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Imputing Missing Genotypes with Weighted k Nearest

Neighbors

Holger Schwender∗, Katja Ickstadt

Collaborative Research Center 475, Faculty of Statistics, Dortmund University of

Technology, Dortmund, Germany

Abstract

Motivation: Missing values are a common problem in genetic association studies con-

cerned with single nucleotide polymorphisms (SNPs). Since most statistical methods

cannot handle missing values, they have to be removed prior to the actual analysis.

Considering only complete observations, however, often leads to an immense loss of in-

formation. Therefore, procedures are needed that can be used to replace such missing

values. In this article, we propose a method based on weighted k nearest neighbors that

can be employed for imputing such missing genotypes.

Results: In a comparison to other imputation approaches, our procedure called KN-

NcatImpute shows the lowest rates of falsely imputed genotypes when applied to the

SNP data from the GENICA study, a study dedicated to the identification of genetic

and gene-environment interactions associated with sporadic breast cancer. Moreover, in

contrast to other imputation methods that take all variables into account when replacing

missing values of a particular variable, KNNcatImpute is not restricted to association

studies comprising several ten to a few hundred SNPs, but can also be applied to data

from whole-genome studies, as an application to a subset of the HapMap data shows.

Availability: KNNcatImpute is implemented in the R package scrime that can be down-

loaded from http://cran.r-project.org.

Contact: holger.schwender@udo.edu

1 Introduction

Variations in the human genome are assumed to play an important role in the development

of diseases. If such a genetic variation occurs at a single base pair position and in at least

1% of the population, it is called a single nucleotide polymorphism (SNP). Typically, SNPs

are biallic, i.e. two alternatives exist at the corresponding base pair position. Therefore, such

SNPs can take three forms: If the base on each of the two chromosomes is of the more/less

frequent variant, then a SNP is of the homozygous reference/variant genotype. If one base

is of the more frequent, and the other of the less frequent variant, then the SNP is of the

heterozygous genotype.

A major goal of genetic association studies is the identification of SNPs and – more impor-

tantly – interactions of SNPs (Culverhouse et al., 2002; Garte, 2001). Several methods have

∗to whom correspondence should be addressed
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been proposed for the detection of SNP interactions. They reach from exhaustive searches

based on, e.g., multiple testing (Marchini et al., 2005; Goodman et al., 2006; Ritchie et al.,

2001) over the use of evolutionary algorithms (Nunkesser et al., 2007) to approaches based on

discrimination procedures (Lunetta et al., 2004; Kooperberg and Ruczinski, 2005; Schwender

and Ickstadt, 2007) such as Random Forests (Breiman, 2001) and logic regression (Ruczinski

et al., 2003). In Heidema et al. (2006) and Hoh and Ott (2003), overviews on such methods

are presented.

A problem frequently occurring in association studies is that for some of the observations

the genotypes of some of the SNPs are not available. Since most discrimination and feature

selection procedures cannot handle missing values, they have to be removed prior to the

application of these methods.

The most consistent solution to this problem would be to consider complete observations

only, i.e. to remove all observations with one or more missing values. This, however, often leads

to an immense loss of information. Moreover, this approach might bias the results of further

analyses (Greenland and Finkle, 1995). For example, in the GENICA study (see Section 3), a

study dedicated to the identification of genetic and gene-environment interactions associated

with sporadic breast cancer, using complete observations would mean that data of just 63.3%

of the women are considered (see Figure 1). Therefore, procedures are required that enable the

replacement of missing values instead of removing them and the corresponding observations.

In the analysis of gene expression data, KNNimpute proposed by Troyanskaya et al. (2002)

is a popular method to impute missing expression values based on weighted k nearest neighbors

(kNN; Fix and Hodges, 1951). Let’s assume that the expression value xij of gene i and

observation j is missing, and that Lk is a set comprising the k genes showing the smallest

Euclidean distance to gene i and having a value present for the jth sample. Using KNNimpute,

xij is replaced by

xij =
∑

ℓ∈Lk

wiℓxℓj

/

∑

ℓ∈Lk

wiℓ, (1)

where the weight wiℓ is given by the reciprocal of the Euclidean distance between the expression

values of gene i and gene ℓ.

For an application of KNNimpute to protein expression data and a comparison of the

Euclidean distance with other distance measures and of the weighted mean (1) with other

estimates of average in the context of KNNimpute, see Jung et al. (2006).

However, KNNimpute cannot be employed for replacing missing genotypes, since SNPs are

categorical variables. In this article, we therefore introduce an approach based on weighted

k nearest neighbors enabling the imputation of missing categorical data. This procedure

called KNNcatImpute is then compared to other imputation methods such as the tree-based

procedure proposed by Dai et al. (2006) and the imputation approach of Random Forests

(Breiman, 2001) in their applications to the SNP data from the GENICA study.

Contrary to other non ad hoc imputation methods that take the information in all variables

into account when replacing missing values, KNNcatImpute is not restricted to “classical” as-

sociation studies in which several ten to a few hundred SNPs are considered, but can also

be applied to data from whole-genome studies. To exemplify this, we employ this approach

to impute the missing genotypes in a subset of the SNP data from the HapMap study (The

International HapMap Consortium, 2003) consisting of 262,264 SNPs and 90 persons. More-

over, we compare KNNcatImpute with imputation methods that can also be used for replacing
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missing values in such high-dimensional data.

This paper is organized as follows. In Section 2, KNNcatImpute is presented in detail,

and it is shown how matrix algebra can be employed to determine all distances required

by k nearest neighbors simultaneously. While in Section 3 this procedure is applied to the

GENICA data set and compared with other approaches, Section 4 consists of the comparison

of KNNcatImpute and other imputation procedures in their application to the subset of the

HapMap data.

2 Imputation of missing genotypes based on k nearest

neighbors

2.1 Distance measures for categorical data

If k nearest neighbors are to be determined for categorical data, a distance measure has to

be employed that can cope with this type of data. Such measures are typically based on an

R × C contingency table in which the joint distribution of two variables, say Y and Z, with

observation vectors y and z, each of length n, is represented by the numbers

nrc =

n
∑

j=1

I (yj = r) I (zj = c) (2)

of observations showing the rth level at Y , r = 1, . . . , R, and the cth level at Z, c = 1, . . . , C.

An example for such a distance measure is given by

dCont

(

y, z
)

=
√

1 − Cont2
(

y, z
)

, (3)

where the corrected Pearson’s contingency coefficient

Cont
(

y, z
)

=

√

min
{

R, C
}

min
{

R, C
}

− 1
· χ2

χ2 + n

is based on Pearson’s χ2-statistic

χ2 =

R
∑

r=1

C
∑

c=1

(nrc − ñrc)
2

ñrc

=

R
∑

r=1

C
∑

c=1

n2
rc

ñrc

− n

for testing the null hypothesis that the two variables are independent by comparing nrc with

ñrc =
1

n

C
∑

c=1

nrc

R
∑

r=1

nrc, (4)

i.e. the numbers of observations expected under the null hypothesis.

In this article, we assume that R = C, i.e. that all variables exhibit the same number of

categories. In the case of SNPs, R = 3, where 1 denotes for the homozygous reference genotype

(which is the form that typically shows up most often), 2 the heterozygous genotype, and 3

the homozygous variant.

Besides distances based on Pearson’s χ2-statistic for testing independence of two variables,

there also exist measures for categorical data that take the number of matches between two
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variables into account. A popular example is the distance

dSMC

(

y, z
)

= 1 − sSMC

(

y, z
)

= 1 − 1

n

R
∑

r=1

nrr (5)

that is based on the (generalized) simple matching coefficient sSMC.

Another measure that also uses the total number of agreements/matches

aR =

R
∑

r=1

nrr,

but additionally takes into account the number of agreements that would have been found by

chance, i.e. eR =
∑

r ñrr, is the distance

dCohen

(

y, z
)

= 1 − κC = 1 − aR − eR

n − eR

=
n − aR

n − eR

based on Cohen’s kappa κC (Cohen, 1960).

All these distance measures treat the SNPs as categorical variables, i.e. assume that the

distance between the two homozygous genotypes is equal to the distance between each of the

homozygous and the heterozygous genotype. A different idea is to take the number of base

exchanges into account such that the distance between the homozygous genotypes (two base

exchanges) is twice the distance between a homozygous and the heterozygous genotype (one

base exchange). Using the abovementioned coding of the genotypes as numeric values, an

appropriate measure for this idea is the scaled Manhattan distance

dMan

(

y, z
)

=
1

2n

n
∑

i=1

|yi − zi| . (6)

In Section 3.2 and Section 4.2, these four measures are compared in the application of

KNNcatImpute to the SNPs from the GENICA and the HapMap study, respectively.

2.2 KNNcatImpute

After having computed the values of an appropriate distance measure d for all pairs of SNPs,

a missing genotype xij of SNP i and observation j is imputed by first identifying the set Lk

comprising the k SNPs showing the smallest distances to SNP i and having a value present

for the jth observation. Then, xij is determined by weighted majority voting, i.e. by

xij = arg max
r=1,...,R

∑

ℓ∈Lk

d−1
(

xℓ·,xi·

)

I
(

xℓj = r
)

, (7)

where xℓ· is a vector containing the genotypes of SNP ℓ for all observations. Note that in (7)

the normalization factor
∑

ℓ∈Lk
d−1(xℓ·,xi·) is omitted, since – contrary to (1) – the value of

xij is not affected by this constant. If d(xℓ·,xi·) = 0 for any ℓ ∈ Lk, then xij is replaced by

xℓj .

2.3 Simultaneous computation of contingency tables

Applying KNNcatImpute to a data set composed of m variables and n observations requires

the calculation of m(m−1)/2 distances. Since computing these values one-by-one can be very
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time-consuming, we employ the vectorization and matrix computation functionalities of the

statistical software R (R Development Core Team, 2007) to speed up the computation of the

values of the distance measures based on contingency tables.

Suppose that X is an m × n matrix in which each row represents one of the m variables,

and each column corresponds to one of the n observations. For a start, assume that none of

the values are missing. If X(r) denotes an m×n indicator matrix, r = 1, . . . , R, with elements

x
(r)
ij =







1, if xij = r

0, if xij 6= r (or xij is missing)
,

then the upper triangle of the m × m matrix

N(rc) = X(r)X(c)′ (8)

contains the numbers nrc for all m(m − 1)/2 pairs of variables, cf. (2), and the lower triangle

consists of the numbers ncr of these pairs, r, c = 1, . . . , R. More precisely, the value of (2) for

the two SNPs represented by the ith and the ℓth row of X is given by the (ith, ℓth) element

of N(rc). Analogously,

Ñ(rc) =
1

n
X(r)1n1′

nX(c)′. (9)

is composed of the expected numbers ñrc and ñcr, cf. (4), where 1n denotes a vector of length

n consisting only of ones.

Using (8), the m×m distance matrix DSMC containing the distances dSMC, see (5), for all

m(m − 1)/2 pairs of SNPs can be computed by

DSMC = 1m,m − 1

n

R
∑

r=1

Nrr, (10)

where 1m,m is an m×m matrix consisting only of ones. Similarly, the distance matrix DCohen

can be computed by employing (8) and (9).

For the distance matrix DCont, an m × m matrix Q containing all m(m − 1)/2 values of

Pearson’s χ2-statistic needs to be determined by

Q =

R
∑

r=1

R
∑

c=1

N(rc) ∗ N(rc)

Ñ(rc)
− n, (11)

where * and the fraction line denote elementwise matrix calculations.

The m×m distance matrix DMan composed of the values of the scaled Manhattan distance

(6) can also be determined by matrix computation. For this, note that if yi and zi, i = 1, . . . , n,

are integers between 1 and R, then (6) can also be calculated by

dMan

(

y, z
)

=
1

2n

R
∑

r=1

R
∑

c=1
c 6=r

|r − c| · nrc

such that DMan is given by

DMan =
1

2n

R
∑

r=1

R
∑

c=1
c 6=r

|r − c| ·N(rc). (12)
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TABLE 1. Processing times (in seconds) of both the matrix algebra based and the individual

calculation of the values of Pearson’s χ2-statistic for all pairs of m categorical variables, where each

variable exhibits r = 3 levels, and the number of observations is n = 1, 000.

m 10 50 100 200 500

Matrix 0.01 0.07 0.33 1.22 7.79

Individual 0.15 4.25 17.32 70.06 474.22

If there are missing values in X, the matrix algebra based procedure will lead to incorrect

distances for variables exhibiting missing values, since the number of observations showing no

missing value at such a variable will differ from the total number n of observations. To extend

this approach to a matrix X containing missing values, it is therefore necessary to define an

m × n matrix XNA with elements

xNA
ij =







1, if xij is not missing

0, if xij is missing
,

and to replace n in (9)-(12) by the m × m matrix N = XNA
(

XNA
)′

.

Since the rowwise sums of X(r) in (9) only take individual but not pairwise missing val-

ues, i.e. missing values appearing in either of the two considered variables, into account, it

additionally is necessary to replace X(r)1n by Z(r) = X(r)
(

XNA
)′

such that (9) becomes

Ñ(rc) =
Z(r)

(

Z(c)
)′

N
.

2.4 Comparison of processing times

To evaluate how much an implementation of the procedure based on matrix calculation in R

accelerates the computation in comparison to an individual determination of the m(m− 1)/2

values of Pearson’s χ2-statistic, both approaches are applied to several numbers m of variables.

In Table 1, the resulting processing times on an AMD Athlon XP 3000+ machine with

1 GB of RAM are summarized. This table reveals that using the vectorization and matrix

computation functionalities of R speeds up computation substantially, in particular if m is

large. If, e.g., 500 variables are considered, then it takes just less than 8 seconds to obtain

the 124,750 values of Pearson’s χ2-statistics when employing matrix computation, whereas an

individual calculation requires about 8 minutes.

3 Application to an Association Study

3.1 GENICA data set

The GENICA study is a case-control study carried out by the interdisciplinary study group

on Gene ENvironment Interaction and breast CAncer in Germany (http://www.genica.de),

a joint initiative of several German research institutes dedicated to the detection of genetic

and environmental factors leading to a higher risk of developing sporadic breast cancer. The

cases and controls of this age-matched and population-based study have been recruited in the
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FIGURE 1. Distribution of the numbers of missing values over the 1,234 observations from the

GENICA study.

larger Bonn region, Germany, between 2000 and 2002. For more details, see Justenhoven et al.

(2004).

In this article, the focus is on a subset of the genotype data from the GENICA study. More

precisely, data of 1,234 women (609 cases and 625 controls) and 39 SNPs belonging to the

estrogen, the DNA repair, or the control of cell cycle pathway are available for the analysis.

Since a few of the women show many missing genotypes (see Figure 1), all 35 observations

with more than three missing values are removed from the analysis leading to a total of 1,199

women (592 cases and 607 controls). The missing values of these women could, of course,

also have been imputed. We, however, prefer to remove such observations – as long as their

number is small – since observations with many replaced values may add large uncertainties

to further analyses with, e.g., discrimination methods.

The remaining 1.3% missing values should be replaced by the imputation method that

performs best in a comparison of already existing approaches for imputing categorical data

with KNNcatImpute. But first we would like to investigate which parameter setting is best

suited for an application of KNNcatImpute to the GENICA data set.

3.2 Comparison of parameter settings

Contrary to the discrimination approach of k Nearest Neighbors (see., e.g., Ripley, 1996)

in which the k nearest observations are employed to predict the class of a new observation,

Troyanskaya et al. (2002) borrow strength from a huge number of genes by imputing the

missing values based on the k nearest genes.

In the GENICA data set, however, the number of observations is much larger than the

number of SNPs. To figure out which approach works best for the GENICA data, KNNcatIm-

pute therefore is not only applied to X to identify the k nearest SNPs, but also to X′ to detect

the k nearest observations.

Moreover, it is examined which of the distance measures presented in Section 2.1 is most

suitable in the analysis of the GENICA data set.

For these comparisons, only the genotypes of the 759 complete observations, i.e. women

without missing values, are taken into account. Since in the GENICA data set 1.3% of the
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FIGURE 2. Mean fractions of falsely imputed values if dSMC (left-most panel), dCohen (second

left-most panel), dCont (second right-most panel), or dMan (right-most panel) is employed in KN-

NcatImpute to replace the 1% (upper panel) or 2% (lower panel) artificially generated missing values

in the GENICA data set. The solid lines mark the error rates when k nearest observations are used,

and the dashed lines the error rates when k nearest SNPs are considered.

genotypes are missing and the common rate of missing values in association studies is 5%-10%

(Dai et al., 2006), we remove randomly 1%, 2% 5%, and 10% of the genotypes, respectively.

Afterwards, the (artificial) missing values are replaced using the different settings of KN-

NcatImpute, and the imputed values are compared with the real genotypes. This procedure

is repeated 50 times.

In Figure 2, the mean fractions of falsely imputed genotypes for different values of k and

different settings of KNNcatImpute are displayed. (Since for all four cases, i.e. 1%, 2%, 5%, and

10% artificially removed values, the plots look similar, only the error rates for the imputations

of the 1% and 2% missing values are presented.) This figure reveals that the distance dCont

based on the corrected Pearson’s contingency coefficient exhibits larger error rates than the

three other measures when used in KNNcatImpute. The other three measures perform almost

equally well when searching for the k nearest observations, whereas dCohen shows larger error

rates than dSMC and dMan when considering the k nearest SNPs. For small values of k, k

nearest SNPs performs better than k nearest observations which might be due to the fact that

in these cases mostly SNPs from the same gene are used to impute the missing genotypes (see

also Müller et al., 2005).

Therefore, the most suitable setting of KNNcatimpute for imputing the 1.3% missing

genotypes in the GENICA data set seems to be an approach based on k nearest observations

with k ≈ 50 and on one of the distance measures dSMC, dCohen and dMan.

3.3 Comparison of imputation procedures

To determine how well KNNcatImpute performs in comparison to other imputation methods,

three ad hoc approaches and two more sophisticated procedures are also applied to the data

sets with the artificially generated missing values described in Section 3.2. In this comparison,

we do not consider haplotype-based imputation methods (e.g., Dai et al., 2006), since we do

not have haplotype information on the SNPs from the GENICA study.

In the three ad hoc approaches, the removed genotypes are imputed by

• the SNP-wise mode, i.e. typically the homozygous reference genotype,

• a random draw from the distribution of the respective SNP,
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• a random draw from the conditional distribution of the SNP given the case-control

status.

The first more sophisticated method is based on Random Forests (Breiman, 2001). In this

procedure, the missing values are initially replaced by the mode of the respective variable.

Afterwards, Random Forests is applied to this data set, and the proximity, i.e. the fraction of

trees containing two particular observations in the same terminal node, is computed for each

pair of observations. The missing genotypes are then recalculated by weighted majority voting,

where the votes resulting from the trees are weighted by the proximities. This procedure is

repeated several times, and the values determined in the final iteration are the estimates for

the missing genotypes.

The second approach proposed by Dai et al. (2006) is based on a combination of Gibbs

sampling (see, e.g., Gelman et al., 2003) and CART (Breiman et al., 1984). Gibbs sampling

is used to iteratively sample from the conditional distribution of the missing data of the jth

observation given the values computed for the missing genotypes of the other observations

in the previous steps of Gibbs sampling and the complete data of all observations, whereas

CART is employed to model this full conditional distribution (for more details, see Dai et al.,

2006).

For the comparison, the settings of KNNcatImpute leading to the best results in Section 3.2

are used, whereas the two more sophisticated methods are optimized by considering different

values of their parameters. While in the CART based approach 1, 2, 5, 10 (recommended by

Dai et al., 2006), 15 and 20 iterations are examined, the Random Forests based method is

applied to the data sets using, on the one hand, one to six iterations, and on the other hand,

500, 1000 and 2000 trees with ⌊
√

39⌋ = 6, 3, 12 and 39 SNPs selected randomly from the 39

GENICA SNPs at each node (cf. Breiman, 2001).

In Figure 3, the fractions of falsely imputed genotypes of the applications of these pro-

cedures with optimized parameters are displayed. This figure reveals that KNNcatImpute

leads to lower error rates than the approach of Dai et al. (2006) and the imputations based

on the mode which in turn exhibit lower error rates than the other procedures. Therefore,

KNNcatImpute seems to be best suited for the imputation of the missing values from the

GENICA data set, and is therefore used to replace these genotypes.
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FIGURE 3. Boxplots of the fractions of falsely imputed genotypes when replacing the 1% (left-most

panel), 2% (second left-most panel), 5% (second right-most panel), or 10% (right-most panel) missing

values by the mode, by a draw from the SNP-wise distribution, by a draw from the conditional distri-

bution of the SNP given the case-control status, by the Random Forests based method (5 Iterations,

500 trees with 6 SNPs at each node), by the CART-based procedure of Dai et al. (2006) with one

iteration, and by KNNcatImpute.
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4 Application to Whole-Genome Data

4.1 HapMap data set

The International HapMap Project (http://www.hapmap.org; The International HapMap

Consortium, 2003) is a collaboration of several scientific groups from different countries. In

this project, millions of SNPs have been genotyped for each of 270 persons from four popula-

tions, namely 45 Japanese from Tokyo, 45 Han Chinese from Beijing, 90 Yoruba in Ibadan,

Nigeria, and 90 CEPH (Utah residents with ancestry from Northern and Western Europe).

About 500,000 of these SNPs have been measured using the Affymetrix GeneChip Mapping

500K Array Set composed of the Nsp and the Sty array. In this article, we focus on the geno-

types of the 262,264 SNPs from the Nsp arrays that have been determined by the standard

Affymetrix genotype calling algorithm BRLMM (Bayesian Robust Linear Models with Maha-

lanobis distance; Affymetrix, 2006). These genotypes can be downloaded from http://www.

affymetrix.com/support/technical/sample data/500k hapmap genotype data.affx.

Furthermore, we only consider the genotypes of the 45 Japanese and 45 Han Chinese, since

all these individuals are unrelated, whereas each of the other two populations consists of 30

trios each of which is composed of data from a mother, a father and their child. For imputing

missing genotypes in the latter two populations, it therefore might be more appropriate to

take into account the relationship between the observations.

Since 45,793 of the 262,264 SNPs are monomorph, i.e. show only one genotype, and there-

fore useless for discriminating the two populations, they are removed from the data set prior

to the application of the imputation methods, although all procedures considered in this sec-

tion can handle such SNPs. For 46,118 of the remaining 216,471 SNPs, at least one of the 90

genotypes is missing. In Figure 4, the distribution of the numbers of missing values for these

46,118 SNPs is displayed.

As a relatively small number of SNPs exhibits a large number of missing values, all SNPs

exhibiting less than 90% non-missing values are removed leading to 44,733 SNPs with at least

one missing genotypes. The remaining 0.49% missing values in this subset of the HapMap

data set should again be replaced by the imputation method leading to the smallest numbers

of falsely imputed values.
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FIGURE 4. Distribution of the numbers of missing genotypes in the 46,118 SNPs from the HapMap

data that show at least one missing value.
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TABLE 2. Mean fractions of falsely imputed genotypes when applying KNNcatImpute with different

distance measures and different numbers of nearest neighbors to the HapMap data sets in which either

1% or 2% of the values have been removed randomly.

k 1 3 5 7

dSMC 0.142 0.147 0.153 0.158

1% dCohen 0.148 0.153 0.156 0.159

Removed dCont 0.531 0.542 0.549 0.556

dMan 0.140 0.145 0.150 0.155

dSMC 0.143 0.148 0.154 0.159

2% dCohen 0.150 0.154 0.157 0.160

Removed dCont 0.364 0.374 0.382 0.389

dMan 0.142 0.146 0.151 0.156

4.2 Comparison of parameter settings

To figure out which of the distance measures and how many nearest neighbors should be used

in KNNcatImpute to replace the missing values in the HapMap data set, 1% and 2% of the

values of the 170,353 SNPs without missing genotype are removed randomly, and then imputed

using KNNcatImpute with different parameter settings to compare the imputed values with

the real genotypes. This procedure is repeated 20 times.

Contrary to the application of KNNcatImpute to the GENICA data set in which all

SNPs/observations are considered in the search for the k nearest SNPs/observations, we here

“just” use the SNPs without missing values to identify the k nearest neighbors of a SNP with

missing values. Moreover, we restrict the search by considering the SNPs chromosomewise

such that the missing genotypes of a particular SNP are imputed using only SNPs that come

from the same chromosome as the considered SNP. The latter is not only time-saving, but

also biologically meaningful, as only SNPs from the same chromosome are inherited together.

In Table 2, the mean fractions of falsely imputed values are summarized for the different

settings of KNNcatImpute. This table shows that while employing the corrected Pearson’s

contingency coefficient works poorly also in the application to the HapMap data, the other

three distance measures perform almost equally well, where the scaled Manhattan distance

exhibits slightly lower error rates than dSMC which in turn leads to slightly less falsely imputed

genotypes than dCohen. For all distance measures, using one nearest neighbor in KNNcatIm-

pute performs best, whereas employing seven nearest neighbors leads to the largest error

rates.

4.3 Comparison of imputation procedures

For comparison, the three ad hoc methods from Section 3.3 are also applied to the data sets

with artificially generated missing genotypes. The imputation methods of Dai et al. (2006) and

Breiman (2001), however, cannot be used to replace these missing values, as it is not feasible

to apply these procedure to whole-genome data, even if the SNPs with missing genotypes

are considered chromosomewise. This shows an advantage of KNNcatImpute: Contrary to

other approaches that take not only the values of the variable whose missing values should

11



TABLE 3. Minimum, mean and maximum of the fractions of falsely imputed genotypes determined

in applications of four imputation methods to the HapMap data sets in which either 1% or 2% of the

values have been removed randomly.

Minimum Mean Maximum

KNNcatImpute 0.138 0.140 0.142

1% Mode 0.381 0.384 0.386

Removed Distribution 0.441 0.443 0.445

Cond. Distribution 0.440 0.441 0.443

KNNcatImpute 0.140 0.142 0.143

2% Mode 0.383 0.384 0.387

Removed Distribution 0.442 0.443 0.445

Cond. Distribution 0.440 0.441 0.444

be replaced into account, but employ the information of all variables to impute these missing

values, KNNcatImpute can be applied to whole-genome data.

Table 3 in which the fractions of falsely imputed genotypes of both the three ad hoc

methods and KNNcatImpute using dMan and k = 1 nearest neighbor are displayed reveals that

KNNcatImpute exhibits substantially smaller error rates than the other imputation methods.

We therefore replace the 93,927 missing genotypes in the subset of the HapMap data set

described in Section 4.1 by applying KNNcatImpute to these data, which takes about 28

minutes on an AMD Athlon XP 3000+ with 1 GB of RAM.

5 Discussion

Missing genotypes are a common problem in association studies. Since many statistical meth-

ods cannot handle missing values, they need to be removed or replaced prior to the actual

analysis. In this article, we have presented a method based on weighted k nearest neighbors

for imputing missing values in categorical data such as SNP data.

In a comparison with other imputation methods, this procedure called KNNcatImpute

shows the lowest fractions of falsely imputed genotypes when applied to the SNP data from

the GENICA study.

In our comparison, no haplotype-based imputation approach has been considered, since for

the GENICA data set we do not have information on haplotypes, i.e. on blocks of SNPs that

are inherited together and are therefore (highly) correlated. If such information is available,

haplotype-based methods might improve the imputation of missing genotypes. However, KNN-

catImpute is able to identify groups of highly correlated SNPs, and should therefore also work

well in comparison to such approaches when haplotype information is available.

An advantage of KNNcatImpute over other imputation methods that also take not only the

distribution of a particular SNP, but the information from all SNPs into account to impute the

missing values of this SNP is that KNNcatImpute can be applied to data from whole-genome

studies, whereas it is infeasible to use other non ad hoc imputation approaches such as the

procedure based on Random Forests and the method of Dai et al. (2006) to replace missing
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values in such high-dimensional data sets.

To exemplify this KNNcatImpute is applied to a subset of the SNP data from the HapMap

project. In a comparison with other imputation methods that only consider the distribution

of the SNP whose missing values should be replaced, KNNcatImpute shows the by far smallest

fractions of falsely imputed genotypes.

As in the application of KNNcatImpute to the GENICA data set, employing the distance

measures dSMC, dCohen and dMan that take the numbers of matches between the genotypes

or the alleles of two SNPs, respectively, into account lead to almost the same fractions of

falsely imputed genotypes in the analysis of the HapMap data set, whereas the distance dCont

based on the corrected Pearson’s contingency coefficient, which is comparable to a correlation

coefficient in the analysis of continuous data, performs poorly in the applications to both data

sets.

Although KNNcatImpute has been developed in the context of SNP data, it is not restricted

to such data, but can also be applied to other types of categorical data. However, in such an

application all variables should show the same number of categories, and the meaning and the

order of the categories should be the same for all variables so that distance measures such as

dSMC and dCohen can be employed appropriately.
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