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Abstract

We consider the problem of constructing optimal designs for model discrimination be-
tween competing regression models. Various new properties of optimal designs with respect
to the popular T -optimality criterion are derived, which in many circumstances allow an
explicit determination of T -optimal designs. It is also demonstrated, that in nested linear
models the number of support points of T -optimal designs is usually too small to estimate
all parameters in the extended model. In many cases T -optimal designs are usually not
unique, and we give a characterization of all T -optimal designs. Finally, T -optimal designs
are compared with optimal discriminating designs with respect to alternative criteria by
means of a small simulation study.

Keywords and Phrases. Model discrimination, optimal design, T -optimality, Ds-optimality,
nonlinear approximation
AMS Subject Classification: 62K05

1 Introduction

Optimal designs are frequently criticized because they are constructed from particular model
assumptions before the data can be collected. Often there exist several plausible models which
may be appropriate for a fit to the data. Therefore, in many applications, the data is first used
to identify an appropriate model from a class of competing models and in a second step the
same data is analyzed with the identified model. While the optimal design problem for the
latter task has been considered by numerous authors [see e.g. the monographs of Silvey (1980),
Pázman (1986), Atkinson and Donev (1992) or Pukelsheim (1993)] much less attention has been
paid to the problem of designing experiments for model discrimination. Early work was done by
Stigler (1971) and Studden (1982), who determined optimal designs for discriminating between
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two nested univariate polynomials. The corresponding optimal design is called Ds-optimal de-
sign and minimizes the volume of the confidence ellipsoid for the parameters corresponding to
the extension of the smaller model. This criterion directly refers to a likelihood ratio test and
was discussed by numerous authors [see Spruill (1990), Dette (1994, 1995) or Song and Wong
(1999) among others]. Atkinson and Fedorov (1975a,b) proposed an alternative criterion, which
determines a design such that the sum of squares for a lack of fit test is large. This optimality
criterion is meanwhile called T -criterion in the statistical literature and has been considered
by several authors, mostly in the context of regression models [see e.g. Ucinski and Bogacka
(2005), López-Fidalgo, Tommasi and Trandafir (2007) or Waterhouse, Woods, Eccleston and
Lewis (2008) for some recent references]. The Ds- and T -optimality criteria have been studied
separately without exploring the differences between both philosophies of constructing optimal
designs for model discrimination.

The present paper makes an attempt to explore some relations between the – on a first glance
– rather different concepts of constructing discrimination designs. In Section 2 we discuss some
new properties of T -optimal designs and relate the T -optimal design problem to a problem of
nonlinear approximation theory. In general T -optimal designs are not unique, and in such cases
we present an explicit characterization of the class of all T -optimal designs. In Section 3 the
special case is considered where one of the competing models is linear, and here it turns out that
T -optimal designs are in fact D1-optimal [in the sense of Stigler (1971)] in an extended linear
regression model. This relation is then used to derive several new properties of T -optimal de-
signs, especially bounds on the number of support points. In particular, it is demonstrated that
in many cases the T -criterion yields to designs, which cannot be used to estimate all parameters
in the extended model. Section 4 gives some more insight into the case of nonlinear regres-
sion models and also contains an extension of the results to T -optimality-type criteria, which
are based on the Kullback-Leibler distance and have recently been proposed by López-Fidalgo,
Tommasi and Trandafir (2007). Finally, in Section 5 several examples are presented to illustrate
the theoretical results. In particular, the mean squared error of parameter estimates and the
power of tests based on T - and Ds-optimal designs are investigated by means of a simulation
study.

2 New properties of T -optimal designs

We consider the common nonlinear regression model

Y = η(x, θ) + ε,(2.1)

where θ ∈ Θ ⊂ Rm is the vector of unknown parameters, and different observations are assumed
to be independent. The errors are normally distributed with mean 0 and variance σ2. In (2.1)
the variable x denotes the explanatory variable, which varies in the design space X (a more
general situation with non-normal heteroscedastic errors is discussed in Section 4.1). We assume
that η is a continuous and real valued function of both arguments (x, θ) ∈ X ×Θ and a design is
defined as a probability measure ξ on X with finite support [see Kiefer (1974)]. If the design ξ
has masses wi at the point xi (i = 1, . . . , k) and n observations can be made by the experimenter,
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this means that the quantities win are rounded to integers, say ni, satisfying
∑k

i=1 ni = n, and
the experimenter takes ni observations at each location xi (i = 1, . . . , k). There are numerous
criteria to discriminate between competing designs, if parameter estimation in a given model
is the main objective for the construction of the design [see Silvey (1980), Pázman (1986) or
Pukelsheim (1993) among others], but much less attention has been paid to the problem of
developing optimal designs for model discrimination. Early work was done by Hunter and
Reiner (1965), Box and Hill (1967) and Stigler (1971). A review on discrimination designs can
be found in Hill (1978). Stigler (1971) proposed a Ds-criterion for discriminating between two
competing (nested) models. Roughly speaking, the Ds-optimal design yields small variances of
the parameter estimates in an “extended” model. To be precise, consider the case of two rival
models for the mean effect in the nonlinear regression model (2.1), say η1(x, θ(1)) and η2(x, θ(2))
with θ(j) ∈ Θ(j) ⊂ Rmj (mj ∈ N, j = 1, 2). We assume the model η1(x, θ(1)) is an extension of
the model η2(x, θ(2)). In other words, if the last m0 = m1 −m2 components of the vector θ(1)

vanish we obtain the model η2, i.e. η1(x, (θT
(2), 0

T )T ) = η2(x, θ(2)), where 0 denotes the (m1−m2)-
dimensional vector with all components identical 0. The Dm1−m2-optimality criterion is defined
by the expression

ΦDm1−m2
(ξ) =

|Mm1(ξ)|
|Mm2(ξ)|

,(2.2)

where the matrices Mm1(ξ) and Mm2(ξ) are given by

Mm1(ξ) =

∫
∂

∂θ(1)

η1(x, θ(1))

(
∂

∂θ(1)

η1(x, θ(1))

)T

dξ(x) ,

Mm2(ξ) =

∫
∂

∂θ(2)

η2(x, θ(2))

(
∂

∂θ(2)

η2(x, θ(2))

)T

dξ(x) ,

respectively. A Dm1−m2-optimal design maximizes the function ΦDm1−m2
in the class of all

designs satisfying Range (K) ⊂ Range (Mm1(ξ)), where the matrix K is defined by KT =
(0, Im1−m2) ∈ R(m1−m2)×m1 , Im1−m2 ∈ R(m1−m2)×(m1−m2) is the identity matrix and 0 denotes the
(m1−m2)×m2 matrix with all entries identical 0. The criterion is motivated by the likelihood
ratio test for the hypothesis

H0 : KT θ(1) = 0.(2.3)

Because the volume of the confidence ellipsoid for the parameter KT θ(1) is minimized if the
function ΦDm1−m2

(ξ) is maximized with respect to ξ [see Pukelsheim (1993)], we expect that a
Dm1−m2-optimal design yields good power for the test of the hypotheis (2.3).
The T -optimality criterion was introduced by Atkinson and Fedorov (1975a,b), as a criterion
which directly reflects the goal of model discrimination in the design of experiment and has
found considerable interest in the recent literature [see e.g. Ucinski and Bogacka (2005), López-
Fidalgo, Tommasi and Trandafir (2007) or Waterhouse, Woods, Lewis and Eccleston (2008)
among many others]. It does not necessarily refer to nested models and assumes that one
model, say η = η1 is fixed. The T -optimality criterion determines the design ξ such that the
expression

∆(ξ) = inf
θ(2)∈Θ(2)

∫

X
(η(x)− η2(x, θ(2)))

2 dξ(x)(2.4)
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is maximal. The main objective of this criterion is to design the experiment such that a large
value of the sum of squares for a lack of fit test in the model η2 is obtained. Note that the L2

distance in (2.4) corresponds to the assumption of a normal distributed homoscedastic error and
alternative metrics could be used reflecting different assumptions regarding the error distribution
and variance structure. For example, recently López-Fidalgo, Tommasi and Trandafir (2007)
proposed a Kullback-Leibler distance, which corresponds to the likelihood ratio test for the
hypothesis H0 : η1 = η2 versus H1 : η1 6= η2 under different distributional assumptions. In
the present paper we will restrict ourselves to the criteria (2.2) and (2.4) but mention possible
extensions of our results in the second part of Section 4.
For the following discussion consider the kernel

∆(θ(2), ξ) =

∫

X
(η(x)− η2(x, θ(2)))

2 dξ(x)(2.5)

and define for a continuous (real valued) function f on the design space X its sup-norm by
||f ||∞ = supx∈X |f(x)|. Throughout this paper it is assumed that the infimum in (2.5) is
attained for some θ∗(2) ∈ Θ(2) and that a T -optimal design exists. Moreover, we assume that the
regression functions η1 and η2 are differentiable with respect to the second argument. Our first
result characterizes a T -optimal design as the solution of a nonlinear approximation problem.

Theorem 2.1.

sup
ξ

∆(ξ) = sup
ξ

inf
θ(2)∈Θ(2)

∆(θ(2), ξ) = inf
θ(2)∈Θ(2)

||η − η2(·, θ(2))||2∞ .

Moreover, if ξ∗ denotes a T -optimal design and θ∗(2) is any value corresponding to the minimum

of ∆(θ(2), ξ
∗) with respect to θ(2) ∈ Θ(2), then θ∗(2) corresponds to a best uniform approximation

of η by the functions η(·, θ(2)), i.e.

inf
θ(2)∈Θ(2)

||η − η2(·, θ(2))||∞ = ||η − η(·, θ∗(2))||∞ ,

∆(ξ∗) = ||η − η2(·, θ∗(2))||2∞ and

supp(ξ∗) ⊆ A :=
{

x ∈ X
∣∣∣ |η(x)− η2(x, θ∗(2))| = ||η − η2(·, θ∗(2))||∞

}
.(2.6)

Proof of Theorem 2.1. A straightforward calculation shows that

sup
ξ

∆(ξ) = sup
ξ

inf
θ(2)∈Θ(2)

∆(θ(2), ξ)

≤ inf
θ(2)∈Θ(2)

sup
x∈X

|η(x)− η2(x, θ(2))|2 = inf
θ(2)∈Θ(2)

||η − η2(·, θ(2))||2∞ .

On the other hand θ∗(2) minimizes the function defined by (2.5) with ξ = ξ∗ in the set Θ(2)

and therefore we obtain from the equivalence theorem for T -optimality [see e.g. Atkinson and
Fedorov (1975a)]

inf
θ(2)∈Θ(2)

||η − η(·, θ(2))||2∞ ≤ ||η − η(·, θ∗(2))||2∞ = ∆(ξ∗) = sup
ξ

∆(ξ) ,

4



which proves the first assertion of the theorem. For a proof of the second part assume that
the design ξ∗ is a T -optimal design and that θ∗(2) minimizes the function ∆(θ(2), ξ

∗), then the

function |η(x) − η2(x, θ∗(2))| attains its maximum at any support point of ξ∗ [see Atkinson and

Fedorov (1975a)] and

inf
θ(2)∈Θ(2)

||η − η2(·, θ(2))||2∞ ≥ inf
θ(2)∈Θ(2)

∫

X
|η(x)− η2(x, θ(2))|2 dξ∗(x)

=

∫

X
|η(x)− η2(x, θ∗(2))|2 dξ∗(x)

= ||η − η2(·, θ∗(2))||2∞ ≥ inf
θ(2)∈Θ(2)

||η − η2(·, θ(2))||2∞ .

Consequently θ∗(2) corresponds to a best uniform approximation of the function η by functions

of the form η(·, θ(2)). Therefore the assertion follows. 2

Theorem 2.1 links the T -optimal design problem to a problem in nonlinear approximation theory,
which will be further discussed in Section 3 and 4. Note that the theorem provides a saddle
point property of the point (θ∗(2), ξ

∗) although the kernel ∆(θ(2), ξ) is in general not convex as
a function of θ(2). The result is particularly useful, if the best uniform approximation of the

function η by functions of the form η2(·, θ(2)) is unique, say η2(·, θ(2)). In this case the set A
in (2.6) is independent of the design ξ∗ and the following result allows us to characterize all
T -optimal designs.

Theorem 2.2. Assume that the parameter θ(2) corresponding to the best uniform approximation
of the function η by functions of the form η2(·, θ(2)) is unique and an interior point of the set
Θ(2).

(a) If a design ξ∗ is T -optimal, then
∫

A

(
η(x)− η2(x, θ(2))

) ∂

∂θ(2)

η2(x, θ(2))
∣∣∣
θ(2)=θ(2)

dξ∗(x) = 0.(2.7)

(b) Conversely, assume that a design ξ∗ satisfies (2.7), supp(ξ∗) ⊂ A and that the minimum
of the function

θ(2) −→
∫

A
(η(x)− η2(x, θ(2)))

2dξ∗(x)(2.8)

is attained at a unique point in the interior of Θ(2), then the design ξ∗ is T -optimal.

Proof. For a proof of part (a) we note that by Theorem 2.1 we have θ∗(2) = θ(2), supp(ξ∗) ⊂ A
for any T -optimal design ξ∗. Consequently, we obtain

∆(ξ∗) = inf
θ(2)∈Θ(2)

∫

A
(η(x)− η2(x, θ(2)))

2dξ∗(x)

and the assertion follows because θ∗(2) = θ(2) corresponds to the (unique) minimum of the func-
tion on the right hand side.
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For a proof of part (b) assume that supp (ξ∗) ⊂ A, then it follows from Theorem 2.1

sup
ξ

∆(ξ) = ‖ η − η2(·, θ(2)) ‖∞=

∫

A
(η(x)− η2(x, θ(2)))

2dξ∗(x)

= inf
θ(2)∈Θ(2)

∫

X
(η(x)− η2(x, θ(2)))

2dξ∗(x)

because the parameter θ(2) corresponds to the unique minimum of the function (2.8). 2

Roughly speaking Theorem 2.2 provides a characterization of all T -optimal designs by a system
of linear equations, if the parameter θ̄(2) corresponding to the best approximation is unique, an
interior point of the set Θ(2) and if the cardinality of the set A defined in (2.6) is finite. If θ(2) is
a boundary point of Θ(2) an extension of condition (2.7) can easily be derived using Lagrangian
multipliers.
In many applications the best uniform approximation of the function η by functions of the form
η2(·, θ(2)) is in fact unique, and sufficient conditions for this property can be found in the books
of Rice (1969) or Braess (1986). Note, there is an additional assumption in part (b) of Theorem
2.2 concerning the minimum of the function defined in (2.8). The answer to the question if
this assumption is satisfied depends on the function η and the parameter set Θ(2) ⊂ Rm2 . For
example, in the linear case, that is η2(x, θ(2)) = θT

(2)f(x) [for an appropriate vector of regression

functions f(x)], this assumption is always satisfied, because the Hesse-matrix of ∆(θ(2), ξ) with
respect to the parameter θ(2) is given by

∂2

∂2θ(2)

∆2(θ(2), ξ) = 2 ·
∫

X
f(x)fT (x) dξ(x),

and therefore positive definite, if the design ξ has more than m2 support points.

An exchange type algorithm for the computation of T -optimal designs was proposed by Atkin-
son and Fedorov (1975a). Theorem 2.2 suggests an alternative method to determine T -optimal
designs. In a first step the best uniform approximation of the function η by functions of the
form η2(·, θ(2)) is determined. For this calculation we propose the Remes exchange algorithm
[see Rice (1969), Vol. 1, p. 171-180], which is a common tool in approximation theory. The
algorithm also yields the set of all possible support points A defined in (2.6) of T -optimal de-
signs. Secondly, the system of equations in (2.7) is solved to characterize all T -optimal designs.
In contrast to the method proposed by Atkinson and Fedorov (1975a) this approach yields all
T -optimal designs. In the following example we illustrate this procedure.

Example 2.3. Consider the T -optimal design problem on the interval [−1, 1] for the functions

η(x) = η1(x, θ(1)) = 1 + x + 4x3 and η2(x, θ(2)) = θ(2)1 + θ(2)2x.

It can be shown that the best approximation of the cubic polynomial η by linear functions η2

is given by
η(x)− η2(x, θ∗(2)) = 4x3 − 3x,
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which yields A = {−1,−1
2
, 1

2
, 1} for the set defined in (2.6). Because all assumptions of Theorem

2.2 are satisfied (note that the regression model η2 is linear), the system of equations (2.7)
characterizes all T -optimal designs. A straightforward calculation shows that the set of all
T -optimal designs is given by the one-parametric class

ξ∗p =

(
−1 −1

2
1
2

1

−1
6

+ p p 2
3
− p 1

2
− p

)
(2.9)

where p ∈ [1
6
, 1

2
]. We finally note that the exchange type algorithm proposed by Atkinson and

Fedorov (1975a,b) only yields the three point design ξ∗1/6 as T -optimal design with a singular
information matrix in the cubic regression model.

3 D1- and T -optimal designs in linear regression models

In this section we restrict ourselves to the case, where the regression model η2 is a linear model,
that is

η2(x, θ(2)) = θT
(2)f(x),(3.1)

with θ(2) ∈ Θ(2) = Rm2 . It turns out that in this case the T -optimal design is in fact also
D1-optimal in the sense of Stigler (1971) for the regression model

y = θT
(2)f(x) + βη(x) + ε.(3.2)

For a proof of this property let f̃(x) = (fT (x), η(x))T ∈ Rm2+1 denote the vector of regres-
sion functions in the linear regression model (3.2), let em2+1 = (0, . . . , 0, 1)T ∈ Rm2+1 be the
(m2 + 1)th unit vector and define

M(ξ) =

∫

X
f(x)fT (x)dξ(x),(3.3)

M̃(ξ) =

∫

X
f̃(x)f̃T (x)dξ(x)(3.4)

as the information matrices in the regression model η2 and the extended model (3.2), re-
spectively. Recall that a D1-optimal design in the regression model (3.2) satisfies em2+1 ∈
Range(M̃(ξ)) and maximizes the expression

(eT
m2+1M̃

−(ξ)em2+1)
−1 =

det M̃(ξ)

det M(ξ)

[see e.g. Stigler (1971) or Studden (1982)]. The D1-optimality criterion is a special case of
the c-optimality criterion, which determines for a given vector c ∈ Rm2+1 the design ξ such
that the expression (cT M̃−(ξ)c)−1 is maximal and the condition c ∈ Range(M̃(ξ)) is satisfied
[see Pukelsheim (1993)]. Note also that the expression cT M̃−(ξ)c is approximately proportional
to the variance of the least squares estimate of (θT

(2), β)c in the regression model (3.2) [see
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Pukelsheim (1993)]. Therefore a D1-optimal design minimizes the variance of the least squares
estimate of the coefficient β in the extended regression model (3.2).

Theorem 3.1. Assume that (3.1) is satisfied, then a design ξ∗ is T -optimal if and only if it is
D1-optimal in the extended regression model (3.2).

Proof Theorem 3.1. Let f(x) = (f(2)1(x), . . . , f(2)m2(x))T denote the vector of functions
corresponding to the first part in the linear model (3.2) and define for continuous functions
g1, . . . , gk (k ∈ N) with domain X the Gram determinant by

G(g1, . . . , gk) :=

∣∣∣∣∣
( ∫

X
gi(x)gj(x) dξ(x)

)k

i,j=1

∣∣∣∣∣ .

Then a standard result from Hilbert space theory [see Achiezer (1956), p. 16 ] shows that

∆2(ξ) =
G(η, f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
=

det M̃(ξ)

det M(ξ)
,

which proves the assertion. 2

In the following we derive several important conclusions from Theorem 3.1. We begin with a
general result on the number of support points of T -optimal designs, which is a direct conse-
quence of Corollary 8.3 in Pukelsheim (1993). Roughly speaking the number of support points
of the T -optimal design is at most m2 + 1, independently of the dimension m1 of the parameter
θ(1) corresponding to the model η1(·, θ(1)).

Corollary 3.2. Assume that (3.1) is satisfied, then there exists a T -optimal design ξ∗ with at
most m2 + 1 support points.

We now present a refinement of this result in the case, where the design space is an interval,
say I ⊂ R and the regression functions in model (3.2) form a Chebyshev system [see Karlin
and Studden (1966)]. In this case (with a minor additional assumption) the T -optimal design
is supported at precisely m2 + 1 well defined points, which correspond to the system under
consideration and can be found explicitly in many cases. To be precise recall that a set of k
functions h1, . . . , hk : I → R is called a weak Chebyshev system (on the interval I) if there
exists an ε ∈ {−1, 1} such that the inequality

ε ·

∣∣∣∣∣∣∣

h1(x1) . . . h1(xk)
...

. . .
...

hk(x1) . . . hk(xk)

∣∣∣∣∣∣∣
≥ 0(3.5)

holds for all x1, . . . , xk ∈ I with x1 < x2 < . . . < xk. If the inequality in (3.5) is strict, then
{h1, . . . , hk} is called a Chebyshev system. It is well known [see Karlin and Studden (1966),
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Theorem II 10.2] that if {h1, . . . , hk} is a Chebyshev system, then there exists a unique function,
say

∑k
i=1 c∗i hi(x) = c∗T h(x), (h = (h1, . . . , hk)

T ) with the following properties

(i) |c∗T h(x)| ≤ 1 ∀ x ∈ I

(3.6)
(ii) there exist k points x∗1 < . . . < x∗k such that c∗T h(x∗i ) = (−1)i i = 1, . . . , k.

The function c∗T h(x) is called Chebyshev polynomial, and we say that it is alternating at
the points x∗1, . . . , x

∗
k. The points x∗1, . . . , x

∗
k are called Chebyshev points and need not to be

unique. They are unique in most applications, in particular if 1 ∈ span{h1, . . . , hk}, k ≥ 1
and I is a bounded and closed interval, where in this case x∗1 = minx∈I x, x∗k = maxx∈I x.
It is well known [see Studden (1968), Pukelsheim and Studden (1993) or Imhof and Studden
(2001) among others] that in many cases c-optimal designs in regression models are supported
at the Chebyshev points. The following result shows that a similar statement can be made for
T -optimal designs.

Theorem 3.3. Assume that (3.1) is satisfied, that the design space is an interval, say X = I ⊂
R and that {f1, . . . , fm2} is a Chebyshev system on the interval I. In this case any T -optimal
design has at most m2 + 1 support points.
Moreover, assume additionally that {f1, . . . , fm2 , η} is a Chebyshev system on the interval I and

∣∣∣∣∣∣∣∣∣∣

f1(x1) . . . f1(xm2) 0
...

. . .
...

...

fm2(x1) . . . fm2(xm2) 0

η(x1) . . . η(xm2) 1

∣∣∣∣∣∣∣∣∣∣

6= 0

for all x1, . . . , xm2 ∈ I satisfying x1 < . . . < xm2. Let x∗1 < . . . < x∗m2+1 denote the m2 + 1
Chebyshev points defined by (3.6) and define ξ∗ as the design which has weights

w∗
i =

|ui|∑m2+1
j=1 |uj|

at the points x∗i (i = 1, . . . , m2 + 1), where u = (u1, . . . , um2+1)
T = (XT X)−1XT em2+1, and the

matrix X is defined by

X =




f1(x
∗
1) . . . f1(x

∗
m2+1)

...
. . .

...

fm2+1(x
∗
1) . . . fm2+1(x

∗
m2+1)




(here we put fm2+1 = η). Then ξ∗ is a T -optimal design.

Proof of Theorem 3.3. It follows from Theorem 1.1 in Chapter IX of Karlin and Stud-
den (1966) that the best uniform approximation of the function η by functions of the form
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η2(x, θ(2)) = θT
(2)f(x) is unique. By Theorem 2.1 the support of a T -optimal design is contained

in the set

A =
{

x ∈ I
∣∣∣ |η(x)−

m2∑
j=1

θ(2)jfj(x)| = ‖η −
m2∑
j=1

θ(2)jfj‖∞
}

,

where the parameters θ(2)1, . . . , θ(2)m2 correspond to the best uniform approximation of η by
linear combinations of f1, . . . fm2 . Theorem 1.1 in Karlin and Studden (1966) also shows that
the cardinality of the set A is m2 + 1 and the first assertion follows.
For a proof of the second part we note that by Theorem 3.1 the T -optimal design problem is
equivalent to the D1-optimal design problem in the extended regression model (3.2). Because
this is exactly the em2+1-optimal design problem it follows from Kiefer and Wolfowitz (1965) [see
also Studden (1968)] that the T -optimal design is supported at precisely m2 + 1 points, which
are defined in (3.6). The formula for the corresponding weights is now a direct consequence of
Corollary 8.9 in Pukelsheim (1993). 2

In the following we specialize the result of Theorem 3.1 to the case where the model η1 is in
fact an extension of the linear regression model (3.1), that is θ(1) = (θT

(2), θ
T
(0))

T ,

η(x) = η1(x, θ(1)) = θT
(2)f(x) + θT

(0)g(x),(3.7)

where g(x) = (g1(x), . . . gm0(x))T is a further vector of regression functions and m0 + m2 = m1.
In this case Theorem 3.1 can be slightly simplified

Corollary 3.4. Assume that (3.1) and (3.7) are satisfied, then a design ξ∗ is T -optimal if and
only if it is D1-optimal in the extended regression model

y = θT
(2)f(x) + βφ(x) + ε,(3.8)

where φ(x) = θT
(0)g(x).

Proof of Corollary 3.4. From Theorem 3.1 and its proof it follows that a design is T -optimal
if and only if it maximizes

det M̃(ξ)

det M(ξ)
=

G(η, f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
=

G(θ(0)T g, f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
,(3.9)

where the matrix M̃(ξ) is defined by (3.4). The last equality follows from (3.7) and the multi-
linearity of the Gram determinant. Therefore the T -optimal design is D1-optimal in the regres-
sion (3.8). 2

We conclude this section with an alternative interpretation of the T -optimality criterion as a
compound criterion in the situation considered in Corollary 3.4. To be precise we define the
m0 = m1 −m2 regression models

y = θT
(2)f(x) + βjgj(x) + ε , j = 1, . . . , m0.

10



Then, by Theorem 3.1, the T -optimal design for discriminating between η2 and the jth model
(θT

(2), βj)f̃j(x) with f̃j(x) = (fT (x), gj(x))T maximizes

∆j(ξ) =
det M̃j(ξ)

det M(ξ)
=

G(gj, f(2)1, . . . , f(2)m2)

G(f(2)1, . . . , f(2)m2)
, j = 1, . . . , m0,

where

M̃j(ξ) =

∫

X
f̃j(x)f̃T

j (x)dξ(x)

and the matrix M(ξ) is defined in (3.3). The proof of the next result is now a direct consequence
of the representation (3.9) and the multi-linearity of the Gram determinant.

Corollary 3.5. A T -optimal design for discriminating between the models (3.1) and (3.7)
maximizes the weighted average

∆(ξ) =

m0∑
j=1

θ(0)j∆j(ξ)

where θ(0)j denotes the jth component of the vector θ(0) in (3.7).

Note that by Corollary 3.5 the T -optimal design for discriminating between the models (3.1)
and (3.7) can be interpretated as a compound optimality criterion in the sense of Läuter (1974)
and therefore results for calculating optimal designs with respect to compound criteria can be
used to find T -optimal designs [see e.g. Pukelsheim (1993), Cook and Wong (1994) or Clyde
and Chaloner (1996) among many others].

4 Further discussion

4.1 Some comments on nonlinear models

As mentioned before, in general Theorem 2.1 and 2.2 link the T -optimal design problem to a
problem in nonlinear approximation theory, which has a long history in mathematics [see Braess
(1986) or Rice (1969)], and is substantially more difficult to analyze compared to the linear case
considered in Section 3. We will now indicate how this theory can be used to transfer some of
the results of Section 3 to the nonlinear case. For this we assume that the design space X is an
interval and that the function η2 is continuous on X × Θ(2). The following definition is taken
from Rice (1969).

Definition 4.1. The class of functions M = {η(·, θ(2))| θ(2) ∈ Θ(2)} has property Z of degree
m = m(θ∗(2)) at the point θ∗(2) ∈ Θ(2), if for any θ(2) ∈ Θ(2) with θ(2) 6= θ∗(2) the difference

η2(x, θ∗(2))− η2(x, θ(2)) has at most m− 1 zeros in X .

The class of functions {η(·, θ(2))| θ(2) ∈ Θ(2)} is called locally solvent of degree m = m(θ∗(2))

at the point θ∗(2) ∈ Θ(2), if given a set {x1, . . . , xm} ⊂ X and ε > 0, there exists a number

δ = δ(θ∗(2), ε, x1, . . . , xm) > 0 such that the inequalities

|Yi − η2(xi, θ
∗
(2))| < δ (i = 1, . . . , m)

11



imply the existence of a solution θ(2) ∈ Θ(2) of the system of nonlinear equations

η2(xi, θ(2)) = Yi, i = 1, 2, . . . , m

which satisfies
‖η2(·, θ(2))− η2(·, θ∗(2))‖∞ < ε.

The class M is called varisolvent, if at each point the local solvency property and property Z
are satisfied with the same degree.

Examples of varisolvent families include sums of exponentials and rational functions [see Rice
(1969)]. If the class of functions {η2(·, θ(2))| θ(2) ∈ Θ(2)} is varisolvent, the following result gives
a rough estimate of the number of support points of the T -optimal design. The proof can be
found in Braess (1986).

Theorem 4.2. Assume that the class of functions M = {η2(·, θ(2))| θ(2) ∈ Θ(2)} is varisolvent
and that η is a continuous function on X such that η − η2(·, θ̄(2)) is not constant. The function
η2(·, θ̄(2)) is a best approximation of the function η if and only if the difference η − η2(·, θ̄(2))
alternates m(θ̄(2)) + 1 times, i.e. there exists at least m(θ̄(2)) + 1 points x∗0 < . . . < x∗

m(θ̄(2))
in X

such that

η(x∗i )− η2(x
∗
i , θ̄(2)) = ε(−1)i‖η − η2(·, θ̄(2))‖∞, i = 0, . . . ,m(θ̄(2))

where ε ∈ {−1, 1}.

Theorem 4.1 gives some hint on the number of support points of the T -optimal design. By this
result, there exists a best approximation of η by functions of the form η2(·, θ(2)) (θ(2) ∈ Θ(2)),
such that r∗ = η − η2(·, θ̄(2)) alternates at least m(θ̄(2)) + 1 times. In many cases there are no
other points in X where the difference r∗ attains its maximum, and it follows from Theorem 2.1
that the T -optimal design has at most m(θ̄(2)) + 1 support points. We illustrate this heuristic
argument by an example, where we consider sums of exponentials.

Example 4.3. Assume that

η2(x, θ(2)) =

m2∑
j=1

θ(2)2j−1 e−θ(2)2jx ,

where x ∈ X ⊂ [0,∞), θ(2)2k−1 ∈ R, θ(2)2k ∈ R+ (k = 1, . . . , m2) and the design space is a
compact interval. Models of this type have numerous applications in pharmacokinetics [see e.g.
Shargel (1993) or Rowland (1995)]. It follows from Braess (1986) p. 190-191 that for each

u(x) =
l∑

j=1

aj e−bjx

with b1, . . . , bl 6= 0, the class of functions {η2(·, θ(2)) | θ(2) ∈ R2m2} is varisolvent at u of order
m2 + l. Consequently, if η = η1 is a continuous function and η2(·, θ̄(2)) is the best approximation
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of η, it follows from Theorem 4.2 that the difference η− η2(·, θ̄(2)) alternates (at least) m(θ̄(2))+
1 = m2 + l(θ̄(2)) + 1, where l(θ̄(2)) denotes the number of non-vanishing coefficients among
θ̄(2)1, θ̄(2)3, . . . , θ̄(2)2m2−1 in η2(x, θ̄(2)). By Theorem 2.1 the support points of a T -optimal design
must be among the points, where the function η − η2(·, θ̄(2)) attains its maximum. If none of
the coefficients θ̄2(2j−1) vanishes, the cardinality of the set A in (2.6) is at least 2m2 + 1.
The upper bound on the cardinality of the set A depends on the particular properties of the
function η = η1 and is in many cases close to the lower bound 2m2 + 1. For example, if η1 is
also a sum of exponentials, say

η1(x, θ(1)) =

m1∑
j=1

θ(1)2j−1 e−θ(1)2jx,

θ(1)2j−1 ∈ R, θ(1)2j ∈ R+, where m1 = m2 + m0 > m2, the difference r∗ = η1 − η2(·, θ̄(2))
consists of at most m1 + m2 different exponential terms. Because of the Chebyshev property
of the function {eajx | j = 1, . . . , l} on the nonnegative line (0,∞) [see Karlin and Studden
(1966)] it follows that the derivative of the difference r∗ (which is also a sum of at most m1 +m2

exponential terms ) has at most m1+m2−1 roots. Observing that limx→∞ r∗(x) = 0 it therefore
follows that there exist at most m1 +m2 alternating points of the difference r∗. Moreover, if the
cardinality of the set A is exactly m1 + m2, then a boundary point of the design space X is an
element of the set A. Consequently any T -optimal design has at most m1 + m2 support points.
Note that the number of parameters in the exponential models η1 and η2 is 2m1 and 2m2,
respectively. Because m2 < m1 the T -optimal design cannot be used to estimate all parameters
in the extended model η1. For example, if m1 = m2 + 1, it follows from these arguments that
a T -optimal design has precisely 2m2 + 1 support points, although the model η1 has 2m2 + 2
parameters.

4.2 T -optimality based on the Kullback-Leibler distance

Recently López-Fidalgo, Tommasi and Trandafir (2007) considered a generalization of the T -
optimality criterion, which is based on the popular Kullback-Leibler (KL)-distance. The general
criterion addresses the problem of a non normal error distribution and heteroscedasticity in
model (2.1). It reduces to the T -criterion in the case of normal and homoscedastic data. We
briefly indicate that the results of the previous sections can be easily extended to this more
general class of optimality criteria.
Following López-Fidalgo, Tommasi and Trandafir (2007) we specify the two different models by
their densities, say fj(y, x, θ(j), σ

2); θ(j) ∈ Θ(j); j = 1, 2, where σ2 is a nuisance parameter corre-
sponding to the variances of the responses. We fix one model, say f(y, x, σ2) = f1(y, x, θ(1), σ

2),
and consider for a design ξ the optimality criterion

∆KL(ξ) = inf
θ(2)∈Θ(2)

∫

X
dKL(f, f2, x, θ(2))dξ(x),(4.1)

where (for any x ∈ X )

dKL(f, f2, x, θ(2)) =

∫
f(y, x, σ2) log

{
f(y, x, σ2)

f2(y, x, θ(2), σ2)

}
dy
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denotes the KL-distance between the “true” model f and the alternative model f2(y, x, θ(2), σ
2).

A KL-optimal design ξ∗KL maximizes ∆KL(ξ) in the class of all designs. The goal of this criterion
is to determine designs maximizing the power of the likelihood ratio test for the hypotheses

H0 : f(x, y, σ2) = f2(x, y, θ(2), σ
2) vs. H1 : f(y, x, σ2) = f1(y, x, θ(1), σ

2)

for the “worst” choice θ(2) ∈ Θ(2). Similar arguments as given in the proof of Theorem 2.1 show
that

sup
ξ

∆KL(ξ) = inf
θ(2)∈Θ(2)

‖dKL(f, f2, ·, θ(2))‖∞ = ‖dKL(f, f2, ·, θ∗(2))‖∞

where θ∗(2) corresponds to the minimum in (4.1) for the design ξ∗KL and the support of a KL-
optimal design ξ∗KL satisfies

supp(ξ∗KL) ⊂ AKL =
{
x ∈ X | dKL(f, f2, x, θ∗(2)) = ‖dKL(f, f2, ·, θ∗(2))‖∞

}
.

This means that the KL-optimal design problem is closely related to the problem of determining
the best uniform approximation of the function η ≡ 0 by the (nonlinear) parametric family

{
dKL(f, f2, ·, θ(2)) | θ(2) ∈ Θ(2)

}
.(4.2)

Therefore, all results of the previous sections remain valid, where the class {η2(·, θ(2)) | θ(2) ∈
Θ(2)} has to be replaced by the set defined in (4.2) and the function η = η1 is given by η(x) ≡ 0.
We will illustrate these ideas with an example for heteroscedastic regression models with normal
distributed responses.

Example 4.4. We consider the problem of discriminating between two regression models with
heteroscedastic but normally distributed errors, that is

P
Y |x
j ∼ N (ηj(x, θ(j)), (1− x2)−1) , j = 1, 2 ;

where η1(x, θ(1)) = η(x) = 8x3 is a cubic, η2(x, θ(2)) = θ(2)1 + θ(2)2x a linear polynomial and the
explanatory variable satisfies x ∈ (−1, 1). D-optimal designs for polynomial regression models
with variance function (1−x2)−1 have been studied extensively in the literature [see e.g. Fedorov
(1972)], but discrimination designs have not been considered so far. If fj(y, x, θ(j)) denotes the

density of P
Y |x
j with respect to the Lebesgue measure it follows by a straightforward but tedious

calculation that
dKL(f, f2, x, θ(2)) = (1− x2)(8x3 − θ(2)2x− θ(2)1)

2,(4.3)

and the best uniform approximation of the function η ≡ 0 by functions of the form (4.3) is
unique and given by dKL(f, f2, x, θ̄(2)) = (8x3 − 4x)2(1− x2) with corresponding set

AKL =

{
−1

2

√
2 +

√
2, −1

2

√
2−

√
2,

1

2

√
2−

√
2,

1

2

√
2 +

√
2

}

and ‖dKL(f, f2, x, θ̄(2))‖∞ = 1. The analogue of Theorem 2.2 shows that all KL-optimal designs
are supported in AKL and characterized by the analogue of (2.7), which yields

∫

AKL

∂

∂θ(2)

dKL(f, f2, x, θ∗(2))dξ∗(x) = −2

∫

AKL

(1− x2)(8x3 − 4x)

(
1

x

)
dξ∗(x) = 0 .
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A straightforward calculation shows that all KL-optimal designs are given by the one-parametric
class

ξ∗KL =




−
√

2+
√

2

2

−
√

2−√2

2

√
2−√2

2

√
2+
√

2

2

p (2−√2)+4p(
√

2−1)
4

√
2−4p(

√
2−1)

4
1
2
− p




where p ∈ [0, 1
2
]. We finally note that the algorithm proposed by López-Fidalgo, Tommasi and

Trandafir (2007) yields to the 3-point design obtained for p = 1/2, which cannot be used for
estimating the parameters in the cubic model.

5 Examples

In this section we compare T - and Ds-optimal designs with respect to their power properties
and estimation error by means of a simulation study. We begin with the case of discriminating
between two polynomials of degree m2− 1 and m1− 1 = m0 +m2− 1 on a nonnegative interval.
Our second example considers a nonlinear case, namely exponential regression models.

5.1 Polynomial regression

Consider the polynomial regression models

η2(x, θ(2)) = θ(2)1 + θ(2)2x + . . . + θ(2)m2x
m2−1 ,

η1(x, θ(1)) = θ(1)1 + θ(1)2x + . . . + θ(1)m2x
m2−1 + . . . + θ(1)m0+m2x

m0+m2−1 ,

where the explanatory variable x varies in a nonnegative interval, say I ⊂ [0,∞). Note that
under the additional assumption of positive coefficients θ(1)1+m2 , . . . , θ(1)m0+m2 the two systems
of functions

{1, x, . . . , xm2−1, θ(1)1 + θ(1)2x + . . . + θ(1)m0+m2x
m0+m2−1}(5.1)

{1, x, . . . , xm2−1}
form a Chebyshev system on the interval I [see Karlin and Studden (1966), p. 9]. Consequently
Theorem 3.3 is applicable here and any T -optimal design is supported at m2 + 1 points. We
note that in the case m0 > 1 the T -optimal design cannot be used for the F -test, which is
commonly applied to discriminate between the two nested polynomials and requires at least
m0 + m2 different design points. Note also that this problem was already observed by Atkinson
and Donev (1992) in the case m2 = 1 and m0 = 2 [see Example 20.2 in this reference]. The
results in the present paper show that this situation is not an exception but rather typical for
discrimination designs constructed from the T -optimality criterion.
If the system in (5.1) is not a Chebyshev system the results of Section 2 indicate that there exist
several T -optimal designs. For example, consider the case of discriminating between a linear
and a cubic polynomial, that is m2 = 2, m0 = 2 on the interval [−1, 1]. For the cubic model we
investigate the model

η(x) = 1 + x + c0x
2 + d0x

3 .(5.2)
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The T -optimal design obtained from the algorithm of Atkinson and Fedorov (1975a) for the
parameters c0 = 0 and d0 = 1 has weights 1/6, 1/2 and 1/3 at the points −1/2, 1/2 and 1.
This design corresponds to the choice p = 1/6 in Example 2.3 and will be called T1/6-optimal
design in this example. In order to compare the different designs with respect to their ability
to discriminate between a cubic and a linear regression model by the common F -test we have
modified the T1/6-optimal design slightly and have put 2% of the observations at a fourth point,
namely the left boundary of the design space. A further T -optimal design with four support
points is obtained from formula (2.9) with p = 1/3 and denoted as T1/3-optimal design. Stigler
(1971) proposed the D2-criterion for the construction of a discriminating design between a linear
and a cubic model. If M1(ξ) and M3(ξ) denote the information matrices of a design in the linear
and cubic model, respectively, the corresponding D2-optimal design maximizes |M3(ξ)|/|M1(ξ)|
and has weights 1/5, 3/10, 3/10 and 1/5 at the points −1, −0.408, 0.408 and 1 [see Studden
(1980)].
We have conducted a small simulation study and generated normal distributed random variables
with mean given by (5.2) and variance σ2 = 0.01, where the design was either the T1/3-optimal,
the (modified) T1/6-optimal or the D2-optimal design. In Figure 1 we display the power function
of the F -test for the hypothesis of a linear regression H0 : (c0, d0) = (0, 0) for various choices of
the parameters c0 and d0. The level is 5% and the sample size is n = 50. We have considered
three values for the parameter c0 and display the power as a function of the parameter d0.
The solid line corresponds to the power function of the F -test based on the (modified) T1/6-
optimal design, while the dotted and dashed line refer to the T1/3-optimal and D2-optimal design,
respectively. If c0 = 0 the curves are almost identical (see the left panel in Figure 1). The case
of a positive parameter c0 = 0.05, c0 = 0.1 corresponds to an alternative. For small values of d0,
the D2-optimal and T1/3-optimal design seem to have better discrimination properties than the
T1/6-optimal design, while the opposite behavior is observed if d0 is large (see the middle and
right panel in Figure 1). Next we consider the situation where d0 is fixed and the parameter c0 is
varied. If d0 = 0 the D2-optimal design always yields more power than both T -optimal designs,
where the T1/3-optimal design shows some advantages compared to the T1/6-optimal design (see
the left panel in Figure 2). For larger values of d0 the situation is changing. If d0 = 0.05 all three
designs yield very similar results, while for d0 = 0.1 the T1/6-optimal design should be preferred
if model discrimination is the main goal of the experimenter (see the middle and right panel in
Figure 2). For larger values of d0 the three designs yield to a test with power close to 1 and are
comparable in this situation. Summarizing these observations we conclude that the superiority of
one of the two discrimination designs depends sensitively on the alternative under consideration.
We finally also note that the D2-optimal design does not require any preliminary information
regarding the (unknown) parameters and that the modified T1/6-optimal and the T1/3-optimal
design were constructed for the particular alternative (c0, d0) = (0, 1) corresponding to the
”true” model. Therefore we expect these designs to be particularly powerful in the examples
considered in the simulation study.
Usually the next step after model identification is the statistical analysis based on the identified
model. Therefore it is also of interest to investigate the performance of the three discrimination
designs for this purpose. In Table 1 we present the mean squared errors of the least squares
estimates â, b̂, ĉ and d̂ based on data obtained from a D2-optimal design, the (modified) T1/6-
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Figure 1: Simulated rejection probabilities of the F -test H0 : (c0, d0) = (0, 0) based on the D2-
optimal design (dashed line), the modified T1/6-optimal design (solid line) and the T1/3-optimal
design (dotted line) for the parameters (c0, d0) = (0, 1) in the cubic regression model (5.2). The
errors are centered normal distributed with variance σ2 = 0.01.
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Figure 2: Simulated rejection probabilities of the F -test H0 : (c0, d0) = (0, 0) based on the D2-
optimal design (dashed line), the modified T1/6-optimal design (solid line) and the T1/3-optimal
design (dotted line) for the parameters (c0, d0) = (0, 1) in the cubic regression model (5.2). The
errors are centered normal distributed with variance σ2 = 0.01.
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optimal and the T1/3-optimal design for the special choice of the parameters (c0, d0) = (0, 1).
The model under consideration is in fact the cubic regression 1+x+x3, for which the T -optimal
designs were constructed. We observe that the mean squared error of the estimates obtained
from the (modified) T1/6-optimal design is substantially larger compared to the mean squared
error obtained from the D2-optimal and T1/3-optimal design. For the last named designs the
situation is very similar, where there are slight advantages for the D2-optimal design with respect
to the estimation of the parameters a and c and the opposite behavior can be observed for the
estimates of the parameters b and d.

D2-optimal design modified T1/6-optimal design T1/3-optimal design

MSE(â) 0.00050 0.00103 0.00060

MSE(b̂) 0.00290 0.00324 0.00220

MSE(ĉ) 0.00120 0.00545 0.00160

MSE(d̂) 0.00360 0.00766 0.00320

Table 1: Mean squared error of the least squares estimates in the cubic regression model. The
data is obtained from the D2-optimal, the T1/3-optimal and (modified) T1/6-optimal design for
the special choice of the parameters (c0, d0) = (0, 1). The variance is chosen as σ2 = 0.01.

5.2 A nonlinear example

In this section we consider the problem of discrimination between the exponential regression
models

η1(x, θ(1)) = θ(1)1 exp(−θ(1)2x) + θ(1)3 exp(−θ(1)4x),(5.3)

η2(x, θ(1)) = θ(2)1 exp(−θ(2)2x),(5.4)

where the explanatory variable varies in the interval X = [−1, 1]. These models have numerous
applications in pharmacokinetics [see e.g. Shargel (1993) or Rowland (1995)] and optimal designs
have been discussed extensively in the recent literature [see e.g. Dette, Melas and Pepelysheff
(2006) or Biedermann, Dette and Pepelysheff (2007)]. It follows by similar arguments as given in
Example 4.3 that a T -optimal design has at most three support points. The T -optimal designs
are listed in Table 2 for various combinations of the parameters θ(1)j. We have again performed
a small simulation study in order to study the rejection probabilities of the likelihood ratio test
of the hypothesis

H0 : θ(1)3 = 0,(5.5)

where the data is generated by the different designs. Because this test requires measurements at
at least 4 locations, we have modified the T -optimal designs by putting 2% of the observations
at a fourth point.

For a comparison there are now two natural candidates based on the Ds-optimality criterion.
The first design is obtained by maximizing the power of the test for the hypothesis (5.5) and
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θ(1) = (θ(1)1, θ(1)2, θ(1)3, θ(1)4) x1 x2 x3 ω1 ω2 ω3

(1,2,1,4) -1 -0.8 -0.02 0.088 0.22 0.692

(1,-1,1,-2) -1 0.6 1 0.645 0.246 0.109

(1,-1,1,2) -1 -0.272 1 0.168 0.437 0.395

(-1,1,-1,2) -1 -0.59 1 0.109 0.252 0.639

(-1,-1,-1,-0.5) -1 0.35 1 0.394 0.425 0.181

Table 2: T -optimal designs for discriminating between the exponential regression models given
in (5.3) and (5.4) for a special choice of the parameter θ(1).

θ(1) = (θ(1)1, θ(1)2, θ(1)3, θ(1)4) s x1 x2 x3 x4 ω1 ω2 ω3 ω4

1 -1 -0.859 -0.394 0.717 0.087 0.197 0.257 0.459
(1,2,1,4)

2 -1 -0.838 -0.404 0.52 0.144 0.258 0.206 0.392

1 -1 -0.03 0.758 1 0.293 0.346 0.249 0.112
(1,-1,1,-2)

2 -1 0.03 0.697 1 0.308 0.253 0.281 0.158

1 -1 -0.636 0.394 1 0.142 0.444 0.311 0.103
(1,-1,1,2)

2 -1 -0.616 0.313 1 0.341 0.309 0.268 0.082

1 -1 -0.758 0.03 1 0.112 0.249 0.346 0.293
(-1,1,-1,2)

2 -1 -0.697 -0.03 1 0.158 0.281 0.253 0.308

1 -1 -0.273 0.657 1 0.215 0.631 0.29 0.134
(-1,-1,-1,-0.5)

2 -1 -0.242 0.576 1 0.324 0.271 0.275 0.13

Table 3: Ds-optimal designs, s = 1, 2, for discriminating between the exponential regression
models given in (5.3) and (5.4) for a special choice of the parameter θ(1).
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Figure 3: Simulated rejection probabilities of the likelihood ratio test for the hypothesis (5.5)
based on the D1-optimal design (dashed line), D2-optimal design (dotted line) and the T -optimal
design (solid line) in the exponential regression model (5.3), where θ(1)1 = θ(1)3 = 1. The errors
are centered normal distributed with variance σ2 = 0.01.

corresponds to the D1-criterion, while the second design is a D2-optimal design in the sense of
Stigler (1971), and corresponds to the test for the hypothesis

H0 : (θ(1)3, θ(1)4) = (0, 0).(5.6)

The corresponding local optimal designs are presented in Table 3. We have simulated data
according to the model η1 and calculated the power of the likelihood ratio test for the hypothesis
(5.5) in various situations. The errors are normally distributed with variance σ2 = 0.01, the
sample size is n = 50 and 1000 simulation runs are used to calculate the rejection probabilities.
Some typical results are depicted in Figure 3, which shows the probability of rejection as a
function of the parameter θ(1)3.
If both parameters in the exponential functions are negative (left panel in Figure 3) the power
of the test obtained from the modified T -optimal design is slightly larger than the power of the
test based on the D2-optimal design. On the other hand the D2-optimal design seems to have
better discrimination properties than the D1-optimal design in this case. If both parameters are
of opposite sign (middle panel in Figure 3) the situation is different and the D2-optimal design
yields a bit more power. In this example the D1-optimal design is totally defective. Finally, if
both parameters in the exponential functions are positive (right panel in Figure 3) the power of
the tests based on the D2- and on the (modified) T -optimal designs are almost identical, while
the test based on the D1-optimal design yields lower rejection probabilities. In all cases the tests
based on the D2 and (modified) T -optimal designs have the best performance. Furthermore the
D2-optimal design advices the experimenter to take observations at 4 different locations and
therefore it also allows the estimation of all parameters in the extended model.
The impact of the discriminating designs on the parameter estimates is investigated in Table
4, where we examplarily show two typical examples of the simulated mean squared error of
the parameter estimates under the different designs. If θ(A) = (1,−1, 1, 2) the D2-optimal
design yields substantially smaller mean squared errors than the D1- and T -optimal design
and the last named design shows a better performance than the D1-optimal design. In the
case θ(B) = (1, 2, 1, 4) the D1-optimal design yields the smallest mean squared errors, while
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D1-optimal design D2-optimal design T -optimal design

MSE(â) 1.36876 0.00256 0.04254

MSE(b̂) 0.09572 0.00307 0.03749

θ(A) MSE(ĉ) 1.38524 0.00153 0.02298

MSE(d̂) 0.02969 0.00128 0.02054

MSE(â) 0.01030 0.01163 0.17606

MSE(b̂) 0.03274 0.03688 0.58887

θ(B) MSE(ĉ) 0.00953 0.01059 0.17843

MSE(d̂) 0.00394 0.00425 0.14400

Table 4: Simulated mean squared error of the least squares estimates in the exponential regression
model. The data is obtained from the D1-, D2- and (modified) T -optimal design for the special
choice of the parameters θ(A) = (1,−1, 1, 2) and θ(B) = (1, 2, 1, 4). The variance is chosen as
σ2 = 0.01.

the (modified) T -optimal shows the worst performance. The mean squared errors obtained
by the D2-optimal design are slightly larger than those obtained by the D1-optimal design.
Summarizing these and similar results (which are not shown for the sake of brevity) we conclude
that the D2-design has good properties for model discrimination (because it yields almost the
same power than the (modified) T -optimal design) and additionally has good properties for
parameter estimation if the null hypothesis (5.6) has been rejected. In this case the mean
squared error of the parameter estimates obtained from the modified T -optimal design is at
least 10 times larger compared to the results obtained from the D2-optimal design.
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