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Abstract

We construct optimal designs for estimating fetal malformation rate, prenatal death rate and
an overall toxicity index in a toxicology study under a broad range of model assumptions. We
use Weibull distributions to model these rates and assume that the number of implants depend
on the dose level. We study properties of the optimal designs when the intra-litter correlation
coefficient depends on the dose levels in different ways. Locally optimal designs are found, along
with robustified versions of the designs that are less sensitive to mis-specification in the nom-
inal values of the model parameters. We also report efficiencies of commonly used designs in
toxicological experiments and efficiencies of the proposed optimal designs when the true rates
have non-Weibull distributions. Optimal design strategies for finding multiple-objective designs
in toxicology studies are outlined as well.

AMS Subject Classification: 62K05
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1 Introduction

Developmental toxicity studies play an important role in identifying substances that may pose
a danger to developing fetuses, including prenatal death and malformation among live fetuses.
Krewski and Zhu (1995) and Zhu, Krewksi and Ross (1994) demonstrate that joint dose-response
models for describing prenatal death and fetal malformation in developmental toxicity experi-
ments have a good agreement with real data. These models can be used to estimate the effective
dose corresponding to a gene excess risk for both these toxicological end points, as well as for
overall toxicity. It appears that toxicologists are generally less lamented and less receptive to
a more rigorous treatment of design issues; see a recent article in Nature (Giles, 2006) where
the author expounded on the lack of sophistication in current designs for animal experiments.
Very recently there are a handful of theoretical articles that utilize statistical principles to design
toxicology studies. This paper follows this trend and discusses how one may construct efficient
designs for estimating malformation rate, prenatal death and overall toxicity levels under a broad
range of model assumptions. A scientific sound and efficient study is crucial because toxicology
studies are increasingly more expensive in terms of time and labor. An efficient design also
means that potentially a lot fewer animals are required in the experiment. In what is to follow,
our designs for such experiments are specified in terms of the number of doses to be used, the
dose spacing, and the proportion of animals to be assigned to each dose.

Recently, Krewski, Smythe and Fung (2002) studied locally optimal designs for the estimation of
the effective dose using joint Weibull dose-response models. The locally optimal designs depend
on the parameters of the Weibull model and the degree of intra-litter correlation. This paper
addresses several important design issues in toxicology, such as estimating benchmark doses.
Estimating benchmark doses has a long history in toxicological studies and research continues
to this day; some recent papers include (Woutersen, et al., 2001, Moerbeek, et al., 2004, Slob, et
al., 2005). As in Krewski, Smythe and Fung (2002), we seek optimal experimental designs that
minimize the variance of the estimated effective doses for prenatal death and overall toxicity
given the number of implants. These are two important and common end points measuring
tetratogenicity (embryotoxicity) in animal studies (Zhu, Krewski and Ross, 1994). However,
in contrast to these authors, who concentrated on locally optimal designs and the numerical
calculation of optimal design, we present a more sophisticated analysis of the optimal design
problem for developmental toxicity experiments. First, we derive analytical properties of locally
optimal designs for estimating the benchmark dose of prenatal death. In particular we prove
several results on the number and levels of doses and invariance properties of the locally optimal
designs. Moreover, we correct an error in the work of Krewski, Smythe and Fung (2002), who
used the wrong information matrix for the construction of the optimal designs. Second, we study
the robustness properties of locally optimal designs with respect to mis-specification of the ini-
tial parameters. Third, we construct locally optimal designs for estimating the effective dose of
overall toxicity and investigate the performance of the locally optimal designs of prenatal death
for this purpose. Fourth, we construct designs that are robust with respect to mis-specification
of the initial parameters, and so mitigate a concern raised by some toxicologists. We also inves-
tigate relative efficiencies of popular designs and other designs that have been recently used in
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developmental toxicity experiments.

Section 2 gives statistical background for our models, which were recently proposed in the lit-
erature for developmental toxicity studies. In Section 3 we present analytical results for locally
optimal designs for estimating the effective dose of prenatal death and investigate the sensi-
tivity of these designs with respect to mis-specification of the unknown parameters. Section 4
considers similar problems for estimating the effective dose of overall toxicity, and in Section
5 the methodology is extended to obtain robust and efficient designs by a maximin approach.
Section 6 evaluates efficiencies of commonly used designs in animal studies and briefly discusses
efficiencies of optimal designs when non-Weibull probability models are used. All justifications
for all our results are deferred to the Appendix.

2 Background for developmental toxicity studies

In developmental toxicity experiments with laboratory animals such as rat or mice, pregnant
females are usually exposed to one of several doses of the test agent (including a control group at
dose zero) during a specified period in gestation. Upon examining the uterine contents of each
dam, the status of each conceptus is classified and recorded. A conceptus may either be dead or
alive, and a live fetus may exhibit one or more malformation.

Let mij denote the number of implants in the jth litter of the ith dose di, and let rij be the number
of prenatal deaths, sij be the number of live fetuses, and yij be the number of fetal malformations.
Summary observations from each dam yield a trinomial response (rij, yij, sij − yij) conditional
on mij for which we have

mij = rij + (sij − yij) + yij.

The fetal malformation rate yij/sij and the prenatal death rate rij/mij are of particular interest.
The joint probability of the observed outcome (yij, rij,mij) may be factored as

P(yij, rij,mij) = P(yij|sij,mij)P(rij|mij)P(mij)

where P(mij) is the marginal distribution of the implants number mij. Throughout, we let π1

denote the probability of any malformation in a live fetus, let π2 be the probability of the prenatal
death, and let φi be the intra-litter correlation coefficient within ith dose group. Zhu, Krewski and
Ross (1994) used generalized estimating equations in conjunction with an extended Dirichlet-
multinomial covariance function, where the correlation coefficient is estimated separately. If
zij = (yij, rij)

T , the conditional covariance of the observation zij is

Cov(zij|mij) = mij(1 + (mij − 1)φi)

(
µ(1− µ) −µπ2

−µπ2 π2(1− π2)

)

where µ = π1(1− π2), 1/(1−mij) < φi < 1.

For simplicity we assume that mij depends only on the dose level and not on the individual litter,
i.e. mij = mi = m(di). As pointed out in Krewski, Smythe and Fung (2002) this assumption
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avoids complicating the model with another level of estimation and permits the development of
informative designs. Following Zhu, Krewski and Ross (1994) we use the Weibull model

πi(d) = 1− e−ai−bid
γi

to describe the probabilities πi, where d denotes the dose level. Here ai, bi > 0 and γi > 0 are
unknown parameters (i = 1, 2). We denote the parameters for the probability πi by θi. Following
Catalano et al. (1993) and Zhu, Krewski and Ross (1993), the overall toxicity is defined by

π3(d) = 1− (1− π1(d))(1− π2(d))(2.1)

of either a death or malformation occurring. The effective dose EDα for a particular probability
πi is defined as the (unique) solution of the equation

π(EDα)− π(0)

1− π(0)
= α

where π(d) represents the probability of a response at dose d and α is a given excess risk. The
excess risk represents additional risk over background among animals which would not have
responded under control conditions and it is also sometimes called the benchmark dose or the
virtually safe dose when α is set to be very low level, say 10−4 (Ryan, 1992, Al-Saidy, et al., 2003).
Zhu, Krewski and Ross (1994) proposed an estimate θ̂ for estimating θ, the three parameters
in the Weibull distribution. This estimate is based on quadratic estimating equations and has
reasonable efficiencies for estimating the parameter θ. By the δ-method (Van der Vaart, 1988)

the variance of the estimator ÊDα for the effective dose can be approximated by

Var(ÊDα) ≈ D̃T Cov(θ̂)D̃,(2.2)

and

D̃ =
∂

∂θ
EDα(2.3)

is the gradient of EDα with respect to θ. We will denote the vector of parameters in πi by θi

and its corresponding estimate by θ̂i, i=1,2.

Throughout, a design is specified by the number of different dose levels, say k, the specific dose
levels d1, . . . , dk and the proportion of patients, say w1, . . . , wk allocated at each of these dose
levels. In this paper, we consider approximate designs, i.e., probability measures ξ = {di, wi}k

i=1

with finite support (Silvey, 1980; Pukelsheim, 1993). For a given design ξ and total sample size
n, the number of observations at each dose level nj is obtained by rounding the quantities nwj

to integers, such that
∑k

j=1 nj = n (Pukelsheim and Rieder, 1992). Throughout this paper we
assume for the sake of simplicity that the dose range is given by the interval [0, 1], but the the
adaption of the methodology to other dose intervals is straightforward. In what is to follow,
we will only present our design strategy and results for estimating the effective dose of prenatal
death. The strategy for estimating the effective dose for a given malformation rate is completely
analogous and we omit details and corresponding results for this case for space considerations.

4



3 Optimal designs for estimating the effective dose of pre-

natal death

Under the Weibull model the effective dose for prenatal death conditional number of implants
equals

EDα =

(
− ln(1− α)

b2

)1/γ2

.

Recalling that θT
2 = (a2, b2, γ2), the gradient (2.3) in the representation (2.2) is given by

D̃ =
∂

∂θ2

EDα = −EDα

γ2




0
1/b2

ln(− ln(1− α)/b2)/γ2


 = −

(
− ln(1−α)

b2

)1/γ2

γ2




0
1/b2

ln(− ln(1−α)
b2

)

γ2


 .

If ξ = {d1, d2, . . . , dn; w1, w2, . . . , wn} denotes an approximate design and

Di =
∂

∂θ2

π2(di) = (1− π2(di))




1
dγ2

i

b2d
γ2

i ln(di)


 ,

it follows that the covariance matrix of the estimate θ̂2 is approximately

Cov(θ̂2) ≈ M−1(ξ, θ2),

where

M(ξ, θ2) =
n∑

i=1

wi
DiD

T
i

Var( ri |mi )
=

n∑
i=1

wi
DiD

T
i

mi(1 + (mi − 1)φi)π2(di)(1− π2(di))
(3.1)

is the information matrix of the design. Note that the summands in this matrix differ by the
factors m2

i from the corresponding terms in the information matrix derived by Krewski, Smythe
and Ross (2002). Consequently we obtain from (2.2) as first order approximation for the variance
of the estimate of the effective dose

Var(ÊDα) ≈ Ψ(ξ, θ2) = D̃T M−1(ξ, θ2)D̃(3.2)

and a locally optimal design for estimating the effective dose (of prenatal death) minimizes the
function Ψ among all designs for which the EDα is estimable.

It is clear that the information matrix of the optimal design depends on the parameters of the
model, and, in particular on the quantities mi = m(di) and φi = φ(di). The simplest way to
deal with this added complication is to use locally optimal designs proposed by Chernoff (1953).
This strategy requires that a single prior guess for the unknown parameters is available. In
developmental toxicity experiments such knowledge is often available from preliminary studies.
The following results establish properties of locally optimal designs for estimating the effective
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dose of prenatal death. In essence, it says that if the excess risk is not too extreme (i.e. near 0 or
1), the locally optimal design requires only 2 doses; otherwise the locally optimal design requires
3 doses that include the extreme levels in the dose interval. The proofs rely on the geometric
characterization of c-optimal designs of Elfving (1952) and are deferred to the Appendix.

Theorem 1. Let m and φ denote the functions defining mi = m(di) and φi = φ(di). If the
function

d −→ (1− π2(d))

m(d)(1 + (m(d)− 1)φ(d))π2(d)
(3.3)

is decreasing, then there exist numbers α and ᾱ such that the following properties hold.

(a) If α ∈ (0, α] ∪ (ᾱ, 1), then the locally optimal design for estimating the effective dose of
prenatal death is supported at 3-points including the boundary points d∗1 = 0, d∗3 = 1 of the
design space.

(b) If α ∈ (α, ᾱ), then the locally optimal design for estimating the effective dose of prenatal
death is supported at 2-points.

We note that if the function φ is increasing, the assumption of Theorem 1 is satisfied. In
particular, Bowman, Chen and George (1995) proposed a logistic-type function of the form

φ(d) =
2

1 + eu1+u2d
− 1(3.4)

for describing the relationship between intra-litter correlation and dose, which is widely used in
practice. If u2 < 0 this function satisfies the assumptions of Theorem 1. The next result tells us
that we can limit our search for the optimal design to the protocol interval [0, 1] and deduce the
corresponding optimal design on the design interval [0, T ].

Theorem 2. Assume that the quantities mi and the function φ are constant. The weights of
the locally optimal design for estimating the effective dose of prenatal death do not depend on the
parameter γ2. Moreover, if d∗i (a2, b2, γ2) are the support points of the locally optimal design for
estimating the effective dose of prenatal death, we have

d∗i (a2, b2, γ2) = (d∗i (a2, b2, 1))1/γ2 .

Our next result shows that if the locally optimal design for estimating the prenatal death requires
3 dose levels, then the dose levels do not depend on the value of the excess risk α. It also provides
a complete analytical description of the locally optimal design when it is known in advance that
the locally optimal design needs only two doses, and one of which is the 0 dose.

Theorem 3. Assume that the conditions of Theorem 1 are satisfied.

(a) The support points of the locally optimal design for estimating the effective dose of prenatal
death with 3 support points do not depend on the value of α.
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(b) If the support of a 2-point locally optimal design for estimating the effective dose of prenatal
death contains the point 0, then the second support point is equal to EDα and its weight at
EDα is equal to w2 = g(0)/(g(0) + g(EDα)) where

g(d) =

√
(1− π2(d))

m(d)(1 + (m(d)− 1)φ(d))π2(d)
.

In Table 1 we display numerical locally optimal designs for estimating the effective dose of pre-
natal death for various combinations of the parameters when the quantities mi and the function
φ are assumed to be constants. As stated in Theorem 1 the locally optimal designs are either
2-point designs or 3-point designs because the monotonicity assumption of the theorem is sat-
isfied. In Table 2 we show some results for a non constant function φ of the form (3.4), which
demonstrate that the assumption of monotonicity on the function (3.3) is in fact needed. For
example, if φ(d) = 2/(1 + ed−1) − 1 the corresponding function in (3.3) is not decreasing. The
locally optimal design for estimating the effective dose of prenatal death is a 3-point design, but
its support dose not contain the minimal dose 0. In both Tables 1 and 2, we also display on the
extreme right column the efficiency of a equally weighted design on five equally spaced points
on the interval [0,1]. We denote this design by ξu and note that this is an example of a uniform
design which is widely used in practice.The results show that in the cases considered in both
tables, this particular uniform design did not perform well, averaging about 50%. This means
that roughly twice as many rats will be needed in the uniform design to obtain estimates for the
parameters as accurate as those provided by the locally optimal design.

In general, our numerical results show that there are four types of locally optimal designs for
estimating the effective dose of prenatal death, namely:

{0, d2, 1; w1, w2, w3}, {0, d2; w1, w2}, {d1, d2, 1; w1, w2, w3}, {d1, d2; w1, w2}.

Moreover, if the assumptions of Theorem 1 are satisfied there exist only two types, i.e.

{0, d2, 1; w1, w2, w3}, {d1, d2; w1, w2} .

Before any design is implemented, it is useful to investigate the robustness of the locally optimal
designs for estimating the effective dose with respect to mis-specification of the initial parameters.
For this purpose we consider the locally optimal ξ∗(θ0) = {0, 0.686, 1; 0.396, 0.548, 0.056} for the
parameter θT

0 = (a2, b2, γ2) = (0.13, 0.27, 3.33) and calculate the efficiency

eff(ξ) =
D̃T M−1(ξ, θ)D̃

D̃T M−1(ξ, θ0)D̃
.(3.5)

for various values of θ. These results are listed in Table 3. We observe that locally optimal designs
are not too sensitive with respect to changes of the parameter a2, but a misspecification of the
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Table 1: Locally optimal design for estimating the effective dose of prenatal death conditional on
the number of implants assuming the functions φ and m are constants. The table also shows the
efficiency of the equidistant design ξu = {0, 1/4, 1/2, 3/4, 1; 1/5, 1/5, 1/5, 1/5, 1/5} (last column).

α a2 b2 γ2 d1 d2 d3 w1 w2 w3 ED eff(ξu)

0.05 0.13 0.15 3.33 0 0.725 0.455 0.545 0.725 0.506

0.05 0.13 0.2 3.33 0 0.696 1 0.429 0.545 0.025 0.665 0.539

0.05 0.13 0.25 3.33 0 0.689 1 0.404 0.547 0.049 0.621 0.557

0.05 0.13 0.3 3.33 0 0.682 1 0.387 0.549 0.064 0.588 0.568

0.05 0.13 0.35 3.33 0 0.676 1 0.373 0.551 0.075 0.562 0.575

0.05 0.13 0.4 3.33 0 0.670 1 0.363 0.554 0.083 0.540 0.579

0.05 0.01 0.27 3.33 0 0.607 0.285 0.715 0.607 0.481

0.05 0.05 0.27 3.33 0 0.653 1 0.371 0.593 0.036 0.607 0.541

0.05 0.1 0.27 3.33 0 0.678 1 0.390 0.558 0.051 0.607 0.558

0.05 0.15 0.27 3.33 0 0.690 1 0.399 0.543 0.058 0.607 0.564

0.05 0.2 0.27 3.33 0 0.698 1 0.404 0.535 0.061 0.607 0.568

0.05 0.25 0.27 3.33 0 0.703 1 0.407 0.529 0.063 0.607 0.570

0.03 0.13 0.27 3.33 0 0.686 1 0.367 0.538 0.095 0.519 0.590

0.04 0.13 0.27 3.33 0 0.686 1 0.381 0.543 0.076 0.567 0.577

0.05 0.13 0.27 3.33 0 0.686 1 0.396 0.548 0.056 0.607 0.562

0.06 0.13 0.27 3.33 0 0.686 1 0.412 0.554 0.034 0.642 0.546

0.07 0.13 0.27 3.33 0 0.686 1 0.430 0.560 0.010 0.674 0.526

0.08 0.13 0.27 3.33 0 0.703 0.433 0.567 0.703 0.507

0.1 0.13 0.27 3.33 0 0.754 0.420 0.580 0.754 0.499
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Table 2: Locally optimal design for prenatal death conditional on the number of implants when
the function m is assumed to be constant and the function φ modeling the correlation is given
by (3.4) (a2 = 0.13, b2 = 0.27, γ2 = 3.33, α = 0.05). The table also shows the efficiency of the
equidistant design ξu = {0, 1/4, 1/2, 3/4, 1; 1/5, 1/5, 1/5, 1/5, 1/5} (last column).

u1 u2 d1 d2 d3 w1 w2 w3 ED eff(ξu)

0 -1 0 0.636 1 0.284 0.691 0.025 0.607 0.490

0 -2 0 0.630 1 0.242 0.737 0.021 0.607 0.472

0 -3 0 0.633 1 0.220 0.757 0.023 0.607 0.464

−1 1 0.082 0.746 1 0.447 0.482 0.071 0.607 0.588

−2 2 0.071 0.762 1 0.445 0.487 0.068 0.607 0.569

−3 3 0.052 0.767 1 0.432 0.503 0.065 0.607 0.551

parameters b2 and γ2 has more serious effects. The table also shows the corresponding efficiencies
of the equidistant design ξu = {0, 1/4, 1/2, 3/4, 1; 1/5, 1/5, 1/5, 1/5, 1/5}. In most cases these are
smaller than the efficiencies of the locally optimal design for estimating the effective dose. In
addition, the table contains efficiencies of a maximin design ξmm, whose construction will be
motivated in Section 5. This design performs substantially better than the uniform design ξu

and achieves nearly the same efficiencies as the locally optimal design ξ∗(θ0) in those case where
ξ∗(θ0) is very efficient.

4 Dose finding for overall toxicity conditional number of

implants

If two Weibull models with parameters θT
1 = (a1, b1, γ1) and θT

2 = (a2, b2, γ2) are used for modeling
the overall toxicity in (2.1), the effective dose based on π3(d) is defined as a solution of the
equation

α = 1− exp(b1EDγ1
α + b2EDγ2

α ),

or, equivalently,
− ln(1− α) = b1EDγ1

α + b2EDγ2
α .

The approximation for the variance of the estimator based on generalized estimating equations
is given by (2.2), where θT = (θ1, θ2) and

D̄ =
∂

∂θ
EDα =

−1

b1γ1EDγ1−1
α + b2γ2EDγ2−1

α




0
EDγ1

α

b1EDγ1
α ln(EDα)

0
EDγ2

α

b2EDγ2
α ln(EDα)




.
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Table 3: Efficiency for estimating the effective dose of prenatal death. ξ∗(θ0): locally optimal
design for θT

0 = (a2, b2, γ2) = (0.13, 0.27, 3.33) ξu equidistant design with five different dose levels
(including the largest and smallest dose), and design ξmm = {0, 0.694, 1; 0.349, 0.515, 0.136} which
is standardized maximin optimal for estimating the effective dose of prenatal death with respect
to Ω = [0.05, 0.2]× [0.2, 0.4]× [2.5, 4.5].

a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2

b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4

γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.802 0.766 0.526 0.967 0.944 0.695 0.749 0.862

eff(ξu) 0.522 0.475 0.563 0.521 0.550 0.496 0.588 0.544

eff(ξmm) 0.808 0.740 0.663 0.923 0.920 0.665 0.872 0.822

If ξ = {d1, d2, . . . , dn; w1, w2, . . . , wn} denotes an approximate design we have

Cov(θ̂) ≈ M−1(ξ, θ),

where the information matrix is given by

M(ξ, θ) =

(
M1(ξ, θ) 0

0 M2(ξ, θ)

)

and the two non-vanishing blocks are defined by

M1(ξ, θ) =
n∑

i=1

wi

D(1)iD
T
(1)i

Var( yi |mi )

=
n∑

i=1

wi

D(1)iD
T
(1)i

mi(1 + (mi − 1)φi)π1(di)(1− π2(di))(1− π1(di)(1− π2(di)))
,

M2(ξ, θ) =
n∑

i=1

wi

D(2)iD
T
(2)i

Var( ri |mi )

=
n∑

i=1

wi

D(2)iD
T
(2)i

mi(1 + (mi − 1)φi)π2(di)(1− π2(di))
,

with

D(j)i =
∂

∂θj

πj(di) = (1− πj(di))




1
d

γj

i

bjd
γj

i ln(di)


 , j = 1, 2.

Note that M(ξ, θ) is a block-diagonal matrix and as a consequence, the optimality criterion
minimizing the variance of the estimate for EDα can be interpreted as composite optimality

10



Table 4: Locally optimal designs for estimating the effective dose of overall toxicity conditional
on the number of implants. The function m and φ are constant, α = 0.05 and ξu denotes the
equidistant design with five different dose levels 0, 1/4, 1/2, 3/4, 1.

a1 b1 γ1 a2 b2 γ2 d1 d2 d3 d4 w1 w2 w3 w4 eff(ξu)

0.06 0.7 2 0.13 0.15 2 0 0.495 1 0.330 0.546 0.124 0.653

0.06 0.7 2 0.13 0.15 3.33 0 0.493 1 0.291 0.574 0.134 0.699

0.06 0.7 3.37 0.13 0.15 2 0 0.573 1 0.372 0.536 0.092 0.593

0.06 0.7 3.37 0.13 0.15 3.33 0 0.658 1 0.331 0.546 0.123 0.634

0.06 0.5 3.37 0.13 0.3 3.33 0 0.665 1 0.333 0.549 0.118 0.607

0.06 0.7 3.37 0.13 0.3 3.33 0 0.653 1 0.321 0.551 0.128 0.619

0.06 0.9 3.37 0.13 0.3 3.33 0 0.640 1 0.311 0.551 0.138 0.630

0.06 0.7 3.37 0.05 0.3 3.33 0 0.630 1 0.299 0.577 0.124 0.593

0.06 0.7 3.37 0.25 0.3 3.33 0 0.673 1 0.338 0.532 0.130 0.635

0.02 0.7 3.37 0.13 0.3 3.33 0 0.646 1 0.315 0.559 0.126 0.641

0.09 0.7 3.37 0.13 0.3 3.33 0 0.657 1 0.325 0.546 0.129 0.613

0.02 1.2 2.2 0.05 0.2 3.7 0 0.402 0.636 1 0.212 0.620 0.040 0.129 0.655

0.02 1.2 2.2 0.05 0.2 3.3 0 0.421 0.541 1 0.221 0.596 0.041 0.141 0.680

0.02 0.9 2.2 0.05 0.2 3.7 0 0.434 0.590 1 0.228 0.585 0.065 0.121 0.674

0.02 1.6 2.2 0.05 0.2 3.7 0 0.368 0.713 1 0.198 0.636 0.029 0.136 0.632

criterion in the sense of Läuter (1974), that is

Var(ÊDα) ≈ Φ(ξ, θ) = D̄T M−1(ξ, θ)D̄ = D̃T
(1)M

−1
1 (ξ, θ)D̃(1) + D̃T

(2)M
−1
2 (ξ, θ)D̃(2).(4.1)

It is intuitively clear that locally optimal designs for estimating the EDα for overall toxicity are
3-point designs if the parameters in π1(d) and π2(d) are similar. In all cases of practical interest
these designs have to be calculated numerically. Some exemplary optimal designs are presented
in Table 4 for constant functions mi and φi. Table 5 presents optimal designs for the case where
the correlation is of the form (3.4) and the m′

is are constants. We observe that in most cases, the
locally optimal designs are supported at 3-points, but there are also situations (in particular for
large differences between the parameters γ1 and γ2), where 4 different dose levels are required for
the optimal estimation of the effective dose of the overall toxicity. The results of our investigation
of the robustness properties of the locally optimal designs for estimating the effective dose with
respect to mis-specification of the initial parameters are summarized in Table 6.
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Table 5: Locally optimal designs for estimating the effective dose of overall toxicity conditional
on the number of implants. The functions m is constant, while the correlation function φ is given
by (3.4), a1 = 0.06, b1 = 0.7, γ1 = 3.37, a2 = 0.13, b2 = 0.3, γ2 = 3.33, α = 0.05 and ξu denotes
the equidistant design with five different dose levels 0, 1/4, 1/2, 3/4, 1.

u1 u2 d1 d2 d3 w1 w2 w3 eff(ξu)

0 -1 0 0.600 1 0.227 0.652 0.121 0.554

0 -2 0 0.594 1 0.192 0.690 0.118 0.538

0 -3 0 0.596 1 0.174 0.708 0.118 0.530

Table 6: Efficiency for estimating the effective dose of overall toxicity using three designs: ξ∗(θ0),
the locally optimal design for θT

0 = (a1, b1, γ1, a2, b2, γ2)
T = (0.06, 0.7, 3.37, 0.13, 0.27, 3.33), ξu the

equidistant design with five different dose levels (including the largest and smallest dose), and
the design ξmm = {0, 0.694, 1; 0.349, 0.515, 0.136} which is standardized maximin optimal for
estimating prenatal death with [0.05, 0.2]× [0.2, 0.4]× [2.5, 4.5].

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09

b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9

γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2

a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2

b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4

γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.875 0.873 0.681 0.982 0.981 0.705 0.880 0.882

eff(ξu) 0.588 0.566 0.594 0.584 0.606 0.574 0.619 0.614

eff(ξmm) 0.730 0.965 0.531 0.942 0.906 0.871 0.743 0.984
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Table 7: Efficiency for estimating the effective dose of overall toxicity. ξ∗(θ0) =
{0, 0.686, 1; 0.396, 0.548, 0.056}: locally optimal design for estimating the effective dose of pre-
natal death (θT

0 = (a2, b2, γ2)
T = (0.13, 0.27, 3.33), constant correlation); ξu equidistant design

with five different dose levels 0, 1/4, 1/2, 3/4, 1 and design ξmm = {0, 0.694, 1; 0.349, 0.515, 0.136}
which is standardized maximin optimal for estimating the effective dose of prenatal death with
respect to Ω = [0.05, 0.2]× [0.2, 0.4]× [2.5, 4.5].

a1 0.02 0.02 0.02 0.02 0.1 0.1 0.1 0.1

b1 0.3 0.3 1.1 1.1 0.3 0.3 1.1 1.1

γ1 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.762 0.977 0.269 0.883 0.815 0.977 0.328 0.899

eff(ξu) 0.669 0.583 0.770 0.611 0.618 0.594 0.644 0.598

eff(ξmm) 0.901 0.986 0.437 0.984 0.935 0.980 0.520 0.995

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09

b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9

γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2

eff(ξ∗(θ0)) 0.754 0.959 0.443 0.885 0.796 0.965 0.491 0.899

eff(ξu) 0.652 0.589 0.708 0.609 0.622 0.592 0.646 0.599

eff(ξmm) 0.902 0.991 0.646 0.984 0.931 0.991 0.703 0.993

We next investigate whether the locally optimal design for estimating the effective dose of pre-
natal death is efficient for estimating the effective dose of overall toxicity. We also compare the
optimal design with the equidistant design with five different dose levels. In Tables 7 and 8, we
display efficiencies of the two designs for various combinations of the parameter θ to study their
robustness for estimating the effective dose of overall toxicity when the initial parameters have
been misspecified and the design is optimal for estimating the effective dose of prenatal death.
We observe that the performance of the locally optimal design for estimating the the effective
dose of overall toxicity depends sensitively on changes of the parameters b1 and b2. If b1 is very
different from the parameter b2 used in the construction of the locally optimal design for esti-
mating the effective dose of prenatal death, this design becomes inefficient for estimating overall
toxicity. In such cases even the uniform design performs better. Otherwise the locally optimal
design for estimating the effective dose of prenatal death is at least as good as the uniform design
(and in many cases substantially better). The table also shows efficiencies of the design ξmm,
which will be constructed in the following section as a robust and efficient alternative to locally
optimal designs. The design ξmm performs uniformly better than the locally optimal design
ξ∗(θ0) for estimating the effective dose of prenatal death. In many cases, it is substantially more
efficient than the uniform design ξu and in the cases where the equal allocation rule yields the
best efficiencies, the loss of efficiency obtained from ξmm is rather small.
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Table 8: Efficiency for estimating the effective dose of overall toxicity. ξ∗(θ0) =
{0, 0.686, 1; 0.396, 0.548, 0.056}: locally optimal design for estimating the effective dose of pre-
natal death (θT

0 = (a2, b2, γ2)
T = (0.13, 0.27, 3.33), constant correlation); ξu equidistant design

with five different dose levels 0, 1/4, 1/2, 3/4, 1 and design ξmm = {0, 0.694, 1; 0.349, 0.515, 0.136}
which is standardized maximin optimal for estimating the effective dose of prenatal death with
respect to Ω = [0.05, 0.2]× [0.2, 0.4]× [2.5, 4.5].

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09

b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9

γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2

a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2

b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4

γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.570 0.968 0.355 0.821 0.767 0.892 0.532 0.914

eff(ξu) 0.588 0.566 0.594 0.584 0.606 0.574 0.619 0.614

eff(ξmm) 0.730 0.965 0.531 0.942 0.906 0.871 0.743 0.984

5 Robust and efficient designs for prenatal death

As pointed out in the previous sections, locally optimal designs are not necessarily robust with
respect to a mis-specification of the unknown parameters. To obtain designs that are efficient and
robust over a certain range of the parameters for the Weibull model, we study a maximin approach
proposed by Müller (1995) and Dette (1997), which assumes that there is prior information on
the range of plausible values of unknown parameters. To be precise, we concentrate on optimal
designs for estimating the effective dose of prenatal death, where the correlation function is given
by the one parametric logistic family

φ(d) =
2

1 + e−ud
− 1.(5.1)

We assume that the experimenter has some knowledge about the location of the parameters, i.e.

a2 ∈ [a, a], b2 ∈ [b, b], γ2 ∈ [γ, γ], u ∈ [u, u]

For given θT = (a2, b2, γ2) and u, define ξ∗(θ, u) as the locally optimal designs for estimating the
effective dose and for a given design, define

effall(ξ, θ, u) =
D̃T M−1(ξ∗(θ, u), θ, u)D̃

D̃T M−1(ξ, θ, u)D̃
.(5.2)

A design ξmm is called standardized maximin optimal for estimating the effective dose, if it
maximizes the worst efficiency over some set of the parameters, i.e.

ξmm = argmaxξ min
(θ,u)∈Ω

effall(ξ, θ, u).(5.3)
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Table 9: Standardized maximin optimal designs for estimating the effective dose of prenatal death
conditional on the number of implants. The functions m and φ are constant, α = 0.05 and ξu

denotes the equidistant design with five different dose levels 0, 1/4, 1/2, 3/4, 1.

a2 a2 b2 b2 γ
2

γ2 d1 d2 d3 w1 w2 w3 min eff min eff(ξu)

0.1 0.12 0.25 0.3 3.1 3.5 0 0.681 1 0.387 0.551 0.063 0.976 0.549

0.1 0.15 0.25 0.3 3.1 3.5 0 0.684 1 0.389 0.546 0.065 0.972 0.549

0.1 0.17 0.22 0.3 3 3.7 0 0.696 1 0.390 0.536 0.073 0.930 0.533

0.08 0.18 0.21 0.33 2.6 4 0 0.691 1 0.371 0.524 0.105 0.809 0.514

0.07 0.19 0.2 0.34 2.5 4.1 0 0.690 1 0.366 0.519 0.115 0.757 0.502

Here the set Ω is defined by Ω = [a, a]× [b, b]× [γ, γ]× [u, u] and is user-selected. Optimal designs
with respect to this robust criterion have to be calculated numerically in all cases of practical
interest. In Table 9 we display standardized maximin optimal designs with respect to various sets
Ω assuming the quantities mi and the correlation function (5.1) are constants, i.e. u = u = 0.
We observe that in all situations the standardized maximin optimal designs are supported at 3
points and they include the largest and smallest doses. However, the results of Braess and Dette
(2007) indicate that there will also exist standardized maximin optimal designs for estimating
the effective dose with a larger number of support points. The table also contains the minimal
efficiency of the standardized maximin optimal design for estimating the effective dose, i.e.

min
(θ,u)∈Ω

effall(ξ, θ, u)

and the minimal efficiencies of an equidistant design with 5 different dose levels. Note that the
standardized maximin optimal designs yield reasonable efficiencies over the full set Ω and that
the minimal efficiency of the uniform design over this set is substantially smaller. In Table 10
we consider the case, where the correlation can be modeled by the function (5.1). We observe
that the standardized maximin optimal designs are supported at 3 or 4 points and compared to
Table 9 the efficiencies are smaller. This is intuitively clear, because we have incorporated more
robustness with respect to the assumption of a constant correlation in the construction of efficient
designs for estimating the effective dose. Again the equidistant design yields substantially smaller
minimal efficiencies compared to the standardized maximin optimal design.

6 Efficiency of standard designs and concluding remarks

It is interesting to evaluate the efficiencies of commonly used designs in developmental toxicity
studies. One such class is the set of uniform designs. These designs are equally spread out in
the dose interval of interest and allocate equal number of animals to each dose. As such, they
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Table 10: Standardized maximin efficient optimal design for prenatal death conditional on the
number of implants. The function m is constant, while the correlation function is given by (5.1)
and α = 0.05. ξu denotes the equidistant design with five different dose levels 0, 1/4, 1/2, 3/4, 1
and various sets are considered in the standardized maximin optimality criterion (5.3), Ω1(u, u) =
[0.07, 0.19]× [0.19, 0.34]× [2.5, 4.1]× [u, u], Ω2(u, u) = [0.1, 0.12]× [0.25, 0.3]× [3.1, 3.5]× [u, u].

u u d1 d2 d3 d4 w1 w2 w3 w4 min eff(ξ∗) min eff(ξu)

0 1 0 0.469 0.721 1 0.269 0.258 0.400 0.073 0.654 0.412

Ω1(u, u) 0 2 0 0.460 0.722 1 0.232 0.282 0.417 0.069 0.640 0.392

1 2 0 0.545 0.665 1 0.239 0.110 0.535 0.117 0.655 0.392

0 1 0 0.653 1 0.343 0.599 0.058 0.896 0.469

Ω2(u, u) 0 2 0 0.649 1 0.327 0.615 0.057 0.873 0.449

1 2 0 0.637 1 0.254 0.700 0.046 0.946 0.449

are intuitive and easy to implement. Krewski, Smythe and Fung (2002) provided an overview
of experimental designs for 11 developmental toxicity studies conducted under the US National
Toxicology Program. In their Table 1, they listed the doses employed in these studies that in-
volved either rabbits, rats or mice. The designs usually have roughly equal number of animals
at each dose and some of their dose levels, after scaling to our protocol interval [0,1] are listed in
our Tables 11 and 12. Following Krewski, Smythe and Fung, we call these ”standard” designs.

Tables 11 and 12 display the efficiencies of ”standard” designs for estimating the prenatal death
rates and the overall toxicity rate. We observe that the standard design can perform poorly
when model parameters are mis-specified. For instance, the efficiencies of the standard design
listed in the first row can be less than 30% for estimating the prenatal death rate and the overall
toxicity rate. Some standard designs have efficiencies as low as 0.22 for estimating the prenatal
death rate. Interestingly, the uniform design with 5 doses has at least 50% for all cases shown in
the tables. In general, it is advisable that the researcher assess the efficiencies of a design under
different optimality criteria before its implementation.

In practice, there are usually several objectives in the study and these objectives may not be
of equal interest to the researcher. For instance, the researcher is interested to design a study
whose primary aim is to estimate the prenatal death rate, the secondary aim is to estimate the
malformation rate and the tertiary aim is to estimate the overall toxicity rate as accurate as
possible. To incorporate the multiple objectives in the study, one may follow the strategy laid
out in Cook and Wong (1994) to find an optimal design that provides user-specified efficiency
for each objective. Clearly, the optimal design sought should provide higher efficiencies for more
important objectives and the user-specified efficiencies reasonable enough so that the optimal
design exists. For space consideration, we do not provide multiple-objective optimal designs
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Table 11: Efficiency of ”standard” designs for estimating EDα for prenatal death with different
values of parameters, ψ(d) ≡ const.

a2 0.13 0.05 0.13 0.13 0.05 0.13

b2 0.27 0.27 0.15 0.27 0.15 0.27

d1 d2 d3 d4 d5 γ2 3.3 3.3 3.3 2 2 1

0 0.25 0.5 1 0.28 0.31 0.23 0.53 0.46 0.75

0 0.33 0.67 0.83 1 0.61 0.55 0.57 0.53 0.48 0.52

0 0.25 0.5 0.75 1 0.56 0.54 0.51 0.57 0.51 0.62

0 0.3 0.5 0.7 1 0.54 0.54 0.46 0.62 0.54 0.65

0 0.17 0.33 0.67 1 0.49 0.47 0.44 0.50 0.45 0.63

0 0.05 0.15 0.5 1 0.28 0.31 0.24 0.49 0.43 0.51

0 0.125 0.25 0.5 1 0.26 0.29 0.22 0.46 0.40 0.64

0 0.1 0.2 0.5 1 0.27 0.30 0.23 0.46 0.40 0.58

Table 12: Efficiency of ”standard” designs for estimating EDα for overall toxicity with different
values of parameters in the Weibull model with ψ(d) ≡ constant.

a1 0.06 0.06 0.06 0.06 0.06 0.06 0.02

b1 0.7 0.7 0.7 0.7 0.7 0.2 0.7

γ1 3.37 3.37 3.37 3.37 1 3.37 3.37

a2 0.13 0.05 0.13 0.13 0.13 0.13 0.13

b2 0.3 0.3 0.1 0.3 0.3 0.3 0.3

d1 d2 d3 d4 d5 γ2 3.33 3.33 3.33 1 3.33 3.33 3.33

0 0.25 0.5 1 0.36 0.39 0.34 0.78 0.69 0.29 0.37

0 0.33 0.67 0.83 1 0.61 0.56 0.64 0.53 0.40 0.63 0.63

0 0.25 0.5 0.75 1 0.62 0.59 0.64 0.64 0.55 0.59 0.64

0 0.3 0.5 0.7 1 0.63 0.62 0.64 0.66 0.52 0.57 0.65

0 0.17 0.33 0.67 1 0.54 0.51 0.55 0.65 0.69 0.52 0.55

0 0.05 0.15 0.5 1 0.35 0.38 0.34 0.53 0.59 0.30 0.36

0 0.125 0.25 0.5 1 0.33 0.35 0.31 0.67 0.76 0.27 0.34

0 0.1 0.2 0.5 1 0.34 0.36 0.33 0.61 0.72 0.29 0.35
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for simultaneously estimating the effective dose for prenatal death rate, malformation rate and
overall toxicity rate, but note that the key idea for finding such a design is to first formulate
each objective as a convex function of the design information matrix and then combine all the
convex objectives into a single convex functional using a convex combination. As described in
Cook and Wong (1994), each set of weights used in the convex combination can be judiciously
chosen to satisfy the efficiency requirement for each objective. In the case of a two-objective de-
sign problem, the weights and the dual-objective optimal design can be determined graphically
via efficiency plots (Imhof and Wong, 2000). Wong (1999) provided several illustrative applica-
tions of such ideas to construct multiple-objective optimal designs in several biomedical problems.

One may be rightly concerned that the optimal designs are dependent on the parametric mod-
els. This dependence is inescapable but as we have advocated all along, the user must check
robustness properties of optimal designs to all assumptions before the design is implemented.
We focused on the simpler situation when we were concerned about mis-specification of nominal
values, but if there is concern about other aspects in the model assumptions, a similar strategy
can be applied. For instance, one may question the validity of the Weibull models to describe
the malformation and prenatal death rates. If scientific opinion suggests alternative models may
be more appropriate, one can then construct optimal designs for different models and compare
their efficiencies under the competing models. The hope is that there is a design that remains
efficient under all models that experts agree on.

Here is a short illustration of the situation just discussed. Assume,as before, that both the
malformation and pre-natal death rates have the same form and can be described using two
plausible models :

π
(2)
2 (d) = 1− a2

1 + b2dγ2

and
π

(3)
2 (d) = 1− a2

1 + e−b2+γ2d
.

Suppose the sets of nominal values are θ
(2)
2 = (0.88, 0.25, 2.8), θ

(3)
2 = (0.91, 4.3, 3.5), θ

(2)
1 =

(0.94, 1.3, 5.1) and θ
(3)
1 = (0.98, 3.5, 3.2). We recall that θ

(1)
1 = (0.06, 0.7, 3.37) and θ

(1)
2 =

(0.13, 0.27, 3.33). Here the superscripts denote the three different models used to describe the
probabilities rates.

Table 13 lists the locally optimal designs for α = 0.5 and their efficiencies under different assump-
tions on the probability models. The robustness properties of each optimal design under each set
of probability models can be compared. For this setup, the efficiency results are quite reassuring
because the smallest efficiency in the table is at least 0.76. Of course, different assumptions on
the sets of nominal values may not yield the same conclusions.

In summary, our proposed design strategy is quite general and possess several advantages over
existing methods. Unlike uniform designs, our approach is based firmly on statistical principles
and the proposed maximin optimal design provides good protection against mis-specification in
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Table 13: Various locally optimal designs (left part) and their efficiencies under different proba-
bility models for estimating of prenatal death (first 3 rows), malformation rate (middle 3 rows)
and overall toxicity (last 3 rows).

Model x1 x2 x3 w1 w2 w3 ξ(1) ξ(2) ξ(3)

weibull 0 0.686 1 0.396 0.548 0.056 1.000 0.910 0.869

model 2 0 0.624 1 0.417 0.546 0.037 0.911 1.000 0.968

model 3 0 0.630 1 0.354 0.561 0.086 0.853 0.940 1.000

weibull 0 0.616 1 0.297 0.602 0.101 1.000 0.954 0.832

model 2 0 0.662 1 0.284 0.592 0.123 0.918 1.000 0.503

model 3 0 0.535 1 0.290 0.610 0.100 0.882 0.768 1.000

weibull 0 0.654 1 0.323 0.550 0.127 1.000 0.885 0.726

model 2 0 0.581 1 0.357 0.521 0.121 0.825 1.000 0.910

model 3 0 0.544 1 0.297 0.564 0.138 0.761 0.942 1.000

the nominal values of the model parameters. The optimal design allows prior information to be
included in its construction and if required, can also incorporate multiple objectives with possibly
unequal interests. Consequently, the proposed optimal design is able to meet the practical needs
of the researcher more adequately than current designs.
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7 A. Appendix: proofs

Proof of Theorem 1. From (3.1), the information matrix for a design ξ can be represented as

M(ξ, θ) =
k∑

i=1

wif(di)f
T (di),

where the vector f is defined by

f(d) =
D(d)√

m(1 + (m− 1)φ(d))π2(d)(1− π2(d))

=

√
(1− π2(d))

m(d)(1 + (m(d)− 1)φ(d))π2(d)




1
dγ2

b2d
γ2 ln(d)


 .

We now apply Elfving’s theorem [see Elfving (1952)], which gives a geometric characterization
of the optimal design. More precisely, from this result it follows that a design ξ = {di, wi}k

i=1 is
locally optimal if and only if there exist numbers ε1, . . . , εk ∈ {−1, 1} such that for some ν ∈ R
the point

νP = ν

(
0, 1/b2,

1

γ2

ln
(
− ln(1− α)

b2

))T

=
k∑

j=1

εjwjf(dj)(A.1)

is a boundary point of the Elfving set

R = conv({εf(d) | d ∈ [0, 1], ε ∈ {−1, 1}}).(A.2)

A typical picture of this set is presented in Figure 1 for the case of constant functions φ and m.
We note that the curve

X = {f(d), d ∈ [0, 1]}
is contained in subspace {x = (x1, x2, x3)

T ∈ R3|x1 > 0} and the set

{(1, dγ2 , b2d
γ2 ln(d))| d ∈ [0, 1]}

defines a U-shaped curve. From the monotonicity assumption for the function (3.3), it follows
that the curve X is also U-shaped (see also Figure 1). We denote the endpoints of this curve
by A and B and recall that the first coordinate of the vector P is equal to 0 and that ν is the
scaling constant such that νP touches the boundary of the Elfving set R. Note that in the case
α → 0 we have that

P ≈ c




0
0
1
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A

B

C

vP

Figure 1: The Elfving set defined in (A.2) for the parameters a = 0.133, b = 0.272, γ = 3.33.
The points f(d1), −f(d2), and f(d3) are denoted by A, C, and B, respectively, while the point
νP is defined in (A.1).

for some constant c and, consequently, the vector νP touches the boundary at the plane E
spanned by the points A, B and C, where A and B correspond to the doses 0 and 1, respectively
and −C corresponds to a third dose, say d∗ ∈ (0, 1). Consequently, the locally optimal design
is a 3-point design with support points 0, 1 and d∗, if α is sufficiently small. In the case, where
α → 1 the situation is exactly the same, and the locally optimal design is also supported at 3
points including the boundary points. From the geometry of the Elfving set R we see that there
are also directions P , where the intersection with the Elfving set can represented by two points
of the curves X and −X . In particular this situation occurs if α ≈ 1− e−b. In this case we have

P ≈ c




0
1
0




for some constant c, and the locally optimal design is supported at 2 points design. Moreover,
if α moves from 0 to 1 it follows from geometry of the Elfving set that the situation is changing
continously, which proves the assertion of the theorem. 2

Proof of Theorem 2. From Elfving’s theorem [see Elfving (1952)] it follows that a design
{di; wi} is locally optimal (for the parameter θ = (a2, b2, γ2)) if and only if there exists a repre-
sentation of the form

νP = ν




0
1/b2

ln(− ln(1−α)
b2

)


 =

∑
i

εiwi

√
(1− π2(di))

m(1 + (m− 1)φ)π2(di)




1
dγ2

i

b2d
γ2

i ln(dγ2

i )


(A.3)
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for the boundary point νP ∈ R. If {d∗i (1); w∗
i } denotes an optimal design for the parameter

θ = (a2, b2, 1) it follows that equation (A.3) holds for this design with γ2 = 1. Now it is easy to
see that (A.3) is also true for the design {(d∗i (1))1/γ2 ; w∗

i } for the parameter θ = (a2, b2, γ2) where
γ2 > 0 is arbitrary. 2

Proof of Theorem 3. Part (a) of the Theorem follows directly from the geometry of the Elfving
set. If the locally optimal design is supported at 3 points the corresponding point νP touches
the Elfving set in the plane spanned by the points A, B, and C, which does not depend on the
value of α. For a proof of part (b) we note that according to Elfvings theorem a locally optimal
design of the form {0, d2, w1, w2} must satisfy the equation

ν




0
1/b2

ln(− ln(1−α)
b2

)


 = εw1g(0)




1
0
0


− εw2g(d2)




1
dγ2

2

b2d
γ2

2 ln(dγ2

2 )


 ,

where the function g is defined by

g(d) =

√
(1− π2(d))

m(d)(1 + (m(d)− 1)φ(d))π2(d)
.

It is easy to see that this equation yields

ν

(
1/b2

ln(− ln(1−α)
b2

)

)
= −εw2

√
(1− π2(d2))

m(d2)(1 + (m(d2)− 1)φ(d2))π2(d2)

(
dγ2

2

b2d
γ2

2 ln(dγ2

2 )

)
,

which simplifies to the equation

ν

(
1

ln(EDγ2
α )

)
= −εw2

√
(1− π2(d2))

m(d2)(1 + (m(d2)− 1)φ(d2))π2(d2)
b2d

γ2

2

(
1

ln(dγ2

2 )

)
.

It follows that d2 = EDα. Since w1 = 1 − w2 from equality for first coordinate we have that
w2 = g(0)/(g(0) + g(EDα)).
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