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Abstract

In this paper we explore the relation between matrix measures and Quasi-Birth-and-Death
processes. We derive an integral representation of the transition function in terms of a matrix
valued spectral measure and corresponding orthogonal matrix polynomials. We characterize
several stochastic properties of Quasi-Birth-and-Death processes by means of this matrix
measure and illustrate the theoretical results by several examples.

AMS Subject Classi�cation: 60J10, 42C05
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1 Introduction
Let (Ω,F , P, (Xt)t≥0) be a continuous-time two-dimensional homogeneous Markov process with
state space

E = {(i, j) ∈ N0 × {1, . . . , d}}, d ∈ N, d < ∞(1.1)
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and in�nitesimal generator

Q = (Qij)i,j=0,1,... =




B0 A0 0

CT
1 B1 A1

CT
2 B2 A2

CT
3 B3 A3

0
. . . . . . . . .




,(1.2)

where A0, A1, . . . , B0, B1, . . . , C1, C2, . . . ∈ Rd×d. The transition rate from state (i, j) to state
(k, `) is given by the element in the position (j, `) of the matrix Qik. Markov processes with
an in�nitesimal generator matrix of the form (1.2) are known as continuous-time Quasi-Birth-
and-Death processes. These models have many applications in the evaluation of communicating
systems and queueing systems [see e.g. Neuts (1981), Ost (2001), Dayar and Quessette (2002)] and
have been analyzed by many authors [see e.g. Bright and Taylor (1995), Ramaswami and Taylor
(1996), Latouche, Pearce and Taylor (1998)]. The case d = 1 corresponds to a �classical� Birth-
and-Death process with a tridiagonal in�nitesimal generator which has been investigated in great
detail using the theory of orthogonal polynomials by Karlin and McGregor (1957, 1957a). Since
this pioneering work several authors have used these techniques to derive interesting properties of
Birth-and-Death processes in terms of orthogonal polynomials and the corresponding measure of
orthogonality [see e.g. van Doorn (2002, 2003)].
It is the purpose of the present paper to extend some of these results to Quasi-Birth-and-Death
processes with a generator of the form (1.2) using the theory of matrix measures and corresponding
orthogonal matrix polynomials.
We associate to a matrix of the form (1.2) a sequence of matrix polynomials, recursively de�ned
by

−xQn(x) = AnQn+1(x) + BnQn(x) + CT
n Qn−1(x)(1.3)

with initial conditions Q−1(x) = 0 and Q0(x) = Id. In Section 2 we formulate su�cient conditions
on the in�nitesimal generator (1.2) such that there exists a matrix measure Σ on the real line with

〈Qi, Qj〉 =

∫

R
Qi(x)dΣ(x)QT

j (x) = δijId,

i.e. the matrix polynomials are orthonormal with respect to the matrix measure Σ [see Sinap
and Van Assche (1996)]. In this case we derive an integral representation for the blocks of the
transition function in terms of the orthogonal matrix polynomials Qi and the matrix measure Σ,
which generalize the representation of Karlin and McGregor (1957) to the case d > 1. We also
investigate relations between the Stieltjes transforms of random walk measures corresponding to
two Quasi-Birth-and-Death processes, where only a few blocks di�er. In Section 3 we discuss
several examples to illustrate the theory. Finally, in Section 4 the theoretical results are used
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to characterize α-recurrence of Quasi-Birth-and-Death processes [for a de�nition see van Doorn
(2006)].

2 Quasi-Birth-and-Death processes and matrix polynomials
A matrix measure Σ = {σij}i,j=1,...,d on the real line is a function for which Σ(A) = {σij(A)}i,j=1,...,d

is a symmetric and nonnegative de�nite matrix in Rd×d for each Borel set A ⊂ R, where the entries
σij are �nite signed measures. The moments of the matrix measure Σ are de�ned by the d × d

matrices
Sk =

∫
xkdΣ(x), k = 0, 1, ...,

and throughout this paper we will only consider matrix measures with existing moments of all
order. The 'left' inner product with respect to Σ of two matrix polynomials Q and P is de�ned
by

〈Q,P 〉 =

∫
Q(x)dΣ(x)P T (x).

If {Sn}n≥0 is a sequence of matrices such that the block Hankel matrices

H2m =




S0 · · · Sm

... ...
Sm . . . S2m


 , m ≥ 0,

are positive de�nite, then there exists a matrix measure Σ with moments Sn, n ≥ 0, and a sequence
of matrix polynomials {Qn(x)}n≥0 which is orthogonal with respect to Σ [see Marcellán and
Sansigre (1993)]. The following theorem characterizes the existence of a matrix measure Σ such
that there is a sequence of matrix polynomials which is orthogonal with respect to Σ. The proof
follows by similar arguments as presented in Dette et al. (2006) and is therefore omitted.

Theorem 2.1 Let the matrices An, n ≥ 0, and CT
n , n ≥ 1, in (1.2) be nonsingular and assume

that {Qn(x)}n≥0 is a sequence of matrix polynomials de�ned by recursion (1.3).
There exists a matrix measure Σ with positive de�nite block Hankel matrices H2m,m ≥ 0, such
that the sequence of matrix polynomials {Qn(x)}n≥0 is orthogonal with respect to Σ if and only if
there is a sequence of nonsingular matrices {Rn}n≥0 with

RnBnR−1
n symmetric ∀ n ∈ N0,

(2.1)
RT

nRn = C−1
n · · ·C−1

1 (RT
0 R0)A0 · · ·An−1 ∀ n ∈ N.
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Moreover,

R−1
0 ((RT

0 )−1) = (RT
0 R0)

−1 = S0,

and the matrices {R̃n}n≥0 = {UnRn}n≥0 , where Un, n ≥ 0, are orthogonal matrices, also satisfy
condition (2.1).

If condition (2.1) is satis�ed, the corresponding measure Σ is called a spectral measure corre-
sponding to {Qn(x)}n≥0 and Q, respectively. The in�nitesimal generator matrix (1.2) is called
conservative, if

(A0 + B0)1 = 0, (An + Bn + CT
n )1 = 0 ∀ n ∈ N,

where 1 = (1, 1, ..., 1)T ∈ Rd and 0 = (0, 0, ..., 0)T ∈ Rd [see Anderson (1991)]. In this case there
exists a transition function

P (t) = (Pii′(t))i,i′=0,1,...,(2.2)

with d× d block matrices Pii′(t) ∈ Rd×d,

P (0) = I and P ′(0) = Q,

which satis�es the Kolmogorov forward di�erential equation

P ′(t) = P (t)Q ∀ t ≥ 0(2.3)

and the Kolmogorov backward di�erential equation

P ′(t) = QP (t) ∀ t ≥ 0.

The probability P (Xt = (i′, j′)| X0 = (i, j)) of going from state (i, j) to (i′, j′) in time t is given
by the element in the position (j, j′) of the matrix Pii′(t).

The in�nitesimal generator Q is called regular, if there exists only one transition function (2.2)
such that the Kolmogorov di�erential equations are satis�ed [see Anderson (1991)]. Throughout
this paper we will assume that there exists a transition function P (t) such that the Kolmogorov
forward di�erential equation (2.3) is satis�ed. If additionally a spectral measure Σ corresponding
to the generator matrix (1.2) exists, we can derive an integral representation for the block of the
transition function P (t) in the position (i, j) in terms of the spectral measure and the corresponding
matrix orthogonal polynomials, which generalizes the famous Karlin and McGregor representation.
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Theorem 2.2 Assume that the assumptions of Theorem 2.1 are satis�ed and that there exists a
transition function P (t) which satis�es the Kolmogorov forward equation (2.3) for all t ≥ 0. Then
the following representation holds for the block Pij(t) ∈ Rd×d in the position (i, j) of the transition
function P (t)

Pij(t) =

(∫
e−txQi(x)dΣ(x)QT

j (x)

)(∫
Qj(x)dΣ(x)QT

j (x)

)−1

.(2.4)

Proof. Let Q(x) = (QT
0 (x), QT

1 (x), ...)T denote the vector of orthogonal matrix polynomials
Qi(x) with respect to the spectral measure Σ. Then the recursive relation (1.3) is equivalent to
the matrix equation

−xQ(x) = QQ(x).

De�ning
F (x, t) := P (t)Q(x)

we obtain the di�erential equation
d

dt
F (x, t) = P ′(t)Q(x) = P (t)QQ(x) = −xP (t)Q(x) = −xF (x, t),

and the condition P (0) = I yields

F (x, 0) = P (0)Q(x) = Q(x).

Hence, it follows that
F (x, t) = e−txQ(x) = P (t)Q(x),

which implies (integrating with respect to dΣ(x))
∫

e−txQ(x)dΣ(x)QT
j (x) = P (t)

∫
Q(x)dΣ(x)QT

j (x).

Because of the orthogonality of the matrix polynomials Qn(x), n ≥ 0, we obtain for the blocks
Pij(t) of the transition function the representation

Pij(t) =

(∫
e−txQi(x)dΣ(x)QT

j (x)

)(∫
Qj(x)dΣ(x)QT

j (x)

)−1

,

which completes the proof of Theorem 2.2. 2

In what follows we present two results, which relate the Stieltjes transforms of the spectral mea-
sures of two Quasi-Birth-and-Death processes, which have an in�nitesimal generator of similar
structure. The �rst result refers to the case where the entry B0 has been replaced by the matrix
B̄0. The proof is similar to a corresponding result in Dette et al. (2006) and is therefore omitted.
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Theorem 2.3 Consider the in�nitesimal generator de�ned by (1.2) and the matrix

Q̄ =




B̄0 A0 0

CT
1 B1 A1

CT
2 B2 A2

CT
3 B3 A3

0
. . . . . . . . .




.(2.5)

Let Σ be a spectral measure corresponding to the in�nitesimal generator Q with positive de�nite
block Hankel matrices such that the matrix R0B̄0R

−1
0 is symmetric, and such that {Rn}n≥0 is a

sequence of matrix polynomials which satis�es condition (2.1). Then there exists a spectral measure
Σ̄ corresponding to Q̄. If the spectral measures Σ and Σ̄ are determined by their moments, then
the Stieltjes transforms of the measures satisfy

Φ(z) =

∫
dΣ(t)

z − t
=

{(∫
dΣ̄(t)

z − t

)−1

− S−1
0 (B̄0 −B0)

}−1

.

Given a sequence {Qn(x)}n≥0 of matrix polynomials de�ned by recursion (1.3), the corresponding
associated sequence of matrix polynomials {Q(k)

n (x)}n≥0 of order k, k ≥ 1, is de�ned by a recursion
of the form (1.3), in which the matrices An, Bn and Cn have been replaced by the matrices An+k,

Bn+k and Cn+k, respectively [see van Doorn (2006)]. The following result gives a relation between
the Stieltjes transform of the spectral measure corresponding to the sequence of matrix polynomials
{Qn(x)}n≥0 and the Stieltjes transform of the spectral measure corresponding to {Q(k)

n (x)}n≥0. The
associated Quasi-Birth-and-Death process will be denoted by (X

(k)
t )t≥0 with state space E de�ned

by equation (1.1) (throughout this paper we use the notation X
(0)
t := Xt).

Theorem 2.4 Consider the in�nitesimal generator Q de�ned by (1.2) and the matrix

Q(k) =




Bk Ak 0

CT
k+1 Bk+1 Ak+1

CT
k+2 Bk+2 Ak+2

CT
k+3 Bk+3 Ak+3

0
. . . . . . . . .




.

The matrix Q(k) is called the associated matrix of order k, k ≥ 1, corresponding to Q. Assume
that Σ is a spectral measure corresponding to Q with positive de�nite block Hankel matrices,
that is, there exists a sequence {Rn}n≥0 of nonsingular matrices, which satis�es condition (2.1)
of Theorem 2.1. Then there exists a spectral measure Σ(k) corresponding to Q(k) with positive
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de�nite block Hankel matrices. If the measures are determined by their moments, then the Stieltjes
transforms of the measures are related by

∫
dΣ(x)

z − x
= R−1

0

{
zId − E0 −D1

{
zId − E1 −D2

{
zId − E2 − . . .

. . .−Dk−1

{
zId − Ek−1 −DkRk

∫
dΣ(k)(x)

z − x
RT

k DT
k

}−1

DT
k−1

}−1

. . .

. . . DT
2

}−1

DT
1

}−1

(RT
0 )−1,

where
Dn+1 = −RnAnR−1

n+1, En = −RnBnR−1
n , DT

n = −RnCT
n R−1

n−1,(2.6)

and the Stieltjes transforms of the matrix measures Σ(k) and Σ(k+1) are related by
∫

dΣ(k)(x)

z − x
= R−1

k

{
zId + RkBkR

−1
k −RkAk

∫
dΣ(k+1)(x)

z − x
RT

k+1Rk+1C
T
k+1R

−1
k

}−1

(RT
k )−1.

Proof. Let the sequence of polynomials {Qn(x)}n≥0 be de�ned by recursion (1.3) with corre-
sponding spectral measure Σ. Then the polynomials Wn(x) := RnQn(x) are orthonormal with
respect to the matrix measure Σ and satisfy the three term recurrence relation

xWn(x) = Dn+1Wn+1(x) + EnWn(x) + DT
n Wn−1(x)

with initial conditions W−1(x) = 0 and W0(x) = R0, where

Dn+1 = −RnAnR
−1
n+1, En = −RnBnR−1

n , DT
n = −RnCT

n R−1
n−1.(2.7)

From Zygmunt (2002) it follows that
∫

dΣ(x)

z − x
= lim

n→∞
R−1

0

{
zId − E0 −D1

{
zId − E1 −D2

{
zId − E2 − . . .(2.8)

. . .−Dn

{
zId − En

}−1

DT
n

}−1

. . .
}−1

DT
2

}−1

DT
1

}−1

(RT
0 )−1.

Assume that the sequence of polynomials {Q(k)
n (x)}n≥0 is de�ned by recursion (1.3), where the

matrices Bn, An and Cn have been replaced by the matrices Bn+k, An+k and Cn+k, respectively,
that is

−xQ(k)
n (x) = An+kQ

(k)
n+1(x) + Bn+kQ

(k)
n (x) + CT

n+kQ
(k)
n−1(x),

with Q
(k)
0 (x) = I and Q

(k)
−1(x) = 0. De�ne A

(k)
n = An+k, B

(k)
n = Bn+k, C

(k)
n = Cn+k and R

(k)
n =

Rn+k, n ≥ 0. From Theorem 2.1 we obtain the symmetry of the matrices

−R(k)
n B(k)

n (R(k)
n )−1 = −Rn+kBn+kR

−1
n+k ∀ n ≥ 0
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and the equation

(R(k)
n )T R(k)

n = RT
n+kRn+k

= C−1
n+kC

−1
n+k−1 · · ·C−1

k+1C
−1
k · · ·C−1

1 RT
0 R0A0A1 · · ·Ak−1Ak · · ·An+k−1

= C−1
n+kC

−1
n+k−1 · · ·C−1

k+1R
T
k RkAk · · ·An+k−1

= (C(k)
n )−1(C

(k)
n−1)

−1 · · · (C(k)
1 )−1(R

(k)
0 )T R

(k)
0 A

(k)
0 · · ·A(k)

n−1 ∀ n ≥ 1.

Therefore, from Theorem 2.1 it follows that there exists a spectral measure Σ(k) with positive
de�nite block Hankel matrices corresponding to the sequence of polynomials {Q(k)

n (x)}n≥0.

The polynomials W
(k)
n (x) := R

(k)
n Q

(k)
n (x) are orthonormal with respect to the measure Σ(k) and

satisfy the recursion

xW (k)
n (x) = D

(k)
n+1W

(k)
n+1(x) + E(k)

n W (k)
n (x) + (D(k)

n )T W
(k)
n−1(x), W

(k)
0 (x) = R

(k)
0 = Rk,

where
D

(k)
n+1 = Dn+k+1, E

(k)
n = En+k ∀ n ≥ 0.

Therefore, it follows from Zygmunt (2002)
∫

dΣ(k)(x)

z − x
= lim

n→∞
(R

(k)
0 )−1

{
zId − E

(k)
0 −D

(k)
1

{
zId − E

(k)
1 −D

(k)
2

{
zId − E

(k)
2 − . . .

. . .−D(k)
n

{
zId − E(k)

n

}−1

(D(k)
n )T

}−1

. . .
}−1

(D
(k)
2 )T

}−1

(D
(k)
1 )T

}−1

((R
(k)
0 )T )−1

= lim
n→∞

R−1
k

{
zId − Ek −Dk+1

{
zId − Ek+1 −Dk+2

{
zId − Ek+2 − . . .(2.9)

. . .−Dn+k

{
zId − En+k

}−1

DT
n+k

}−1

. . .
}−1

DT
k+2

}−1

DT
k+1

}−1

(RT
k )−1.

A combination of the equations (2.8) and (2.9) yields
∫

dΣ(x)

z − x
= R−1

0

{
zId − E0 −D1

{
zId − E1 −D2

{
zId − E2 − . . .

. . .−Dk−1

{
zId − Ek−1 −DkRk

∫
dΣ(k)(x)

z − x
RT

k DT
k

}−1

DT
k−1

}−1

. . .

. . . DT
2

}−1

DT
1

}−1

(RT
0 )−1 ,

and from equations (2.9) and (2.7) we obtain
∫

dΣ(k)(x)

z − x
= R−1

k

{
zId − Ek −Dk+1Rk+1

∫
dΣ(k+1)(x)

z − x
RT

k+1D
T
k+1

}−1

(RT
k )−1

= R−1
k

{
zId + RkBkR

−1
k −RkAk

∫
dΣ(k+1)(x)

z − x
RT

k+1Rk+1C
T
k+1R

−1
k

}−1

(RT
k )−1 ,

which completes the proof of the theorem. 2
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Remark 2.5 Note that in the literature, many queueing models are considered, where the ma-
trices Cn do not have full rank [see Latouche and Ramaswami (1999)]. Following the arguments
used in Remark 2.7 in Dette et al. (2006) the conditions

RnBn = EnRn, n ≥ 0,

Cn+1R
T
n+1Rn+1 = RT

nRnAn, n ≥ 1,

are su�cient for the existence of a spectral measure Σ corresponding to Q, where {En}n≥0 is a
sequence of symmetric matrices and

∫
Qi(x)dΣ(x)QT

j (x) = δijR
T
j Rj.

In other words: the assumption of nonsingularity of the matrices Cn can be relaxed. The same
arguments as used in Theorem 2.2 then imply

Pij(t)R
T
j Rj =

∫
e−txQi(x)dΣ(x)QT

j (x).

3 Examples
Example 3.1 Dayar and Quessette (2002) considered a queuing system consisting of a M/M/1-
system and a M/M/1/d− 1-system. Both queues have Poisson arrival processes with rate λi, i =

1, 2, and exponential service distributions with rate µi, i = 1, 2, and it was assumed that γ =

λ1 + λ2 + µ1 + µ2. This system can be described by a homogeneous Markov process X(t) =

(L1(t), L2(t))t∈R+ with state space E = N × {0, . . . , d − 1}, where L1(t) and L2(t) denote the
length of the �rst queue at time t and the length of the second queue at time t, respectively. The
entries of the corresponding in�nitesimal generator (1.2) have the form

B0 =




−(λ1 + λ2) λ2

µ2 −(γ − µ1) λ2

. . . . . . . . .
µ2 −(γ − µ1) λ2

µ2 −(λ1 + µ2)




,

Bi =




−(γ − µ2) λ2

µ2 −γ λ2

. . . . . . . . .
µ2 −γ λ2

µ2 −(γ − λ2)




, i ≥ 1,
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Ai = λ1Id, i ≥ 0, and CT
i = µ1Id, i ≥ 1. It is easy to see that Q is conservative. A straightforward

calculation shows that the conditions of Theorem 2.1 are satis�ed with the matrices

R0 = diag


1,

√
λ2

µ2

,

(√
λ2

µ2

)2

, . . . ,

(√
λ2

µ2

)d−1

 ,

Ri =

(√
λ1

µ1

)i

R0, i ∈ N.

This implies the existence of a spectral measure.

Example 3.2 Consider a homogeneous Markov process (Xt)t≥0 with in�nitesimal generator (1.2),
where

B0 =




−γ0 β01

β10 −γ1 β12

. . . . . . . . .
βd−2,d−3 −γd−2 βd−2,d−1

βd−1,d−2 −γd−1




, γk 6= 0, k = 0, ..., d− 1,

Bi =




−δ0 β01

β10 −δ1 β12

. . . . . . . . .
βd−2,d−3 −δd−2 βd−2,d−1

βd−1,d−2 −δd−1




, i ≥ 1, δk 6= 0, k = 0, ..., d− 1,

Ai = α1Id, i ≥ 0, and CT
i = α2Id, i ≥ 1. A generator matrix of this form can be associated to a

queueing model which consists of d di�erent M/M/1-systems. Each M/M/1-system has a Poisson
arrival process with rate α1 and an exponential service time distribution with rate α2. If the model
is situated in system i, then it changes to the system i− 1 and i+1 with the rate βi,i−1 and βi,i+1,

respectively. This model can be described by the two dimensional homogeneous Markov process
(Nt, St)t≥0 with state space E = N0 × {0, . . . , d− 1}, where Nt denotes the number of customers
in the whole model at time t and St denotes the number of the system at time t.

If βij 6= 0 for all i, j = 0, . . . , d− 1, then the conditions of Theorem 2.1 are satis�ed with

R0 = diag
(√

βd−1,d−2 · · · β10

β01 · · · βd−2,d−1

,

√
βd−1,d−2 . . . β21

β12 . . . βd−2,d−1

, . . . ,

√
βd−1,d−2

βd−2,d−1

, 1

)
(3.1)

and
Rn =

(√
α1

α2

)n

R0, n ≥ 1.(3.2)

This implies the existence of a spectral measure Σ corresponding to Q.
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Example 3.3 We now specify the situation of Example 3.2 to the case, where the parameters in
the in�nitesimal generator Q satisfy

δi =: δ, γi =: γ, βi,i+1 =: β1 and βi+1,i =: β2 ∀ i = 0, . . . , d− 1, β1, β2 6= 0.

Then the matrices in (2.6) have the form

D := Dn = −√α1α2Id, n ≥ 1,

E0 =




γ −√β1β2

−√β1β2 γ −√β1β2

. . . . . . . . .
−√β1β2 γ −√β1β2

−√β1β2 γ




and

E := En =




δ −√β1β2

−√β1β2 δ −√β1β2

. . . . . . . . .
−√β1β2 δ −√β1β2

−√β1β2 δ




, n ≥ 1.

The eigenvalues of the matrix E are given by

λk = δ + 2
√

β1β2 cos

(
kπ

d + 1

)
, k = 1, . . . , d,

with corresponding eigenvectors given by u(k) = (u
(k)
1 , . . . , u

(k)
d )T , where

u
(k)
j =

√
2

d + 1
sin

(
kjπ

d + 1

)
, j, k = 1, . . . , d.

With the notation H := diag(λ1 − z, . . . , λd − z) and U := (u(1), . . . , u(d)), it follows that

E − zId = UHUT and UT U = Id.

Let Q̄ be the in�nitesimal generator obtained from Q by replacing the �rst diagonal block B0

by the block B1 (which coincides with all other blocks Bi, i ≥ 2) and denote by Σ̄ the spectral
measure corresponding to Q̄. From Duran (1999) we obtain for the Stieltjes transform Φ̄(z) of the
matrix measure Σ̄

Φ̄(z) = −1

2
D−2(E − zId)

1/2
{
Id + {Id − 4D2(E − zId)

−2}1/2
}

(E − zId)
1/2

= − 1

2α1α2

UH1/2
{
Id + {Id − 4α1α2H

−2}1/2
}

H1/2UT ,

11



and Theorem 2.3 gives the Stieltjes transform Φ(z) of the measure Σ. Moreover, the results in
Duran (1999) also show that the support of the spectral measure is given by

supp(Σ) =
{
x ∈ R : D−1/2(xId − E)D−1/2 has an eigenvalue in [−2, 2]

}

= [−2
√

α1α2 + δ + 2
√

β1β2cos (
πd

d + 1
), 2
√

α1α2 + δ + 2
√

β1β2cos (
π

d + 1
)].

Note that supp(Σ) ⊂ [0,∞) if δ ≥ α1 + α2 + β1 + β2.

4 α-recurrence
The decay parameter of continuous-time Quasi-Birth-and-Death processes was introduced by van
Doorn (2006). To be precise assume that (Xt)t≥0 is an irreducible Quasi-Birth-and-Death process
with state space (1.1) and in�nitesimal generator Q de�ned by (1.2), where

B01 + A01 < 0.

Then the decay parameter α of the process (Xt)t≥0, is de�ned by

α = sup

{
s ≥ 0 : eT

j

∫ ∞

0

estPii′(t)dtej′ < ∞
}

, (i, j), (i′, j′) ∈ E.

The process (Xt)t≥0 is called α-recurrent if and only if for some state (i, `) ∈ E (and then for all
states in E)

eT
`

∫ ∞

0

eαtPii(t)dte` = ∞,(4.1)

where e` = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rd denotes the `th unit vector. The process (Xt)t≥0 is called
α-positive if and only if for some state (i, `) ∈ E (and then for all states in E)

eT
` lim

t→∞
eαtPii(t)e` > 0.(4.2)

The following results characterize α-recurrence of the process (Xt)t≥0 in terms of the spectral
measure Σ, the corresponding orthogonal polynomials Qj(x) and the blocks of the in�nitesimal
generator. Throughout this section it will be assumed that condition (2.1) of Theorem 2.1 is
satis�ed.

Theorem 4.1 Assume that the conditions of Theorem 2.1 are satis�ed with a spectral measure
supported in the interval [α,∞), and that there exists a transition function, which satis�es the
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Kolmogorov forward di�erential equation (2.3). The process (Xt)t≥0 is α-recurrent if and only if
for some state (i, `) ∈ E (and then for all states in E)

eT
`

(∫
Qi(x)dΣ(x)QT

i (x)

x− α

)(∫
Qi(x)dΣ(x)QT

i (x)

)−1

e` = ∞.(4.3)

Proof. With the representation (2.4) and Fubini's Theorem condition (4.1) is equivalent to

eT
`

(∫ ∫ ∞

0

e(α−x)tdtQi(x)dΣ(x)QT
i (x)

)(∫
Qi(x)dΣ(x)QT

i (x)

)−1

e` = ∞,

which implies (4.3). 2

In the following we de�ne for a matrix measure Σ with existing moments the d×d matrices ζ0 = 0

and ζk = (Sk−1 − S−k−1)
−1(Sk − S−k ) ∈ Rd×d, where S2n − S−2n and S2n−1 − S−2n−1 denote the Schur

complement of S2n and S2n−1 in the matrix H2n and

H2n−1 =




S1 · · · Sn

... ...
Sn . . . S2n−1


 ,

respectively [see Dette und Studden (2002)]. The next result gives a representation of the Stieltjes
transform of the spectral measure Σ in terms of the quantities ζj and the blocks of the generator
matrix (1.2).

Theorem 4.2 Assume that the conditions (2.1) of Theorem 2.1 are satis�ed. Let {Qn(x)}n≥0 de-
note the corresponding orthogonal matrix polynomials de�ned by the recursion (1.3). Assume that
the corresponding spectral measure Σ is supported in the interval [0,∞) and that it is determined
by its moments. Then the Stieltjes transform of the measure Σ can be represented as

∫
dΣ(x)

z − x
= lim

n→∞

{
zId −

{
Id −

{
zId − . . .

. . .−
{

zId − ζT
2n+1

}−1

ζT
2n

}−1

. . .
}−1

ζT
2

}−1

ζT
1

}−1

S0.

In particular, the following representations hold
∫

dΣ(x)

x
= lim

n→∞

n+1∑
j=0

(
ζT
2j+1ζ

T
2j−1 · · · ζT

1

)−1 (
ζT
2jζ

T
2j−2 · · · ζT

2

)
S0(4.4)

= lim
n→∞

n+1∑
j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · ·T0T

−1
1 A−1

0 T0S0,(4.5)
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where Tj = Qj(0), j ≥ 0.

Proof. From Dette and Studden (2002) it follows that the monic orthogonal matrix polynomials
{P n(x)}n≥0 with respect to a matrix measure Σ supported in [0,∞) satisfy the recursive relation

xP n(x) = P n+1(x) + (ζT
2n+1 + ζT

2n)P n(x) + ζT
2nζ

T
2n−1P n−1(x),(4.6)

with P−1(x) = 0, P 0(x) = Id, ζ0 = 0 and ζk = (Sk−1 − S−k−1)
−1(Sk − S−k ), where the matrices

∆2n := 〈P n, P n〉 = (S0ζ1 . . . ζ2n)T

are positive de�nite. Then the polynomials

Pn(x) := ∆
−1/2
2n P n(x), n ≥ 0,

are orthonormal with respect to the matrix measure Σ and satisfy the recursion

xPn(x) = An+1Pn+1(x) + BnPn(x) + AT
nPn−1(x)

with P−1(x) = 0, P0(x) = S
−1/2
0 and

An+1 = ∆
−1/2
2n ∆

1/2
2n+2,(4.7)

Bn = ∆
−1/2
2n (ζT

2n + ζT
2n+1)∆

1/2
2n ,(4.8)

AT
n = ∆

−1/2
2n ζT

2nζ
T
2n−1∆

1/2
2n−2.(4.9)

From Zygmunt (2002) it follows that

Fn(z) = (Pn+1(z))−1P̃
(1)
n+1(z) = S

1/2
0 {zId −B0 − A1{zId −B1 − A2{zId −B2 − . . .(4.10)

. . .− An{zId −Bn}−1AT
n}−1 . . . AT

1 }−1S
1/2
0 ,

where P̃
(1)
n (z) denote the �rst associated polynomials for Pn(z). An application of Markov's The-

orem [see Duran (1996)], (4.7) - (4.9) and (4.10) now yields
∫

dΣ(x)

z − x
= lim

n→∞
Fn(z)(4.11)

= lim
n→∞

{
zId − ζT

1 −
{

zId − ζT
2 − ζT

3 −
{

zId − ζT
4 − ζT

5 . . .

. . .−
{

zId − ζT
2n − ζT

2n+1

}−1

ζT
2nζT

2n−1

}−1

. . . ζT
4 ζT

3

}−1

ζT
2 ζT

1

}−1

S0

= lim
n→∞

{
zId −

{
Id −

{
zId −

. . .−
{

zId − ζT
2n+1

}−1

ζT
2n

}−1

. . .
}−1

ζT
2

}−1

ζT
1

}−1

S0.
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If z = 0, then we obtain from (4.11) and Fair (1971)
∫

dΣ(x)

−x
= − lim

n→∞

n+1∑
j=0

X−1
j+1ζ

T
2jζ

T
2j−1Xj−1X

−1
j ζT

2j−2ζ
T
2j−3Xj−2X

−1
j−1 · · ·X1X

−1
2 ζT

2 S0,

where X0 = Id, X1 = −ζT
1 and

Xn+1 = −(ζT
2n+1 + ζT

2n)Xn − ζT
2nζ

T
2n−1Xn−1, n ≥ 1.

An induction argument yields Xn = (−1)nζT
2n−1ζ

T
2n−3 · · · ζT

1 , n ≥ 1, and the �rst representation in
(4.4) follows. For the second part we note that the polynomials Q

n
(x) := (−1)nA0 · · ·An−1Qn(x),

n ≥ 0, have leading coe�cient Id and because of (1.3) they satisfy the recursion

Q
n+1

(x) = xQ
n
(x) + A0 · · ·An−1BnA

−1
n−1 · · ·A−1

0 Q
n
(x)− A0 · · ·An−1C

T
n A−1

n−2 · · ·A−1
0 Q

n−1
(x).

A comparison with the polynomials P n(x) in (4.6) now yields

A0 · · ·An−1BnA−1
n−1 · · ·A−1

0 = −(ζT
2n + ζT

2n+1),(4.12)
A0 · · ·An−1C

T
n An−2 · · ·A0 = ζT

2nζT
2n−1.(4.13)

De�ne Tn := Qn(0), n ≥ 0. Then (4.12) and (4.13) imply

Tn = A−1
n−1 · · ·A−1

0 ζT
2n−1ζ

T
2n−3...ζ

T
1 ∀ n ≥ 0.

Therefore, we can de�ne the polynomials Q̂n(x) := T−1
n Qn(x). From (1.3) it follows that these

polynomials satisfy the recurrence relation

xQ̂n(x) = ÂnQ̂n+1(x) + B̂nQ̂n(x) + ĈT
n Q̂n−1(x)

with

Ân = T−1
n AnTn+1, B̂n = T−1

n BnTn, ĈT
n = T−1

n CT
n Tn−1

and Ân + B̂n + ĈT
n = 0. Consequently we obtain from (4.12) and (4.13) that

Â0 · · · Ân−1B̂nÂ
−1
n−1 · · · Â−1

0 = −(ζT
2n + ζT

2n+1),

Â0 · · · Ân−1Ĉ
T
n Â−1

n−2 · · · Â−1
0 = ζT

2nζ
T
2n−1

and hence

ζT
2n+1 = Â0 · · · ÂnÂ

−1
n−1 · · · Â−1

0 ,

ζT
2n = Â0 · · · Ân−1Ĉ

T
n Â−1

n−1 · · · Â−1
0 .
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Equation (4.4) �nally yields
∫

dΣ(x)

x
= lim

n→∞

n+1∑
j=0

Â−1
j ĈT

j Â−1
j−1 · · · Â−1

1 ĈT
1 Â−1

0 S0

= lim
n→∞

n+1∑
j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · ·T0T

−1
1 A−1

0 T0S0,

which completes the proof of the Theorem. 2

In the following, the α-recurrence condition will be represented in terms of properties of the spectral
measure, the corresponding orthogonal matrix polynomials and the blocks of the in�nitesimal
generator (1.2). For this purpose, consider the process (Xt,α)t≥0 with state space E de�ned in
(1.1) and in�nitesimal generator matrix

Qα =




B0,α A0,α 0

CT
1,α B1,α A1,α

CT
2,α B2,α A2,α

CT
3,α B3,α A3,α

0
. . . . . . . . .




,

where

An,α := Q−1
n (α)AnQn+1(α), n ≥ 0,

Bn,α := Q−1
n (α)BnQn(α), n ≥ 0,

CT
n,α := Q−1

n (α)CT
n Qn−1(α), n ≥ 1.

The corresponding sequence {Qn,α(x)}n≥0 of matrix polynomials satis�es the recurrence relation

−xQn,α(x) = An+1,αQn+1,α(x) + Bn,αQn,α(x) + CT
n,αQn−1,α(x)

with initial conditions Q−1,α(x) = 0, Q0,α(x) = Id. If the conditions (2.1) of Theorem 2.1 are
satis�ed, then the matrix Qα can be symmetrized with the matrices

Rn,α = RnQn(α), n ≥ 0.

An induction argument shows the representation

Qn,α(x) = Q−1
n (α)Qn(x + α), n ≥ 0,(4.14)

and therefore ∫
Qn,α(x)dΣα(x)QT

m,α(x) = 0, n 6= m,
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where the matrix measure Σα is de�ned by

Σα ((0, x]) = Σ ((α, α + x]) .

If representation (2.4) holds, it is easy to see that

eαtP00(t) =

∫
e−txdΣα(x)S−1

0 ,(4.15)

and the following remark is a consequence of Theorem 4.1.

Remark 4.3 Assume that the conditions of Theorem 4.1 are satis�ed and that Σ is a correspond-
ing spectral measure supported in the interval [α,∞). The process (Xt)t≥0 is α-recurrent if and
only if

eT
j

∫ ∞

0

dΣα(x)

x
S−1

0 ej = eT
j

∫ ∞

α

dΣ(x)

x− α
S−1

0 ej = ∞

for some j ∈ {1, . . . , d}. The process is α-positive, if

eT
` lim

t→∞
eαtP00(t)e` > 0

for some ` ∈ {1, . . . , d}. This is the case if and only if the measure eT
` dΣ(x)S−1

0 e` has a jump in
the point x = α. 2

Theorem 4.4 Assume that the conditions of Theorem 2.1 are satis�ed and that the corresponding
matrix measure Σ is supported in the interval [α,∞) and determined by its moments. If a transition
function P (t) satisfying P ′(t) = P (t)Q exists, then the process (Xt)t≥0 is α-recurrent if and only
if for some state (0, `) ∈ E (and then for all states in (0, k) ∈ E)

eT
`

∞∑
j=0

H−1
j+1A

−1
j CT

j Hj−1H
−1
j A−1

j−1C
T
j−1Hj−2 · · ·CT

1 H−1
1 A−1

0 H0S0e` = ∞,

where Hj := Qj(α), j ≥ 0.

Proof. Because condition (2.1) holds for the polynomials {Qn(x)}n≥0, this condition is also
ful�lled for the polynomials {Qn,α}n≥0 with Rn,α := RnQn(α), n ≥ 0. From equation (4.14) it
follows that Qj,α(0) = Id for all j ≥ 0. Therefore we obtain with equation (4.5)

∫
dΣα(x)

x
=

∞∑
j=0

A−1
j,αCT

j,αA−1
j−1,αCT

j−1,α · · ·CT
1,αA−1

0,αS0.
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From the representation A−1
j,αCT

j,α = Qj+1(α)A−1
j CT

j Qj−1(α), j ≥ 0, it follows from Remark 4.3
that the state (0, `) is α-recurrent if and only if

eT
`

∞∑
j=0

H−1
j+1A

−1
j CT

j Hj−1H
−1
j A−1

j−1C
T
j−1Hj−2 · · ·CT

1 H−1
1 A−1

0 H0S0e` = ∞,

where Hj = Qj(α), j ≥ 0. 2

Remark 4.5 Assume that the conditions of Theorem 4.4 are satis�ed, and let Σ(1) be a spectral
measure corresponding to the sequence of associated matrix polynomials {Q(1)

n (x)}n≥0.

1. The state (0, `) ∈ E is α-recurrent if and only if

eT
`

∫
dΣ(x)

x− α
S−1

0 e` = eT
`

{
−αId −B0 − A0

∫
dΣ(1)(x)

x− α
RT

1 R1C
T
1

}−1

e` = ∞.

2. The state (0, `) ∈ E is α-positive if and only if

eT
` lim

t→∞
eαtP00(t)e` = lim

z→0
zeT

`

∫
dΣ(x)

(z + α)− x
S−1

0 e`

= eT
` lim

z→0

{
z + α

z
Id +

1

z

(
B0 − A0

∫
dΣ(1)(x)

(z + α)− x
RT

1 R1C
T
1

)}−1

> 0.

Note that conditions (4.1) and (4.2) reduce to recurrence and positive recurrence, if α = 0. There-
fore, with Theorem 4.2 we obtain the following conditions for recurrence and positive recurrence
of a Quasi-Birth-and-Death process.

Corollary 4.6 Assume that the conditions of Theorem 2.1 are satis�ed, that the corresponding
matrix measure Σ is supported in the interval [0,∞) and determined by its moments. If a transition
function P (t) satisfying P ′(t) = P (t)Q exists, then the following statements hold.

1. The state (i, `) ∈ E is recurrent if and only if

eT
`

(∫
Qi(x)dΣ(x)QT

i (x)

x

)(∫
Qi(x)dΣ(x)QT

i (x)

)−1

e` = ∞,(4.16)

where e` = (0, ..., 0, 1, 0, ..., 0)T . In particular, the state (0, `) ∈ E is recurrent if and only if

eT
`

∫ ∞

0

dΣ(x)

x
S−1

0 e` = ∞.

2. The state (0, `) is recurrent if and only if

eT
`

∞∑
j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 · · ·T0T

−1
1 A−1

0 T0S0e` = ∞

with Tj = Qj(0), j ≥ 0.
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3. The state (0, `) is positive recurrent if and only if the matrix measure eT
` dΣ(x)S−1

0 e` has a
jump in the point x = 0.

Remark 4.7 1. Let Σ(1) be a spectral measure supported in [0,∞) corresponding to the associated
polynomials {Q(1)

n (x)}n≥0 introduced in Theorem 2.4. Then, a combination of Theorem 2.4 and
Corollary 4.6 shows that the state (0, `) ∈ E is recurrent if and only if

eT
`

∫
dΣ(x)

x
S−1

0 e` = − lim
z→0

eT
`

∫
dΣ(x)

z − x
RT

0 R0e`

= eT
`

{
−B0 − A0

∫
dΣ(1)(x)

x
RT

1 R1C
T
1

}−1

e` = ∞.

An induction argument shows that

Q(1)
n (x) = −Q̃

(1)
n+1(x)S−1

0 A0, n ≥ 0,

where Q̃
(1)
n (x) are the �rst associated polynomials corresponding to Q

(1)
n (x), and Q

(1)
n (x) are the

associated polynomials of order k = 1 corresponding to Qn(x). Therefore it follows for the Stieltjes
transform of the spectral measure corresponding to the associated orthogonal polynomials that

∫
dΣ(1)(x)

x
= lim

n→∞

n+1∑
j=0

A−1
0 S0Z

−1
j+1A

−1
j+1C

T
j+1Zj−1Z

−1
j A−1

j · · ·

· · ·A−1
2 CT

2 Z−1
1 A−1

1 Z0(R
T
1 R1)

−1,

where Zj := Q̃
(1)
j+1(0).

2. A straightforward calculation yields

eT
i Σ({0})ej = lim

z→0
zeT

i Φ(z)ej.

From Theorem 2.4 it follows that the state (0, `) ∈ E is positive recurrent, if the condition

eT
` lim

t→∞
P00(t)e` = eT

` lim
z→0

z

∫
dΣ(x)

z − x
S−1

0 e`

= eT
` lim

z→0
zR−1

0 {zId + R0B0R
−1
0 −R0A0

∫
dΣ(1)(x)

z − x
RT

1 R1C
T
1 R−1

0 }−1R0e`

= eT
` lim

z→0
{Id +

1

z
(B0 − A0

∫
dΣ(1)(x)

z − x
RT

1 R1C
T
1 }−1e` > 0

holds.
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