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Abstract

We construct uniform confidence bands for the regression function in inverse, ho-

moscedastic regression models with convolution-type operators. Here, the convolution is

between two non-periodic functions on the whole real line rather than between two period

functions on a compact interval, since the former situation arguably arises more often

in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 1071–1095] we

construct asymptotic confidence bands which are based on strong approximations and on

a limit theorem for the supremum of a stationary Gaussian process. Further, we pro-

pose bootstrap confidence bands based on the residual bootstrap. A simulation study

shows that the bootstrap confidence bands perform reasonably well for moderate sample

sizes. Finally, we apply our method to data from a gel electrophoresis experiment with

genetically engineered neuronal receptor subunits incubated with rat brain extract.
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1 Introduction

Suppose that at our disposal are observations (zk, Yk), k = −n, . . . , n, from the model

Yk = (Aθ)(zk) + ǫk, (1)

where zk = k/(nan), an → 0 for n→ ∞ are fixed design points, the ǫk’s are i.i.d. errors with

Eǫk = 0, Eǫ2k = σ2, Eǫ4k < ∞, and A is a linear, one-to-one convolution operator with some

known function Ψ,

(Aθ)(z) =

∫

R

Ψ(z − t) θ(t) dt.

The recovery of θ from the data (zk, Yk) in model (1) is a statistical inverse problem (e.g. Mair

& Ruymgaart, 1996) which is closely related to density deconvolution (e.g. Stefanski and Car-

roll, 1989; Fan, 1991; Delaigle & Gijbels, 2002). Note that in nonparametric deconvolution

regression models, it is typically assumed (e.g. Cavalier & Tsybakov, 2002) that the function

θ is periodic (say on [0, 1]), and that A is thus a convolution operator on [0, 1] with periodic Ψ.

In general, for reconstruction problems of astronomical and biological images from telescopic

and microscopic imaging devices which involves deconvolution, the assumption of periodicity

of both θ and Ψ is often unrealistic, since the object of interest (for example a galaxy, say, or

one single tissue cell) is not periodic. Neither is Ψ in such cases - rather it is a function (called

the ”point-spread-function”) which is quite well localized around 0 in many cases. Hence (1)

provides a more appropriate model in this context.

A specific application where the data can be modelled (approximately) by a one-dimensional

convolution operator is polyacrylamide gel electrophoresis. Here, the task is to seperate a

mixture of molecules (nuclein acids or proteins) according to their different molecular masses.

However, random effects such as diffusion in the gel result in a widening of these bands, which

complicates separation of bands of proteins with very similar masses. We will use bootstrap

confidence bands for deconvolution in order to decide whether a specific adaptor protein binds

to the wildtype of a neuronal receptor subunit but not to a mutant version of the receptor

subunit.

From a technical point-of-view, an additional difficulty in model (1) is that the reconstruction

of θ from g = Aθ at any location x on the real line requires (asymptotically) information on
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g on the full real line. Therefore, the design is chosen in the specific form with an additional

sequence an → 0, which ensures that the design points zk will asymptotically exhaust R.

Further note that model (1) is closely related to nonparametric errors-in-variables regression

model (cf. e.g. Fan and Truong, 1993, who determine convergence rates in a random design

errors-in-variables model).

The purpose of this paper is to construct uniform confidence bands for the unknown function

θ on a compact interval I, as well as to determine a uniform rate of convergence for cer-

tain estimators. In a pioneering work, Bickel and Rosenblatt (1973) constructed confidence

bands for a density function of i.i.d. observations, based on the asymptotic distribution of

the supremum of a centered kernel density estimator. Since then, their method has been

further developed both in the density estimation and also in a regression framework. For ex-

ample, Neumann (1998) investigates bootstrap confidence bands for densities. In a regression

context, Härdle (1989) constructed asymptotic confidence bands for M -smoothers. Eubank

and Speckman (1993) for the Nadaraya-Watson estimator and Xia (1998) for local polyno-

mial estimators, respectively, suggested confidence bands based on an explicit bias correction

and not on undersmoothing. Bootstrap confidence bands for nonparametric regression were

proposed by Hall (1993), Neumann and Polzehl (1998) and by Claeskens and van Keilegom

(2003). For the statistical inverse problem of deconvolution density estimation, Bissantz et

al. (2007) constructed asymptotic and bootstrap confidence bands. Here, we shall extend

these results to the case of inverse regression on the real line with convolution-type operators

in model (1).

In the following we propose a kernel-type estimator in model (1). Suppose that θ is p-times

continuously differentiable for some p ≥ 0. Under the assumption that ΦΨ(ω) 6= 0 for all

ω ∈ R and that Φk, the Fourier transform of the kernel k (which integrates to 1) has compact

support, the kernel deconvolution estimator for the jth derivative of θ, given by,

θ̂(j)
n (x) = θ̂

(j)
n,h(x) =

1

2π

∫

R

(−iω)je−iωxΦk(hω)
Φ̂g(ω)

ΦΨ(ω)
dω, 0 ≤ j ≤ p, (2)
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is well-defined. Here h > 0 is a smoothing parameter called the bandwidth, and Φ̂g is the

empirical Fourier transform of g defined by

Φ̂g(ω) =
1

nan

n∑

r=−n

Yre
iωzr .

In Section 2 we introduce the basic assumptions and present our asymptotic results for con-

structing confidence bands. However, it is well-known that convergence in the resulting limit

theorems is rather slow (Hall 1993). Therefore, we propose a bootstrap method based on

the residual bootstrap in section 3. The performance of these bootstrap confidence bands

is investigated in a simulation study in Section 4. In Section 5 we use bootstrap confidence

bands to analyze the results from a gel electrophoresis experiment with genetically engineered

neuronal receptor subunits. All proofs are deferred to an appendix.

2 Confidence bands for inverse regression

2.1 Regularity assumptions

From deconvolution density estimation, it is well-known that the optimal rate at which θ can

be estimated depends on the smoothness of θ as well as on the smoothness of the convolution

function Ψ, or equivalently on the tail properties of its Fourier transform. To fix the notation,

denote the Fourier transform of a function f by Φf (t) =
∫

R
f(x) exp(itx) dx. Roughly speak-

ing, Ψ is ordinary smooth and hence the inverse problem is mildly ill-posed if the Fourier

transform |ΦΨ(t)| decays at a polynomial rate as t → ∞, in which case the optimal rate for

estimating θ is also of polynomial order. In contrast, if |ΦΨ(t)| decays at an exponential rate

as t → ∞, Ψ is supersmooth and the problem is is called severely ill-posed, and the optimal

convergence rate for θ is typically only of logarithmic order. For details in the density estima-

tion context see Fan (1991) and Pensky and Vidakovic (1999), among others. In the following

we shall restrict ourselves to ordinary smooth Ψ, which yields a mildly ill-posed problem in

model (1).

More specifically, we shall assume that

ΦΨ(ω)ωβ → Cǫ, ω → ∞, (3)
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for some β ≥ 0 and Cǫ ∈ C \ {0}. Note that this implies that ΦΨ(ω)|ω|β → C̄ǫ, ω → −∞.

For example, if Ψ is the density of a Laplace distribution, we have ΦΨ(ω) = 1/(1 + ω2), and

assumption (3) holds with β = 2 and Cǫ = 1

The estimator θ̂
(j)
n can be written in kernel form as follows:

θ̂(j)
n (x) =

1

nhj+1an

n∑

r=−n

YrK
(j)

(
x− zr
h

;h

)
,

where the deconvolution kernel K(j)(z;h) is given by

K(j)(z;h) =
1

2π

∫

R

(−iω)je−iωz Φk(ω)

ΦΨ(ω/h)
dω, 0 ≤ j ≤ p. (4)

Now, if (3) holds, the deconvolution kernel K(j)(z;h) given in (4) has a simple asymptotic

form. In fact, from the dominated convergence theorem,

hβK(j)(z;h) → K(j)(z), h→ 0,

where

K(j)(z) =
1

2πCǫ

∫ ∞

0
(−iω)j exp(−iωz)ωβΦk(ω) dω

+
1

2πCǫ

∫ 0

−∞
(−iω)j exp(−iωz)|ω|βΦk(ω) dω, (5)

c.f. Bissantz et al. (2007). Note that the second term in (5) is the complex conjugate of

the first, so that K(j)(z) is in fact real-valued. This shall allow us e.g. to obtain an explicit

asymptotic formula for the pointwise variance of the estimator (2), which is proportional to

σ2/(nh2β+2j+1an).

In the following we list our exact assumptions which are required subsequently.

Assumption 1. The Fourier transform Φk of k is symmetric, three times differentiable and

supported on [−1, 1], Φk(ω) = 1 for ω ∈ [−c, c], c > 0, and |Φk(ω)| ≤ 1.

Assumption 2. A.
∫

R
|K(j+1)(z;h)||z|3/2(log log+ |z|)1/2 dz = O(h−β), where log log+ |z| =

0 if |z| < e, and log log+ |z| = log log |z|, otherwise.

B. For some δ > 0,

∫

R

|hβK(j+1)(z;h) −K(j+1)(z)||z|1/2(log log+ |z|)1/2 dz = O(h1/2+δ),

where K(j+1) is given in (5).
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C. Uniformly in z,

|hβK(j+1)(z;h) −K(j+1)(z)| = O(h1/2+δ).

D. The limit kernel K(j)(z) in (5) has exponentially decreasing tails.

Assumption 3. A. The Fourier transform Φθ of θ satisfies
∫

R

|Φθ(ω)||ω|s−1 dω <∞ for some s > p+ 1.

B. The function g = Kθ satisfies
∫

R

|g(z)||z|r dz <∞ for some r > 0.

Assumption 2 B. is technical refinement of (3), indeed, the limit kernel K(j) is required to

formulate it in the first place. For further discussion we refer to Bissantz et al. (2007).

2.2 Asymptotic confidence bands

In this section we construct asymptotic confidence bands for θ on compact intervals for ordi-

nary smooth Ψ and, as a byproduct, determine rates of uniform convergence of the estimator

(2). To facilitate a concise presentation we formulate the results for the interval [0, 1], however

the generalization to [a, b] ⊂ R is straightforward (by affine transformation). Similarly as in

Bickel and Rosenblatt (1973) we shall investigate the distribution of the supremum of the

process

Z(j)
n (x) =

n1/2hβ+j+1/2a
1/2
n

σ

(
θ̂(j)
n (x) − E[θ̂(j)

n (x)]
)
, x ∈ [0, 1].

Let ‖ · ‖I denote the sup-norm on an interval I ⊂ R. Next we state our main limit theorem.

Theorem 1. Let Assumption 1-3 hold, an → 0, h2δ log(n)/an → 0, h3a3
nn/ log(n)2 → ∞.

Then, for 0 ≤ j ≤ p,

P
(
(2 log(1/h))1/2(‖Z(j)

n ‖[0,1]/C
1/2
K,1 − dn) ≤ κ

)
→ exp(−2 exp(−κ)),

where

dn =
(
2 log(1/h)

)1/2
+

log
(

1
2πC

1/2
K,2

)

(
2 log(1/h)

)1/2
,

and

CK,1 =
1

2π|Cǫ|2
∫

R

ω2(β+j)Φ2
k(ω) dω, CK,2 =

∫
R
ω2(β+j+1)Φ2

k(ω) dω∫
R
ω2(β+j)Φ2

k(ω) dω
. (6)
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In order to construct confidence bands for θ(j) we have to deal with the bias of θ̂
(j)
n . In the

appendix we show that

max
x∈[0,1]

|Eθ̂(j)
n (x) − θ(j)

n (x)| = O
(
hs−j−1 + h−(β+j+1)ar

n

)
(7)

Note that in contrast to deconvolution density estimation, where the bias does not depend

on the error density, the order in (7) does depend on the index β of ΦΨ. As a consequence,

the additional bias term decays to zero the slower (if it converges at all), the larger β is.

However, by requiring that r in Assumption 3 is sufficiently large, we have that h−(β+j+1)ar
n =

o
(
hs−j−1

)
. This holds e.g. for convolution with a Laplace density and if θ is a function of

compact support or exponential decay of its tails. This condition appears to be rather natural

for practical applications, where the signal θ to be reconstructed is of limited extend in space

or time, e.g. in microscopic or telescopic imaging, to mention only a few examples.

Next we give uniform confidence bands for the problem under consideration. To this end,

assume that σ̂2 is an estimator of the variance σ2 with rate oP ((log(1/h))−1) (cf. e.g. Munk

et al., 2005), where h is the bandwidth used to estimate θ.

Corollary 2. Let σ̂2 be an estimator of σ2 with convergence rate oP ((log(1/h))−1). Under

the assumptions of Theorem 1, nh2(β+j)+1an/ log(1/h) → ∞ and log(1/h) · (nh2(β+s)−1an +

nh−1a1+2r
n ) → 0, we have

P
(
θ̂(j)
n (x) − bn(x, κ) ≤ θ(j)(x) ≤ θ̂(j)

n (x) + bn(x, κ) for all t ∈ [0, 1]
)
→ exp(−2 exp(−κ)),

where

bn(x, κ) =

(
σ̂2CK,1

nh2(β+j)+1an

)1/2 (
κ

(2 log(1/h))1/2
+ dn

)
.

Remark 1. The width of the bands is (log(1/h)/nh2(β+j)+1an)1/2. Hence the first condition

in Corollary 2 ensures that this width converges to zero. Undersmoothing in order to correct

for the bias requires that, as n→ ∞ and an, h→ 0 we need to have log(1/h) · (nh2(β+s)−1an +

nh−1a1+2r
n ) → 0. These two conditions can be met simultaneously since s > p+ 1 and j ≤ p.

As discussed previously, this can e.g. be achieved if the signal θ has compact support, or

exponentially decaying tails outside of some compact interval, or the interfering convolution

function Ψ has exponential tails, such as the density of a Laplace distribution.
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As a further corollary we obtain rates of uniform convergence of the estimator θ̂(j).

Corollary 3. Let the assumptions of Theorem 1 be fulfilled. If additionally

nh2β+2s−1an

log h−1
= O(1),

nh−1a2r+1
n

log h−1
= O(1), (8)

then the estimator θ̂(j) has uniform convergence rate

sup
x∈[0,1]

|θ̂(j)(x) − θ(j)(x)| = OP

( log h−1

nh2β+2j+1an

)1/2
.

3 Bootstrap confidence bands

It is well known, both from simulations as well as from theoretical investigations (Hall, 1993),

that the rate of convergence in Theorem 1 is rather slow and hence that the resulting confi-

dence bands perform rather poorly in terms of coverage probability. Therefore, bootstrapping

is a popular alternative to construct confidence bands. For direct density estimation, Hall

(1993) investigated the rate of convergence for the simple N-N bootstrap via the Edgeworth

expansion. Neumann (1998) constructed direct strong approximations for the bootstrap pro-

cess. For indirect density estimation, Bissantz et al. (2007) used a simple argument via strong

approximation of the empirical process to show consistency of the bootstrap procedure. In

the context of regression, Neumann and Pohlzehl (1998) used the wild bootstrap in a het-

eroscedastic regression model allowing both fixed and random design, and Claeskens and van

Keilegom (2003) used the smooth bootstrap (for the actual observations, not the residuals)

for homoscedastic likelihood regression models with random design. Both prove consistency

of the resulting bootstrap procedures, with arguments relying on the strong approximation

of the bootstrap processes.

In our indirect regression model with fixed design and homoscedastic errors, the standard

choice is the residual bootstrap (Hall 1992). Therefore, in the following we propose a boot-

strap procedure based on the residual bootstrap. Since the bootstrapping procedure requires

the residuals, we shall concentrate on estimation of the function θ itself (and not its deriva-

tives, for which additional estimation of θ would be required). Consider the residuals

ǫ̃i = Yi − ĝn(zi),
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where

ĝn(x) =
(
Aθ̂n

)
(x) =

1

nan h

n∑

r=−n

Yrk
(x− zr

h

)
,

and h has to be chosen for estimation of θ (and not its derivatives). When bootstrapping

from the centered versions of the residuals ǫ̃i, due to boundary problems one typically does

not use those residuals which are obtained at points zi close to the boundary. Now, since

under Assumption 1, the kernel k has compactly supported Fourier transform, it cannot

itself have compact support. Nevertheless, typically k will be rapidly decreasing in the tails.

Therefore, it is reasonable to use only those ǫ̃i for which for some η > 0 with say η > 2h,

−a−1
n + η ≤ zi ≤ a−1

n − η, i.e. for the indices −(n− ηann) ≤ i ≤ (n− ηann). For those i set

ǫ̂i = ǫ̃i −
1

[2n(1 − ηan)]

∑

i

ǫ̃i, (9)

where the sum is taken over −(n−ηann) ≤ i ≤ (n−ηann). Now draw with replacement from

the ǫ̂i a bootstrap sample of residuals ǫ∗−n, . . . , ǫ
∗
n. A bootstrap approximation to the process

Z
(j)
n,5(x) is given by

Z(j)∗
n (x) =

n1/2hβ+j+1/2a
1/2
n

σ̂∗

n∑

r=−n

ǫ∗r K
(j)

(
x− zr
h

;h

)
,

where σ̂∗ is computed as σ̂ but from the bootstrap observations Y ∗
i = ĝn(zi) + ǫ∗i . Let q∗1−α

denote the α-quantile of supx∈[0,1] |Z
(j),∗
n (x)|, conditional on the original observations. The

bootstrap confidence band for Eθ̂n (and for θ in case of undersmoothing) is given by

[
θ̂n(x) − σ̂ q∗1−α

n1/2hβ+1/2a
1/2
n

, θ̂n(x) +
σ̂ q∗1−α

n1/2hβ+1/2a
1/2
n

]
, x ∈ [0, 1].

Remark. A formal proof of the consistency of the residual bootstrap for constructing confi-

dence bands remains an open problem. Neumann and Pohlzehl (1998) showed the consistency

of the wild bootstrap for constructing confidence bands in (direct) nonparametric regression

models. We suspect that a similar result for the wild bootstrap could be derived in our set-

ting, however, simulations indicated that in our homoscedastic setup, the residual bootstrap

outperforms the wild bootstrap. Therefore, we do not pursue this issue further.
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4 Simulations

In this section we investigate the performance of the bootstrap confidence bands in a simu-

lation study. In Sections 4.1 and 4.2, respectively, we discuss the simulation framework and

the selection of a suitable bandwidth for the estimator on which the confidence bands are

based. Then, in Section 4.3, we present the results of our simulation study, where we assume

the convolution function ψ to be known, and finally, in Section 4.4, some results for the case

of miss-specified convolution function ψ.

4.1 Simulation framework

We simulate from model (1), where the noise terms εk are i.i.d. centered normal with variance

σ2, and the design points are zk = k
nan

, k = −n, . . . , n for certain samples sizes 2n+ 1.

For the unknown regression function we take

θ1(x) = e−
(x−1.1)2

2·0.64 and

θ2(x) = e−
(x−0.2)2

2·0.09 + 1.2 · e−
(x−0.85)2

2·0.04 .

Most of the region where these two functions significantly deviate from 0 is in the interval

[−4, 4], and we will hence use an = 0.25 in the subsequent simulations. In general, in an

application, it is also recommendable to choose an such that the largest part of the region of

the x-axis where the signal deviates significantly from 0 is captured, but to avoid an excessively

small value an to avoid a large number of observations which are essentially just noise.

Moreover, in the main part of our simulations the convolution function is

ψ(x) =
λ

2
e−λ|x|,

where λ = 3. Thus, its scale is of similar magnitude as those of the regression functions θ1

and θ2.

In all simulations we determined the actual coverage probability and confidence band area

from 200 randomly generated data sets according to model (1). For each of these random

datasets, uniform confidence bands for the function θ(x) on the interval of interest [0, 1] were

determined from a residual bootstrap with 400 replications. Here, the sampling distribution
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for the residuals was estimated from the re-centered residuals computed for observations with

|zk| ≤ 1
an

− 2.01h (cf. eq. (9)).

4.2 Bandwidth selection

We now discuss the selection of the bandwidth h for estimator (2). It is well-known that

the simulated coverage probabilities and confidence band areas are sensitive to a suitable

selection of the bandwidth in the case of deconvolution problems (cf. Bissantz et al., 2007).

Fig. 1 shows the simulated coverage probabilities and band areas for 90% nominal coverage

probability in case of the Gaussian function of interest θ1 (left) and the bimodal function θ2

(right). In both cases the sample size is 2n + 1 = 201, the standard deviation of the noise

σ = 0.1 and an = 0.25, i.e. the observations sample the interval [−4, 4]. The effective coverage

probability of the confidence band is significantly below the nominal coverage probability for

bandwidths larger than approximately the L∞-optimal bandwidth, which can be determined

from the figure as the location of the minimum of the mean sup-distance between estimates

and the true functions θ1 and θ2, respectively. This effect is due to the increase in the

bias with increasing bandwidth, which results in a decrease in coverage propability. On

the other hand, the mean area of the bootstrap confidence bands increases strongly with

decreasing bandwidth due to the increasing variance. Hence, a suitable choice of bandwidth

is the largest bandwidth, for which the effective coverage probability still matches its nominal

value, at least approximately. Fig. 1 indicates that a suitable bandwidth is slightly smaller

than the L∞-optimal bandwidth, which is consistent with the idea of undersmoothing.

Estimation of the L∞-optimal bandwidth (or some slightly smaller value) is not straightfor-

ward, as the true function θ(x) used to produce the dotted curves in Fig. 1 is obviously not

known in practice. However, a suitable choice for the bandwidth is possible with the L∞-

based bandwidth selector introduced by Bissantz et al. (2007) for the density deconvolution

case. In short, its idea is to replace the problem of determining the bandwidth with smallest

mean sup-distance between estimates and true (and in practice unknown) function θ by the

problem of determing the largest bandwidth, for which the sup-distance between estimates

for two subsequent bandwidth values is above a certain threshold value. This approach is
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Figure 1: Average width and coverage probability of confidence bands with a nominal coverage

probability of 90% for the Gaussian function θ1 (left) and the bimodal function θ2 (right).

Solid lines represent simulated coverage probabilities from 200 simulations, dashed lines 1.5×

the mean area of these bootstrap confidence bands on the interval of interest [0, 1], and dotted

lines the mean sup-distance between estimates and the true functions θ1 and θ2, respectively.

In the case of θ1 the sup-distance has been multiplied by 10. Finally, circles indicate the

bandwidth values considered to select the bandwidth for the subsequent simulations.

based on the observation that estimates computed with the spectral estimator (2) exhibit

strongly increasing oscillations for bandwidths even only moderately below the L∞-optimal

bandwidth. In our simulations it turned out that considering 12 different bandwidths (indi-

cated by the small circles in Fig. 1), covering an order of magnitude in value, is sufficient to

allow for satisfying confidence band properties, as discussed below.

Finally, Fig. 2 shows 90% nominal coverage probability confidence bands for the estimates

θ̂(x) of the Gaussian and the bimodal functions of interest θ1 and θ2, respectively, from

2n + 1 = 201 observations based on data with σ = 0.1 and an = 0.25 and the bandwidth

selected by the L∞-optimal bandwidth selector. Note that the confidence bands are only

valid for the interval [0, 1], but have been continued throughout the plot.
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Figure 2: Estimate θ̂n(x) and associated 90% nominal coverage probability residual bootstrap

confidence bands (solid lines) for the Gaussian function θ1 (left) and the bimodal function θ2

(right). Dashed lines represent the true functions θ1 and θ2, respectively.

4.3 Simulated coverage probabilities and confidence band areas for boot-

strap confidence bands

In this Section we discuss the results of the main part of our simulation study, where we

assume the convolution function ψ to be known as required for our asymptotic results in

Section 2.2. For each combination of the parameters n, σ and regression functions θ1, θ2 we

first determined a suitable bandwidth h for estimator (2) from the L∞-bandwidth estimator

outlined in the preceeding Section and detailed in Bissantz et al. (2007). Table 1 shows the

results for simulations with the unimodal function θ1. The confidence bands perform rather

well with respect to the coverage probabilities and the confidence band widths, which are

significantly smaller for sample size 2n + 1 = 2001 than for 2n + 1 = 201. Moreover, the

bands for an = 0.25 are narrower by a factor of nearly 2 than for an = 0.1 which is due

to the fact that a smaller value of an implies a larger interval covered by the design points.

In consequence, the number of observations within the interval of interest [0, 1] effectively

decreases. On the other hand, determination of the empirical Fourier transform of g = Aθ

13



n σ 80% nominal cov. 90% nominal cov. 95% nominal cov.

Cov. prob. Width Cov. prob. Width Cov. prob. Width

100 0.5 79.0 0.216 87.5 0.258 95.0 0.293

100 0.1 78.0 0.085 88.5 0.100 94.0 0.113

1000 0.5 79.5 0.139 90.5 0.163 95.5 0.184

1000 0.1 76.5 0.041 86.5 0.048 92.5 0.054

Table 1: Simulated coverage probabilities and confidence band widths for the Gaussian func-

tion θ1.

n σ 80% nominal cov. 90% nominal cov. 95% nominal cov.

Cov. prob. Width Cov. prob. Width Cov. prob. Width

100 0.1 63.0 0.231 76.5 0.268 82.0 0.299

100 0.02 56.0 0.081 75.5 0.093 83.5 0.104

1000 0.1 74.5 0.131 90.5 0.152 95.0 0.169

1000 0.02 79.5 0.054 91.5 0.062 96.5 0.069

Table 2: Simulated coverage probabilities and confidence band widths for the bimodal function

θ2.
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Setting 80% nominal cov. 90% nominal cov. 95% nominal cov.

Cov.prob. Width Cov.prob. Width Cov.prob. Width

5% underestimated 76.0 0.071 84.5 0.084 90.0 0.094

5% overestimated 79.0 0.060 89.0 0.071 92.5 0.080

Lap., miss-specified as Gauss. 78.0 0.090 86.5 0.106 92.0 0.120

Gauss., miss-specified as Lap. 74.5 0.086 87.0 0.101 92.0 0.114

Table 3: Simulated coverage probabilities and confidence band widths for various settings of

miss-specifications for the convolution density ψ. In all cases, 2n + 1 = 201, σ = 0.1 and

an = 0.25.

benefits from a larger interval covered by the design points, which implies that some trade-off

has to be made in order to fix an in practical applications. Now turn to Table 2 which shows

the results obtained from simulations with the bimodal function θ2. The bands do not perform

as well as for the unimodal function θ1, particularly for sample size 2n + 1 = 201, since the

shorter scale of variation of θ2 along the x−axis implies a stronger impact of bias at given

bandwidth. This also implies that some simulations performed with an = 0.1 (not shown)

produced unsatisfactory results. However, for a suitably chosen value of an the confidence

bands appear useful for the bimodal function θ2, even for the smaller of the sample sizes

considered, as is also indicated by Fig. 2.

4.4 Robustness and missspecification of ψ

In practical applications, the convolution function ψ is often not fully known. Hence, in the

final part of the simulations we have considered some typical cases of miss-specification of the

function ψ:

• The width (or standard deviation if ψ is a density) of the convolution function ψ may

be miss-specified. Hence we performed simulations where the standard deviation of ψ

is over- or underestimated by 5%, respectively.

• The geometric shape of the function ψ may only be approximately known. We consid-
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ered both the case that ψ is in fact Gaussian with variance 2/9, i.e. the errors of x are

normally distributed, but specified as Laplace with same variance in the data analysis,

and the reverse case, where ψ is the Laplace density but miss-specified as Gaussian with

same variance 2/9.

Table 3 shows the results of these simulations. Whereas in all of these miss-specifiation

scenarios our asymptotic theory for the confidence bands does not hold, the simulation results

are quite satisfactory with simulated coverage probabilities close to their nominal values and

confidence band width about 20 − 80% larger than for ψ correctly specified (cf. the results

in Table 1). Hence, the bootstrap confidence bands appear to be well-suited for practical

applications, as soon as the convolution function ψ is at least approximately known.

5 Gel electrophoresis of genetically engineered neuronal re-

ceptor subunits

5.1 Experimental setup

In this section we apply our methods to data from a gel electrophoresis experiment. These

are usually carried out to separate dna, rna or protein molecules according to their molecular

weight and charge in the electrical field for analytical purposes or as preparative technique

for the subsequent application of other techniques as for example mass spectrometry or PCR.

A short summary of gel electrophoresis is as follows. A sample containing the molecules of

interest in solution is applied to a plane gel of polyacrylamide and exposed to an electric field

along the gel that drives migration of the molecules through pores in the gel. Thereby, small

low weight molecules move faster through the pores than large molecules. According to their

charge and weight migrating molecules are focused as a band at a certain distance from the

starting point in the gel.

Figure 3 shows the result of a gel electrophoresis of genetically engineered neuronal receptor

subunits incubated with rat brain extract to capture other proteins that specifically bind

to the wildtype (left lane) but not to the mutated receptor (middle) lane. The right lane

shows a standard, mono-constituent sample of the adapter protein. A sample containing
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Figure 3: Result from a gel electrophoresis experiment with genetically engineered neuronal

receptor subunits incubated with rat brain. Lanes are for wildtype receptor, mutante receptor

and a standard molecule (from left to right).

the receptor and other protein bound to it in solution was applied on a 10% polyacrylamide

gel and subjected to a electrical field of 1A/cm2 for 60 min. Negatively charged proteins

moved from the starting point to the bottom of the gel. Thereby, the smaller receptor

tail moves faster than the adaptor protein binding to it. The most intense band near the

17



0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

−−> (Direction of movement of the molecules in the gel)

In
te

ns
ity

Figure 4: Intensity profiles and associated 90% bootstrap confidence bands for wildtype and

mutante in the gel electrophoresis experiment discussed in the text. Solid lines show the

distribution for the wildtype, and dashed lines for the mutante.

bottom of the gel depictures the receptor tail and the upper band is the binding adaptor

protein. Intensity of the bands is according to the amount of protein in it. As one can see

the wildtype receptor subunit binds a higher amount of adaptor protein than the mutated

receptor subunit. Therefore, binding of the adaptor protein should occur specifically to a

certain amino acid sequence in the wildtype receptor (left lane in Fig. 3) that was mutated in

the middle lane. The weak band above the mutant receptor appears to be slightly offset the

migration height of the adaptor protein, and may therefore be due to some different molecule.

In the sample containing the wildtype receptor this band may be overlayed by the band of

the adaptor protein binding to the receptor. However, all bands in this experiment show a

certain width. This is due to random effects such as diffusion, that affects all molecules in

the solution, and furthermore due to the unavoidable biodegradation of proteins over time,

which results in molecules of masses very close, but not identical, to the original protein. In
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order to make a firm conclusion if the weak line in the mutante probably is offset in position

(and hence differs in molecular mass from the adaptor protein), this broadening of the lines

has to be removed.

5.2 Statistical model and analysis

In our subsequent analysis we model the data as follows. Since the large extension of the

protein bands perpendicular to the movement of the molecules is due to the width of the lane

where the solution was applied at the starting point of the gel, we integrate the signal for each

sample along this direction. The resulting profile (along the direction of movement) can then

be closely modeled by a one-dimensional convolution of the form (1), where the covariable x

is the distance from the starting point of a lane to the position under consideration, and the

response is the signal integrated orthogonal to the direction of the x-coordinate.

As mentioned above, the right lane shows the band produced by a standard molecule of fixed

weight. For our subsequent analysis we model the line-spread function Ψ(x), which models the

way a protein band is widended due to random effects as the density of a Laplace distribution.

This assumption appears safe given the simulation results shown in Section 4, which show

that the bootstrap confidence bands are robust against a moderate miss-specification of the

convolution function Ψ(x). We estimate the parameter λ of Ψ(x) from the profile of the

standard molecule, which was to this end again integrated perpendicular to the direction of

movement.

Fig. 4 shows estimates of the profiles for the wildtype receptor and the mutated receptor,

together with 90%-bootstrap confidence bands from 100 bootstrap replications.

In order to compute the estimator we used a ν-method with ν = 1 and 40 iterations. Note that

this corresponds to a slightly different form of the estimator (2). Indeed, the regularization of

the inverse 1/ΦΨ is not achieved by multiplication with a function of compact support leading

to ΦK(hω)/ΦΨ(ω), but rather by using a general regularization approach F (ΦΨ;α)(ω) which

converges to 1/ΦΨ(ω) as α→ 0 (for further details see Bissantz et al. 2007). The reason is that

regularization by the ν method performs better for capturing the steep peaks in the regression

function as shown in Fig. 4. A small simulation study with the bimodal test function used in
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Section 4 was performed to validate the bootstrap confidence bands with regularization based

on the ν-method numerically; indeed they are somewhat anticonservative with simulated

coverage probabilities of 68%, 79% and 85% for nominal coverage probabilities 80%, 90% and

95%, respectively.

From the deconvolved profiles it is straightforward to conclude that the weak band above the

mutated receptor is clearly offset from the strong band visible above the wildtype receptor,

whereas other bands in the profiles are not offset which excludes an inhomogeneous electric

force (and hence speed of molecular motion) as explanation for this offset. Hence, we conclude

that the weak band corresponds to a protein molecule different from the intense band of the

adaptor protein binding to the wildtype receptor. Very probably the molecule resulting in

the weak band above the receptor subunit mutant is also present as a weak band above the

wildtype receptor, but this band is overlayed by the more intense band of the adaptor protein.

From these results we conclude that the adaptor protein specifically binds to an amino acid

sequence present in the wildtype receptor subunit but not in the mutant subunit.

6 Conclusions

In order to assess the precision of statistical estimators, it is essential to construct accompany-

ing confidence intervals or even confidence bands. In this paper, we introduced a kernel-type

estimator for a noisy nonparametric regression problem, which requires an additional decon-

volution, and construct a uniform confidence band for such an estimator. We also discuss an

application to a gel electrophoresis experiment.

Generally speaking, such deconvolution techniques should find broad application in the re-

construction of images from fluorescence microscopy at the nanoscale. These experiments

invariably include the observation of inherently stochastic phenomena with substantial mea-

surement error. This measurement error is often ignored in practice leaving some experimental

conclusions in doubt.

Constructing confidence intervals and bands is a well-studied problem in direct nonparametric

regression and density estimation problems, but there are few examples for inverse estimation

problems. Therefore, extensions of our results to other models such as positron emission
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tomography should be studied in the future. Furthermore, the problem of (non-) adaptivity

of confidence intervals or bands in nonparametric estimation problems (cf. Genovese and

Wasserman 2008) will certainly apply to our indirect estimation problem as well. These can

be overcome under certain shape restrictions (Dümbgen 2003). Therefore, the introduction

of shape-restrictions in inverse problems seems to be particularly promising.
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7 Appendix: Proofs

Proof of Theorem 1: Following Bickel and Rosenblatt (1973) and Eubank and Speckman (1993), our

proof is based on an approximation of Z
(j)
n by a Gaussian process which does not depend on the true

regression function θ. We shall use the following strong approximation result for sums of i.i.d. random

variables.

Lemma 4. (Csörgo and Revesz, 1981) There exists a Wiener process W1 on [0,∞) such that

|Sn −W1(n)| = O (δn) a.s.,

where δn := (n log log(n))1/4(log(n))1/2, Sn =
∑n

j=1 εj and ε1, ε2, . . . i.i.d. with E[εj ] = 0, E[ε2j ] = 1

and E[ε4j ] <∞.

To keep the proof more transparent we split the approximation of the process Z
(j)
n (t) into several steps,

assume σ2 = 1, and consider only the observations r = 1, . . . , n. The desired results then immediately

follow from repeating the same steps for the observations r = −n, . . . , 0. Note that

Z(j)
n (x) = n1/2hβ+1/2a1/2

n

n∑

r=1

1

nhan
εrK

(j)

(
x− zr

h
;h

)

and let

Z
(j)
n,1(x) =

n−3/2hβ−3/2

a
3/2
n

n∑

r=1

K(j+1)

(
x− zr

h
;h

)
W1(r) + n−1/2hβ−1/2a−1/2

n K(j)

(
x− zn

h
;h

)
W1(n).

Lemma 5. Under Assumptions 1 and 2.A

‖Z(j)
n − Z

(j)
n,1‖[0,1] = op

(
(log(n))−1/2

)
.

Proof. Setting S0 = 0, from a Taylor expansion we have with intermediate points ξr ∈ [(x−zr)/h, (x−
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zr+1)/h] that

Z(j)
n (x) = n−1/2hβ−1/2a−1/2

n

n∑

r=1

K(j)

(
x− zr

h
;h

)
(Sr − Sr−1)

= n−1/2hβ−1/2a−1/2
n

{
n−1∑

r=1

(
zr+1 − zr

h

)
K(j+1)

(
x− zr

h
;h

)
Sr

− 1

2

n−1∑

j=1

(
zr+1 − zr

h

)2

K(j+2) (ξr;h)Sr






+n−1/2hβ−1/2a−1/2
n K(j)

(
x− zn

h
;h

)
Sn

= n−3/2hβ−3/2a−3/2
n

n−1∑

r=1

K(j+1)

(
x− zr

h
;h

)
Sr

−2−1 n−5/2hβ−5/2a−5/2
n

n−1∑

r=1

K(j+2) (ξr;h)Sr

+n−1/2hβ−1/2a−1/2
n K(j)

(
x− zn

h
;h

)
Sn

Taking the difference of Z
(j)
n (x) and Z

(j)
n,1(x) we estimate

|Z(j)
n (x) − Z

(j)
n,1(x)| =

∣∣∣n−3/2hβ−3/2a−3/2
n

n−1∑

r=1

K(j+1)

(
x− zr

h
;h

)
(Sr −W1(r))

∣∣∣

+
∣∣∣2−1 n−5/2hβ−5/2a−5/2

n

n−1∑

j=1

K(j+2) (ξr;h)Sr

∣∣∣

+
∣∣∣n−1/2hβ−1/2a−1/2

n K(j)

(
x− zn

h
;h

)
(Sn −W1(n))

∣∣∣.

= I + II + III.

Then

I ≤ n−3/2hβ−3/2a−3/2
n max

1≤u≤n
|Su −W1(u)|

n−1∑

r=1

∣∣∣∣K
(j+1)

(
x− zr

h
;h

)∣∣∣∣

= Op(δnn
−1/2hβ−3/2a−1/2

n )
( ∫ 1/an

0

∣∣∣∣K
(j+1)

(
x− s

h
;h

)∣∣∣∣ ds+O
(
h−β (nan)−1

) )

= Op

(
(log(log(n)))

1/4
(log(n))1/2

(
n−1/4h−1/2a−1/2

n + n−5/4h−3/2a−3/2
n

))
,

since by Assumption 2,

∫ 1/an

0

∣∣∣∣K
(j+1)

(
x− s

h
;h

)∣∣∣∣ ds = h

1/(han)∫

0

∣∣∣K(j+1)
(x
h
− s;h

)∣∣∣ ds = O(h1−β)

and for every j ≥ 0,

∣∣∣hβK(j)(x)
∣∣∣ =

∣∣∣∣
hβ

2π

∫

R

(−iω)je−iωx Φk(ω)

ΦΨ(ω/h)
dω

∣∣∣∣ ≤
1

πCε

∫
|ω|j+β |Φk(ω)|dω = C∗ <∞,
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so that

|K(j)(x;h)| = O(h−β) uniformly in x. (10)

Further, we have

II =
n−5/2hβ−5/2a

−5/2
n

2

n−1∑

r=1

K(j+2) (ξr)Sr = Op(n
−1h−5/2a−5/2

n ),

by using (10) and

E

n∑

r=1

|Sr| ≤
n∑

r=1

√
Var(Sr) =

n∑

r=1

√
r = O

(
n3/2

)
.

Finally,

III = O
(
n−1/2h−1/2a−1/2

n |Sn −W1(n)|
)

= OP

(
n−1/4h−1/2 (log(log(n)))

1/4
(log(n))1/2a−1/2

n

)
.

We further introduce the processes

Z
(j)
n,2(x) = hβ−1/2

∫ 1
an

0

K(j)

(
x− s

h
;h

)
dW (s),

Z
(j)
n,3(x) = h−1/2
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0

K(j)

(
x− s

h

)
dW (s),

Z
(j)
n,4(x) = h−1/2

∞∫

0

K(j)

(
x− s

h

)
dW (s),

Lemma 6. Under Assumptions 1 and 2,

Zn,1(x)
d
= Zn,2(x) +Op

(
(h an)−3/2

√
log(n)/(

√
n)

)
.

Proof. We have

Z
(j)
n,1(x)

d
= n−1a−3/2

n hβ−3/2
n∑

r=1

K(j+1)

(
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h
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( r
n

)

+hβ−1/2a1/2
n K(j)

(
x− zn

h
;h

)
W

(
1

n

)
(11)

For the first term on the right in (11), using the modulus of continuity of Brownian motion on [0, 1]

and (10), we get

n−1a−3/2
n hβ−3/2

n∑
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h
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)
W

( r
n

)

= hβ−3/2a−3/2
n

∫ 1

0

K(j+1)

(
x− u/an

h
;h

)
W (u) du+Op

(
(h an)−3/2

√
log(n)/(

√
n)

)
. (12)
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Further, for the integral in (12) we compute

hβ−3/2a−3/2
n
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and recollecting the second term on the right in (11) and changing scale as well to W (1/an), we get
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which together with the remainder estimate in (12) yields the lemma.

Lemma 7. Under Assumptions 2 B., C.,

‖Z(j)
n,2 − Z

(j)
n,3‖[0,1] = oP ((log(n))−1/2).

Proof. Estimate
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= OP (hδ),

from Assumption 2 B. and the law of the iterated logarithm for Brownian motion. For II we have

from Assumption 2 C. and the law of the iterated logarithm for Brownian motion

II ≤ OP (hδa−1/2
n | log log an|1/2).
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Lemma 8. Under Assumption 2.B

‖Z(j)
n,3 − Z

(j)
n,4‖[0,1] = op

(
(log(n))−1/2

)
.

Proof.

∣∣Z(j)
n,4(x) − Z

(j)
n,3(x)

∣∣ =
∣∣∣h−1/2

∫ ∞

1/an

K(j)

(
x− s

h

)
dW (s)

∣∣∣

≤ h−1/2

∫ (x−a−1
n )/h

−∞

∣∣K(j+1) (u)W (x− hu)
∣∣ du

+
∣∣∣h−1/2K(j)

(
x− 1/an

h

)
W (1/an)

∣∣∣

= OP

(
h−1/2 exp(− 1

anh
)
)
.

by Assumption 2 D. and yet another application of the law of the iterated logarithm for the Wiener

process.

Proof of theorem 1: The theorem now follows from Lemmas 5-8 and an application of Theorem/Corollary

A.1 in Bickel & Rosenblatt (1993) to the process Z
(j)
n,4(x).

Proof of (7). Due to Assumption 3, θ and hence also g is continuously differentiable with bounded

derivative. Thus,

Eθ̂(j)n (x) =
1

2πnhj+1an

n∑

r=−n

g(zr)

∞∫

−∞

(−iω)je−
iω(x−zr)

h
Φk(ω)

ΦΨ

(
ω
h

)dω

=
1

2πhj+1

∫ ∞

−∞

(−iω)je
−iωx

h
Φk(ω)

ΦΨ

(
ω
h

)
(
An(ω) +O

(
(nan)−1

))
dω,

where

An(ω) =

1/an∫

−1/an

e
iωy

h g(y)dy = ΦΨ

(ω
h

)
Φθ

(ω
h

)
−

∫

(−∞,−1/an]∪[1/an,∞)

eiωy/hg(y)dy.

Therefore,

θ(j)(x) − E
(
θ̂(j)n (x)

)

=
1

2πhj+1

∞∫

−∞

(−iω)je
−iωx

h
Φk(ω)

ΦΨ

(
ω
h

) ·
( −1/an∫

−∞

e
iωy

h g(y)dy +

∞∫

1/an

e
iωy

h g(y)dy
)
dω

+
1

2πhj+1

∞∫

−∞

(−iω)je
−iωx

h (1 − Φk(ω))Φθ (ω/h) dω +O
(
n−1h−(j+β+1)a−1

n

)

= I + II +O
(
n−1h−(j+β+1)a−1

n

)
,
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since

1

2πhj+1

∫ ∞

−∞

|ω|j |Φk(ω)|
|ΦΨ(ω/h)|dω ≤ c

2πhj+1

1∫

−1

|ω|β+j

hβ
dω = O(h−(β+j+1)),

using Assumption 1. From Assumption 3.A

|I| = o
(
hs−j−1

)
.

Moreover, from Assumption 3.B

∣∣∣
−1/an∫

−∞

e
iyω

h g(y)dy +

∞∫

1/an

e
iyω

h g(y)dy
∣∣∣ ≤

∫

(−∞,−1/an]∪[1/an,∞)

|g(y)|dy = O((1/an)−r).

so that

|II| ≤ 1

2πhj+1

∣∣∣
∞∫

−∞

(−iω)je
−iωx

h
Φk(ω)

ΦΨ

(
ω
h

)
∣∣∣
∣∣∣

−1/an∫

−∞

e
iyω

h g(y)dy +

∞∫

1/an

e
iyω

h g(y)dy
∣∣∣dω,

= O
(
h−(β+j+1)ar

n

)
, (13)

Collecting all the terms, the bias can be estimated as O
(
hs−j−1 + h−(β+j+1)ar

n

)
, uniformly in x.

Proof of Corollary 2: Consider the processes

Z
(j)
n,5(x) =

n1/2hβ+j+1/2a
1/2
n

σ̂

(
θ̂(j)n (x) − E[θ̂(j)n (x)]

)
,

Z
(j)
n,6(x) =

n1/2hβ+j+1/2a
1/2
n

σ̂

(
θ̂(j)n (x) − θ(j)(x)

)
.

From Theorem 1, ‖Z(j)
n ‖[0,1] = OP

(
(log(1/h))1/2

)
. Since

Z(j)
n (t) − Z

(j)
n,5(t) =

σ̂ − σ

σ̂
Z(j)

n (t),

we conclude that ‖Z(j)
n (x) − Z

(j)
n,5‖[0,1] = oP

(
(log(1/h))−1/2

)
. Moreover, using (7), we have uniformly

for x ∈ [0, 1],

|Z(j)
n,5(x) − Z

(j)
n,6(x)| =

n1/2hβ+j+1/2a
1/2
n

σ̂
|E[θ̂(j)n (x)] − θ(j)(x)|

= OP (n1/2hβ+s−1/2a1/2
n + n1/2h−1/2a1/2+r

n ).

Therefore the conclusions of Theorem 1 also remain valid for the process Z
(j)
n,6(x), and corollary 2

follows from rearranging the terms.

28



Proof of Corollary 3: We split the supremum in two parts,

sup
x∈[0,1]

|θ̂(j)(x) − θ(j)(x)| ≤ sup
x∈[0,1]

|θ̂(j)(x) − E[θ̂(j)(x)]| + sup
x∈[0,1]

|E[θ̂(j)(x)] − θ(j)(x)|

= An,j +Bn,j

and estimate both parts separately. Note, that with the notation of Theorem 1 and

Tn,j = (2 log h−1)1/2(||Z(j)
n ||[0,1] − dn)

we have

An,j =
( Tn,j

(2 log h−1)1/2
+ dn

)( CK,1

nh2β+2j+1an

)1/2

.

Theorem 1 yields the convergence in distribution of Tn. Therefore Tn,j = OP (1) (see e.g. Shao, Tu,

1996, p. 449) and with the definition of dn

An,j = OP

( 1

nh2β+2j+1an log h−1

)1/2

+OP

( log h−1

nh2β+2j+1an

)1/2

= OP

( log n

nh2β+2j+1an

)1/2

.

Now, it remains to estimate Bn,j . The estimate of the rate of the bias derived in the proof of corollary

2 shows, that the bias can be estimated uniformly in x by

E[θ̂(j)(x)] − θ(j)(x) = OP

(
hs−j−1 + h−(β+j+1)ar

n

)

and hence, with assumption (8) we have

Bn,j = OP

( log h−1

nh2β+2j+1an

)1/2

which finishes the proof of Corollary 3.
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