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Abstract

This paper proposes a new panel unit root test based on Simes’ [Biometrika 1986,
“An Improved Bonferroni Procedure for Multiple Tests of Significance”] classical
intersection test. The test is robust to general patterns of cross-sectional dependence
and yet straightforward to implement, only requiring p-values of time series unit root
tests of the series in the panel, and no resampling. Monte Carlo experiments show
good size and power properties relative to existing panel unit root tests. Unlike
previously suggested tests, the new test allows to identify the units in the panel for
which the alternative of stationarity can be said to hold. We provide two empirical
applications to panels of real gross domestic product (GDP) and real exchange rate
data.
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1 Introduction

The problem of testing for unit roots in heterogeneous panels has attracted much attention
in recent years.! So called ‘first generation’ tests [Maddala and Wu, 1999; Im, Pesaran,
and Shin, 2003; Levin, Lin, and Chu, 2002| rely on the assumption that the individual
time series in the panel are cross-sectionally independent. It is, however, now widely
recognized that this assumption is not met in typical macroeconometric panel data sets.
For instance, common global shocks induce cross-sectional dependence among the test

statistics [see, e.g., O’Connell, 1998].

The aim of ‘second generation’ panel unit root tests therefore is to provide reliable in-
ference in the presence of cross-sectional dependence. Phillips and Sul [2003], Moon and
Perron [2004], and Bai and Ng [2004] assume the dependence to be driven by (multiple)
factors in the error terms. Suitably ‘de-factoring’ the observations, e.g. by the principal
component method, asymptotically removes the common factors, then allowing for the
application of standard panel unit root tests. Breitung and Das [2005], in turn, propose
a feasible generalized least-squares approach that can be applied when 7" > n, where T
denotes the number of time series observations on each of the n series. Pesaran [2007]
adds the cross-section averages of lagged levels and of first-differences of the individual
series to Augmented Dickey-Fuller 1979 (ADF) regressions. Panel unit root tests can then
be based on the simple averages of the individual cross-sectionally augmented ADF statis-
tics. Chang [2004] uses a bootstrap approach to condition on the dependence structure
in the dataset. The approach most closely related to the one to be put forward here is
by Demetrescu, Hassler, and Tarcolea [2006], who draw on the meta-analytic literature

to derive their p-value combination tests.

In view of the additional complexities induced by the cross-sectional panel dimension,
many of these tests require non-trivial decisions by the user, which complicate implemen-
tation and often impact the test outcome. These concern, for instance, the choice of the
number of factors, of a joint lag length in pooled regressions, or of a suitable resampling

scheme in bootstrap tests. In addition, as pointed out in the review article of Breitung

!Banerjee [1999] provides an early review.



and Pesaran [2008], available tests do not provide guidance as to the size of the fraction
or the identity of the cross section units that are stationary. Hence, it can be difficult to

properly interpret the rejection of a panel test.

Our goal therefore is to provide a new panel unit root test that alleviates these potential
shortcomings. The test is based on Simes’ [1986] classical intersection test of the ‘global’
null hypothesis Hy that all individual null hypotheses H; o, ¢ = 1,...,n, are true. (Here,
that all n time series are unit root processes.) Simes’ [1986] test is widely applied in, among
many other areas, genetical micro-array experiments [e.g., Dudoit, Shaffer, and Boldrick,
2003]. See Hochberg and Tamhane [1987] for a classical reference. The test is robust to
general patterns of cross-sectional dependence and yet straightforward to implement, only
requiring p-values of n time series unit root tests on the series in the panel. It compares
the ordered p-values to suitably increasing critical points and rejects the panel unit root

null whenever at least one of the p-values is smaller than the corresponding critical point.

Importantly, the new test allows to identify the units in the panel for which the alternative
of stationarity appears to hold. Doing so, it still controls the ‘Familywise Error Rate’
(FWER), i.e. the probability to falsely reject at least one true individual time series null
hypothesis, at some chosen level . This would not be achieved by the widely applied
strategy to reject for all those time series unit root tests statistics that exceed some fixed
level-a critical value, as this latter approach ignores the multiple testing nature of the

problem.?

The next section develops the new test. Section 3 reports results of a Monte Carlo study
of the new test as well as some other popular panel unit root tests. Section 4 presents two
applications of the tests to GDP data of OECD countries and to a panel of real exchange

rates. The last section concludes.

2Recently, procedures taking multiplicity into account have begun to find their way into the econo-
metrics literature. Romano and Wolf [2008] provide a survey of available methods and Hanck [2008] an
application.



2 The Panel Unit Root Test

This section develops the Simes [1986]-type panel unit root test. We consider the following

dynamic panel model:
Yir = il — &i) + Giyir—1 + € (i € N,, t € Np), (1)

where j € N, is shorthand for j = 1,...,a, ¢; € (—1,1], ¢ € N,,, and n denotes the number
of series in the panel. Equation (1) says that the time series {y, 0, ..., v} are generated
by a simple first-order autoregressive process for each cross section unit 7. The panel unit
root null hypothesis states that all time series are unit-root nonstationary [Breitung and

Pesaran, 2008]. Formally,
Hy:p1=¢0=...=¢, =1
Put differently, Hy states that all single time series hypotheses H;( : ¢; = 1 are true,
Hy = () Hiy, (2)
€Ny,

where (7, denotes the intersection over the n individual time series hypotheses. Simes
[1986] provides a simple test for testing the ‘global’ or ‘intersection’ null hypothesis (2).
Suppose p-values p;, i € N, of suitable test statistics for the individual time series
hypotheses H; are available. Denote by p(,...,pn) the ordered p-values p) < ... <
Pn)- Then, Simes’ intersection test (henceforth S test, for short) rejects Hy at level a if
and only if

PGy < Jj-a/n  forsome j €N, (3)

That is, one sorts the p-values from most to least significant and compares these to grad-
ually less challenging critical points ja/n. If there exists at least one p-value sufficiently
small so as to be smaller than the corresponding critical point, the S test rejects the panel
unit root null. Simes [1986, Thm. 1] proves that the S test has type I error probability
equal to a when the test statistics are independent. As argued in the Introduction, the
assumption of independence is unlikely to be met in most, if not all, applications of panel
unit root tests. Fortunately, Sarkar [1998] shows that the assumption of independence is
not necessary and can, in fact, be weakened substantially. The following is adapted from

Sarkar [1998, Prop. 3.1]



PROPOSITION 1.
If the test statistics for testing the H;p, © € N,,, are multivariate totally positive of order

2 (MTP,), then
Puy(3j € Nyt pi) < ja/n) =Py, (S rejects) < o,

where Pp, denotes the probability under (2).

A vector of random variables T' = (T1,...,T,)" is said to be MTPy if its joint density f

satisfies
f(min(Tl, Up),...,min(T,, Un)) . f(maX(Tl, Ur), ... ,max(T,, Un)) >
f(Ty,....T) - f(Ur,...,Uy),

for any two points (71, ...,7,) and (Uy,...,U,). The MTP, class is rather large, including
the multivariate normal with nonnegative correlations, the absolute-valued multivariate
normal with some specific covariance structures, multivariate gamma, absolute-valued
central multivariate ¢, and central multivariate F' distributions. Sarkar [1998] further
verifies that even the MTP, assumption of Proposition 1 is not necessary. The following
Section shows that the S test controls size for patterns of cross-sectional dependence that

are typically assumed in dynamic panel data models.

As emphasized for instance by Breitung and Pesaran [2008], it is important to properly
interpret test outcomes if the panel unit root null is rejected. Some tests have the alterna-
tive of a completely stationary panel [e.g., Levin et al., 2002], i.e. max; |¢;| < 1, suggesting
that a rejection of the null allows to conclude that the entire panel is stationary. However,
these panel tests also have power against ‘mixed’ panels, where only some fraction of the
units is actually stationary [see Taylor and Sarno, 1998; Boucher Breuer, McNown, and
Wallace, 2001]. To caution against unwarranted conclusions, it may therefore be more
appropriate to formulate panel unit root tests that have the more conservative alternative

that some nonzero fraction of the panel is stationary,
Hya 9wl € € Npyy, ni <

The S test belongs to this latter category, as is easily seen from the elementary relationship

Hy = Hf = (ﬂ Hi,o) = J Ho = | Hia,

1€EN, 1€EN, 1€N,



where ¢ denotes the complement and H; 4 the individual alternative |¢;| < 1.

Importantly, the S test is consistent, as T" — oo.

LEMMA 1.

If, for any given n < oo, |¢;| < 1 for at least one i € N,,, then limy_,o, P(S rejects) = 1.

Proof. Let 14 the index set of the wrong hypotheses. Under the maintained assumptions,
I, # @. Using consistent unit root test statistics to construct the p-values in S, there

exists some p;, j € 14, such that p; = pqy —p 0. Hence, limp_.o P(pq) < a/n) =1. O

Remark 1. Unlike other panel unit root tests [e.g., Im et al., 2003; Pesaran, 2007], the S
test does not require that ny/n — xk > 0 as n — oo for test consistency, see the proof
of Lemma 1. It does, however, require pn,,) = 0,(ns/n) as n,T — oo, for some ¢ € N,,,.

That is, the fraction of stationary series is allowed to tend to zero, but not too fast.

Existing panel unit root tests are not informative about the size of the fraction or the
identity of the cross section units that are stationary. Using the p-values from the S test,
one can easily determine those units in the panel for which the alternative can be said to
hold, once the null hypothesis is rejected. Hommel [1988; Sec. 2] proves that the following
procedure controls the FWER, i.e. the probability to falsely reject at least one true H; ,

at multiple level a whenever the S test is a level-a test for the intersection hypothesis.

HoOMMEL’S PROCEDURE

A. Compute
Jj=max{i € Ny, : pn_ipn) > ka/i for ke N;}. (4)

B1. If the maximum does not exist, reject all H; ¢ (i € N,,).

B2. If the maximum exists, reject all H; o with p; < a/j.

For concreteness, consider an illustrative example where n = 3. We find j as the largest ¢
such that all adjacent conditions in Table I hold. If j does not exist, then even p(,) < «, so
that we can ‘safely’ reject all hypotheses. If the p-values are given by, say, 3a//5, 2a, /5,
then j = 2 such that we only reject Hs .



TABLE I.—HOMMEL’S [1988] PROCEDURE FOR n = 3

i=1 k=1 pE_141)=Dm) >

1=2: k=1 D(—2+1) = P(n—1) > a/2
k=2 pa-2r2) =Dm) >

1=3: k=1 P(3-3+1) = D(1) >Oé/3
k=2 pE-si2) =pPmn-1) > 204/3

k=3 pE_zs = p()

3 Monte Carlo Evidence

This section investigates the size and power of the S test discussed in the previous section.
For comparison, we also include some other popular ‘second generation’ panel unit root

3 More specifically, we consider the tests put forward by Demetrescu et al. [2006]

tests.
(tp+x), Moon and Perron [2004] (¢; and t}), Pesaran [2007] (CIPS*, denoted C* here) and
Breitung and Das [2005] (¢.,5). (The Appendix provides a concise description of these
tests.) To gauge the effect of cross-sectional dependence on first generation panel unit

root tests, we also include the Fisher-type test of Maddala and Wu [1999], defined by
Po=-2%" In(p) 2 X2(2n).

We use the following simple data generating process:

Vit = i+ Ty ‘
(l eN,, te NT)
Tig = QiTig—1+ €y

We run the recursion for 30 initial observations before using the y; ; to mitigate the effect of
initial conditions under H,4. We consider two different schemes to generate cross-sectional

correlation among the error terms ¢; ;.
A. Equicorrelation: Let &€, = (€14,...,€nt). Then, g, ~ N (0, %), where X' = 1,2, +
(1 —=96)I, with 2, = (1,...,1)", (n x 1), and I,, the (n x n) identity matrix.

B. Factor Structure: €4 = X\; - vy + &4, where &, and v are i.i.d. N(0,1) and \; ~
U(—1,3), with U denoting the uniform distribution.

3See, e.g., Breitung and Pesaran [2008] or Gengenbach, Palm, and Urbain [2006] for comprehensive
recent surveys of panel unit root tests.



TABLE II.—SIZE RESULTS, u; = 0.

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation.

S .045 .040 .039 .040  .040 .040 .035 .038  .037 .037 .034 .032
P,» 179 181 178 172 219 230 .238 .232 288 .275 .286 .282
c* .059 .057 .064 .059  .056 .068 .066 .063  .073 .071 .072 .073
trob 115 .094 .092 .093  .057 .047 .043 .039  .060 .045 .043 .046
tp i .067 .060 .062 .056  .067 .071 .064 .060  .067 .067 .063 .066
tr 110 135 156 .167  .042 .132 .152 .166  .027 .045 .133 .136
ty .092 .106 .108 .106  .053 .104 .116 .119  .038 .053 .110 .098

B. Factor Structure

S .055 .056 .054 .048 .050 .055 .049 .052  .059 .053 .049 .052
P,» .068 .066 .066 .065  .084 .086 .088 .085  .123 .123 .125 .127
cr .043 .048 .050 .050  .045 .047 .049 .055 .054 .047 .052 .056
trob 126 .103 .096 .096  .067 .052 .053 .049  .069 .060 .058 .045
tpv w .063 .061 .061 .060 .064 .066 .070 .064 .079 .075 .073 .074
tr .052 .079 .115 .145  .021 .045 .077 .105  .012 .028 .053 .078
iy .068 .077 .084 .094 .051 .062 .069 .080  .048 .055 .061 .068

Rejection rates of the panel unit root tests at nominal level o = 0.05, using M = 5000
replications. In A, § = 0.98. S is Simes [1986] test, P2 is by Maddala and Wu [1999],
C* is by Pesaran [2007], ¢, is from Breitung and Das [2005], s« . is from Demetrescu
et al. [2006] and ¢} and ¢; are by Moon and Perron [2004].

When ¢, = (¢1,...,0) =1, Hy = (;en, Hio is true, allowing us to study the size of the
tests. Choosing ¢,, such that min; |¢,| < 1, we analyze power of the tests. More specif-
ically, we let ¢, = 0.95 X 2 to analyze a homogenous alternative and ¢, = (2, J2» q?é /2)’ ,
$n = (zén /4 (E[L /4)/ as well as ¢, = (Zn to investigate heterogeneous alternatives. The
components of $ are distributed as (%)z ~ U(3/4,1). When u; = 0 for all i € N,
we calculate n Dickey and Fuller [1979] 7-statistics from regressions of y;; on ;1. To
investigate the case with non-zero intercept, we simulate p; ~ U[0,0.2] and calculate
T-statistics from regressions of y;; on 1, yi,t,l.‘l The p-values are then calculated using

MacKinnon [1994]-type response surface regressions.

The major findings of our experiments, reported in Tables II to IV, can be summarized as

follows. The P,2, being a first generation test, exhibits an expected size distortion. The

4The results with intercept, which we do not report for brevity but which are available upon request,
are qualitatively similar to those to be reported below. As one would expect, fitting a constant results in
loss of power for the tests considered.



TABLE III.—POWER RESULTS FOR PARTIALLY
STATIONARY HETEROGENEOUS PANELS, u; = 0,

(5” = (7‘7/1/276572/2)/ AND (¢7n/2)i ~U(.75,1).

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation

S 158 .319 .835 1.000  .152 .339 .875 1.000 118 257 .801 1.000
C* 147 170 249 313 151 192 244 315 1420 171 229 284
trob 689 914 995 1.000  .738 .943 .999 1.000 642 903 .998 1.000
(T 293 512 888 987  .333 .591 .903  .985 255 449 842 962
tr 244 282 295 289 177 348 372 420 188 .226 .362  .363
iy 225 251 263 .245 170 .330 .344 .399 195 227 350 .343

B. Factor Structure

S 211 430 943 1.000  .252 .547 .989 1.000 202 434 974 1.000
c* 190 259 336 .386 210 .272 381 .459 221 276 373 474
trob 252 360 .640 .897 204 .344 .697 .956 176 316 .676 964
tp i 411 717 975 999 595 .892 .992 1.000 554 845 983 999
t, 194 263 339 364 153 253 .348 .386 154 253 395 463
iy 195 .232 272 279 189 .253 315 .329 235 293 388 430

Rejection rates of the panel unit root tests at nominal level a = 0.05, using M = 5000
replications. In A, § = 0.98. S is Simes [1986] test, C* is by Pesaran [2007], ¢,.,p is from
Breitung and Das [2005], ¢« . is from Demetrescu et al. [2006] and ¢} and ¢; are by Moon
and Perron [2004].

performance of the Moon and Perron [2004] tests is also not entirely satisfactory in many
configurations. In particular, they perform poorly under equicorrelation (for which they
are not designed, of course). The S test is a level-a test throughout, though it is slightly
conservative under equicorrelation (panel A). Its size is very accurate in the factor model
experiment (panel B). C* and t;, also perform very well throughout. The t,, test

controls size reasonably well, at least for T" and n sufficiently large.

Some results for the power experiments are reported in Tables III and IV. First, we
report results for ¢, = (2, /2> $7; /2)’ in Table III. In view of its substantial upward size
distortion, we do not report results for the P2 test. The excellent performance of the
Breitung and Das [2005] test in the heterogeneous scenario is noteworthy (though to some
extent due to its upward size distortion), as it is designed for homogenous alternatives (see

the Appendix). Similarly, the test by Demetrescu et al. [2006] delivers high power in the

present setup. For small 7', the power of the S test is somewhat lower than that of these



TABLE IV.—POWER RESULTS FOR PARTIALLY
STATIONARY HETEROGENEOUS PANELS, u; = 0,

B = (13,4 ®p1a) AND (Bruya)i ~U(.T5,1).

n 8 12 24
T 30 50 100 200 30 50 100 200 30 50 100 200

A. Equicorrelation

S .081 .128 .430 .959  .106 .216 .788 1.000 .080 .181 .753 1.000
cr .099 .107 .130 .145  .094 .100 .118 .134  .095 .104 .119 .135
trob .688 .882 .990 1.000  .528 .765 .944  .996 447 722 936 995
(T 106 .167 401 .708  .109 .169 .449 .699 095 .146 .336 .685
tr 128 .223 229 196 .089 .207 .216 .228 104 .108 209 .213
iy 120 189 178 144 .068 .158 .151 .160 095 .086 .169 .152

B. Factor Structure

S 107 184 543 1.000 142273 818 1.000 125 .250 .816 992
c* .095 .112 137 .184  .092 .106 .141 .171 094 123 .156 .166
rob 139 167 .267  .456 104 130 223 .430 101 125 222 482
tpe w 185 .300 .604  .880 220 379 .685 .891 235 397 723 .849
t, .069 .113 .156 .190 .057 .103 .148 .183 .040 .079 .152  .196
iy .089 .113 .128 .165 .086 .116 .134 .144 092 124 157 145

Rejection rates of the panel unit root tests at nominal level a = 0.05, using M = 5000
replications. In A, § = 0.98. S is Simes [1986] test, C* is by Pesaran [2007], ¢,.,p is from
Breitung and Das [2005], ¢« . is from Demetrescu et al. [2006] and ¢} and ¢; are by Moon
and Perron [2004].

two tests, although it outperforms the tests by Pesaran [2007] and Moon and Perron [2004],
whose power is rather disappointing here. That the S test has relatively lower power for
small 7" is not surprising since the p-values cannot yet be close to their probability limit
of 0 under the alternative. Hence, condition (3) is less likely to be satisfied. We feel that
this may well be a price worth paying in view of the S test’s additional ability to identify
individual false hypotheses. Moreover, for large 7', the power of the S test is highest

among all tests considered here.

Table IV increases the fraction of nonstationary series to 3/4 and further corroborates the
excellent performance of the S test. Of course, all tests are now uniformly less powerful.
However, it is noteworthy that the loss of power relative to Table III is smallest for the
S test; its performance is now the best among all tests considered for many practically

relevant configurations.’

5Results for the remaining power experiments described above, which were qualitatively similar, are



4 Applications

We now present an application of the tests discussed here to two longstanding questions
in empirical macroeconomics. First, we investigate the null hypothesis that there is a
unit root in the (logarithms of) GDPs in a panel of OECD countries. Second, we test for

stationarity in a panel of real exchange rate indices.

As should be clear from the previous discussion, any unit root test for which p-values are
available can be used to compute the S test. In order to maximize the ability of the S test
to reject a false null, preference should therefore be given to the most powerful time series
unit root tests available. The test regressions in the present PPP and GDP applications
are known to require an intercept and an intercept plus time trend, respectively. Thus,
the power of the tests can be increased by efficient GLS demeaning and detrending, using
the unit root tests proposed by Elliott, Rothenberg, and Stock [1996] (ERS). The limit
distributions of the ERS test statistics are functionals of Brownian motions that cannot be
evaluated analytically to obtain p-values. We therefore rely on response surface regressions
suggested by MacKinnon [1994, 1996] to obtain numerical distribution functions of the

test statistics.

4.1 GDP convergence

This subsection applies the panel unit root tests from the last section to logarithms of
annual real per capita GDP data of OECD countries. The data are from the Penn World
Tables 6.2.5 Testing for a unit root in real GDPs is important, because acceptance of the
null lends empirical support to certain real business-cycle models [see Nelson and Plosser,

1982]. Backus and Kehoe [1992] have established the stylized fact that real GDPs are

available upon request. The performance of the C* test improves markedly in the other scenarios, as
the average of the individual augmented ADF statistics is now of course more negative. Similar results
obtain for the Moon and Perron [2004] tests. For near-integrated homogenous alternatives, the power of
S test is relatively lower. This is unsurprising because we then have p(1) & p(,), and it is unlikely that
Pn) < a for ¢y, close to 2.

SWe consider those countries for which a complete record of observations on the variable denoted
RGDPCH from 1950 to 2004 is available, yielding a total of n = 23 series.

10



TABLE V.—PANEL UNIT RoOoT TESTS FOR THE GDP

PANEL
critical points
S PTurkey = 0.0001 0.002
trob 0.358 —1.64
Lo 4.082 —1.64
C* —2.674 —2.65

Nominal level is & = 0.05. S [Simes’ test] reports the p-
value and corresponding critical point for which condition
(3) holds. In the other rows, the last entry is the a level
critical value. ¢, from Breitung and Das [2005], t;« .
from Demetrescu et al. [2006] and C* is by Pesaran [2007].

cross-sectionally dependent. Thus, it is expedient to employ panel unit root tests robust

to cross-sectional correlation.

Table V reports the results of the panel unit root tests applied to the real GDP series.”

In line with many findings in the literature, the tests by Demetrescu et al. [2006] and
Breitung and Das [2005] do not reject the panel unit root null. The C* test indicates
some stationary series in the panel, as does the S test. Using the former, it would not be
clear how pervasive the evidence of stationarity actually is. For the latter, an application
of Hommel’s [1988] method yields an individual rejection for Turkey only. Thus, according
to the S test, we cannot reject the null hypothesis of a unit root in the real GDPs for the

vast majority of OECD countries.

4.2 Purchasing Power Parity

We now apply the tests to the relative Purchasing Power Parity (PPP) hypothesis. Let
pi+ be the (log) price index in country ¢ and period ¢, p; the ‘foreign’ (log) price index of
the reference country in the panel and s;,; the (log) nominal exchange rate between the

currencies of country ¢ and the reference country. The real exchange rate is then given by

Tit = Dit — Dy — Sit (1 €N, t € Np)

"In view of the finding of Moon and Perron [2004] that their tests only have trivial (local) power in
the presence of incidental trends we waive to report results for these.

11



TABLE VI..—DF-GLS*-p-VALUES FOR THE REAL
EXCHANGE RATE SERIES

country p-values Simes criterion
Argentina 0.0001 0.0026
Sweden 0.0001 0.0053
Norway 0.0001 0.0079
Mexico 0.0001 0.0105
Ttaly 0.0001 0.0132
Finland 0.0001 0.0158
France 0.0050 0.0184
Germany 0.0050 0.0211
Belgium 0.0050 0.0237
UK 0.0050 0.0263
Brazil 0.0175 0.0289
Australia 0.0175 0.0316
Netherlands 0.0200 0.0342
Portugal 0.0250 0.0368
Canada 0.0400 0.0395
Spain 0.0500 0.0421
Denmark 0.0575 0.0447
Switzerland 0.2375 0.0474
Japan 0.2475 0.0500

‘p-values’ are the marginal significance levels from
DF-GLS* time series unit root tests [Elliott et al., 1996].
‘Simes criterion’ is the value that needs to exceed the adja-
cent p-value in at least one case for a rejection of Hy, i.e. (3).

Testing the PPP hypothesis is naturally formulated [see Rogoff, 1996] as a unit root test
on the real exchange rate. We revisit the dataset used by Taylor [2002], which includes
annual data for the nominal exchange rate, CPI and the GDP deflator. The countries
contained in our panel are given in Table VI. We use the United States as the reference
country and report results using CPI price series. See Taylor [2002] for further details on

data sources and definitions.

We report results for the S test in Table VI. Obviously, condition (3) is satisfied, so that
the panel unit root null can be rejected. Table VII reports similar findings for the other

panel unit root tests considered here.

Applying Hommel’s [1988] method now allows us to identify those countries for which the
alternative of a real exchange rate can be said to hold, while controlling for multiplicity.

Using the results from Table VI and (4) we find j = 10. Thus, we can reject H;, for
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TABLE VII.—PANEL UNIT ROOT TESTS FOR THE REAL
EXCHANGE RATE PANEL

critical points

trob —3.703 —1.64
tpem —7.578 —1.64
CIPS —3.084 —2.16
c* ~3.077 —2.16
t —0.032 —1.64
tr —0.290 —1.64

Nominal level is @ = 0.05. The last column gives
the « level critical value. t,,, from Breitung and
Das [2005], tz-, from Demetrescu et al. [2006],
CIPS and C* are by Pesaran [2007] and ¢}, and ¢}
are from Moon and Perron [2004].

Argentina, Sweden, Norway, Mexico, Italy, Finland, France, Germany, Belgium and the

United Kingdom.

Let us compare these conclusions to those when employing the traditional strategy of
rejecting all those individual hypotheses whose corresponding p-value is less than a;, which
ignores the multiple nature of the testing problem. From Table VI we see that this method
would have rejected all individual null hypotheses except for Denmark, Switzerland and
Japan. The results of the Hommel [1988] procedure suggest that several of the additional
rejections may be spurious, i.e. solely due to the fact that the traditional approach does

not control the FWER.

5 Conclusion

This paper proposes a new test for a panel unit root against the alternative of a partially
stationary panel, making use of Simes’ [1986] classical test of the intersection null hypoth-
esis. The test is intuitive, straightforward to implement and yet robust to general patterns
of cross-sectional dependence. Monte Carlo simulations show that the new test compares
well in terms of finite sample size and power with recently proposed second generation
panel unit root tests. Importantly, unlike other tests, Simes’ [1986] approach allows to
shed light on the important question for how many and also which of the units in the

panel the alternative can be said to hold when the null hypothesis is rejected. Hence, the
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test suggested here allows researchers to decide, for each unit individually, whether it is
advisable to model the respective time series in levels or first differences. An application
to the questions of GDP convergence and real exchange rate stationarity demonstrates

the practical usefulness of the test.

Since implementation of the test only requires p-values of individual time series test statis-
tics, the framework put forward here is very flexible. For instance, it can be extended
rather easily to test for panel cointegration, the analysis of which is still at an earlier
stage of its development [Breitung and Pesaran, 2008]. As such, it could furthermore
be applied to other macroeconomic questions such as savings-investment correlation or
spot and forward exchange rates, that have hitherto been dealt with using other panel

techniques. This issue is currently under investigation by the author.
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Appendix

Here, we briefly sketch the panel unit root tests studied in section 3. For more detailed descrip-
tions we refer to the original contributions.

Pesaran [2007]

The basic setup of Pesaran [2007] is given by

£;
Yir = pi(l = pi) + piia—1 + Y biiAyie—j + i, (A1)
=1

where t € Ny, i € N, and p; € (—1,1]. He models cross-sectional dependence via a standard
normal common time effect #; which is allowed to affect the units of the panel heterogeneously:

uit = 00t + €y (A.2)

Pesaran [2007] shows that augmenting the usual ADF regressions by cross-sectional means of
the lagged level and of the lagged differences is sufficient for filtering out the effect of both serial
correlation and of the common factor 6;. That is, compute the t-statistic on b;, t;(n,T), in

) p
Ayt = a; +biyit—1 + cilfig—1 + Z dij Ay;t—j + Z Yij Alit—j + €it
=0 =0

for all i. Next, a panel test statistic obtains as C' = n=1 3" | t;(n,T). For our purposes, the
relevant critical values lie between —1.8 for (n,T") = (10,10) and —1.51 for (n,T") = (200, 200).
Pesaran [2007], motivated by concerns about the finiteness of the moments of ¢;(n,T), also
suggests a panel test using a truncated version of the t;(n,T), C* = n~! S tf(n,T). This

(2
test has the same critical values (in our application). Both tests reject for large negative values.

Moon and Perron [2004]

The tests put forward by Moon and Perron [2004] are able to accommodate patterns of cross-
sectional dependence which are driven by more that one common unobserved factor. That is,
the error from (A.2) in the panel model

Yig = 1i(1 = pi) + piiz—1 + tig (A.3)

becomes
Uit = >\§0t + €i¢, (A.4)

where A; and 6; are now (K X 1) vectors. Moon and Perron [2004] provide tests of the null

Ho:p;=1foralli against Hyx: p; <1 for some 1.
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The algorithm to compute the tests is summarized as follows. First, run a pooled OLS regression
on (A.3) under the null (setting p;(1 — p;) = 0 for all 7). Use the residuals 4;; to estimate
the (n x K) matrix of factor loadings A = (A1,...,A,)" by principal components. Denote this
estimate by A. We assume the number of factors to be known in our simulations, i.e. K = 1. Let
w= ((U11,-..,U17), .-, (lUn1,-..,Un7)). By projecting & onto the column space orthogonal to
the space spanned by the common factors, Q; = I — A(A’ A)_lA’ , obtain de-factored residuals
€ = 1uQ 4. Moon and Perron [2004] suggest the following adjusted pooled estimator

o w(YLQRY') — NTS
Ppool = tr(Y—lQAYll)

Here, tr denotes the trace and Y and Y_; are defined similarly as u, while ¢¢ is an estima-
tor of the average one-sided long-run variance of ¢;; computed from the de-factored residuals.
Similarly, &2 = n~! E:l VW2,

ot =n-1 Zl 1 w . The test statistics put forward by Moon and Perron [2004] are then defined

is some consistent estimator of the long-run variance of ¢;; and

as "
= \/ﬁT(ppool - 1)
a - ~
\/ 202 /we
and

We
2
e

tb - fT ppool \/NT2 1QAY7,1) : ¢2

Moon and Perron [2004] show that, as n,T — oo with n/T" — 0, t},t; —q N(0,1) under the
null, while ¢}, ¢; —, —oo under the alternative. Hence, we reject the null at 5% for realizations
smaller than —1.645.

Breitung and Das [2005]

Consider a panel model where the time series y;; are generated, for : € N,,, by
Ayit = i + pYit—1 + €t (A.5)

Breitung and Das [2005] work within a Seemingly Unrelated Regression framework to allow for
a very general type of cross-sectional error dependence. Stacking the individual equations yields

Ayl,t M1t Yi,t—-1 €1t
: = : +p : + :
Ayn,t Hnt Yn,t—1 Ent

or Ay, = i+ pyi—1-+e€t, where the vectors are now (nx 1). The fairly unrestricted error covariance
matrix F(ee;) = Q admits general patterns of cross-sectional dependence, essentially only being
required to satisfy weak moment restrictions and to have bounded eigenvalues. Hence, the use of
the Breitung and Das [2005] test allows to investigate whether results are sensitive to the factor
structure assumption on the error dependence implied by the tests outlined above. The null
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hypothesis of a panel unit root is Hy : p = 0 and is tested against the homogenous alternative
H, : p < 0. Breitung and Das [2005] propose the following statistic to test Hy:

. Zt 13/t 1Ay
'rob
\/Zt 1yt 1Qyt 1

where
T
Q= Z Aye — pye—1)(Ayr — pyr—1)".

In turn, p is obtained by first subtracting yo (the best estimate of y under the null) from y; and
running a pooled OLS regression of Ay;; on (yi+—1 — yi0). To account for serial correlation in
the time series, Breitung and Das [2005] suggest to ‘prewhiten’ the demeaned series by running
a preliminary regression of both Ay;; and y;:—1 on p lagged differences Ay;;—1,...,Ay;—p and
to use the respective residuals Zg\;; and yfz/_l to construct p and t,., as outlined above. The
lag order can be chosen by some information criterion. Breitung and Das [2005] show that, as
T — oo followed by n — 00, trep —a N (0,1) and ¢, —p —00 under the (non-local) alternative
p < 0. Hence, we reject the null at the 5% for realizations of t,.,, < —1.645.

Demetrescu et al. [2006]

Most of the tests outlined above first remove cross-sectional dependence from the data by de-
factoring and then apply some standard panel unit root tests. As an alternative, Demetrescu
et al. [2006] suggest reweighing the single-unit evidence for (non-)stationarity so as to take cross-
sectional dependence between the units into account when forming the panel test statistic. More
specifically, they model dependence among the time series test statistics. Their approach is an
extension of the inverse normal method used by Choi [2001] and, as such, tests the panel unit
root null against the alternative of a non-zero fraction of stationary series in the panel.

Consider the probits @ !(p;) =: t;. The p-values are obtained from the t-statistic on ¢; in
(heterogeneous) DF-regressions applied to (A.5). Demetrescu et al. [2006] use the approach of
Hartung [1999], who assumes constant correlation across the the panel units, i.e.

Cov(ti, tj) = p, for i #j, i,j € N,.

Hartung [1999] proposes to consistently estimate p by p* = max(—1/(n — 1),p), where p =
1—-1/(n—1)Y0  (t; —n 13" t;)? to form the following panel test statistic:

Z?:l ti

ot =) (54 w20 - )

Here, K = 0.1-(1+1/(n+1)—p*) is a parameter designed to improve the small sample behaviour
of the test statistic. Importantly, Demetrescu et al. [2006] show that the test’s performance is
robust to certain deviations from the constant correlation assumption. ¢z, —q N(0,1) under
the null. The test rejects for large negative values.

bpe s =
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