-integrated homogenous alternatives, the power of
S test is relatively lower. This is unsurprising because we then have p(1) ≈ p(n), and it is unlikely that
p(n) 6 α for φn close to ı.

6We consider those countries for which a complete record of observations on the variable denoted
RGDPCH from 1950 to 2004 is available, yielding a total of n = 23 series.
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Table V.—Panel Unit Root Tests for the GDP
panel

critical points
S pTurkey = 0.0001 0.002
trob 0.358 −1.64
tρ̂∗,κ 4.082 −1.64
C∗ −2.674 −2.65

Nominal level is α = 0.05. S [Simes’ test] reports the p-
value and corresponding critical point for which condition
(3) holds. In the other rows, the last entry is the α level
critical value. trob from Breitung and Das [2005], tρ̂∗,κ

from Demetrescu et al. [2006] and C∗ is by Pesaran [2007].

cross-sectionally dependent. Thus, it is expedient to employ panel unit root tests robust

to cross-sectional correlation.

Table V reports the results of the panel unit root tests applied to the real GDP series.7

In line with many findings in the literature, the tests by Demetrescu et al. [2006] and

Breitung and Das [2005] do not reject the panel unit root null. The C∗ test indicates

some stationary series in the panel, as does the S test. Using the former, it would not be

clear how pervasive the evidence of stationarity actually is. For the latter, an application

of Hommel’s [1988] method yields an individual rejection for Turkey only. Thus, according

to the S test, we cannot reject the null hypothesis of a unit root in the real GDPs for the

vast majority of OECD countries.

4.2 Purchasing Power Parity

We now apply the tests to the relative Purchasing Power Parity (PPP) hypothesis. Let

pi,t be the (log) price index in country i and period t, p∗t the ‘foreign’ (log) price index of

the reference country in the panel and si,t the (log) nominal exchange rate between the

currencies of country i and the reference country. The real exchange rate is then given by

ri,t = pi,t − p∗t − si,t (i ∈ Nn, t ∈ NT )

7In view of the finding of Moon and Perron [2004] that their tests only have trivial (local) power in
the presence of incidental trends we waive to report results for these.
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Table VI.—DF-GLSµ-p-values for the real
exchange rate series

country p-values Simes criterion
Argentina 0.0001 0.0026
Sweden 0.0001 0.0053
Norway 0.0001 0.0079
Mexico 0.0001 0.0105
Italy 0.0001 0.0132
Finland 0.0001 0.0158
France 0.0050 0.0184
Germany 0.0050 0.0211
Belgium 0.0050 0.0237
UK 0.0050 0.0263
Brazil 0.0175 0.0289
Australia 0.0175 0.0316
Netherlands 0.0200 0.0342
Portugal 0.0250 0.0368
Canada 0.0400 0.0395
Spain 0.0500 0.0421
Denmark 0.0575 0.0447
Switzerland 0.2375 0.0474
Japan 0.2475 0.0500

‘p-values’ are the marginal significance levels from
DF-GLSµ time series unit root tests [Elliott et al., 1996].
‘Simes criterion’ is the value that needs to exceed the adja-
cent p-value in at least one case for a rejection of H0, i.e. (3).

Testing the PPP hypothesis is naturally formulated [see Rogoff, 1996] as a unit root test

on the real exchange rate. We revisit the dataset used by Taylor [2002], which includes

annual data for the nominal exchange rate, CPI and the GDP deflator. The countries

contained in our panel are given in Table VI. We use the United States as the reference

country and report results using CPI price series. See Taylor [2002] for further details on

data sources and definitions.

We report results for the S test in Table VI. Obviously, condition (3) is satisfied, so that

the panel unit root null can be rejected. Table VII reports similar findings for the other

panel unit root tests considered here.

Applying Hommel’s [1988] method now allows us to identify those countries for which the

alternative of a real exchange rate can be said to hold, while controlling for multiplicity.

Using the results from Table VI and (4) we find j = 10. Thus, we can reject Hi,0 for
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Table VII.—Panel Unit Root Tests for the real
exchange rate panel

critical points
trob −3.703 −1.64
tρ̂∗,κ −7.578 −1.64
CIPS −3.084 −2.16
C∗ −3.077 −2.16
t∗a −0.032 −1.64
t∗b −0.290 −1.64

Nominal level is α = 0.05. The last column gives
the α level critical value. trob from Breitung and
Das [2005], tρ̂∗,κ from Demetrescu et al. [2006],
CIPS and C∗ are by Pesaran [2007] and t∗a and t∗b
are from Moon and Perron [2004].

Argentina, Sweden, Norway, Mexico, Italy, Finland, France, Germany, Belgium and the

United Kingdom.

Let us compare these conclusions to those when employing the traditional strategy of

rejecting all those individual hypotheses whose corresponding p-value is less than α, which

ignores the multiple nature of the testing problem. From Table VI we see that this method

would have rejected all individual null hypotheses except for Denmark, Switzerland and

Japan. The results of the Hommel [1988] procedure suggest that several of the additional

rejections may be spurious, i.e. solely due to the fact that the traditional approach does

not control the FWER.

5 Conclusion

This paper proposes a new test for a panel unit root against the alternative of a partially

stationary panel, making use of Simes’ [1986] classical test of the intersection null hypoth-

esis. The test is intuitive, straightforward to implement and yet robust to general patterns

of cross-sectional dependence. Monte Carlo simulations show that the new test compares

well in terms of finite sample size and power with recently proposed second generation

panel unit root tests. Importantly, unlike other tests, Simes’ [1986] approach allows to

shed light on the important question for how many and also which of the units in the

panel the alternative can be said to hold when the null hypothesis is rejected. Hence, the
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test suggested here allows researchers to decide, for each unit individually, whether it is

advisable to model the respective time series in levels or first differences. An application

to the questions of GDP convergence and real exchange rate stationarity demonstrates

the practical usefulness of the test.

Since implementation of the test only requires p-values of individual time series test statis-

tics, the framework put forward here is very flexible. For instance, it can be extended

rather easily to test for panel cointegration, the analysis of which is still at an earlier

stage of its development [Breitung and Pesaran, 2008]. As such, it could furthermore

be applied to other macroeconomic questions such as savings-investment correlation or

spot and forward exchange rates, that have hitherto been dealt with using other panel

techniques. This issue is currently under investigation by the author.
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Appendix

Here, we briefly sketch the panel unit root tests studied in section 3. For more detailed descrip-
tions we refer to the original contributions.

Pesaran [2007]

The basic setup of Pesaran [2007] is given by

yi,t = µi(1− ρi) + ρiyi,t−1 +
`i∑

j=1

φij∆yi,t−j + ui,t, (A.1)

where t ∈ NT , i ∈ Nn and ρi ∈ (−1, 1]. He models cross-sectional dependence via a standard
normal common time effect θt which is allowed to affect the units of the panel heterogeneously:

ui,t = δiθt + εi,t. (A.2)

Pesaran [2007] shows that augmenting the usual ADF regressions by cross-sectional means of
the lagged level and of the lagged differences is sufficient for filtering out the effect of both serial
correlation and of the common factor θt. That is, compute the t-statistic on bi, ti(n, T ), in

∆yi,t = ai + biyi,t−1 + ciȳi,t−1 +
p∑

j=0

dij∆yi,t−j +
p∑

j=0

γij∆ȳi,t−j + εi,t

for all i. Next, a panel test statistic obtains as C = n−1
∑n

i=1 ti(n, T ). For our purposes, the
relevant critical values lie between −1.8 for (n, T ) = (10, 10) and −1.51 for (n, T ) = (200, 200).
Pesaran [2007], motivated by concerns about the finiteness of the moments of ti(n, T ), also
suggests a panel test using a truncated version of the ti(n, T ), C∗ = n−1

∑n
i=1 t∗i (n, T ). This

test has the same critical values (in our application). Both tests reject for large negative values.

Moon and Perron [2004]

The tests put forward by Moon and Perron [2004] are able to accommodate patterns of cross-
sectional dependence which are driven by more that one common unobserved factor. That is,
the error from (A.2) in the panel model

yi,t = µi(1− ρi) + ρiyi,t−1 + ui,t (A.3)

becomes
ui,t = λ′iθt + εi,t, (A.4)

where λi and θt are now (K × 1) vectors. Moon and Perron [2004] provide tests of the null

H0 : ρi = 1 for all i against HA : ρi < 1 for some i.
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The algorithm to compute the tests is summarized as follows. First, run a pooled OLS regression
on (A.3) under the null (setting µi(1 − ρi) = 0 for all i). Use the residuals ûi,t to estimate
the (n ×K) matrix of factor loadings Λ = (λ1, . . . ,λn)′ by principal components. Denote this
estimate by Λ̂. We assume the number of factors to be known in our simulations, i.e. K = 1. Let
û = ((û11, . . . , û1,T )′, . . . , (ûn,1, . . . , ûn,T )′). By projecting û onto the column space orthogonal to
the space spanned by the common factors, QΛ̂ = I − Λ̂(Λ̂′Λ̂)−1Λ̂′, obtain de-factored residuals
ε̂ = ûQΛ̂. Moon and Perron [2004] suggest the following adjusted pooled estimator

ρ̂∗pool =
tr(Y−1QΛ̂Y ′)−NTϕ̂e

n

tr(Y−1QΛ̂Y ′
−1)

.

Here, tr denotes the trace and Y and Y−1 are defined similarly as û, while ϕ̂e
n is an estima-

tor of the average one-sided long-run variance of εi,t computed from the de-factored residuals.
Similarly, ω̂2

e = n−1
∑n

i=1 ω̂2
e,i is some consistent estimator of the long-run variance of εi,t and

φ̂4
e = n−1

∑n
i=1 ω̂4

e,i. The test statistics put forward by Moon and Perron [2004] are then defined
as

t∗a =

√
nT (ρ̂∗pool − 1)√

2φ̂4
e/ω̂4

e

and

t∗b =
√

nT (ρ̂∗pool − 1)

√
1

NT 2
tr(Y−1QΛ̂Y ′

−1) ·
ω̂e

φ̂2
e

.

Moon and Perron [2004] show that, as n, T → ∞ with n/T → 0, t∗a, t
∗
b →d N (0, 1) under the

null, while t∗a, t
∗
b →p −∞ under the alternative. Hence, we reject the null at 5% for realizations

smaller than −1.645.

Breitung and Das [2005]

Consider a panel model where the time series yi,t are generated, for i ∈ Nn, by

∆yi,t = µi + ρyi,t−1 + εi,t (A.5)

Breitung and Das [2005] work within a Seemingly Unrelated Regression framework to allow for
a very general type of cross-sectional error dependence. Stacking the individual equations yields ∆y1,t

...
∆yn,t

 =

 µ1,t

...
µn,t

 + ρ

 y1,t−1

...
yn,t−1

 +

 ε1,t

...
εn,t


or ∆yt = µ+ρyt−1+εt, where the vectors are now (n×1). The fairly unrestricted error covariance
matrix E(εtε

′
t) = Ω admits general patterns of cross-sectional dependence, essentially only being

required to satisfy weak moment restrictions and to have bounded eigenvalues. Hence, the use of
the Breitung and Das [2005] test allows to investigate whether results are sensitive to the factor
structure assumption on the error dependence implied by the tests outlined above. The null
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hypothesis of a panel unit root is H0 : ρ = 0 and is tested against the homogenous alternative
HA : ρ < 0. Breitung and Das [2005] propose the following statistic to test H0:

trob =
∑T

t=1 y′t−1∆yt√∑T
t=1 y′t−1Ω̂yt−1

,

where

Ω̂ =
1
T

T∑
t=1

(∆yt − ρ̂yt−1)(∆yt − ρ̂yt−1)′.

In turn, ρ̂ is obtained by first subtracting y0 (the best estimate of µ under the null) from yt and
running a pooled OLS regression of ∆yi,t on (yi,t−1 − yi0). To account for serial correlation in
the time series, Breitung and Das [2005] suggest to ‘prewhiten’ the demeaned series by running
a preliminary regression of both ∆yi,t and yi,t−1 on p lagged differences ∆yi,t−1, . . . ,∆yi,t−p and
to use the respective residuals ∆̃yi,t and ỹi,t−1 to construct ρ̂ and trob as outlined above. The
lag order can be chosen by some information criterion. Breitung and Das [2005] show that, as
T →∞ followed by n →∞, trob →d N (0, 1) and trob →p −∞ under the (non-local) alternative
ρ < 0. Hence, we reject the null at the 5% for realizations of trob < −1.645.

Demetrescu et al. [2006]

Most of the tests outlined above first remove cross-sectional dependence from the data by de-
factoring and then apply some standard panel unit root tests. As an alternative, Demetrescu
et al. [2006] suggest reweighing the single-unit evidence for (non-)stationarity so as to take cross-
sectional dependence between the units into account when forming the panel test statistic. More
specifically, they model dependence among the time series test statistics. Their approach is an
extension of the inverse normal method used by Choi [2001] and, as such, tests the panel unit
root null against the alternative of a non-zero fraction of stationary series in the panel.

Consider the probits Φ−1(pi) =: ti. The p-values are obtained from the t-statistic on φi in
(heterogeneous) DF-regressions applied to (A.5). Demetrescu et al. [2006] use the approach of
Hartung [1999], who assumes constant correlation across the the panel units, i.e.

Cov(ti, tj) = ρ, for i 6= j, i, j ∈ Nn.

Hartung [1999] proposes to consistently estimate ρ by ρ̂∗ = max(−1/(n − 1), ρ̂), where ρ̂ =
1− 1/(n− 1)

∑n
i=1(ti − n−1

∑n
i=1 ti)2 to form the following panel test statistic:

tρ̂∗,κ =
∑n

i=1 ti√
n + (n2 − n)

(
ρ̂∗ + κ

√
2

n+1(1− ρ̂∗)
)

Here, κ = 0.1 ·(1+1/(n+1)− ρ̂∗) is a parameter designed to improve the small sample behaviour
of the test statistic. Importantly, Demetrescu et al. [2006] show that the test’s performance is
robust to certain deviations from the constant correlation assumption. tρ̂∗,κ →d N (0, 1) under
the null. The test rejects for large negative values.
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