
Nunkesser, Robin

Working Paper

RFreak-An R-package for evolutionary computation

Technical Report, No. 2008,12

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Nunkesser, Robin (2008) : RFreak-An R-package for evolutionary computation,
Technical Report, No. 2008,12, Technische Universität Dortmund, Sonderforschungsbereich 475 -
Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/36582

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/36582
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

RFreak–An R Package for Evolutionary

Computation

Robin Nunkesser
TU Dortmund

Abstract

RFreak is an R package providing a framework for evolutionary computation. By
enwrapping the functionality of an evolutionary algorithm kit written in Java, it offers an
easy way to do evolutionary computation in R. In addition, application examples where an
evolutionary approach is promising in computational statistics are included and described
in this paper. The package is thus further supporting the use of evolutionary computation
in computational statistics.

Keywords: R, evolutionary algorithms, evolutionary computation, association study, robust
regression.

1. Introduction

In computational statistics like in every field of research involving computers, we are con-
fronted with problems that are very hard to compute exactly or that are not computable
at all in reasonable time. A typical approach to tackle these problems is to use heuristics.
Evolutionary computation (see e.g. De Jong 2006) is a well established search heuristic in
computer science and steadily gaining importance in computational statistics. Examples for
the application of evolutionary computation in computational statistics include evolutionary
clustering (Hruschka et al. 2006), association studies (Nunkesser et al. 2007), computation of
robust estimators (Morell et al. 2008), time series modeling (Baragona et al. 2004), and many
more.

In this paper, we describe an R (R Development Core Team 2007) interface to the Free Evo-
lutionary Algorithm Kit FrEAK (Briest et al. 2004) which also includes numerous extensions
to FrEAK. In addition, two extensive application examples from computational statistics are
integrated. FrEAK is written in Java and provides an easy-to-use framework to build evolu-
tionary algorithms out of modules. The approach of FrEAK to achieve an easy construction of
evolutionary algorithms and how we integrate it in an R package is explained. Furthermore,
the application examples from genetic association studies and robust regression are briefly

2 RFreak–An R Package for Evolutionary Computation

discussed.

This paper is organized as follows: Section 2 gives a short introduction to the concept of evo-
lutionary computation and how it is reflected in FrEAK. Section 3 introduces the package and
illustrates its use by application examples. Section 4 concludes the paper with a discussion.

2. Evolutionary computation and FrEAK

The main idea of evolutionary computation is to mimic Darwinian evolutionary processes in
order to obtain efficient search heuristics. Numerous successful applications of evolutionary
computation back up its importance as a search heuristic (see e.g. Banzhaf et al. 1998 for
application examples). Taking a unified view of evolutionary computation like De Jong (2006)
allows us to conceive evolutionary computation as a process build up by interchangeable
modules. This modular concept is utilized by FrEAK to achieve high reusability.

The main principle of Darwinian evolution is that populations of individuals evolve through
variational inheritance where a concept of fitness reflects the ability to survive. Individuals
may be characterized by genotypes (the genetic makeup) or phenotypes (observed qualities).
Essential modules of evolutionary algorithms are therefore the fitness function that maps
individuals to fitness values, the genotype search space and an optional mapping between
genotype and phenotype (called “Fitness Function”, “Search Space”, and “Genotype Mapper”
in FrEAK).

Roughly speaking, solving an optimization problem with an evolutionary algorithm requires
the definition of genotypes or phenotypes and a fitness function in such a way, that the
individuals represent possible solutions and that the “best” solutions are mapped to the best
fitness values and therefore have a higher probability to survive selection.

The basic evolutionary process used by evolutionary algorithms is described by the following
algorithm.

Algorithm 1 (Basic Evolutionary Algorithm)

1. Create an initial random population.

2. Perform the following steps on the current generation of individuals:

(a) Select individuals in the population based on a selection scheme.

(b) Adapt the selected individuals.

(c) Evaluate the fitness value of the adapted individuals.

(d) Select individuals for the next generation according to a selection scheme.

3. If the stopping criterion is fulfilled, then output the final population. Otherwise, set the
next generation as current and go to step 2.

The apparent way to adapt this process to specific needs by using interchangeable modules is
to visualize the process as a flowchart. In Fig. 1 the flowchart approach FrEAK uses is de-
picted (“Algorithm Graph”). This reveals some modules of FrEAK not mentioned yet. More
precisely, stopping criteria and population initialization are also interchangeable modules of

Technical Report SFB 475 3

Start

Adaption

Stopping criterionFinish

Initialization

Selection

Fitness function

Selection

no

Output

yes

Figure 1: Flowchart containing the modules used in designing an evolutionary algorithm with
FrEAK. The dashed modules implicitly influence the process and are no explicit part of a
FrEAK algorithm graph.

an evolutionary algorithm (called “Stopping Criteria” and “Initial Population” in FrEAK). To
summarize, the interchangeable and reusable modules needed in FrEAK to design an algo-
rithm based on evolutionary computation are: “Search Space”, “Fitness Function”, “Genotype
Mapper”, “Algorithm Graph” (additionally consisting of adaption and selection modules),
“Stopping Criteria”, and “Initial Population”.

3. The RFreak Package

The main function of the RFreak package is to provide an interface to use FrEAK from R
with the help of the rJava package (Urbanek 2007).

3.1. Setting up an Evolutionary Algorithm

The function to build an evolutionary algorithm out of modules is called launchScheduleEd-
itor(). When executed, it launches FrEAK’s schedule editor from R.

One of the best known schoolbook examples of evolutionary algorithms is the (1 + 1) EA on
OneMax described in Algorithm 2, which optimizes the fitness function

OneMax(x) :=
n∑

i=1

xi

on genotypes x ∈ {0, 1}n.

4 RFreak–An R Package for Evolutionary Computation

Algorithm 2 ((1 + 1) EA)

1. Choose x ∈ {0, 1}n uniformly at random.

2. Define y in the following way. Each bit of x is flipped independently of the other bits
with probability 1/n.

3. If OneMax(y) ≥ OneMax(x), replace x by y.

4. If the stopping criterion is fulfilled, then output the final population. Otherwise go to
step 2.

Obviously, the main merit of this example lies in its amenability to theoretical analysis.
Nevertheless, suppose as an example that we would like to run the (1 + 1) EA 5 times for
n = 30 and stop each run after 50 generations.

In FrEAK, this setting corresponds to choosing the search space module “Bit String”, the
fitness function module “OneMax”, the algorithm graph (1 + 1) EA already containing the
necessary adaption and selection modules, the stopping criterion “Generation Count”, and
the population initialization modules“Default Population Model”and“RandomInitialization”.
This choices determine the algorithm, but apart from that, some simulation specific settings
are needed. In “Observers and Views” the observer “Result” and the view “R Return” – which
we implemented as part of the interface – are preselected. Most of the other observers and
views do not make sense in an R interface and can safely be ignored. The settings for “Batches
of Runs” provide an overview of the so far selected modules and the possibility to set up the
number of runs and additional batches. Setting up more than one batch also does not make
sense in an R interface and is therefore not supported in RFreak. After finishing the schedule
editor, we obtain a file schedule.freak containing the schedule which can be started by
executeSchedule(). The result is an S4 object of class FreakReturn:

Result obtained from FrEAK:
Run Generation Objective value Individual

1 1 50 26 101111101111111011111111011111
2 2 50 24 111001111101111101001111111111
3 3 50 22 100111100011101011111111111101
4 4 50 24 110110101111111100110111111111
5 5 49 24 011010111111111110111101111110

In addition to this general straight forward interface we added application examples from
computational statistics to FrEAK.

3.2. Using RFreak for association studies

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations. A
major goal of genetic association studies is to identify SNPs and SNP interactions that lead to
a higher disease risk. Typically, individual SNPs have only a slight to moderate effect and the
detection of SNP interactions is considered more important (Garte 2001; Culverhouse et al.
2002) but it is of course also computationally more demanding. GPAS (Genetic Program-
ming for Association Studies) (Nunkesser et al. 2007) is a genetic programming algorithm

Technical Report SFB 475 5

mainly designed to identify high-order interactions in genetic association studies. GPAS can
additionally be employed for discrimination.

We integrated GPAS in RFreak by implementing new FrEAK modules. Using launch-
ScheduleEditor() with the search space “Boolean Functions” offers the possibility to ex-
change modules and derive new genetic programming algorithms for association studies.

The two algorithms described in Nunkesser et al. (2007) are directly accessible from RFreak
with the function GPASInteractions and GPASDiscrimination, respectively. An example
data set data.logicfs taken from the package logicFS (Schwender 2006) is also included. A
small example like

> data(data.logicfs)

> GPASInteractions(cl.logicfs,data.logicfs,runs = 10,occurences=4)

returns an S4 object of class GPAS (inherits from FreakReturn) and saves a GraphViz (Gansner
and North 2000) graph in a file interactions.dot. Objects of class GPAS outwardly con-
tain the same information as objects of class FreakReturn. The individuals contained are
representations of multi-valued logical expressions in disjunctive normal form. An example
individual from the run is

(SNP1==3) | ((SNP4==3) & (SNP2==1)) |
((SNP3==3) & (SNP5==3) & (SNP6==1))

which actually is the true model of data.logicfs. When used as a predictor in a case-control
study, a patient would be classified as case if the logical expression is true, i.e. if all SNPs in
at least one of the three expressions (SNP1==3), (SNP4==3) & (SNP2==1), and (SNP3==3) &
(SNP5==3) & (SNP6==1) show the genotypes indicated.

The graph interactions.dot depicted in Fig. 2 reveals further interesting interactions.

It is also possible to test the individuals on other data samples with the S4 method predict.

3.3. Using RFreak for robust regression

Another application example is an evolutionary algorithm for robust regression methods
(Morell et al. 2008), where we concentrate on least trimmed of squares (LTS) regression
(Rousseeuw 1984). Bernholt (2005) showed, that computing robust regression estimators ful-
filling the exact-fit-property is NP-hard. Therefore, under the widely believed assumption
that P6=NP, we cannot hope for exact algorithms with practical running times for large data
sets. The implemented evolutionary algorithm is better suited to overcome local optima than
other existing algorithms for this problem.

Consider the linear model y = xβ+e. For n data points (y1, x1), . . . , (yn, xn) and a parameter
h, the objective of the LTS estimator is to minimize

h∑
i=1

(r2)i:n

where (r2)1:n ≤ · · · ≤ (r2)n:n are the ordered squared residuals yi − xiβ.

6 RFreak–An R Package for Evolutionary Computation

(SNP4==3)
(138,39)

62 (53.44%)

(SNP2==1)
(100,0)

32 (51.61%)

(SNP2!=3)
(119,17)

10 (16.12%)

(SNP1==3)
(50,0)

42 (36.2%)

(SNP3==3)
(102,70)

12 (10.34%)

(SNP5==3)
(61,18)

8 (66.66%)

(SNP6==1)
(50,0)

4 (50.0%)

(SNP13==1)
(41,12)

4 (33.33%)

Figure 2: Tree visualization of the individuals. Each path from the root to an inner node
or leaf represents an interaction occurring in the final population. The first line in each
node contains the literal represented by the node. The second line shows the number of
cases and controls explained by the corresponding interaction. The third line consists of
the number of monomials containing the corresponding interaction and the percentage of
monomials consisting of the ancestral interaction that also contain the literal represented.

Like GPAS, the LTS evolutionary algorithm may be executed with the help of launch-
ScheduleEditor() (search space “Subsets of Points”, fitness function “LTS”, mapper “Point
Set to Bit String”) or with a specific function. This function is called LTSevol. The example

> data(stackloss)

> LTSevol(stackloss[,4],stackloss[,1:3],adjust=TRUE)

Result obtained from FrEAK:
Run Generation Objective value Individual

1 1 983 -2.932391 000000100010000010100

Chosen subset:
[1] 7 17 6 11 19 5 12 9 18 10 8 15 16

Coefficients:
[1] -37.32332647 0.74092106 0.39152672 0.01113454

Criterion:
[1] 2.932391

returns an object of class ltsEA (inherits from FreakReturn). Objects of class ltsEA contain
some additional information. The “Chosen subset” contains the h points with the smallest

Technical Report SFB 475 7

squared residuals. Apart from this subset, the coefficients of the fitted hyperplane and the
objective value are also contained.

4. Discussion

In this paper we have illustrated the use of RFreak for evolutionary computation in R. To our
knowledge, the package is the first publicly available software providing an evolutionary com-
putation framework for R. The purpose of the interface is manifold. Analyzing evolutionary
algorithms build with FrEAK empirically is a lot easier when FrEAK is integrated in R. We
have also shown and implemented application examples from computational statistics that
are very useful on their own and show how easy it is to extend FrEAK.

As an example, all that is needed to extend the robust regression facilities by further estimators
are new fitness functions. For many other problems from computational statistics only an
additional new genotype phenotype mapper or a new search space is needed. Thus, the
reusability of written code is very high because of the modular layout of FrEAK.

Evolutionary computation already gained considerable importance in computational statistics
and hopefully this easy-to-use framework will support that trend.

Furthermore, we are currently working on integrating more application examples and therefore
more reusable modules to RFreak.

Sources, binaries, and documentation of RFreak and the extensions to FrEAK are available for
download under the GNU Public License from the Comprehensive R Archive Network http://
cran.r-project.org/ and http://ls2-www.cs.tu-dortmund.de/~nunkesser/#Software,
respectively.

Acknowledgements

Financial support of the Deutsche Forschungsgemeinschaft (SFB 475, “Reduction of Com-
plexity in Multivariate Data Structures”) is gratefully acknowledged. The author would also
like to thank Holger Schwender, Roland Friend, and Oliver Morell for helpful discussions and
Thorsten Bernholt, Melanie Schmidt, Sebastian Ruthe, and Dominic Siedhoff for their help
in implementing FrEAK extensions.

References

Banzhaf W, Francone FD, Keller RE, Nordin P (1998). Genetic Programming: An Introduction: On the Automatic Evolution

of Computer Programs and its Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. ISBN 1-55860-

510-X.

Baragona R, Battaglia F, Cucina D (2004). “Fitting Piecewise Linear Threshold Autoregressive Models by Means of Genetic

Algorithms.” Computational Statistics & Data Analysis, 47(2), 277–295.

Bernholt T (2005). “Robust Estimators are Hard to Compute.” Technical Report 52/2005, SFB 475, Universität Dortmund.

Briest P, Brockhoff D, Degener B, Englert M, Gunia C, Heering O, Jansen T, Leifhelm M, Plociennik K, Röglin H, Schweer

A, Sudholt D, Tannenbaum S, Wegener I (2004). FrEAK: Free Evolutionary Algorithm Kit. Version 0.2, URL http:

//sourceforge.net/projects/freak427/.

Culverhouse R, Suarez BK, Lin J, Reich T (2002). “A Perspective on Epistasis: Limits of Models Displaying No Main Effect.”

Am. J. Hum. Genet., 70, 461–471.

http://cran.r-project.org/
http://cran.r-project.org/
http://ls2-www.cs.tu-dortmund.de/~nunkesser/#Software
http://sourceforge.net/projects/freak427/
http://sourceforge.net/projects/freak427/

8 RFreak–An R Package for Evolutionary Computation

De Jong KA (2006). Evolutionary Computation: A Unified Approach. MIT Press.

Gansner ER, North SC (2000). “An Open Graph Visualization System and its Applications to Software Engineering.” Softw.

Pract. Exper., 30(11), 1203–1233. ISSN 0038-0644.

Garte S (2001). “Metabolic Susceptibility Genes as Cancer Risk Factors: Time for a Reassessment?” Cancer Epidemiol.

Biomarkers Prev., 10, 1233–1237.

Hruschka ER, Campello RJ, de Castro LN (2006). “Evolving Clusters in Gene-Expression Data.” Information Sciences, 176(13),

1898–1927.

Morell O (2006). Vergleich von Algorithmen für die Least-Trimmed-Squares-Schätzung mittels Statistischer Versuchsplanung.

Diploma thesis, Universität Dortmund.

Morell O, Bernholt T, Fried R, Kunert J, Nunkesser R (2008). “An Evolutionary Algorithm for LTS-Regression: A Comparative

Study.” In “Proceedings of Compstat 2008,” Accepted.

Nunkesser R, Bernholt T, Schwender H, Ickstadt K, Wegener I (2007). “Detecting High-Order Interactions of Single Nucleotide

Polymorphisms using Genetic Programming.” Bioinformatics, 23(24), 3280–3288.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rousseeuw PJ (1984). “Least Median of Squares Regression.” Journal of the American Statistical Association, 79, 871–880.

Schwender H (2006). logicfs: Identification of SNP Interactions. R package version 1.4.0.

Urbanek S (2007). rJava: Low-level R to Java interface. R package version 0.5-1, URL http://www.rforge.net/rJava/.

http://www.R-project.org
http://www.rforge.net/rJava/

	Introduction
	Evolutionary computation and FrEAK
	The RFreak Package
	Setting up an Evolutionary Algorithm
	Using RFreak for association studies
	Using RFreak for robust regression

	Discussion

