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Abstract

In the common nonparametric regression model the problem of testing for a specific para-
metric form of the variance function is considered. Recently Dette and Hetzler (2008) pro-
posed a test statistic, which is based on an empirical process of pseudo residuals. The process
converges weakly to a Gaussian process with a complicated covariance kernel depending on
the data generating process. In the present paper we consider a standardized version of this
process and propose a martingale transform to obtain asymptotically distribution free tests
for the corresponding Kolmogorov-Smirnov and Cramér-von-Mises functionals. The finite
sample properties of the proposed tests are investigated by means of a simulation study.
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1 Introduction

We consider the common nonparametric regression model

Yi,n = m(ti,n) + σ(ti,n)ε(ti,n), i = 1, . . . , n,(1.1)

where ε1,1, . . . , εn,n with εi,n := ε(ti,n) are assumed to form a triangular array of rowwise indepen-

dent random variables with mean 0 and variance 1 and m and σ2 denote the unknown regression
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and variance function, respectively. In the regression model (1.1) the quantities 0 ≤ t1,n < t2,n <

. . . < tn,n ≤ 1 denote the explanatory variables satisfying

i

n + 1
=

∫ ti,n

0

f (t) dt, i = 1, . . . , n,(1.2)

where f denotes a positive density on the interval [0, 1] [see Sacks and Ylvisacker (1970)]. Because

additional information on the variance function such as homoscedasticity can improve the efficiency

of the statistical inference, several authors have considered the problem of testing the hypothesis

H0 : σ2(t) = σ2(t, θ); ∀ t ∈ [0, 1],(1.3)

in the nonparametric regression model (1.1), where {σ2(·, θ) | θ ∈ Θ} is a given parametric class of

variance functions and Θ ⊂ Rd denotes a finite dimensional parameter space. Most authors consider

linear regression models [see e.g. Bickel (1978), Breusch and Pagan (1979), Cook and Weisberg

(1983) among others or Pagan and Pak (1993) for a review]. In the nonparametric regression model

(1.1) there exist several papers discussing the problem of testing homoscedasticity [see Dette and

Munk (1998), Zhu, Fujikoshi and Naito (2001), Dette (2002) or Liero (2003)]. Recently Dette, van

Keilegom and Neumeyer (2007) proposed a test for the parametric hypothesis (1.3), which is based

on the difference of two empirical processes of standardized nonparametric residuals under the null

hypothesis and alternative. Weak convergence of the resulting process is shown and – because the

limit distribution is complicated and depends on certain features of the data generating process –

the consistency of a smoothed bootstrap procedure is established. Moreover, although the resulting

test has nice theoretical and finite sample properties (in particular, it can detect local alternatives

converging to the null hypothesis at a rate n−1/2) the approach requires rather strong assumptions

regarding the differentiability of the variance and regression function. Dette and Hetzler (2008)

suggested a procedure, which is, on the one hand, able to detect local alternatives at a rate n−1/2

and requires, on the other hand, minimal assumptions regarding the smoothness of the regression

and variance function. These authors proposed to estimate the process

St(w) =

∫ t

0

(
σ2(x)− σ2(x, θ∗)

)√
w(x)f(x) dx(1.4)

using pseudo residuals [see Gasser, Sroka and Jennen-Steinmetz (1986) or Hall, Kay and Titter-

ington (1990)], where

θ∗ = arg min
θ∈Θ

∫ 1

0

(
σ2(x)− σ2(x, θ)

)2√
w(x)f(x) dx(1.5)

is the parameter corresponding to the best approximation of the function σ2 by the parametric class

{σ2(·, θ | θ ∈ Θ} and w denotes a weight function [which was actually chosen as w ≡ 1 by Dette

and Hetzler (2008)]. Under very weak smoothness assumptions on the regression and variance
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function they proved weak convergence of the estimated process, say (Ŝt(w))t∈[0,1], to a Gaussian

process. The Kolmogorov-Smirnov and Cramér-von-Mises statistic based on (Ŝt(w))t∈[0,1] were

proposed for testing the hypothesis (1.3). Because the covariance kernel of the limiting process

depends on the data generating process in a complicated way, a bootstrap procedure was applied

to obtain the critical values.

It is the purpose of the present paper to construct an asymptotically distribution free test for the

parametric form of the variance function which is on the one hand able to detect local alternatives

converging to the null hypotheses at a rate n−1/2 and on the other hand requires minimal smooth-

ness assumptions. For this purpose we consider a standardized version of the process discussed by

Dette and Hetzler (2008), where the weight function is estimated from the data. We apply the

martingale transform proposed by Khmaladze (1981, 1989) in order to obtain a distribution free

limiting process. This transformation has been used successfully by several authors in goodness-

of-fit testing problems for hypotheses regarding the regression function [see Stute, Thies and Zhu

(1998), Khmaladze and Koul (2004) or Koul (2006) among others], but to our best knowledge,

it has not been studied in the context of testing hypotheses regarding the variance function. In

Section 2 we briefly review the main features of the empirical process proposed by Dette and

Hetzler (2008) and introduce a standardized version of this process which will be the basis for

our test statistic. In Section 3 and 4 we consider the martingale transform and show that the

transformed (and standardized) empirical process is asymptotically distribution free. In Section

5 we discuss several examples and investigate the finite sample properties of a Cramér-von-Mises

test based on the martingale transformation, while some of the more technical details are deferred

to an appendix.

2 The basic process based on pseudo residuals

We assume that the regression function m, the variance function σ2 in (1.1), the design density f

and the weight function w in (1.4) are Lipschitz continuous of order γ > 1
2

and that the moments

of order 8 of the errors εi,n exist and are uniformly bounded. In general, the moments of order

j ≥ 3 of the errors may depend on the explanatory variables ti,n, that is

mj(ti,n) = E [εj
i,n], j = 3, . . . , 8,

and the functions m3 and m4 are also assumed to be Lipschitz continuous of order γ > 1
2
. For the

sake of a transparent presentation we consider at the moment linear hypotheses of the form

H0 : σ2 (t) =
d∑

j=1

θjσ
2
j (t) , for all t ∈ [0, 1] ,(2.1)
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where θ1, . . . , θd ∈ R are unknown parameters and σ2
1, . . . , σ

2
d are given linearly independent func-

tions satisfying

σ2
j ∈ Lipγ[0, 1], j = 1, . . . , d.(2.2)

The general case of testing hypotheses of the form (1.3) will be briefly discussed at the end of

this section. It is is shown in Dette and Hetzler (2008) that the process defined in (1.4) can be

consistently estimated by

Ŝt(w) = B̂0
t (w)− B̂T

t Â−1Ĉ(w),(2.3)

where the elements of the matrix Â = (âij)1≤i,j≤d and the vector Ĉ(w) = (ĉ1(w), . . . , ĉd(w))T are

defined by

âij =
1

n

n∑

k=1

σ2
i (tk,n) σ2

j (tk,n) , 1 ≤ i, j ≤ d,(2.4)

ĉi(w) =
1

n− r

n∑

k=r+1

R2
k,n

√
w(tk,n)σ2

i (tk,n) , 1 ≤ i ≤ d,(2.5)

respectively,

B̂0
t (w) =

1

n− r

n∑
j=r+1

1{tj,n≤t}
√

w(tj,n)R2
j,n(2.6)

and B̂t = (B̂1
t , . . . , B̂

d
t )

T with

B̂i
t =

1

n

n∑
j=1

1{tj,n≤t}σ
2
i (tj,n) , i = 1, . . . , d .(2.7)

In (2.5) and (2.6) the quantities Rj,n denote pseudo residuals defined by

Rj,n =
r∑

i=0

diYj−i,n, j = r + 1, . . . , n,(2.8)

where the vector (d0, . . . , dr)
T ∈ IRr+1 satisfies

r∑
i=0

di = 0,
r∑

i=0

d2
i = 1(2.9)

and is called difference sequence of order r [see Gasser, Sroka and Jennen-Steinmetz (1986) or Hall,

Kay and Titterington (1990) among others]. The following result was proved in Dette and Hetzler

(2008) and provides the asymptotic properties of the process Ŝt(w) for an increasing sample size.
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Theorem 2.1. If the conditions stated at the beginning of this section are satisfied, then the

process {√n(Ŝt(w)− St(w))}t∈[0,1] converges weakly in D[0, 1] to a centered Gaussian process with

covariance kernel k(t1, t2) given by the non-diagonal elements of the matrix V2Σt1,t2V
T
2 ∈ R2×2,

where the matrices Σt1,t2 ∈ R(d+2)×(d+2) and V2 ∈ R2×(d+2) are defined by

Σt1,t2 =




v11 v12 w11 · · · w1d

v21 v22 w21 · · · w2d

w11 w21 z11 · · · z1d

...
...

...
. . .

...

w1d w2d zd1 · · · zdd




,(2.10)

V2 = (I2|U) , U = −

 BT

t1
A−1

BT
t2
A−1


 ,(2.11)

respectively. The vector BT
t is defined by

BT
t =

(∫ t

0

σ2
1 (x) f (x) dx, . . . ,

∫ t

0

σ2
d (x) f (x) dx

)
,(2.12)

the elements of the matrix A = (aij)1≤i,j≤d are given by

aij =

∫ 1

0

σ2
i (x)σ2

j (x)f(x) dx, 1 ≤ i, j ≤ d,(2.13)

the elements of the matrix in (2.10) are defined by

vij =

∫ 1

0

τr(s)σ
4 (s) 1[0,ti∧tj) (s) w(s)f (s) ds, 1 ≤ i, j ≤ 2,

wij =

∫ 1

0

τr(s)σ
4 (s) σ2

j (s) 1[0,ti) (s) w(s)f (s) ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ d,

zij =

∫ 1

0

τr(s)σ
4 (s) σ2

i (s) σ2
j (s) w(s)f (s) ds, 1 ≤ i, j ≤ d

with τr(s) = m4 (s)− 1 + 4δr, and the quantity δr is given by

δr =
r∑

m=1

( r−m∑
j=0

djdj+m

)2

.(2.14)

Note that the null hypothesis (2.1) (or more generally the hypothesis (1.3)) is equivalent to St(w) ≡
0 ∀ t ∈ [0, 1], and consequently rejecting (2.1) for large values of the Kolmogorov-Smirnov or

Cramér-von-Mises statistic

Kn =
√

n sup
t∈[0,1]

|Ŝt(w)| , Gn = n

∫ 1

0

|Ŝt(w)|2dFn(t)
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yields a consistent test. Here Fn(t) = 1
n

∑n
i=1 1{ti,n≤t} is the empirical distribution function of

the design points. Moreover, it is demonstrated by Dette and Hetzler (2008) that this test can

detect alternatives which converge to the null hypothesis with a rate n−1/2. Because the limiting

distribution depends on certain features of the data generating process, these authors proposed a

bootstrap procedure to calculate the critical values.

If (A (t, w))t∈[0,1] denotes the limiting process in Theorem 2.1 it follows from the Continuous Map-

ping Theorem [see Pollard (1984)] that

Kn
D→ sup

t∈[0,1]

|A (t, w) | , Gn
D→

∫ 1

0

|A(t, w)|2dF (t).

Using the Lipschitz continuity of the regression and variance function, it was shown in the proof

of Theorem 2.1 that the process An(t, w) =
√

n(Ŝt(w) − St(w)) exhibits the same asymptotic

behaviour as the process

Ān(t, w) = Cn(t, w)−Dn(t, w),(2.15)

where

Cn(t, w) =

√
n

n− r

n∑
i=r+1

1{ti,n≤t}
√

w(ti,n)Zi,n,(2.16)

Dn(t, w) = BT
t A−1

( √
n

n− r

n∑
i=r+1

Zi,n

√
w(ti,n) σ2

j (ti,n)
)d

j=1
,(2.17)

the vector BT
t = (B1

t , . . . , B
d
t ) and the matrix A = (aij)1≤i,j≤d are defined in (2.12) and (2.13),

respectively, and the random variables Zi,n are given by Zi,n = L2
i,n − E[L2

i,n], with

Li,n =
r∑

j=0

djσ(ti−j,n)εi−j,n.(2.18)

Because {Zi,n | i = 1, . . . , n, n ∈ N} is a triangular array of r-dependent random variables, it

follows observing

E
[
Z2

j,n

]
+ 2

r∑
m=1

E [Zj,nZj+m,n] = (m4 (tj,n)− 1 + 4δr) σ4 (tj,n) + O
(
n−γ

)

[see Dette and Hetzler (2008)] that the process {Cn(t, w)}t∈[0,1] converges weakly in D[0,1] to the

process W ◦ ψ, where W denotes a Brownian motion and the function ψ is defined by

ψ(t) =

∫ t

0

β(x)w(x)f(x) dx(2.19)

with

β(x) = (m4(x)− 1 + 4δr)σ
4(x).
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Note that the transformation ψ depends on the unknown function β which is not known, because

it contains the variance and the fourth moments of the innovations εi,n. In the following we will

use the specific weight function w(x) = 1/β(x) for which the function ψ reduces to ψ(t) = F (t) =∫ t

0
f(x)dx, and for this choice the process {Cn(t, 1/β)}t∈[0,1] converges weakly to a Brownian motion

W ◦ F . We assume in a first step that the function β is known and investigate the martingale

transformation of the standardized process

A0
n(t) = C0

n(t)−D0
n(t) ,(2.20)

where A0
n(t) = Ān(t, 1/β),

C0
n(t) = Cn(t, 1/β) =

√
n

n− r

n∑
i=r+1

1{ti,n≤t}Zi,nβ
−1/2(ti,n),(2.21)

D0
n(t) = Dn(t, 1/β) = BT

t A−1

√
n

n− r

n∑
i=r+1

Zi,ng(ti,n)β−1/2(ti,n),(2.22)

g(x) = (σ2
1(x), . . . , σ2

d(x))T . In a second step we will estimate the function β nonparametrically

and consider the corresponding processes standardized by this estimate. More precisely, we will

show that the corresponding martingale transform of the process

Γ̂t = Ŝt(1/β̂) = B̂0
t (1/β̂)− B̂T

t Â−1Ĉ(1/β̂)(2.23)

leads to an asymptotically distribution free test. Here β̂ is an appropriate estimate of the function

β and Ĉ(w), B̂0
t (w) and B̂t are defined in (2.5), (2.6) and (2.7), respectively.

Remark 2.2. For the problem of testing a general nonlinear hypothesis of the form (1.3) we

propose to consider the process

Ŝt(w) = B̂0
t (w)− 1

n

n∑
i=1

1{ti,n≤t}σ
2(ti,n, θ̂)

√
w(ti,n),

where

θ̂ = arg min
θ∈Θ

1

n− r

n∑
i=r+1

(
R2

i,n − σ2(ti,n, θ)
)2√

w(ti,n)

is the least squares estimate of the parameter θ∗ defined by (1.5). In this case it was shown by Dette

and Hetzler (2008) that under assumptions of regularity the process {√n(Ŝt(w) − St(w))}t∈[0,1]

exhibits the same asymptotic behaviour as described in Theorem 2.1 for the linear case, where the

functions σ2
j have to be replaced by

σ2
j (t) =

∂

∂θj

σ2(t, θ)
∣∣∣
θ=θ0

, j = 1, . . . , d.

Thus all results presented in the following section can be transferred to the nonlinear case using

this identification.
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3 The martingale transform of the process A0
n

It follows by similar arguments as given in Dette and Hetzler (2008) that the process {A0
n(t)}t∈[0,1]

defined by (2.20) converges weakly in D[0, 1], that is

A0
n
D→ W ◦ F −BT

t A−1V0 = R̃0
∞,(3.1)

where W is a Brownian motion and V0 denotes a centered normal random variable with mean 0

and covariance matrix

L =

∫ 1

0

g(x)gT (x)f(x)dx.

Because the distribution of the process R̃0
∞ is complicated, we consider in the following section

an operator, which transforms the process R̃0
∞ on the martingale part in its corresponding Doob-

Meyer decomposition. Following Khmaladze and Koul (2004) we define a linear operator T such

that

TR0
∞

D
= R0

∞ ,(3.2)

T (BT
t A−1V0) ≡ 0 ,(3.3)

where the symbol
D
= denotes equality in distribution and the process R0

∞ is given by R0
∞ = W ◦F .

For this purpose we consider the matrix

H(t) =

∫ 1

t

g(u)gT (u)f(u) du(3.4)

and define for a function η its transformation Tη by

(Tη)(t) = η(t)−
∫ t

0

gT (y)H−1(y)

∫ 1

y

g(z)η(dz)F (dy),(3.5)

where only functions are considered such that the integral on the right hand side of (3.5) exists.

Note that the matrix H(x) is non-singular for all x ∈ [0, 1) because the functions σ2
1, . . . , σ

2
d are

linearly independent; see Achieser (1956). If η is a stochastic process on the interval [0,1], the corre-

sponding integral in (3.5) is interpreted as an Ito-integral [see Øksendal (2003)]. A straightforward

calculation shows that

T (BT
t A−1V0) = 0 ,

Cov(TR∞(r), TR∞(s)) = F (r ∧ s) ,

which yields for the process defined on the right hand side of (3.1)

TR̃0
∞

D
= TR0

∞
D
= R0

∞
D
= W ◦ F(3.6)
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(note that R̃0
∞ is a Gaussian process and that the operator T is linear). The following theorem

shows that a similar property holds in an asymptotic sense for the process {A0
n(t)}t∈[0,1].

Theorem 3.1. If the assumptions stated in Section 2 are satisfied, then the transformed process

{TA0
n(t)}t∈[0,1] converges weakly in D[0, 1] to a Brownian motion in time F , that is

{TA0
n(t)}t∈[0,1]

D→ {W ◦ F (t)}t∈[0,1].

Proof. The assertion of the theorem follows from the statements

TA0
n = TC0

n,(3.7)

{TC0
n(t)}t∈[0,1]

D→ {W ◦ F (t)}t∈[0,1].(3.8)

For a proof of (3.7) we recall the notation D0
n = A0

n−C0
n in (2.22) and obtain by a straightforward

calculation from the definitions (3.5) and (2.22)

TD0
n(t) = TA0

n(t)− TC0
n(t)

= D0
n(t)−

∫ t

0

gT (y)H−1(y)

∫ 1

y

g(z)gT (z)F (dz)F (dy)A−1

×
( √

n

n− r

n∑

k=r+1

Zk,nβ
−1/2(tk,n)g(tk,n)

)

= D0
n(t)−

∫ t

0

gT (y)H−1(y)H(y)F (dy)A−1
( √

n

n− r

n∑

k=r+1

Zk,nβ
−1/2(tk,n)g(tk,n)

)

= D0
n(t)−BT

t A−1
( √

n

n− r

n∑

k=r+1

Zk,nβ−1/2(tk,n)g(tk,n)
)

= 0.(3.9)

The process TC0
n is a sum of r-dependent random variables. Therefore, weak convergence of the

finite dimensional distributions and tightness can be shown using similar arguments as in Dette and

Hetzler (2008). Thus the assertion follows showing that the covariance kernel of the limiting process

is given by F (s ∧ t). For the calculation of the asymptotic covariances we use the representation

TC0
n(t) =

√
n

n− r

n∑
i=r+1

Ci,n(t),(3.10)

where

Ci,n(t) = 1{ti,n≤t}Zi,nβ
−1/2(ti,n)−

∫ t

0

gT (y)H−1(y)1{ti,n≥y}g(ti,n)Zi,nβ
−1/2(ti,n)F (dy)

= C
(1)
i,n (t)− C

(2)
i,n (t)(3.11)
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and the last line defines the random variables C
(1)
i,n (t) and C

(2)
i,n (t) in an obvious manner. Observing

that

E[Z2
i,n] + 2

r∑
m=1

E[Zi,nZi+m,n] = β(ti,n) + O(n−γ)(3.12)

[see Dette and Hetzler (2008)], it follows for r ≤ s

E[C
(1)
i,n (r)C

(1)
i,n (s)] + 2

r∑
m=1

E[C
(1)
i,n (r)C

(1)
i+m,n(s)]

= 1{ti,n≤r}E[Z2
i,n]β−1(ti,n) + 2

r∑
m=1

1{ti,n≤r} E[Zi,nZi+m,n]β−1(ti,n) + o(1) = 1{ti,n≤r} + o(1) .

This implies

n

(n− r)2

n−r∑
i=r+1

E[C
(1)
i,n (r)C

(1)
i,n (s)] + 2

r∑
m=1

E[C
(1)
i,n (r)C

(1)
i+m,n(s)] = F (r) + o(1) ,

and similar arguments show

n

(n− r)2

n−r∑
i=r+1

(
E[C

(1)
i,n (r)C

(2)
i,n (s)] + 2

r∑
m=1

E[C
(1)
i,n (r)C

(2)
i+m,n(s)]

)

=

∫ s

0

gT (y)H−1(y)

∫ r

y

g(x)F (dx)F (dy) + o(1),

n

(n− r)2

n−r∑
i=r+1

(
E[C

(2)
i,n (r)C

(2)
i,n (s)] + 2

r∑
m=1

E[C
(2)
i,n (r)C

(2)
i+m,n(s)]

)

=

∫ r

0

∫ s

0

gT (y1)H
−1(y1)H(y1 ∨ y2)H

−1(y2)g(y2)F (dy2)F (dy1) + o(1) .

A combination of these results and an application of Fubini’s theorem yield

E[TC0
n(r)TC0

n(s)] =
n

(n− r)2

n−r∑
i=r+1

(
E[Ci,n(r)Ci,n(s)] + 2

r∑
m=1

E[Ci,n(r)Ci+m,n(s)]
)

+ o(1)

= F (r) +

∫ s

0

gT (y)H−1(y)

∫ r

y

g(x)F (dx)F (dy)

+

∫ r

0

gT (y)H−1(y)

∫ s

y

g(x)F (dx)F (dy)

+

∫ r

0

∫ s

0

gT (y1)H
−1(y1)H(y1 ∨ y2)H

−1(y2)g(y2)F (dy2)F (dy1) + o(1) ,

= F (r) + o(1) ,

which implies the assertion of the theorem. 2
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4 The martingale transform of the process {Γ̂t}t∈[0,1]

As pointed out in Section 2, the process {√n(Ŝt(1/β) − St(1/β))}t∈[0,1] (or its asymptotically

equivalent counterpart {A0
n(t)}t∈[0,1]) depends on the unknown function β (more precisely on the

(unknown) functions σ2(·) and m4(·)). Similarly, the operator T defined by (3.5) is not completely

known and has to be estimated from the data. In this section we propose an empirical process,

where the unknown quantities have been replaced by estimates and study the application of an

empirical version of the martingale transform. For this purpose we first have to specify the estimate

in the process {Γ̂t}t∈[0,1] defined in (2.23). We consider the Nadaraya-Watson weights

wij =
K

(
tj,n−ti,n

h

)

∑n
l=1 K

(
tl,n−ti,n

h

) , i, j = 1, . . . , n,(4.1)

at the points ti,n (i = 1, . . . , n) where K denotes a symmetric kernel function and h defines a

bandwidth converging to 0 with increasing sample size. The estimate of the function β(·) is now

defined by

β̂(ti,n) =
n∑

j=1

wij(Yj,n − m̂h(tj,n))4

+(4δr − 1)
n−r−1∑

j=1

wij(Yj,n − m̂h(tj,n))2(Yj+r+1,n − m̂h(tj+r+1,n))2,(4.2)

where m̂h(ti,n) =
∑n

j=1 wijYj,n denotes the Nadaraya-Watson estimate at the point ti,n (i =

1, . . . , n). Throughout this paper we assume that

(H) The bandwidth h satisfies h = hn = O(n−
1

2γ+1 ), where γ > 1
2

denotes the Lipschitz constant

defined in Section 2.

(K) The kernel K is symmetric, nonnegative, supported on the interval [−1, 1] and satisfies

K(u) ≤ 1 for all u ∈ [−1, 1] and K(u) ≥ κ for all ‖u‖ ≤ 1/2, where κ > 0.

It will be proved in the appendix that under these additional assumptions

sup
t∈[0,t0]

∣∣∣ 1√
n

n∑
i=1

1{ti,n≤t}Zi,n{β̂(ti,n)− β(ti,n)}
∣∣∣ = op(1) ,(4.3)

and similar arguments as given in Dette and Hetzler (2008) show that

Λn(t) =
√

n
(
Γ̂t − St(1/β)

)
= A1

n(t) + op (1)(4.4)
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uniformly with respect to t ∈ [0, 1]. In this representation, {A1
n(t)}t∈[0,1] denotes the process

obtained from {A0
n(t)}t∈[0,1] by replacing β(t) by its estimate β̂(t) defined in (4.2) and the vector

Bt and the matrix A by their estimates B̂t and Â defined in (2.4) and (2.7), that is

A1
n(t) = C1

n(t)−D1
n(t),(4.5)

where

C1
n(t) =

√
n

n− r

n∑
i=r+1

1{ti,n≤t}Zi,nβ̂
−1/2(ti,n) ,(4.6)

D1
n(t) = B̂T

t Â−1

√
n

n− r

n∑
i=r+1

Zi,ng(ti,n)β̂−1/2(ti,n) .

Similarly, we replace the operator T by its empirical version defined by

(Tnη)(t) = η(t)−
∫ t

0

gT (y)H−1
n (y)

∫ 1

y

g(z)η(dz)Fn(dy),(4.7)

where the matrix Hn(x) is given by

Hn(x) =

∫ 1

x

g(u)gT (u)Fn(du) =
1

n

n∑
i=1

1{ti,n≥x}g(ti,n)gT (ti,n)(4.8)

and Fn(t) = 1
n

∑n
i=1 1{ti,n≤t} denotes the empirical distribution function of the design points.

Note that the matrix H(x) used in the transformation (3.5) is singular at the point x = 1, and as a

consequence, the matrices H−1
n (x) are unbounded on the whole interval [0, 1]. To circumvent this

difficulty, we restrict the process TnA1
n to the interval [0, t0] with a fixed 0 < t0 < 1. This approach

was also suggested by Khmaladze (1989) and Stute, Thies and Zhu (1998) among others.

The following results show that the asymptotic properties of the processes {TA0
n(t)}t∈[0,t0] and

{TnA
1
n(t)}t∈[0,t0] coincide, and as a consequence we obtain weak convergence of the martingale

transform of the process defined on the left hand side of (4.4).

Theorem 4.1. If the assumptions stated at the beginning of Section 2 and the assumptions (H)

and (K) are satisfied, then for any 0 < t0 < 1 the process {TnA1
n(t)}t∈[0,t0] converges weakly on

D[0, t0] to a Brownian motion in time F , that is

{TnA1
n(t)}t∈[0,t0]

D→ {W ◦ F (t)}t∈[0,t0]

Corollary 4.2. If the assumptions of Theorem 3.2 are satisfied, then for any 0 < t0 < 1 the

process {TnΛn(t)}t∈[0,t0] converges weakly on D[0, t0] to a Brownian motion in time F , that is

{TnΛn(t)}t∈[0,t0]
D→ {W ◦ F (t)}t∈[0,t0].
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Proof of Theorem 4.1. Obviously the assertion follows from the statement

sup
t∈[0,t0]

|TA0
n(t)− TnA1

n(t)| = op(1) .(4.9)

In order to prove the estimate (4.9) we note that (using the notation D1
n = A1

n − C1
n)

(TnA1
n − TnC

1
n)(t) = D1

n(t)−
∫ t

0

gT (y)H−1
n (y)

∫ 1

y

g(z)D1
n(dz)Fn(dy)

= D1
n(t)−

∫ t

0

gT (y)Fn(dy)Â−1(

√
n

n− r

n∑
i=r+1

Zi,ng(ti,n)β̂−1/2(ti,n))

= D1
n(t)− B̂tÂ

−1

√
n

n− r

n∑
i=r+1

Zi,ng(ti,n)β̂−1/2(ti,n) = 0.

Consequently (observing the corresponding result for TA0
n− TC0

n in (3.9)), the assertion follows if

the statement

sup
t∈[0,t0]

|TC0
n(t)− TnC1

n(t)| = op(1)(4.10)

can be proved, where

TC0
n(t) = C0

n(t)−
∫ t

0

gT (y)H−1(y)

∫ 1

y

g(z)C0
n(dz)F (dy) = C0

n(t)−B0
n(t),

TnC
1
n(t) = C1

n(t)−
∫ t

0

gT (y)H−1
n (y)

∫ 1

y

g(z)C1
n(dz)Fn(dy) = C1

n(t)−B1
n(t),

C0
n and C1

n are defined in (2.21) and (4.6), respectively, and the equalities define the processes B0
n

and B1
n in an obvious manner. It follows by a Taylor expansion, by the estimate (4.3) and the

estimate

sup
t∈[0,t0]

|m̂h(t)−m(t)| = Op

(
n−

γ
2γ+1

√
log n

)
(4.11)

[see Mack and Silverman (1982)] that

sup
t∈[0,t0]

|C1
n(t)− C0

n(t)| = op(1).(4.12)

We now consider the remaining difference

B1
n(t)−B0

n(t) =

∫ t

0

gT (y)(H−1
n (y)−H−1(y))(Ûn(y)− Un(y))Fn(dy)

+

∫ t

0

gT (y)(H−1
n (y)−H−1(y))Un(y)Fn(dy)

+

∫ t

0

gT (y)H−1(y)(Ûn(y)− Un(y))Fn(dy)

+

∫ t

0

gT (y)H−1(y)Un(y)Fn(dy)−
∫ t

0

gT (y)H−1(y)Un(y)F (dy) ,(4.13)
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where we have used the notation

Ûn(y) =

∫ 1

y

g(z)C1
n(dz) , Un(y) =

∫ 1

y

g(z)C0
n(dz) .

The five terms in this expression are estimated separately. The second term is bounded by

sup
y∈[0,t0]

‖H−1
n (y)−H−1(y)‖Tn1,

where

Tn1 :=

∫ t

0

‖gT (y)‖‖Un(y)‖Fn(dy)

≤ Tn11 :=
1

n

n∑
i=1

[
‖gT (ti,n)‖‖

√
n

n− r

n∑
j=r+1

1{tj,n≥ti,n}g(tj,n)Zj,nβ
−1/2(tj,n)‖

]
,

‖ · ‖ denotes the euclidean norm on Rd and its induced matrix norm on Rd×d simultaneously,

and we have used the definition of Un(y). A straightforward application of the Cauchy-Schwarz

inequality shows

E Tn11 ≤ 1

n

n∑
i=1

‖gT (ti,n)‖
(

E ‖
√

n

n− r

n∑
j=r+1

1{tj,n≥ti,n}g(tj,n)Zj,nβ
−1/2(tj,n)‖2

)1/2

= O(1)

uniformly with respect to t ∈ [0, t0], which implies Tn1 = Op(1) uniformly on the interval [0, t0].

From the assumption (1.2) on the design it follows that

sup
y∈[0,t0]

‖H−1
n (y)−H−1(y)‖ = o(1),(4.14)

and we obtain that the second term in (4.13) is of order op(1). Using similar arguments if follows

that the first and third term on the right hand side of (4.13) are also of order op(1). For the

estimate of the remaining difference we show the estimate

sup
t∈[0,t0]

∣∣∣
∫ t

0

gT (y)H−1(y)Un(y)Fn(dy)−
∫ t

0

gT (y)H−1(y)Un(y)F (dy)
∣∣∣ = op(1)(4.15)

using Lemma 6.6.4 in Koul (2002). Note that for the application of this result one has to show

the tightness of the process {Un(x)}x∈[0,t0]. For this purpose we consider the components of Un

separately, that is

U (p)
n (x) =

√
n

n− r

n∑
i=r+1

1{ti,n≥x}σ
2
p(ti,n)β−1/2(ti,n)Zi,n, p = 1, . . . , d,

and introduce the notation

νp(x) = 1{y1≤x≤y2}σ
2
p(x)β−1/2(x).

14



Now a similar calculation as in Dette and Hetzler (2008) yields

E[(U (p)
n (y2)− U (p)

n (y1))
4] =

n2

(n− r)4 E
[( n∑

i=r+1

νp(ti,n)Zi,n

)4]
≤ C(y2 − y1)

2

for some constant C > 0 and 0 ≤ y1 ≤ y2 ≤ t0. This implies tightness of each component U
(p)
n [see

Billingsley (1999)] and as a consequence tightness of the process Un [see Billingsley (1979)]. 2

Remark 4.3. Theorem 4.1 and Corollary 4.2 remain correct if the Nadaraya-Watson weights

in the estimate β̂ defined in (4.2) are replaced by local linear weights. This follows by a careful

inspection of the proof of the estimate (4.3) in the appendix. In practical applications the use of

local linear weights is strictly recommended because of the better performance of the local linear

estimate at the boundary of the design space.

5 Finite sample properties

In this section we investigate the finite sample properties of the new test by means of a simulation

study. We have generated data according to the model

Yi,n = 1 + ti,n + σ(ti,n)εi,n, i = 1, . . . , n,(5.1)

where ti,n = i/(n + 1), i = 1, . . . , n, and simulated the power of the test for the hypothesis

H0 : σ2(t) = 1 + θt2(5.2)

and the variance functions

σ2(t) = 1 + 3t2 + 2.5c sin(2πt),(5.3)

σ2(t) = 1 + 3t2 + 2ce2t,(5.4)

σ2(t) = 1 + 3t2 + 4c
√

t.(5.5)

Note that the choice c = 0 in (5.3) - (5.5) corresponds to the null hypothesis of a quadratic

variance function. The errors εi,n are standard normal distributed and we use a difference sequence

of order r = 1 for the calculation of the pseudo residuals Ri,n, which determines the weights as

d0 = −d1 = 1/
√

2 and yields β(x) = m4(x)σ4(x). In order to apply the test we have to calculate

the transformation

TnΛn(t) = Tn(
√

n(Ŝt(1/β̂)− St(1/β)))

for the process Λn(t) given in (4.4). Under the null hypothesis (5.2) we have St(1/β) = 0 for all

t ∈ [0, 1], and the process Λn(t) can be written as

Λn(t) =
√

n Ŝt(1/β̂) = Ĉn(t)− D̂n(t)
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with

Ĉn(t) =

√
n

n− r

n∑
i=r+1

1{ti,n≤t}β̂
−1/2(ti,n)R2

i,n,

D̂n(t) = B̂T
t Â−1

√
n

n− r

n∑
i=r+1

β̂−1/2(ti,n)R2
i,ng(ti,n).

By a similar argument as given in the proof of Theorem 4.1 it can be shown that TnD̂n(t) = 0 for

all t ∈ [0, 1], and as a consequence it is sufficient to calculate the transformation TnĈn. We use the

Cramér-von-Mises statistic Gn =
∫ 1

0
(TnΛn)2(t)dFn(t), and from Corollary 4.2 and the Continuous

Mapping Theorem it follows that

Gn =

∫ 1

0

(TnΛn)2(t) dFn(t)
D→

∫ 1

0

W 2(F (t)) dF (t) =

∫ 1

0

W 2(t) dt,(5.6)

where W denotes a standard Brownian motion. If wα denotes the 1−α quantile of the distribution

of the random variable
∫ 1

0
W 2(t)dt, then the test, which rejects the null hypothesis (5.2) if

Gn ≥ wα(5.7)

has asymptotically level α and is consistent against local alternatives converging to the null hy-

pothesis at a rate n−1/2. As an estimator of the function β(x) = m4(x)σ4(x) we use the estimator

(4.2), where m̂h(·) is the local linear estimator of the regression function. The bandwidth for the

calculation of the local linear estimate was determined by least squares cross validation. If hCV

is the bandwidth obtained by this procedure, the bandwidth in the estimator (4.2) was chosen as

hCV /2.

1000 simulation runs were performed in each scenario to calculate the rejection probabilities, which

are shown in Table 5.1. For the sake of comparison, the table also contains the corresponding

rejection probabilities of the bootstrap test proposed by Dette and Hetzler (2008), which are

displayed in brackets. We observe a rather precise approximation of the nominal level in all cases,

even for the sample size n = 50. Under the alternatives the behaviour of the two tests is different.

In model (5.3) the bootstrap test yields a substantially larger power than the test based on the

martingale transformation. In model (5.5) the situation is similar for the sample size n = 50, but

the differences between the rejection probabilities of the two steps are smaller. In model (5.4) the

bootstrap test is more powerful for the alternative corresponding to c = 0.5, while for c = 1.0 the

test proposed in this paper yields better rejection probabilities. On the other hand, if the sample

size is n = 100 or n = 200 the test based on the martingale transformation always yields a larger

power than the bootstrap test.
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n = 50 n = 100 n = 200

c .025 .05 .10 .025 .05 .10 .025 .05 .10

0 .028 .040 .085 .014 .037 .086 .021 .038 .090

(.025) (.049) (.105) (.024) (.038) (.092) (.024) (.055) (.107)

(5.3) 0.5 .063 .132 .214 .171 .264 .415 .420 .553 .724

(.316) (.382) (.481) (.458) (.528) (.613) (.661) (.732) (.811)

1 .101 .194 .319 .277 .404 .582 .680 .823 .935

(.655) (.726) (.777) (.855) (.893) (.928) (.975) (.984) (.996)

0 .026 .046 .083 .020 .033 .070 .021 .049 .094

(.029) (.049) (.099) (.024) (.043) (.103) (.023) (.049) (.088)

(5.4) 0.5 .110 .194 .331 .343 .507 .676 .780 .894 .958

(.182) (.253) (.331) (.243) (.331) (.434) (.371) (.450) (.560)

1 .226 .349 .525 .582 .732 .862 .878 .947 .987

(.242) (.331) (.413) (.286) (.388) (.491) (.491) (.610) (.729)

0 .036 .054 .096 .017 .032 .085 .018 .053 .104

(.035) (.059) (.099) (.030) (.054) (.111) (.020) (.034) (.073)

(5.5) 0.5 .079 .141 .242 .224 .334 .500 .508 .649 .788

(.189) (.249) (.340) (.259) (.335) (.439) (.402) (.493) (.622)

1 .144 .268 .412 .415 .568 .732 .859 .931 .973

(.316) (.393) (.508) (.487) (.596) (.678) (.713) (.788) (.856)

Table 5.1. Rejection probabilities of the Cramér-von-Mises test (5.7) for the hypothesis (5.2) in

the regression model (5.1). The corresponding rejection probabilities of the bootstrap test proposed

by Dette and Hetzler (2008) are displayed in brackets.
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6 Appendix: Proof of (4.3)

Throughout this section we omit the index n; in particular we write tj and Zj instead of tj,n and

Zj,n, respectively. For the sake of brevity we only indicate the main steps of the proof, details can

be found in Hetzler (2008). Furthermore we restrict ourselves to the case σ ≡ 1 and r = 1 and
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note that the general case is proved exactly in the same way with some additional notation. This

simplification yields for the random variables Zi

Zi = d0σ(ti)εi + d1σ(ti−1)εi−1 =
εi − εi−1√

2
.

A straightforward calculation gives

A(t) =
1√
n

n∑
i=1

1{ti≤t}Zi{β̂(ti)− β(ti)} =
5∑

j=1

Aj(t),(6.1)

where

A1(t) =
1√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wij(ε
4
j −m4(ti)),

A2(t) =
4√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wijε
3
j(m(tj)− m̂h(tj)),

A3(t) =
6√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wijε
2
j(m(tj)− m̂h(tj))

2,

A4(t) =
4√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wijεj(m(tj)− m̂h(tj))
3,

A5(t) =
1√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wij(m(tj)− m̂h(tj))
4.

We rewrite m(tj)− m̂h(tj) = ρj −
∑n

k=1 wjkεk with

ρj := m(tj)−
n∑

k=1

wjkm(tk) =
n∑

k=1

wjk(m(tj)−m(tk))(6.2)

and first consider the term A1. For its expectation we have

E A1(t) =
1√
n

n∑
i=1

1{ti≤t} E[Zi

n∑
j=1

wijhij],

where we used the notation hij := ε4
j − m4(ti). Note that |E hij| = |m4(tj) − m4(ti)| ≤ Lhγ

whenever |tj − ti| ≤ h (recall the Hölder continuity for the function m4) and that it follows from

the assumption on the design and the kernel

Kh (tj − ti)

C2n
≤ wij ≤ Kh (tj − ti)

κC1n/2
(6.3)

where Kh(x) = K(x/h)/h and C1 and C2 denote positive constants. This yields

E[Zi

n∑
j=1

wijhij] = E[Zi(wiihii + wi,i−1hi,i−1)] = O

(
1

nh

)
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uniformly with respect to i = r + 1, . . . , n, and it follows that E A1(t) = O( 1
h
√

n
) = o(1). For the

estimation of the second moment we decompose A2
1(t) as follows

A2
1(t) = D1(t) + D2(t) + D3(t),

with

D1(t) =
1

n

n∑
i=1

1{ti≤t}Z
2
i (

n∑
j=1

wijhij)
2,

D2(t) =
2

n

n−1∑
i=1

1{ti≤t}1{ti+1≤t}ZiZi+1

n∑
j=1

wijhij

n∑

k=1

wi+1,khi+1,k,

D3(t) =
1

n

∑

|i−l|≥2

1{ti≤t}1{tl≤t}ZiZl

n∑
j=1

wijhij

n∑

k=1

wlkhlk.

Observing (6.3) it follows for the set Ai := {i− 1, i}

E[Z2
i

n∑

j,k=1

wijwikhijhik] = E[Z2
i

∑

j,k 6∈Ai

wijwikhijhik] + 2 E[Z2
i (wiihii + wi,i−1hi,i−1)

∑

k 6∈Ai

wikhik]

+ E[Z2
i (wiihii + wi,i−1hi,i−1)

2]

= E[Z2
i

∑

j,k 6∈Ai

wijwikhijhik] + O
(
n−1h−1

)
+ O

(
n−2h−2

)

= O(h2γ) + O
(
n−1h−1

)
+ O

(
n−2h−2

)

= O(h2γ).

A similar calculation shows ED2(t) = O(h2γ). For the remaining estimate for the term D3(t) we

consider the set Ai,l = {i− 1, i, l − 1, l} and obtain

E[ZiZl

n∑
j=1

wijhij

n∑

k=1

wlkhlk] = E[ZiZl

∑

j,k 6∈Ai,l

wijwlkhijhlk]

+ E[ZiZl(wiihii + wi,i−1hi,i−1 + wilhil + wi,l−1hi,l−1)
∑

k 6∈Ai,l

wlkhlk]

+ E[ZiZl(wlihli + wl,i−1hl,i−1 + wllhll + wl,l−1hl,l−1)
∑

j 6∈Ai,l

wijhij]

+ E[ZiZl

∑

j,k∈Ai,l

wijwlkhijhlk].

Note that the random variables Zi and Zl are independent whenever |l − i| ≥ 2 and consequently

the first three terms in the above expression vanish. The remaining fourth term can be decomposed

in a sum of 16, which are all of the form

E[ZiZlwiiwllhiihll] = O

(
1

n2h2

)
.
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This yields

E D3(t) = O

(
1

nh2

)

and as a consequence E A2
1(t) = O

(
1

nh2

)
= o(1). Thus we obtain

A1(t) = op(1)(6.4)

uniformly with respect to t ∈ [0, t0]. In order to derive a corresponding estimate for the term A2

we use the decomposition

A2(t) = A21(t)− A22(t)

with

A21(t) =
4√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wijε
3
jρj,

A22(t) =
4√
n

n∑
i=1

1{ti≤t}Zi

n∑
j=1

wijε
3
j

n∑

k=1

wjkεk.

Now the Hölder continuity of the regression function implies |ρj| = |∑n
k=1 wjk(m(tj) −m(tk))| ≤

Lhγ for some positive constant L and a straightforward calculation shows (note that the random

variables Zi depend only on εi and εi−1)

E[Zi

n∑
j=1

wijε
3
jρj] = O

(
hγ−1

n

)
,

which implies

E[A21(t)] = O

(
hγ−1

√
n

)
.(6.5)

By a similar calculation it follows that E[A22(t)] = O
(

1
h
√

n

)
and a combination of this estimate

with (6.5) gives

E[A2(t)] = O

(
1

h
√

n

)
.(6.6)

The estimation of the second moments of A21(t) and A22(t) is more complicated and we indicate

the calculations for the term A21(t), which can be decomposed as

A2
21(t) = B1(t) + B2(t) + B3(t),

where

B1(t) =
16

n

n∑
i=1

1{ti≤t}Z
2
i (

n∑
j=1

wijε
3
jρj)

2,
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B2(t) =
32

n

n−1∑
i=1

1{ti≤t}1{ti+1≤t}ZiZi+1

n∑
j=1

wijε
3
jρj

n∑

l=1

wi+1,lε
3
l ρl,

B3(t) =
16

n

∑

|l−i|≥2

1{ti≤t}1{tl≤t}ZiZl

n∑
j=1

wijε
3
jρj

n∑
r=1

wlrε
3
rρr.

Using the estimates (6.3) we obtain

E[B1(t)] =
16

n

n∑
i=1

E
[
1{ti≤t}Z

2
i

n∑
j=1

w2
ijε

6
jρ

2
j

]
+

16

n

n∑
i=1

E
[
1{ti≤t}Z

2
i

∑

j 6=l

wijwilε
3
jε

3
l ρjρl

]

= O

(
h2γ−1

n

)
+ O(h2γ) = O(h2γ).

A similar calculation shows E B2(t) = O(h2γ) and

E[B3(t)] = O

(
h2γ−2

n

)
,

which implies

E[A2
21(t)] = O(h2γ).(6.7)

Similarly we obtain

E A2
22(t) = O

(
1

nh2

)
,

and a combination with (6.7) gives

E A2
2(t) = O

(
1

nh2

)
= O

(
n

1−2γ
2γ+1

)
= o(1).

On the other hand we have from (6.6) the estimate EA2(t) = O
(

1
h
√

n

)
= O

(
n

1−2γ
4γ+2

)
= o(1) and it

follows that

A2(t) = op(1)(6.8)

uniformly on the interval t ∈ [0, t0]. The term A3(t) can be treated by similar arguments, which

are omitted for the sake of brevity [see Hetzler (2008) for more details]. Tedious calculations yield

A3(t) = op(1)(6.9)

uniformly with respect to t ∈ [0, t0]. Finally we use the estimate (4.11) and obtain the remaining

terms in (6.1)

|A4(t)| ≤ 4√
n

n∑
i=1

|Zi

n∑
j=1

wijεj(m(tj)− m̂h(tj))
3|

≤ sup
t∈[0,t0]

|m̂h(t)−m(t)|3 · 4√
n

n∑
i=1

|Zi|
n∑

j=1

wij|εj|

= Op

(
n−

3γ
2γ+1 (log n)3/2n

2γ+2
4γ+2

)
= Op

(
n

2−4γ
4γ+2 log n

)
= op(1)
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and

|A5(t)| ≤ sup
t∈[0,t0]

|m̂h(t)−m(t)|4 1√
n

n∑
i=1

|Zi|

= Op

(
n−

4γ
2γ+1

√
n(log n)2

)
= Op

(
n

1−6γ
4γ+2 log n

)
= op(1)

uniformly in t ∈ [0, t0]. Combining these estimates with (6.4), (6.8) and (6.9) it follows that

A(t) = op(1) holds uniformly with respect to t ∈ [0, t0], which proves (4.3).
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