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Abstract

If a model is fitted to empirical data, bias can arise from terms which are not incorpo-
rated in the model assumptions. As a consequence the commonly used optimality criteria
based on the generalized variance of the estimate of the model parameters may not lead
to efficient designs for the statistical analysis. In this note some general aspects of all-bias
designs are presented, which were introduced in this context by Box and Draper (1959). We
establish sufficient conditions such that a given design is an all-bias design and illustrate
these in the special case of spline regression models. In particular our results generalize
recent findings of Woods and Lewis (2006).
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1 Introduction

Linear regression models of the form

Y = βT f(1)(x) + ε(1.1)
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are widely used in statistical applications to predict a continuous response Y from the explanatory

variable x. If n independent observation (xi, Yi)
n
i=1 are available, the model parameters are

often estimated by the least squares technique, and a good experimental design advises the

experimenter to choose the experimental conditions x1, . . . , xn such that statistical analysis can

be performed most efficiently. Many criteria for such a choice are based on the minimization of the

generalized variance of the estimators in the linear regression model (1.1) and include the well

known D-, A- and E-optimality criterion [see e.g. Kiefer (1974), Silvey (1980) or Pukelsheim

(1993)]. This approach has been criticized by many authors, because the “optimal” designs

are constructed under a specific stated model assumption [namely the linear regression model

(1.1)] and do not offer the opportunity for the experimenter to check if the model assumptions

are violated [see e.g. Box and Draper (1959), Stigler (1971), Läuter (1974), Studden (1982)

or Dette (1990), Pukelsheim and Rosenberger (1992) among many others]. Moreover, in some

cases “classical” optimal designs do not reflect the particular goals of the experiment such as

prediction or interpolation, because the criteria focus on a precise estimation of the parameters,

and in linear models the parameters often have no specific interpretation.

Box and Draper (1959) demonstrated the importance of being able to take a possible bias into

account for the construction of efficient experimental designs if the model assumptions are ques-

tionable. In their pioneering work these authors argued that a criterion minimizing the difference

between the expected predicted response from the assumed model and the expected response

from the “true” model would better reflect the demands of the experimenter. Nowadays such

designs are known as all-bias designs and have found considerable interest in the statistical lit-

erature [see e.g. Ermakov and Sedunov (1974), Welch (1983), Galil and Kiefer (1977), Ermakov

and Melas (1995), Yue and Hickernell (1999), Woods (2005) and Woods and Lewis (2006) among

many others].

In the present paper we investigate some further aspects of all-bias designs. In Section 2 we

introduce some basic terminology. We present sufficient conditions for all-bias designs, which

relate the statistical problem of design construction to a problem from numerical analysis, which

has a long history in mathematics: the determination of quadrature formulas for numerical

integration [see e.g. de Boor (1978)]. It is demonstrated that the knots of such quadrature

formulas yield all-bias designs, and consequently the results of this well established and elegant

theory can be used for the construction of experimental designs. For this purpose we discuss an

alternative method of estimation which is different from least squares estimation and commonly

applied in series estimation [see e.g. Efromovich (1999), p. 121]. In Section 3 we illustrate

the results of Section 2 in the context of spline regression models. In particular some of the

recent findings of Woods and Lewis (2006) are put in the context of numerical quadrature and

generalized in several directions.
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2 All-bias designs and direct estimation

Consider the linear regression model (1.1), with the explanatory variable varying in the interval

[a, b], that is

E[Y (x)] = βT f(1)(x) ; x ∈ [a, b](2.1)

where f(1)(x) = (f1(x), . . . , fk1(x))T denotes a vector of k1 ∈ N linearly independent regression

functions on the interval [a, b], β = (β1, . . . , βk1))
T is a vector of unknown parameters, and

different observations are assumed to be uncorrelated with common variance σ2 > 0. Following

Box and Draper (1959) we consider the “true” model

E[Y (x)] = βT f(1)(x) + γT f(2)(x) ,(2.2)

where γ = (γ1, . . . , γk2)
T and f(2)(x) = (fk1+1(x), . . . , fk1+k2(x))T are a further vector of param-

eters and regression functions, respectively, such that the functions f1, . . . , fk1+k2 are linearly

independent on the interval [a, b]. In other words γT f(2)(x) denotes the deviation of the “true”

model from the model assumed by the experimenter. In what follows we denote by Ŷ (x) a pre-

diction of the response at experimental condition x using least squares estimation (an alternative

estimate will be discussed below) and define

B =
n

σ2

∫ b

a

(E[Ŷ (x)]− E[Y (x)])2λ(x)dx(2.3)

as the average squared bias over the design interval [a, b], which results from using the model

(2.1) instead of the true model (2.2) for prediction. In equation (2.3) the function λ : [a, b] → R
denotes a non-negative weight function, normalized such that

∫ b

a
λ(x)dx = 1, and n is the size

of the sample which is available for the prediction. If a ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ b denote the

predictors corresponding to these uncorrelated observations, then an all-bias design minimizes

the expression B in (2.3) with respect to the points {x1, . . . , xn}. It was shown by Box and Draper

(1959) that in the case of least squares estimation this minimization problem is equivalent to

minimizing the expression

n

σ2
γT (M−1

11 M12 − µ−1
11 µ12)

T µ11(M
−1
11 M12 − µ−1

11 µ12)γ ,(2.4)

where

Mij =
1

n
XT

i Xj ∈ Rki×kj ; i, j = 1, 2(2.5)

XT
i =

[
f(i)(x1), . . . , f(i)(xn)

] ∈ Rki×n; i = 1, 2(2.6)

µij =

∫ b

a

fi(x)fj(x)λ(x)dx ∈ Rki×kj ; i, j = 1, 2 .(2.7)
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Let x̃1, . . . , x̃k denote the distinct values among x1, . . . , xn and define M̃ij as the matrix obtained

from the definition (2.5) for the points x̃1, . . . , x̃k, then a straightforward calculation shows that

M̃−1
11 M̃12 = M−1

11 M12 ,

and consequently the value B of the all-bias criterion cannot be diminished by taking repeated

observations (note that this fact is intuitively obvious, because the all-bias criterion refers to the

bias and not to the variance). Therefore we assume in the following discussion a ≤ x1 < x2 <

. . . < xn ≤ b, and denote a design of this form by

ξ = {x1, . . . , xn} ; a ≤ x1 < x2 < . . . < xn ≤ b .(2.8)

The design ξ is called all-bias design for least squares estimation, if it minimizes the expression

(2.3) [or equivalently (2.4)], where Ŷ (x) = β̂T f(1)(x) and β̂ is the least square estimate in the

assumed model (2.1). All-bias designs for other estimates are defined in a similar manner. Recall

the definition XT
(1) = (fi(xj))

j=1,...,n
i=1,...,k1

, then the least squares estimate for the parameter β in the

linear regression model (2.1) is given by β̂ = (XT
(1)X(1))

−1XT
(1)Y , where Y = (Y1, . . . , Yn)T denotes

the vector of responses, and it is easy to see that a design ξ = {x1, . . . , xn} is an all-bias design

if and only if the identity

E[β̂] = β + M−1
11 M12γ = β(2.9)

holds, where the matrices M11 and M12 are defined in (2.5) [see e.g. Ermakov and Sedunov

(1974)]. The following example shows that in some cases the concept of all-bias designs can yield

to designs which are not too useful for practical applications.

Example 2.1. Consider the polynomial regression model of degree k1 − 1 for the model (2.1),

that is f(1)(x) = (1, x, . . . , xk1−1)T and an extension by piecewise polynomials for (2.2), i.e.

f(2)(x) = ((x − t1)
k1−1
+ , . . . , (x − tk2)

k1−1
+ )T where a < t1 < . . . < tk2 < b are given knots and

λ(x) = I[a,b](x)/(b − a). Obviously we have for any design ξ satisfying a ≤ x1 < . . . < xn ≤ t1

f(2)(xj) = 0 (j = 1, . . . , n), which implies XT
(2) = 0 ∈ Rk2×n, M12 = 0, and consequently E[β̂] = β.

In other words: any design with predictors located in the interval [a, t1] is an all-bias design for

the spline regression model.

Although the design found in Example 2.1 is not of particular importance from a practical point

of view, it indicates that in some cases the all-bias criterion yield to designs with problematic

properties for applications. The following result gives an alternative characterization of all-bias

designs. A proof can be found in Ermakov and Melas (1995).

Lemma 2.2. A design ξ = {x1, . . . , xn} is an all-bias design if and only if the condition

S(ξ)u = u(2.10)

4



holds for all vectors of the form u = (u1, . . . , uk1 , 0, . . . , 0)T ∈ Rk1+k2, where the matrix S(ξ)

corresponds to the orthogonal projection onto the subspace.

L = span

{(
f(1)(x1)

f(2)(x1)
, . . . ,

f(1)(xn)

f(2)(xn)

)}
.(2.11)

Example 2.3. Consider the polynomial regression model of degree k1 − 1, that is f(1)(x) =

(1, x, . . . , xk1−1)T and its extension to a model of degree k1+k2−1, i.e. f(2)(x) = (xk1 , . . . , xk1+k2−1)

[see Stigler (1971) or Studden (1982)]. Any design ξ = {x1, . . . , xk1+k2} with k1 + k2 distinct

points yields L = Rk1+k2 and as a consequence S(ξ) = Ik1+k2 . Therefore condition (2.10) is

obviously satisfied and any design with k1 + k2 different points is an all-bias design.

In practical applications the all-bias designs derived in Example 2.1 and 2.3 are of no practical

interest. Similarly, the concept of all-bias designs does not help substantially to discriminate

between competing designs for polynomial regression models. In the following discussion we

would like to develop a formal construction of particular all-bias designs which avoids solutions

of this type. The basic idea is to introduce an alternative method of estimating the coefficients

in the linear regression model (2.1). For these estimates the problem of determining all-bias

designs becomes equivalent to the problem of determining quadrature formulas for numerical

integration, which has no trivial solutions of the form described in Example 2.1 and 2.3. Finally

we show that the resulting non-trivial all-bias design are also all-bias if least squares estimation

is used.

For this purpose we define ψ1, ψ2, . . . , ψk1+k2 as the functions obtained by orthonormalizing the

regression functions f1, f2, . . . , fk1+k2 with respect to the measure λ(x)dx, that is

∫ b

a

ψi(x)ψj(x)λ(x)dx = δij ; i, j = 1, . . . , k1 + k2 ,(2.12)

where δij denotes Kronecker’s delta. Obviously, if ψ(1)(x) = (ψ1(x), . . . , ψk1(x))T , ψ(2)(x) =

(ψk1+1(x), . . . , ψk1+k2(x))T , there exist vectors β ∈ Rk1 and γ ∈ Rk2 such that

µ(x) = βT f(1)(x) + γT f(2)(x) = β
T
ψ(1)(x) + γT ψ(2)(x) ,(2.13)

and it is easy to see that the change of the basis does not change the value B defined in (2.3).

For a given design ξ = {x1, . . . , xn} we define an alternative class of estimates, which we call

“direct” estimates, i.e.

β̃ =
n∑

j=1

δjψ(1)(xj)Yj ,(2.14)
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where Yj = Y (xj) denotes the jth observation under experimental condition xj (j = 1, . . . , n),

and the real coefficients δ1, . . . , δn will be specified later. The estimate of the form (2.14) is mo-

tivated from series estimation in nonparametric regression [see Efromovich (1999), p. 121] where

an L2-approximation of the function µ in (2.13) is constructed using the regression functions of

model (2.1), that is

µ∗(x) =

k1∑
i=1

(∫ b

a

µ(x)ψi(x)λ(x)dx

)
ψi(x) = β

T
ψ(1)(x) .(2.15)

The minimal value

min
a1,...,ak1

∫ b

a

[µ(x)−
k1∑

j=1

ajψj(x)]2λ(x)dx(2.16)

corresponding to µ∗ is given by ‖γ‖2
2 (which follows by a standard calculation). For an arbitrary

estimate of the form (2.14) it follows that the L2-distance of the difference between the expected

predicted response and the expected response of the “true” model is given by

B =

∫ b

a

[
µ(x)−

k1∑
i=1

(
n∑

j=1

µ(xj)ψi(xj)δj

)
ψi(x)

]2

λ(x)dx ≥ ‖ γ ‖2
2 ,(2.17)

where the symbol B reflects the fact that a direct estimate has been used for prediction. A

simple calculation shows that there is equality in (2.16) if an only if the identities

∫ b

a

ψi(x)ψj(x)λ(x)dx =
n∑

`=1

ψi(x`)ψj(x`)δ`(2.18)

hold for all i = 1, . . . , k1; j = 1, 2, . . . , k1 + k2, or equivalently

∫ b

a

fi(x)fj(x)λ(x)dx =
n∑

`=1

fi(x`)fj(x`)δ`(2.19)

for all i = 1, . . . , k1; j = 1, 2, . . . , k1 + k2 (note that the functions {ψi|i = 1, . . . , k1 + k2} and

{fi|i = 1, . . . , k1 + k2} generate the same space). Condition (2.19) means that there exists a

quadrature formula with knots x1, . . . , xn, which integrates the functions {fifj|i = 1, . . . , k1; j =

1, . . . , k1 + k2} exactly [see e.g. de Boor (1978), Engels (1980) or Gizzetti and Ossicini (1970)].

The following result now relates the problem of determining all-bias designs to the problem of

constructing quadrature formulas.

Proposition 2.4. Consider the linear regression model (2.1) and its extension (2.2), where

direct estimates of the form (2.14) are used for estimating the parameters corresponding to f(1).

A design ξ = {x1, . . . , xn} is an all-bias design (i.e. it minimizes the quantity B defined in (2.16)
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if and only if there exists weights δ1, . . . , δn such that the quadrature formula with knots x1, . . . , xn

and weights δ1, . . . , δn is exact for the functions {fi(x)fj(x) | i = 1, . . . , k1; j = 1, . . . , k1 + k2}.

Note that Proposition 2.4 refers to the application of direct estimators of the form (2.14), and

in the following discussion we will explore the relations between estimators of the form (2.14)

and the least square estimates. For this purpose it is useful to recall the concept of approximate

designs. Following Kiefer (1974) an approximate optimal design is defined as a probability

measure η with finite support, say x1, . . . , xn, and positive weights w1, . . . , wn at these points

satisfying
∑n

i=1 wi = 1 (here we assume that the xi are distinct and ordered). The weights wi

represent the relative proportion of total observations taken at the points xi (i = 1, . . . , n). If N

observations can be made, the experimenter takes approximately ri ≈ Nwi observations at each

xi (i = 1, . . . , n), such that
∑n

i=1 ri = N . The information matrix of an approximate design η in

the extended regression model (2.2) is defined by

M(η) =
n∑

i=1

wif(xi)f
T (xi) .(2.20)

If Y i· denotes the mean of the observations taken at experimental condition xi(i = 1, . . . , n), the

direct estimate is defined by

β̃ =
n∑

j=1

δjψ(1)(xj)Y i· .(2.21)

Theorem 2.5. In the linear regression models (2.1) and (2.2) the following assertions are

correct:

(i) If least squares estimation is used in model (2.1), then condition (2.18) is a sufficient

condition such that the design ξ = {x1, . . . , xn} is an all bias design.

(ii) If direct estimates are used in model (2.1), then condition (2.18) is a necessary and suffi-

cient such that the design ξ = {x1, . . . , xn} is an all-bias design.

(iii) The least squares estimate for the orthonormalized regression model βT ψ(1)(x) coincides

with the direct estimate (2.14) if condition (2.18) is satisfied with δi = 1
n

i = 1, . . . , n. In

this case we have B =‖ γ ‖2
2 and

E

{∫ b

a

[µ(x)− β̃T ψ(1)(x)]2λ(x)dx

}
= ‖γ‖2

2 +
k2

n
σ2

(iv) If η is an approximate design with weights wi = ri/N at the points xi (i = 1, . . . , n), then the

direct estimator (2.21) and the least squares estimate coincide if the design ξ = {x1, . . . , xn}
satisfies (2.18).
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Proof. The first part has been established in Ermakov and Sedunov (1974). In order to prove

(ii) define β′ = E[β̃], where β̃ is the direct estimate of β defined in (2.14), then a straightforward

calculation shows that

B =

∫ b

a

[µ(x)− β′ψ(2)(x)]2λ(x)dx =‖ γ ‖2
2 + ‖ β − β′ ‖2

2 .(2.22)

Consequently, we have B =‖ γ ‖2
2 if β = β′, which implies (observing (2.14))

β = β′ =
n∑

j=1

µ(xj)ψ(1)(xj)δj = G

(
β

γ

)
,(2.23)

where the matrix G is given by

G =

(
n∑

j=1

ψ`(xj)ψi(xj)δj

)`=1,...,k1+k2

i=1,...,k1

.(2.24)

This implies that G = (Ik1

... 0), where Ik1 is the k1 × k1 unit matrix and 0 is the k1 × k2 matrix

with all entries equal to 0. Consequently condition (2.18) is necessary and sufficient.

For a proof of part (iii) we use the definition of ZT
(1) = (fi(xj))

j=1,...,n
i=1,...,k1

. If ξ = {x1, . . . , xn}
denotes a design such that (2.18) is satisfied with δj = 1

n
(j = 1, . . . , n) then ZT

(1)Z(1) = nIk1 .

This implies for the least squares estimate in the orthonormalized regression model

β̂ = (ZT
(1)Z(1))

−1ZT
(1)Y =

1

n
ZT

(1)Y =
1

n

n∑
j=1

ψ(1)(xj)Yj = β̃ .(2.25)

Finally the representation of the mean squared error follows by a straightforward calculation

observing the orthonormality of the functions ψi with respect to the measure δ(x) dx and (2.17).

2

The main implication of Theorem 2.5 is the following. Any quadrature formula satisfying (2.17)

generates an all bias design for least squares and direct estimation. Moreover, from the basic

properties of numerical integration it follows that trivial solutions as indicated by Example 2.1

and 2.3 can be avoided by using all-bias designs derived from quadrature formulas. Moreover,

for quadrature formulas with equal weight the least squares and direct estimate coincide. Thus

from the well-known results from numerical integration one can easily derive non-trivial all-bias

designs, and we will illustrate this in the following section for spline regression models.
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3 Spline regression models

Spline models represent an attractive class of regression models because of their ability of ap-

proximating a curve with different degrees of smoothness at different locations [see e.g. De Boor

(1978) or Diercx (1995)]. Several authors have investigated optimal design problems for spline

regression models using optimality criteria based on the predicted variance [see e.g. Studden

and Van Arman (1969), Studden (1971), Murty (1971), Park (1978), Kaishev (1989) or Heiligers

(1998) among others]. Recently Woods (2005) and also Woods and Lewis (2006) considered

the problem of constructing all-bias designs for maximally smooth splines, and we will illustrate

potential applications of the discussion in Section 2 for these models.

To be precise we consider the models (2.1) and (2.2) where the vectors

fT
(1)(x) = (1, x, . . . , xd−1, (x− t1)

d−1
+ , . . . , (x− t`)

d
+)T ,(3.1)

fT
(2)(x) = ((x− u1)

d−1
+ , . . . , (x− uk)

d−1
+ )T ,(3.2)

correspond to a maximally smooth spline of degree d− 1, the design interval is given by [a, b] =

[−1, 1] and the pairwise different knots t1, . . . , t`, u1, . . . , uk satisfy a < t1 < . . . < t` < b; a <

u1 < . . . < uk < b. The motivation for considering models of this type stems from the fact that

in practical applications the number of knots cannot be fixed in advance [see Woods and Lewis

(2006)]. We consider the all-bias criterion (2.3) with weight function λ(x) = 1
2
I[−1,1](x). Recently

Woods and Lewis (2006) determined all-bias designs in this context using the condition (2.18)

with δj = 1/n (j = 1, . . . , n). In the following we will present more general results about all-bias

designs for spline regression models using quadrature formulas which have not necessarily equal

weights.

For this purpose we note that k1 = d + `, k2 = k and define by

λ0 = a < λ1 < λ2 < . . . < λ`+k < λ`+k+1 = 1(3.3)

the ordered knots t1, . . . , t`, u1, . . . , uk. For a given design ξ = {x1, . . . , xn} we consider the

numbers nj of points located in the interval [λj−1, λj] (j = 1, . . . , ` + k + 1), that is

a = λ0 ≤ x1 < x2 < . . . < xn1 ≤ λ1

λ1 ≤ xn1+1 < . . . < xn1+n2 ≤ λ2

...(3.4)

λ`+k ≤ xn1+...+n`+k+1 < . . . xn1+...+n`+k+1
≤ λ`+k+1 = b

(note that n1 + . . . n`+k+1 = n) and obtain the following result.
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Theorem 3.1. Consider a design ξ = {x1, . . . , xn} of the form (3.4) such that for each j =

1, . . . , ` + k + 1 the points (n0 = 0)

xn0+...+nj−1+1 < xn0+...+nj−1+2 < . . . < xn0+...+nj
(3.5)

define a quadrature formula which integrates polynomials of degree 2d− 2 exactly on the interval

[λj−1, λj]. The design ξ is an all-bias design for the spline regression model (3.1) and (3.2).

Proof. Note that on the interval [λj−1, λj] (j = 1, . . . , ` + k + 1) the functions fi(x)fj(x) are

polynomials of degree 2d − 2. Because each set of design points {xn0+...+nj−1+1, . . . , xn0+...+nj
}

corresponds to a quadrature formula, which integrates polynomials of degree 2d−2 exactly, there

exists weights δ1, . . . , δn such that for each j = 1, . . . , ` + k + 1 the identity

∫ λj

λj−1

fi(x)fh(x)dx =

n0+...+nj∑
s=n0+...+nj−1+1

δsfi(xs)fh(xs) ; i, h = 1, . . . , k1 + k(3.6)

is satisfied. This implies

∫ 1

−1

fi(x)fh(x)dx =
n∑

s=1

δsfi(xs)fh(xs) ; i, h = 1, . . . , k1 + k ,(3.7)

and shows that condition (2.18) is satisfied. The assertion now follows from Theorem 2.5. 2

Theorem 3.2. Let z1, . . . , zd denote the roots of the dth Legendre polynomial orthogonal with

respect to the measure 1
2

dx on the interval [−1, 1], define n1 = . . . = n`+k+1 = d, n = (`+k+1) d,

then the design ξ = {x1, . . . , xn} with

x1 =
λ1 − λ0

2
z1 +

λ1 + λ0

2
, . . . , xd =

λ1 − λ0

2
zd +

λ1 + λ0

2

xd+1 =
λ2 − λ1

2
z1 +

λ2 + λ1

2
, . . . , x2d =

λ2 − λ1

2
zd +

λ2 + λ1

2
...

x(k+`)d+1 =
λk+`+1 − λk+`

2
z1 +

λk+`+1 + λk+`

2
, . . . , x(k+`+1)d =

λk+`+1 − λk+`

2
zd +

λk+`+1 + λk+`

2

is an all-bias design for the spline regression model (3.1) and (3.2).

Proof. It is well known [see e.g. Ghizetti and Ossicini (1970)] that the roots z1, . . . , zd of the

dth Legendre polynomial define a quadrature formula, which integrates polynomials of degree

2d− 2 on the interval [−1, 1] exactly, i.e. there exists weights δ1, . . . , δd such that the identities

1

2

∫ 1

−1

tjdt =
d∑

s=1

zj
sδs(3.8)
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are satisfied for j = 1, . . . , 2d − 2. A straightforward calculation now shows that for any a < b

the transformed points zi = b−a
z

zi + b+a
2

(i = 1, . . . , d) define a quadrature formula on the

interval [a, b], which integrates polynomials of degree 2d − 2 exactly. Consequently, for each

j = 1, . . . , `+k+1 the points x(j−1)d+1, . . . , xjd defined in Theorem 3.2 correspond to a quadrature

formula, which integrates polynomials of degree 2d − 2 exactly on the interval [λj−1, λj]. The

assertion now follows from Theorem 3.1. 2

Example 3.3. We consider the case d = 2, ` = k = 1 and t1 = −3
7
, u1 = 1

7
[see Woods and

Lewis (2006), Section 5]. In this case we obtain for the regression functions in (3.1) and (3.2)

fT
(1)(x) = (1, x, (x +

3

7
)+) ; f(2)(x) = (x− 1

7
)+ .(3.9)

The Legendre polynomial of degree 2 is given by x2− 1
3

with roots − 1√
3

and 1√
3
. From Theorem

3.2 we obtain that the design ξ = {x1, . . . , x6} with

x1 =
1

7
(−5− 2√

3
) , x2 =

1

7
(−5 +

2√
3
) ,(3.10)

x3 =
1

7
(−1− 2√

3
) , x4 =

1

7
(−1 +

2√
3
) ,

x5 =
1

7
(4− 3√

3
) , x6 =

1

7
(4 +

3√
3
)

is an all-bias design. Note that in contrast to the all-bias design derived by Woods and Lewis

(2006) this design requires only 6 points, while the design derived by these authors has 7 points.

We can now use results from numerical integration to derive numerous further all-bias designs.

For example, if d = 3 it follows from De Boor (1978), that the quadrature formula with weights

5/18, 4/9, 5/18 at the points −
√

3/5, 0,
√

3/5 integrates polynomials of degree 4 exactly. The

corresponding all-bias design for the model (3.1) and (3.2) with d = 1 or d = 2, ` = k = 1,

t1 = −3/7 and u1 = 1/7 is given by

x1 =
1

7
(−5− 2

√
3

5
) , x2 = −3

7
, x3 =

1

7
(−5 + 2

√
3

5
) ,(3.11)

x4 =
1

7
(−1− 2

√
3

5
) , x5 =

1

7
, x6 =

1

7
(−1 + 2

√
3

5
) ,

x7 =
1

7
(4− 3

√
3

5
) , x8 =

4

7
, x9 =

1

7
(4 + 3

√
3

5
) .

The main differences between the results of this paper and the results of Woods and Lewis (2006)

is that the last named authors restrict their considerations to designs satisfying (2.18) with equal
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weights δ1 = . . . = δn = 1/n. As illustrated in Section 2 this corresponds to the determination of

a quadrature formula with equal weights, which integrates polynomials of degree 2d− 2 exactly.

By relaxing the condition of equal weights we can derive a large number of alternative all-bias

designs. Moreover, the discussion presented so far allows us a simple calculation of the all-bias

designs using the theory of quadrature which has very well been developed for a long time [see

e.g. de Boor (1978)].

Theorem 3.4. Consider the polynomial spline model (3.1) and (3.2), where nj = (λj −
λj−1)n/2 ∈ N (j = 1, . . . , ` + k + 1). If for each j = 1, . . . , ` + k + 1 the knots q

(j)
1 , . . . , q

(j)
nj

correspond to a quadrature formula, which integrates polynomials of degree 2d − 2 exactly, then

the design ξ = {x1, . . . , xn} with

x1 =
λ1 − λ0

2
q
(1)
1 +

λ1 + λ0

2
, . . . , xn1 =

λ1 − λ0

2
q(1)
n1

+
λ1 + λ0

2

xn1+1 =
λ2 − λ1

2
q
(2)
1 +

λ2 + λ1

2
, . . . , xn1+n2 =

λ2 − λ1

2
q(2)
n2

+
λ2 + λ1

2
...

xn1+...+n`+k+1 =
λ`+k+1 − λ`+k

2
q
(`+k+1)
1 +

λ`+k+1 + λ`+k

2
, . . . ,

xn1+...+n`+k+1
=

λ`+k+1 − λ`+k

2
q(`+k+1)
n`+k+1

+
λ`+k+1 − λ`+k

2

satisfies condition (2.18) with equal weights δ1 = . . . = δn = 1/n and is an all-bias design.

Proof. The proof follows by similar arguments as presented in the proof of Theorem 3.2 and is

therefore omitted.

2

Example 3.5. Some quadrature formulas with equal weight can be found in Engels (1980), p.

58. For example in the situation considered in Example 3.3, it follows from these results, that the

points −1/
√

3 and 1/
√

3 correspond in fact to a quadrature formula with equal weights, which

integrates polynomials of degree 2 exactly. The case considered by Woods and Lewis (2006) [see

Example 3.3] can be obtained by using a quadrature with equal weights and two points at the

intervals [−1,−3
7
], [−3

7
, 1

7
] and three points on the interval [1

7
, 1]. Similarly, if d = 3 (cubic spline)

it follows from Engels (1980), that the points

q1 = −
√

1

15
(5− 2

√
5) = −q3 ≈ −0.1876; −

√
1

15
(5 + 2

√
5) ≈ −0.7947

define a quadrature formula with equal weights, which integrates polynomials of degree 4 exactly

[see Engels (1980), p. 58], and all-bias designs for models with knots satisfying λj − λj−1 = 8/n

are obtained easily.
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