ECOMNZTOR

Make Your Publications Visible.

Dette, Holger; Reuther, Bettina

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Some comments on quasi-birth-and-death processes

and matrix measures

Technical Report, No. 2008,13

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB

475), University of Dortmund

Suggested Citation: Dette, Holger; Reuther, Bettina (2008) : Some comments on quasi-birth-
and-death processes and matrix measures, Technical Report, No. 2008,13, Technische
Universitat Dortmund, Sonderforschungsbereich 475 - Komplexitatsreduktion in Multivariaten

Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/36597

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/36597
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Some Comments on Quasi-Birth-and-Death processes and

Matrix measures

Holger Dette Bettina Reuther
Ruhr-Universitdt Bochum Ruhr-Universitdt Bochum
Fakultdt fiir Mathematik Fakultdt fiir Mathematik
44780 Bochum, Germany 44780 Bochum, Germany

e-mail: holger.dette@rub.de e-mail: bettina.reuther@rub.de

FAX: +49 234 3214 559

February 18, 2008

Abstract

In this paper we explore the relation between matrix measures and Quasi-Birth-and-Death
processes. We derive an integral representation of the transition function in terms of a matrix
valued spectral measure and corresponding orthogonal matrix polynomials. We characterize
several stochastic properties of Quasi-Birth-and-Death processes by means of this matrix

measure and illustrate the theoretical results by several examples.
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1 Introduction

Let (2, F, P, (Xt)t>0) be a continuous-time two-dimensional homogeneous Markov process with

state space

(1.1) E={(,j)eNox {1,....d}}, deN, d < o



and infinitesimal generator

By Ag 0
T B, A
(1.2) Q = (Qij)ij=01,. = C3 By A ,
CT By Ay
0 ) )

where Ag, Ay,...,Bg, By,...,C1,Cy, ... € R The transition rate from state (i,7) to state
(k,0) is given by the element in the position (j,¢) of the matrix Q.. Markov processes with
an infinitesimal generator matrix of the form (1.2) are known as continuous-time Quasi-Birth-
and-Death processes. These models have many applications in the evaluation of communicating
systems and queueing systems [see e.g. Neuts (1981), Ost (2001), Dayar and Quessette (2002)] and
have been analyzed by many authors [see e.g. Bright and Taylor (1995), Ramaswami and Taylor
(1996), Latouche, Pearce and Taylor (1998)]. The case d = 1 corresponds to a “classical” Birth-
and-Death process with a tridiagonal infinitesimal generator which has been investigated in great
detail using the theory of orthogonal polynomials by Karlin and McGregor (1957, 1957a). Since
this pioneering work several authors have used these techniques to derive interesting properties of
Birth-and-Death processes in terms of orthogonal polynomials and the corresponding measure of
orthogonality [see e.g. van Doorn (2002, 2003)].

It is the purpose of the present paper to extend some of these results to Quasi-Birth-and-Death
processes with a generator of the form (1.2) using the theory of matrix measures and corresponding

orthogonal matrix polynomials.

We associate to a matrix of the form (1.2) a sequence of matrix polynomials, recursively defined
by

with initial conditions Q_1(x) = 0 and Qy(z) = I4. In Section 2 we formulate sufficient conditions

on the infinitesimal generator (1.2) such that there exists a matrix measure X on the real line with
(@1Q) = | QU= )Q! (@) = bl
R

i.e. the matrix polynomials are orthonormal with respect to the matrix measure 3 [see Sinap
and Van Assche (1996)]. In this case we derive an integral representation for the blocks of the
transition function in terms of the orthogonal matrix polynomials ); and the matrix measure 3,
which generalize the representation of Karlin and McGregor (1957) to the case d > 1. We also
investigate relations between the Stieltjes transforms of random walk measures corresponding to
two Quasi-Birth-and-Death processes, where only a few blocks differ. In Section 3 we discuss

several examples to illustrate the theory. Finally, in Section 4 the theoretical results are used



to characterize a-recurrence of Quasi-Birth-and-Death processes [for a definition see van Doorn
(2006)].

2 Quasi-Birth-and-Death processes and matrix polynomials

A matrix measure ¥ = {0;;}; j=1,..q on the real line is a function for which 3(A) = {0;;(A)}ij=1,..4
is a symmetric and nonnegative definite matrix in R4 for each Borel set A C R, where the entries
o;; are finite signed measures. The moments of the matrix measure X are defined by the d x d

matrices

Sk = /xde(w), k=0,1,..,

and throughout this paper we will only consider matrix measures with existing moments of all
order. The ’left’ inner product with respect to ¥ of two matrix polynomials () and P is defined
by

Q.P) = / Q(x)dS(z) P (z).

If {S,}n>0 is a sequence of matrices such that the block Hankel matrices

So -+ Sm
H, = : : , m >0,

==2m . . =

Sm ooo Som

are positive definite, then there exists a matrix measure > with moments S,,, 7 > 0, and a sequence
of matrix polynomials {Q,(z)},>0 which is orthogonal with respect to ¥ [see Marcellin and
Sansigre (1993)]. The following theorem characterizes the existence of a matrix measure X such
that there is a sequence of matrix polynomials which is orthogonal with respect to >. The proof

follows by similar arguments as presented in Dette et al. (2006) and is therefore omitted.

Theorem 2.1 Let the matrices A,,n > 0, and CF,n > 1, in (1.2) be nonsingular and assume
that {Qn(x)}n>0 is a sequence of matriz polynomials defined by recursion (1.3).
There exists a matriz measure > with positive definite block Hankel matrices H,, ,m > 0, such

that the sequence of matriz polynomials {Qn(x)}n>0 is orthogonal with respect to ¥ if and only if

2m»

there is a sequence of nonsingular matrices { Ry, }n>o0 with

RanR;I symmetric ¥ n € Ny,
(2.1)
R'R,=C ' CTYRER)Ay--- Ay V€N,

n n



Moreover,
RyM(R5)™) = (RgRo)™ =S,

and the matrices {Ry}nso = {UpRy}nso, where Uy,n > 0, are orthogonal matrices, also satisfy
condition (2.1).

If condition (2.1) is satisfied, the corresponding measure X is called a spectral measure corre-
sponding to {Q,(z)},>0 and @, respectively. The infinitesimal generator matrix (1.2) is called
conservative, if

(Ao+ Bo)1=0, (A, +B,+CN1=0 VneN,

where 1 = (1,1,...,1)T € R and 0 = (0,0, ...,0)” € R [see Anderson (1991)]. In this case there
exists a transition function

(2.2) P(t) = (P (t))iir=01,..
with d x d block matrices Py (t) € R4,

P(0) =1 and P'(0) = Q,
which satisfies the Kolmogorov forward differential equation
(2.3) P't)=Pt)Q YVt>0
and the Kolmogorov backward differential equation

P'(t) = QP(t) Vt>0.

The probability P(X; = (¢/,7")| Xo = (4,4)) of going from state (i,7) to (¢/,7') in time ¢ is given
by the element in the position (7, j’) of the matrix Py (t).

The infinitesimal generator () is called regular, if there exists only one transition function (2.2)
such that the Kolmogorov differential equations are satisfied [see Anderson (1991)]. Throughout
this paper we will assume that there exists a transition function P(t) such that the Kolmogorov
forward differential equation (2.3) is satisfied. If additionally a spectral measure ¥ corresponding
to the generator matrix (1.2) exists, we can derive an integral representation for the block of the
transition function P(t) in the position (i, j) in terms of the spectral measure and the corresponding

matrix orthogonal polynomials, which generalizes the famous Karlin and McGregor representation.



Theorem 2.2 Assume that the assumptions of Theorem 2.1 are satisfied and that there exists a
transition function P(t) which satisfies the Kolmogorov forward equation (2.3) for allt > 0. Then
the following representation holds for the block Py;(t) € R¥® in the position (i, ) of the transition
function P(t)

(2.4) P = ([ @izl ([ ewise >)

Proof. Let Q(z) = (QF(x),QT(x),..)" denote the vector of orthogonal matrix polynomials
Q;(z) with respect to the spectral measure ¥. Then the recursive relation (1.3) is equivalent to

the matrix equation

—2Q(r) = QQ(z).
Defining

F(z,t) := P(t)Q(x)

we obtain the differential equation

(e, t) = P(0Q() = PNQQ() = —2P()Q(r) = —2F(x. 1),

and the condition P(0) = I yields
F(z,0) = P(0)Q(z) = Q(x).
Hence, it follows that
F(z,t) = e "Q(z) = P()Q(x),
which implies (integrating with respect to d¥(z))

[ i@l @) = P [ Qds@als)

Because of the orthogonality of the matrix polynomials @, (z),n > 0, we obtain for the blocks

P,;(t) of the transition function the representation

p) = ([ @izl ([ e@ine >)

which completes the proof of Theorem 2.2. O

In what follows we present two results, which relate the Stieltjes transforms of the spectral mea-
sures of two Quasi-Birth-and-Death processes, which have an infinitesimal generator of similar
structure. The first result refers to the case where the entry By has been replaced by the matrix

By. The proof is similar to a corresponding result in Dette et al. (2006) and is therefore omitted.



Theorem 2.3 Consider the infinitesimal generator defined by (1.2) and the matriz

By A 0
ct B, A
(2.5) Q= CT By A,
CT By Ay
0 ) .

Let 32 be a spectral measure corresponding to the infinitesimal generator () with positive definite
block Hankel matrices such that the matriz RyBoRy" is symmetric, and such that {R,},>0 is a
sequence of matriz polynomials which satisfies condition (2.1). Then there exists a spectral measure
Y corresponding to Q. If the spectral measures ¥ and Y are determined by their moments, then

the Stieltjes transforms of the measures satisfy

o= [0 {([£)" - -m)

Given a sequence {Q,(x)},>0 of matrix polynomials defined by recursion (1.3), the corresponding
associated sequence of matrix polynomials {Q%k)(:v)}nzo of order k, k > 1, is defined by a recursion
of the form (1.3), in which the matrices A,, B, and C,, have been replaced by the matrices A, ,
By,+x and C,, 4y, respectively [see van Doorn (2006)]. The following result gives a relation between
the Stieltjes transform of the spectral measure corresponding to the sequence of matrix polynomials
{Qn(%)}as0 and the Stieltjes transform of the spectral measure corresponding to {Q\ (2)},=0. The
associated Quasi-Birth-and-Death process will be denoted by (Xt(k))tz() with state space E defined
by equation (1.1) (throughout this paper we use the notation X .= Xy).

Theorem 2.4 Consider the infinitesimal generator Q) defined by (1.2) and the matriz

B, A 0
Ciit Bent Arn
QW = Cly Bira Apo

Clis Biis Apss
0 .

The matriz Q™ is called the associated matriz of order k, k > 1, corresponding to Q. Assume
that X 1s a spectral measure corresponding to () with positive definite block Hankel matrices,
that is, there exists a sequence {R,}n,>0 of nonsingular matrices, which satisfies condition (2.1)

of Theorem 2.1. Then there exists a spectral measure %) corresponding to Q") with positive



definite block Hankel matrices. If the measures are determined by their moments, then the Stieltjes

transforms of the measures are related by

dy
/ﬂ — Ral{zld_EO_Dl{ZId—El—DQ{ZId—EQ_...
Z—X
A () (¢ -1 -1
o= Dii{zla = By — Dy / ?;)RfD{} DiL}
-1 -1
N AN
where
(2.6) Dy = —R,AR;Y,, E, = —R,B,R;', DT = —R,CTR;",,

and the Stieltjes transforms of the matriz measures ¥*) and ¥+t are related by

Z—X — X

dx®) (x AN (k+1) (o 1
/# = Rgl{zld + Ry By R, — Ry Ay / Z—()R;EFHRkHCI?HR;l} (Ry)~™.

Proof. Let the sequence of polynomials {Q,(z)},>0 be defined by recursion (1.3) with corre-
sponding spectral measure 3. Then the polynomials W, (z) := R,Q,(z) are orthonormal with

respect to the matrix measure X and satisfy the three term recurrence relation
eWp(2) = Dypii Wiy (2) + E,W,, (2) + DYW,,_ ()

with initial conditions W_;(z) = 0 and Wy(z) = Ry, where

(2.7) Dpi1 = —R, AR, E,=—R,B,R,, DI = —-R,CTR!,.

From Zygmunt (2002) it follows that

>
(2.8) / aB@) g Rgl{zfd — Ey— Dl{zld B - Dg{zld By ...

z—x n—0o0
—1 —1 -1 -1 -1
...—Dn{z]d—En} DZ} } D;F} DlT} (Ry)™".

Assume that the sequence of polynomials {Q,(f) () }n>0 is defined by recursion (1.3), where the
matrices B, A, and C, have been replaced by the matrices B, 1, Anir and C,, 1, respectively,
that is

—2QW (2) = Ak QL)1 (2) + BunQW () + CL, QW (2),
with Q”(z) = I and Q") (z) = 0. Define AY = A4, BY = By, CF = Cp.p and R =

R,ik,n > 0. From Theorem 2.1 we obtain the symmetry of the matrices

~ RO BRI = R, 4By Ryt Yn >0

n

7



and the equation
(RO)'RY = R R
= C;ikq;ik_l e C’;:lckjl . C’flRoTRvoAl o A 1A Angit

= C e O RIR A - Ay

ntk“n+k—1"
= (G HER) T () R R AP - A Yz
Therefore, from Theorem 2.1 it follows that there exists a spectral measure £ with positive
definite block Hankel matrices corresponding to the sequence of polynomials {Qg{) () fn>o-

The polynomials W\" (x) :== rRPQP (z) are orthonormal with respect to the measure (*) and

satisfy the recursion

Wi (@) = DI W (@) + EDWP (@) + (DI W0, (@), Wi () = RYY = Re.

n n

where
Dgil = Dyips1, BEY) = By Vi >0.

Therefore, it follows from Zygmunt (2002)

dx®) (x ) _
/ e _(x ) _ Tim (R {21, - BP - DI {21, - B - DI a1 - B -
-1 -1 -1 -1 -1
= DI an = EP (0P} (D) ()T
(29) = nll_)IIolo R,;l{zfd — Ek — Dk+1{ZId — Ek+1 - Dk+2{ZId - Ek+2 — e

-1 -1 -1 -1 -1
- Dn+k{zId - EM} D};k} } D,{H} D{H} (RT)1.
A combination of the equations (2.8) and (2.9) yields

>
/d—(:':) - Ral{z]d—EO—Dl{zId—El—Dg{zld—Eg—...

zZ—XT
dX®) (z

1 1
ce— Dk:—l{Z[d — By — DkRk/ )RZDH DkT—l} e

Df} DT R

Z—XT

and from equations (2.9) and (2.7) we obtain

dXF) (x AN (g -1
/# = R,;l{z]d—Ek—Dk+1Rk+1/—()RZ+1Dg+1} (Rg)_l

Zz—XT

1 1 dZ<k+1)(x) T T o1 Y pTy—1
= R {Z]d+RkBk:Rk _RkAk/—Rk+1Rk+IOk+1Rk } (R)™,

zZ—XT

which completes the proof of the theorem. O



Remark 2.5 Note that in the literature, many queueing models are considered, where the ma-
trices C,, do not have full rank [see Latouche and Ramaswami (1999)]. Following the arguments
used in Remark 2.7 in Dette et al. (2006) the conditions

R,B, = E,R,, n>0,
Cot1 R Ryt1 = RER, Ay, m> 1,

are sufficient for the existence of a spectral measure ¥ corresponding to @, where {E, },>¢ is a

sequence of symmetric matrices and

/ Qu(x)dS(x)QT (x) = 6, RTR;.

In other words: the assumption of nonsingularity of the matrices C,, can be relaxed. The same

arguments as used in Theorem 2.2 then imply

Pij(t)RJTRj = /e‘thi(x)dZ(x)Q]T(m).

3 Examples

Example 3.1 Dayar and Quessette (2002) considered a queuing system consisting of a M /M/1-
system and a M/M/1/d — 1-system. Both queues have Poisson arrival processes with rate \;,i =
1,2, and exponential service distributions with rate u;,2 = 1,2, and it was assumed that v =
A1 + A2 + p1 + po. This system can be described by a homogeneous Markov process X (t) =
(Ly1(t), La(t))ier+ with state space E = N x {0,...,d — 1}, where L;(t) and L(t) denote the
length of the first queue at time ¢ and the length of the second queue at time ¢, respectively. The

entries of the corresponding infinitesimal generator (1.2) have the form

—(A 4+ A9) Ao

42 —(v = 1) Ao
BO = ) ) )
2 —(7 - Ml) A2
iz — (A1 + p2)
—(’Y — H2) Ao
2 -7 A2
B; = ' 1>
a2 —7 A2
p2 —(v = Ag)



Ay =M1Ig,i>0,and CI' = pyl;,i > 1. Tt is easy to see that Q is conservative. A straightforward

calculation shows that the conditions of Theorem 2.1 are satisfied with the matrices

2 d—1
A A A

Ry = diag 1,“—2,<1/—2> ,...,(1/—2> ,
M2 2 M2

A (2
R, = ( —1> Ry, i € N.
21

This implies the existence of a spectral measure.

Example 3.2 Consider a homogeneous Markov process (X;);>o with infinitesimal generator (1.2),

where
—  Bo1
Bro —m Bz
BO: ' ' 77k#07k20a"'7d_1a
ﬂd72,d73 —Vd-2 ﬁde,dfl
Bi-1,d-2 —Vd-1
—do  Po1
Bro —01 B2
B; = 0>1,0,#20,k=0,....d—1,
Bi-2,d-3 —0d—2 Bi-2.d-1

Bi-1,d-2 —0d-1

A; = aply,i > 0, and CF = asly,i > 1. A generator matrix of this form can be associated to a
queueing model which consists of d different M /M /1-systems. Each M /M /1-system has a Poisson
arrival process with rate o and an exponential service time distribution with rate as. If the model
is situated in system ¢, then it changes to the system ¢ — 1 and ¢+ 1 with the rate 3;,_1 and 3; ;11,
respectively. This model can be described by the two dimensional homogeneous Markov process
(Nt, St)e>o with state space E = Ny x {0,...,d — 1}, where N; denotes the number of customers

in the whole model at time ¢ and S; denotes the number of the system at time t.

If 3;; #0 for all 4,5 = 0,...,d — 1, then the conditions of Theorem 2.1 are satisfied with

. Ba-1d-2 5o [Bi-1da-2---Bu Bi—1.d—2
3.1 Ry = dia ’ : ’ Y o iy |
3 " & <\/501 o Ba—2,d-1 Bz .. Ba—2,d-1 Ba2.a-1

and N
(3.2) R, = ( ﬂ) Ry, n> 1.

(%)

This implies the existence of a spectral measure ¥ corresponding to Q).

10



Example 3.3 We now specify the situation of Example 3.2 to the case, where the parameters in
the infinitesimal generator ) satisfy

0; =10, vi =17, Bigt1=: 01 and Bip1; =02 Vi=0,....d—1, b1,0, #0.
Then the matrices in (2.6) have the form

D:=D,=—/ojasly, n>1,

8 —V 5152
—V/ 152 Y —V/ 512

Ey = .
5152 Y —V 12
5152 v
and
0 —V 152
—V P12 0 —V 015
B E, - 2 =N
5102 0 =012
512 )
The eigenvalues of the matrix £ are given by
)\k—(5+2\/ﬁlﬁQCOS( ) 7 7d)
with corresponding eigenvectors given by u(* ( . ) where
2
(k) _ :
u; = d+1sm(m> L k=1,...,d.

With the notation H := diag(A\, — 2,..., g — 2) and U := (u™ ... u®), it follows that
E—zI;=UHU" and U'U = I.

Let Q be the infinitesimal generator obtained from @ by replacing the first diagonal block B,
by the block B; (which coincides with all other blocks B;, i > 2) and denote by ¥ the spectral
measure corresponding to Q. From Duran (1999) we obtain for the Stieltjes transform ®(z) of the

matrix measure X

1
d(z) = —§D—2(E — 21 {1+ {1y — AD*(E — 21)) 2 }'?} (B — 21)"?

1
= — UHY? {Id+ {1, - 4a1a2H*2}1/2}H1/2UT,
20[10(2

11



and Theorem 2.3 gives the Stieltjes transform ®(z) of the measure X. Moreover, the results in

Duran (1999) also show that the support of the spectral measure is given by
supp(Y) = {reR:D*(xl, - E)D_l/2 has an eigenvalue in [—2,2]}
= [-2y/oas +5+2\/61ﬁ2cos 2\/a1a2+5+2\/ﬁ1ﬂgcos 1

Note that supp(X) C [0,00) if § > a3 + s + (1 + [o.

4 o-recurrence

The decay parameter of continuous-time Quasi-Birth-and-Death processes was introduced by van
Doorn (2006). To be precise assume that (X¢):>o is an irreducible Quasi-Birth-and-Death process
with state space (1.1) and infinitesimal generator @) defined by (1.2), where

Byl + Agl < 0.

Then the decay parameter « of the process (X;):>o, is defined by

a= sup{s >0: e?/ e* Py (t)dtey < oo}, (i,7), (7,5 € E.
0

The process (X¢)¢>o is called a-recurrent if and only if for some state (i,¢) € E (and then for all
states in E)

(4.1) eZT/ e Py (t)dte, = oo
0

where e, = (0,...,0,1,0,...,0)T € R? denotes the fth unit vector. The process (X;);>o is called
a-positive if and only if for some state (i,¢) € E (and then for all states in E)

(4.2) ey hm e Py(t)e, > 0.

—00

The following results characterize a-recurrence of the process (X;);>0 in terms of the spectral
measure %, the corresponding orthogonal polynomials Q;(x) and the blocks of the infinitesimal
generator. Throughout this section it will be assumed that condition (2.1) of Theorem 2.1 is
satisfied.

Theorem 4.1 Assume that the conditions of Theorem 2.1 are satisfied with a spectral measure

supported in the interval [, 00), and that there exists a transition function, which satisfies the

12



Kolmogorov forward differential equation (2.3). The process (Xi)i>o is a-recurrent if and only if
for some state (i,0) € E (and then for all states in E)

(4.3) o7 ([ QOB ([ g ayisiar) e=o

Proof. With the representation (2.4) and Fubini’s Theorem condition (4.1) is equivalent to

¢l (/ | @it ) )( [ @@l ))1642007

which implies (4.3). O

In the following we define for a matrix measure X with existing moments the d x d matrices (y = 0
and ¢, = (Sk_1 — S, 1) 1Sk — S, ) € R where Sy, — S5, and Sy, 1 — S, _; denote the Schur
complement of Sy, and Ss,_; in the matrix H,, and

S, .- S
ﬂznfl = :
Spn oo Sopa
respectively [see Dette und Studden (2002)]. The next result gives a representation of the Stieltjes

transform of the spectral measure Y in terms of the quantities (; and the blocks of the generator
matrix (1.2).

Theorem 4.2 Assume that the conditions (2.1) of Theorem 2.1 are satisfied. Let {Q,(z)}n>0 de-
note the corresponding orthogonal matriz polynomials defined by the recursion (1.3). Assume that
the corresponding spectral measure Y is supported in the interval [0,00) and that it is determined

by its moments. Then the Stieltjes transform of the measure ¥ can be represented as
dy
/ @ gy {zta— {1 —{z1— ..
zZ — X n—oo

_ {z[d _ g;+1}_1¢;}_1 N .}_lgg}_lgf}_lso.

In particular, the following representations hold

A n+1 _
ay [ o Y (o) (G ) s
7=0

X

n+1

(4.5) = lim ZTJHA YTy T A O Ty 5T - Ty T Ay ' To S,

13



where T = @,(0), j > 0.

Proof. From Dette and Studden (2002) it follows that the monic orthogonal matrix polynomials

{P,,(z)},>0 with respect to a matrix measure ¥ supported in [0, 00) satisfy the recursive relation
(4.6) aP,(x) = P, (z) + (427;14-1 + Con) P () + G5 Can 1 Py (),
with P_,(z) =0, Py(z) = I4, o =0 and ¢t = (Sk—1 — S;_;) '(Sk — S ), where the matrices
Ao 1= (Ppyy P} = (So€r -+ Gan) "
are positive definite. Then the polynomials
P,(x) = Az_nl/QBn(x), n >0,
are orthonormal with respect to the matrix measure > and satisfy the recursion
xP,(z) = Aps1Posi(x) + B P (x) + AZPn_l(:I;)

with P_1(z) =0, Py(z) = S, /% and

(4.7) Ap = A2_nl/2A$f+27
(4.8) B, = AA(¢E + ¢ A2
(4.9) AT = AP AN,

From Zygmunt (2002) it follows that

(4.10) F,(2) = (Poga(2))'PY(2) = S3*{21y — By — Ar{zly — By — Ay{2ly— By — ...
o= Azl — B,y AT AT G2

where 1579)(2) denote the first associated polynomials for P,(z). An application of Markov’s The-
orem [see Duran (1996)], (4.7) - (4.9) and (4.10) now yields

(4.11) /dz(x) — lim F,(2)

Z—XT n—00

= (ol oG -G - -
-G -G GG dd) dd) s
= lim {z[d— {Id_ {Z]d—

B 7 o) e S e d e
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If z = 0, then we obtain from (4.11) and Fair (1971)

dE( n+1
/ THOOZ +1C2352] 1 XX CINCT ¢ 2Xj_711"'X1X2_1C3150,

where Xg =14, X; = —C1T and

Xn+1 = _(€27;L+1 + C;)Xn - C;’LC;Z—IXR_17 n>1

An induction argument yields X,, = (=1)"¢J. _¢I .---(f, n > 1, and the first representation in
(4.4) follows. For the second part we note that the polynomials @ (z):= (=1)"Ag- - Ay,_1Qn(2),

n > 0, have leading coefficient I; and because of (1.3) they satisfy the recursion

Q ., (2)=2Q () + Ao+ Ayt BuAly - A3'Q (2) = Ag- - Ayl OTALY, - AT'Q ().

n+1
A comparison with the polynomials P, (z) in (4.6) now yields

(4.12) A Ay 1 Bp AL - AT = =G+ G)s
(4.13) Ag-- 'Anflcz;Anf2 Ay = C;‘anfn—l

Define T, := @,,(0),n > 0. Then (4.12) and (4.13) imply
To= Ak Ay GG Y 0 2 0,

Therefore, we can define the polynomials Q,(z) := T Qn(x). From (1.3) it follows that these

polynomials satisfy the recurrence relation
2Qn(®) = AnQni1() + BaQu(@) + CF Qnos (2)
with

A, =T 'A T, B,=T,'B,T,, CT=11CTT,_,

and A, + B, + CT = 0. Consequently we obtain from (4.12) and (4.13) that

- A ] i1 T T
AO cee An—anAn— Ao — _(<2n + C2n+1)7
2 n AT f—1 i T T
AO An,1 n An72 Ao - CQnCanl
and hence
T A AoA-1 A-1
2n+1 Ag - AnAnq "Ao )
T 4 A AT f—1 A-1
2n T AO te Anflcn An—l o AO



Equation (4.4) finally yields

T

dE(ZL‘) n+1
/ = dim Y ATCTAY - ATCTAS,
=0

n+1
= Jim Y TNAT T T AT AT O Ty BT - T T AG TS,
j=0

which completes the proof of the Theorem. a

In the following, the a-recurrence condition will be represented in terms of properties of the spectral
measure, the corresponding orthogonal matrix polynomials and the blocks of the infinitesimal
generator (1.2). For this purpose, consider the process (X;4)i>0 with state space E defined in

(1.1) and infinitesimal generator matrix

BO,oc AO,oz 0
Oljja Bl,a Al,a
Qo = C3a Boa Asg ,
Cio Bsa Asg
0 . .
where
An,a = Q;1<O‘)AHQH+1 (Oé), > 07

n
Bra = Q(a)ByQu(@), n >0,
Clo = QH)CrQn1(a), n>1.

The corresponding sequence {Q;, (%) },>0 of matrix polynomials satisfies the recurrence relation

_xQn,a(x) = An+1,aQn+1,a($) + Bn,aQn,a(x) + CZ,aQn—l,a(x)

with initial conditions Q_14(z) = 0, Qoa(x) = I4. If the conditions (2.1) of Theorem 2.1 are

satisfied, then the matrix ), can be symmetrized with the matrices
Ryo = RyQn(a), n>0.
An induction argument shows the representation

(4.14) Qn,alr) = Q;1<O‘)Qn(x +a), n>0,

and therefore

/ Qo) A8 (2)QT (1) = 0, 1 # m,
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where the matrix measure X, is defined by

Yo ((0,2]) =2 (o, + ) .
If representation (2.4) holds, it is easy to see that
(4.15) e Pyo(t) = /edea(x)Sol,
and the following remark is a consequence of Theorem 4.1.

Remark 4.3 Assume that the conditions of Theorem 4.1 are satisfied and that X is a correspond-

ing spectral measure supported in the interval [, 00). The process (Xi)i>o i a-recurrent if and
only if

Cd¥, () *dx(z)
T a 1 T 1
! - 798 = e S e
€; /0 . 0 € =€ /a 0 € = OO
for some j € {1, cee ,d}. I'he process is a-positive, if

el tlirg e Pyo(t)e, > 0

for some £ € {1,...,d}. This is the case if and only if the measure e} d¥(x)Sy e, has a jump in
the point x = «. O

Theorem 4.4 Assume that the conditions of Theorem 2.1 are satisfied and that the corresponding
matriz measure ¥ is supported in the interval [, 00) and determined by its moments. If a transition
function P(t) satisfying P'(t) = P(t)Q exists, then the process (X;)i>o is a-recurrent if and only
if for some state (0,¢) € E (and then for all states in (0,k) € E)

ef > HNAT'CTH; H'A7NC  Hy - CTH A HySpey = oo,
7=0

where H; := Q;(a),j > 0.

Proof. Because condition (2.1) holds for the polynomials {Q,(x)},>0, this condition is also
fulfilled for the polynomials {Q a}n>0 with R, . := R,Qn(a), n > 0. From equation (4.14) it
follows that Q);.(0) = I for all j > 0. Therefore we obtain with equation (4.5)

/dZam = Y Ach A oy, CTLAG LS.
j=0

€T 7,0 1, .]_1’& ]—].,Oé
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From the representation A} iCjTa Qj+1(a)Aj_10jTQj_1(a), j >0, it follows from Remark 4.3
that the state (0, /) is a-recurrent if and only if

e Z H NATCTH;  H7' AT O (Hy oy - CT HAg P HoSoeq = 00

where H; = Q;(«), j > 0. O

Remark 4.5 Assume that the conditions of Theorem 4.4 are satisfied, and let ¥V be a spectral
measure corresponding to the sequence of associated matriz polynomials {Qn () }n>o-
1. The state (0,¢) € E is a-recurrent if and only if

-1
eéT/ () Soles=ef {—OJd — By — Ao / #RT}QCT} €¢ = 00.

r — r—

2. The state (0,¢) € E is a-positive if and only if

s
et rutes = gt [ s
ta, 1 d=(z) -
= Tlim{ L7+ - B—A/—RTRCT 0.
€ 1m B d+z 0 0 Gta) = 111ty >

Note that conditions (4.1) and (4.2) reduce to recurrence and positive recurrence, if a« = 0. There-
fore, with Theorem 4.2 we obtain the following conditions for recurrence and positive recurrence

of a Quasi-Birth-and-Death process.

Corollary 4.6 Assume that the conditions of Theorem 2.1 are satisfied, that the corresponding
matriz measure 3 is supported in the interval [0, 00) and determined by its moments. If a transition
function P(t) satisfying P'(t) = P(t)Q exists, then the following statements hold.

1. The state (i,0) € E is recurrent if and only if

wio (LRI (o) e

where e; = (0,...,0,1,0, ..., O)T. In particular, the state (0,0) € E is recurrent if and only if
dX
€ / (@ )So e, = o0.
0 T

2. The state (0,0) is recurrent if and only if

el ZTJHA VT AT AL CT T 5T - Ty T A ' Ty Soeq = o0
with T; = Q;(0), j > 0.
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3. The state (0,() is positive recurrent if and only if the matriz measure el d¥(x)S; s has a

Jump in the point x = 0.

Remark 4.7 1. Let U be a spectral measure supported in [0, 00) corresponding to the associated
polynomials {Qn () }n>o introduced in Theorem 2.4. Then, a combination of Theorem 2.4 and
Corollary 4.6 shows that the state (0,€) € E is recurrent if and only if

dx dX
ef/ ;I)Sgleg = —lim K/z (z )RTRO er

z—0

dx(z -1
= eg{—Bo — AO / %R’{Rlcf} €y = OQ.

An induction argument shows that

QV(x) = —Q\) (2)Sy " Ay, n >0,

where Qg)(a:) are the first associated polynomials corresponding to QS)(:U), and Qg)(m‘) are the
associated polynomials of order k =1 corresponding to Q,(x). Therefore it follows for the Stieltjes
transform of the spectral measure corresponding to the associated orthogonal polynomials that

dE(l) x . n+1 B
/—x( ) = JLHC}OZAﬂl‘SOZJ+1A]+IOf+1 j-14; 1A b

J=0

AT ZT AT Zo(RY Ry)
where Z; Qﬁl( ).
2. A straightforward calculation yields
el N({0})e; = hH(l) ze] ®(2)e;.

From Theorem 2./ it follows that the state (0,0) € E is positive recurrent, if the condition
dX(x)

Z—X

So_leg

z—0

ethlirélo Pyo(t)ey = ¢ llmz/
= ¢, lim 2Ry {21, + RyBoRy' — Ry A dE—()RTR CTRy'} 'R
= & Mz d 0Do 1ty 04o o 1 o} Roes
1 dx.
= efi%{[d+;(Bo—A0/Z—<)RTRlCT} e, >0

holds.
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