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Abstract

Congestion has become a problem for many airports throughout the

world. Two different policy options to control congestion are analyzed

in this paper: slot constraints and congestion pricing. In particular,

our model takes into account that the airline industry is characterized

by significant demand uncertainty. Furthermore, due to the network

character of the airline industry, the demand for airport capacities

normally is complementary. We show that this favors the use of slot

constraints compared to congestion pricing from a social point of view.

In contrast, for monopolistic airports, prices as instruments constitute

a dominant choice.
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1 Introduction

Compared to other transport modes, air transport has realized the most

impressive growth in the last decades. However, this went not along with

a respective growth in airport capacity. As a consequence, congestion of

airports has become a relevant problem because of delays which are costly for

airlines, passengers, and the environment. Since air traffic forecasts show that

growth will continue to be high during the next years, congestion problems

are expected to increase in the future.

In order to control airport congestion the most overloaded airports outside

the U.S. are slot constrained. An airline that wishes to incorporate a slot

constrained airport into its networks needs to have a respective permission

(slot) to use that airport at a specified time. Because the number of slots is

constrained, airline operations at the airport are limited and, consequently,

demand and congestion can effectively be controlled and optimized. There

is, however, another possibility to reduce congestion. An increase of take off

and landing fees can reduce slot demand until the optimal level of congestion

is reached. Under certain conditions, these two different ways to deal with

congestion can always generate the optimal result from a social point of

view. However, this requires that airport slots are allocated efficiently among

airlines and that the regulator has perfect information about the benefits and

costs of take off and landing operations. Both of these premises are normally

not fulfilled in reality.

At present airport slots are basically allocated by grandfather rights or,

in other words, by history. This guarantees continuity of airline operations

because airlines are allowed to constantly regain slots which they have used

in the past. On the other hand, allocation based on grandfather rights does

not account for the willingness to pay of airlines and, therefore, hampers al-
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locative efficiency. Additionally, regulators are not perfectly informed about

the social benefits and costs of airport operations [4]. The airline industry,

in particular, is characterized by a fluctuating demand that is difficult to

foresee. Thus, the benefits of airport operations in terms of the airlines’

willingness to pay for slots are difficult to predict. The same holds for the

social costs of airport operations. Although the airports’ cost for operation

and maintenance as well as the airlines’ congestion costs can be estimated

fairly well, the measurement of the passengers’ and the environmental costs

of congestion is problematic. For these reasons a regulator has to deal with

considerable uncertainty regarding the social benefits and costs of airport

operations.

Resource management under uncertainty was extensively analyzed in

the field of environmental economics. For instance, Weitzman [8], refer-

ring to pollution management (amongst others), showed that under uncer-

tainty about benefits and costs of pollution the expected welfare depends on

the choice between prices (e.g., pollution taxes) or quantities (e.g., emission

standards) as instruments. His analysis is based on the assumption that

the amount of uncertainty is sufficiently small to justify a second order ap-

proximation of benefit and cost functions in the relevant range. In contrast,

Adar and Griffin [1] directly focus on linear marginal benefit and marginal

cost functions where uncertainty is modelled as producing parallel shifts of

these functions. They demonstrate that optimal choice of instruments de-

pends on the relative slopes of the marginal benefit and the marginal cost

function, which is equivalent to the result indicated by Weitzman [7]. Prices

as instruments generate a higher expected social welfare than quantities as

instruments if the slope of the marginal benefit function is higher than that

of the marginal cost function in absolute values et vice versa. The result
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will reappear as a special case of our own model. Note that the result also

holds for uncertain social costs as long as the benefit and cost functions are

not stochastically correlated [6], [7], [8]. Stavins [7] additionally finds that

positive correlation of benefits and costs favors quantities as instruments. In

a general equilibrium setting Kelly [5] also provides theoretical support for a

quantity based regulation.

However, these results are of limited use for the management of airport fa-

cilities like runway capacities. The reason is that the demand for the runway

capacities of different airports is interdependent, i.e. slot usage at one airport

affects slot demand at other airports. In principle, two types of interdepen-

dencies exist: substitutability due to airport competition or complementarity.

Airports might compete for passengers or air cargo if they are closely located

to each other. Another source for airport competition is the hub-and-spoke

networks of airlines, because hub-airports can compete for transfer passen-

gers. With competition an increase of runway usage at one airport decreases

the demand for runway usage at other airports. However, due to the network

character of the industry, airports normally provide complementary services

because flights connect different airports. Thus, an increase of slot usage at

one airport raises slot demand at other airports. In this paper we focus on the

second effect which we shall call demand complementarity in the following.

The contribution of this paper is to model and analyze the welfare effects

of slot constraints and congestion pricing under uncertainty and demand

complementarity. We show that this changes the standard results provided

by Weitzman [8] and Adar and Griffin [1]. The difference in expected social

welfare generated by congestion pricing or, respectively, slot constraints still

depends on the relative slopes of the marginal benefit and marginal social cost

function. However, the level of demand complementarity also plays an im-
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portant role. We show that slot constraints become more favorable compared

to congestion pricing if demand complementarities are taken into account.

Under congestion pricing the price for take off and landing operations is fixed

but not the number of operations, as under slot constraints. Therefore, due to

the demand uncertainty, under congestion pricing the amount of take off and

landing operations is also uncertain. Moreover, the demand complementarity

for airport facilities reinforces the effect of demand uncertainty on runway

usage. If demand at one airport is higher than expected it also increases

the demand for other airports, due to the demand complementarity, which

in turn increases demand for the former airport and so forth. For this rea-

son, if demand complementarity plays an important role, the expected social

welfare under congestion pricing decreases compared to slot constraints.

The analysis of socially optimal regulation is complemented by an inves-

tigation of monopolistic airport behavior. Profit maximizing monopolistic

airports can be expected to raise take off and landing fees above the efficient

level. However, at overloaded airports, price increases constitute an adequate

measure to reduce congestion and improve efficiency. Therefore, one might

ask whether monopolistic airport pricing can compensate for the negative ef-

fects arising from external congestion costs. In order to analyze the need to

regulate congested airports we will therefore analyze the behavior of monop-

olistic airports under uncertainty and demand complementarity. We show

that in a non-cooperative game airports always choose prices as instruments.

Hence, they fail to choose quantities as instruments when this is socially op-

timal. Moreover, given that they correctly choose prices as instruments from

a social planners point of view, monopoly prices turn out to be too high and,

therefore, produce a deadweight loss.
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In the next section we present the model. Section three compares the

effects of slot constraints and congestion pricing on expected social welfare.

Section four analyzes monopolistic airport behavior. Finally, in section five

we conclude.

2 The model

We consider two monopolistic airports in a regulated area and some outside

airports. Each regulated airport serves perfectly separated catchment areas.

Figure 1 illustrates this case. Passengers are assumed to make only direct

flights (no transfers). Airports 1 and 2 are under the control of a regulator

or, respectively, a social planner. The other airports are not. For instance,

suppose that they belong to a different jurisdiction. Airports 1 and 2 are

assumed to be symmetric with regard to cost and demand conditions.

Airport usage at each airport is denoted by qi ≥ 0 with i ∈ {1, 2}. Air-

lines connecting airports 1 and 2 need to use airport facilities at both airports

and will serve customers at both airports. We capture this demand comple-

mentarity by introducing a parameter α in the airlines’ inverse demand for

runway capacity at airport i:

Pi(q1, q2) = α qj + a− b qi + ei (1)

with i 6= j, a, b > 0, and b > α ≥ 0. By equation (1) the demand for

runway facilities depends on runway usage at the other airport. An increase

of the runway usage at one airport induces a parallel shift of the inverse

demand curve of the other airport. As a consequence, for given prices an

increase of slots demanded at airport j raises the demand for slots of airport

i. The intensity of this effect depends on α. Since, by assumption, airports

1 and 2 do not compete, α is non-negative. Furthermore, airport demand is
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Airport 1 Airport 2

Airports outside

regulated area

Regulated area

Figure 1: Two airports in a regulated area with perfectly sepa-

rated catchments.
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determined by a stochastic term ei for i ∈ 1, 2 that also generates parallel

shifts of the demand curve. Demand shocks e1 and e2 are supposed to be

independent, with expectation value zero and variance σ2
p > 0.

Solving simultaneously the two equations given by (1) generates the de-

mand function for slots at airport i:

qi(p1, p2) :=
a b + aα− b pi − α pj + b ei + α ej

b2 − α2
. (2)

Assuming that airlines are in perfect competition, the inverse demand func-

tion depicts the marginal benefits of passengers from slot usage minus the

marginal costs of airlines. The former accounts for the private congestion

costs of passengers and the latter for the private congestion costs of airlines.

The passenger benefits B from using airports 1 and 2 can be expressed by

the line integral

B(q1, q2) =

(q1,q2)∮

(0,0)

(
2∑

i=1

Pi(x1, x2) dxi

)
.

The integrability condition is satisfied since, in a partial economic context,

there are no income effects [3]. This implies that the solution of the line

integral is independent of the particular path along which integration is taken.

Therefore, one way to calculate benefits is

B(q1, q2) =

q1∫

0

P1(x1, 0) dx1 +

q2∫

0

P2(q1, x2) dx2

= α q1 q2 + a (q1 + q2)− b

2
(q2

1 + q2
2) + e1 q1 + e2 q2.

The variable airport costs of runway usage by airlines are supposed to be

zero. External congestion costs are assumed to be quadratic in runway usage

Ci(qi) =
c ec q2

i

2
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with c > 0 and a stochastic term ec with expectation value one and a variance

σ2
c > 0 which determine the slope of the marginal external congestion costs

curve. Demand shocks and external congestion costs shocks are supposed

to be independent. In contrast, costs shocks are perfectly correlated for

airports 1 and 2. Brueckner [2] found that external social cost depends on

the airlines’ market share at airports. However, since airlines are assumed to

be in perfect competition, each airline’s market share is negligible. Therefore,

external social costs are independent of the identity of airlines. Welfare W

generated by airport usage in the regulated area is determined by

W (q1, q2) = B(q1, q2)−
2∑

i=1

Ci(qi)

= α q1 q2 + a (q1 + q2)− b + c ec

2
(q2

1 + q2
2) + e1 q1 + e2 q2.

3 Welfare optimal congestion control

To control congestion, two different policy measures are usually under discus-

sion: slot constraints and congestion pricing. With slot constraints airlines

need to have take-off or landing permissions (slots) to incorporate the regu-

lated airport into their networks. Currently the allocation of slots is based on

grandfather rights which do not guarantee an efficient allocation because they

do not account for the willingness to pay for slots. However, in the following

we assume that slots are efficiently allocated (say, by an auction). The other

instrument, congestion pricing, internalizes external congestion costs by a

price premium and, thus, effectively reduces slot demand and congestion.

To compare the effects of slot constraints and congestion pricing on ex-

pected social welfare we calculate the optimal slot constraints (q̂1, q̂2) :=

arg maxq1,q2 E[W (q1, q2)] were E[.] is the expected value operator. Due to
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the symmetry of airports we can denote the optimal slot constraint for each

airport by q̂. Straightforward calculations show that:

q̂ =
a

b + c− α
.

Observe that q̂ is increasing in α. Therefore, with demand complementarity

the optimal slot constraint is higher compared to the case without comple-

mentarity. This is due to the fact that an increased runway usage at one

airport increases the benefits of using the runway of the other airport. The

resulting expected social welfare is

E[W (q̂, q̂)] =
a2

b + c− α
. (3)

Note that E[W (q̂, q̂)] > 0 always holds. Hence, the expected welfare under

slot constraints is always positive in optimum.

On the other hand, for optimal congestion prices it holds (p̂1, p̂2) :=

arg maxp1,p2 E[W (q1, q2)] s.t. qi = Di(p1, p2) for i ∈ {1, 2}. Due to the sym-

metry of airports, we can denote the optimal congestion price for each airport

by p̂. Straightforward calculations give

p̂ =
a c

b + c− α
. (4)

The optimal expected slot price is also increasing in α. The reason is that

passenger benefits increase if α increases and, hence, prices also have to

increase to bring congestion to the optimal level. The expected social welfare

with congestion pricing is

E[W (p̂1, p̂2)] =
a2

b + c− α
+

(b3 − b2 c− b α2 − c α2) σ2
p

(b− α)2 (b + α)2 . (5)

Observe that E[W (p̂1, p̂2)] can become negative if c is high enough.
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Proposition 1 Congestion pricing leads to higher expected welfare compared

to slot constraints if and only if

α ≤
√

b2 max{b− c, 0}
b + c

. (6)

Proof Comparison of equations (5) and (3) gives

E[W (p̂1, p̂2)]− E[W (q̂1, q̂2)] =
(b3 − b2 c− b α2 − c α2) σ2

p

(b− α)2 (b + α)2 . (7)

It directly follows that E[W (p̂1, p̂2)]−E[W (q̂1, q̂2)] ≥ 0 if and only if condition

(6) holds. ¥

Condition (7) shows that uncertainty about external congestion costs is

not relevant for instrument choice which is in line with the findings from

Weitzman [8]. The reason is that uncertainty about costs does not affect the

airports’ behavior.

To explain the intuition behind condition (6) we begin with assuming

that α = 0 holds, i.e. we assume that demand complementarity does not

exist. Then this condition is equivalent to c ≤ b. Hence, without demand

complementarity expected welfare with congestion pricing is higher compared

to the expected welfare with slot constraints if and only if c ≤ b is satisfied.

This is equivalent to the standard result shown by Weitzman [8] and Adar

and Griffin [1]. Figure 2 illustrates two cases where c > b or, respectively,

c < b holds. Suppose that demand is higher than expected, i.e. ei > 0 realizes.

Because demand was underestimated with congestion pricing prices are too

low and airport usage is too high compared to the welfare optimum. The

resulting welfare loss is of size B. On the other hand, with slot constraints

the number of slots is too low, prices are too high, and the resulting welfare

loss is of size A. Figure 2a demonstrates that A < B if c > b holds. On the

other hand, 2b shows that A > B holds if c < b is satisfied. Clearly, for c = b
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p̂

q̂

E[Pi]

qi

cqi

A

Pi

p̂

q̂

E[Pi]

qi

cqi

A B

Pi

B

slope c
slope b

slope b

slope c

a) Case c > b b) Case c < b

Figure 2: Slot constraints vs. congestion pricing without demand

complementarity.

the two areas denoted by A and B are of the same size so that instruments

perform equally well. These relations also hold for the case that demand is

lower than expected.

Now assume that complementarities exist, i.e. α > 0 holds. Condition (6)

shows that congestion pricing only reaches a higher expected welfare com-

pared to slot constraints if demand complementarity stays below a critical

level. In other words, the difference between b and c must be strictly posi-

tive. Therefore, in contrast to the standard result, with b = c slot constraints

generate a higher expected welfare than congestion pricing. The reason is
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0.5 1

0.5

1

1.5

2

p̂

q̂

P1( q1,1)

q1

c q1

A B

C

0.2 0.4 0.8 1

0.5

1

1.5

p̂

q̂

P2(2/3, q2)
c q2

D

q2

E

a) Airport 1 b) Airport 2

4/3

Figure 3: Slot constraints vs. congestion pricing with demand

complementarity. Parameters: a = b = c = 1, e1 = 0.5, e2 = 0,

ec = 1, and α = 0.5.

that under congestion pricing airport usage is uncertain and demand comple-

mentarity propagates demand uncertainty of one airport to the other. As a

consequence, under demand complementarity slot constraints gradually be-

come more favorable compared to congestion pricing from a social planners

point of view.

The following example with a = b = c = 1 and α = 0.5 demonstrates. For

congestion pricing and slot constraints p̂ = q̂ = 2/3 holds. Suppose prices

are chosen as instruments and demand shocks e1 = 0.5 and e2 = 0 and costs
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shock ec = 1 realize. The resulting equilibrium quantities are q1 = 4/3 and

q2 = 1. Figure 3a shows the corresponding inverse demand curve P1(q1, 1)

and the quantity q1 = 4/3 implied by p̂ of airport 1 and 2. The inverse

demand of airport 2 when airport 1 chooses slot constraints as instruments

with q1 = q̂ = 2/3 is given by P2(2/3, q2) in figure 3b. This figure also

shows q2 = 1 at airport 2. Now the change in benefits arising from a shift

of the regulatory regime from congestion pricing to slot constraints can be

calculated in the following way:

B(q̂, q̂)−B(q1(p̂, p̂), q2(p̂, p̂)) =

(2/3,2/3)∮

(4/3,1)

(∑
i

Pi(q1, q2) dqi

)

=

2/3∫

4/3

P1(q1, 1) dq1 +

2/3∫

1

P2(2/3, q2) dq2

= −(A + C)− E.

On the other hand, the change in external congestion cost is equal to

C(q̂, q̂)− C(q1(p̂, p̂), q2(p̂, p̂)) =
2∑

i=1

(Ci(q̂)− Ci(qi(p̂, p̂)))

= −(B + C)− (D + E).

Hence, the change in welfare generated by the shift of the regulatory regime

is

W (q̂, q̂)−W (q1(p̂, p̂), q2(p̂, p̂)) = −A + B + D = D = 1/9 > 0.

The shift of the regulatory regime from congestion pricing to slot constraints

increases welfare by −A+B +D (see figure 3a and 3b). However, from b = c

it follows that A = B holds. Therefore, the overall welfare increase is given

by D = 1/9. Note that the size of D, at airport 2, depends on the shift of

the inverse demand due to the change of runway usage at airport 1. This in

turn depends on α. Hence, this is where complementarity comes into play.
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Note that this does not imply that, due to the regime shift, welfare at

airport 2 increases while welfare at airport 1 remains unaffected. Changing

the particular path along which integration is taken would change the pic-

ture. Therefore, with complementarities it is not possible to split the overall

increase in welfare from a regime shift between the two airports.

4 Monopolistic behavior

Due to the demand complementarity decisions on prices or slot constraints

of one airport affect the performance of the other airport although airports

are considered to be monopolies. In order to analyze the effect of demand

complementarity on profit maximizing airports we model the interaction be-

tween airport one and two as a two-stage game. In the first stage the airports

simultaneously decide between slot constraints or pricing as instruments to

allocate runway capacity. In this stage, it is possible that airports choose

the same or different instruments. In the second stage airports individually

and simultaneously decide on their own, specific slot constraint respectively

pricing level. Finally, the costs shock and the demand shocks realize. We

solve this game by backward induction.

Assume that both airports choose slot constraints as instruments (regime

Q). Airport profit in quantities is Πi(q1, q2) := qiPi(q1, q2). The correspond-

ing reaction function qr
i (qj) := arg maxqi

E[Πi(q1, q2)] is given by

qr
i (qj) =

a + α qj

2 b
(8)

for i ∈ {1, 2}. Solving simultaneously the two equations given by (8) gener-

ates the symmetric equilibrium solution

qQ
i =

a

2 b− α
.
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One shows that the expected profit is given by

E[Πi(q
Q
1 , qQ

2 )] =
a2 b

(α− 2 b)2 (9)

in equilibrium.

Now assume that both airports choose prices as instruments (regime P ).

Then, the reaction function pr
i (pj) := arg maxpi

E[Πi(p1, p2)] with Πi(p1, p2) :=

piqi(p1, p2) is given by

pr
i (pj) =

a b + a α− α pj

2 b
(10)

for both airports. The symmetric equilibrium solution implied by (10) is

pP
i =

a (b + α)

2 b + α
. (11)

and the expected equilibrium profit is given by

E[Πi(p
P
1 , pP

2 )] =
a2 b (b + α)

(b− α) (2 b + α)2 . (12)

Finally, assume that airport i chooses prices and airport j slot constraints

with i 6= j (regime PQ). Then i maximizes E[Πi(pi, qj)] by choice of pi, where

E[Πi(pi, qj)] := E[piqi(pi, qj)] = pi
a + qj α− pi

b
.

The expression for qi(pi, qj) follows directly from (1). Denote the reaction

function of airport i by pr
i (qj) := arg maxpi

E[Πi(pi, qj)]. Straightforward

calculations show that

pr
i (qj) =

a + qj α

2
. (13)

On the other hand, airport j maximizes E[Πj(pi, qj)] by choice of qj, where

E[Πj(pi, qj)] := E[qjPj(pi, qj)] = qj
(b + α) (a + (α− b) qj)− α pi

b
.
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Rearrangement of equation (2) gives Pj(pi, qj). The reaction function of j,

qr
j (pi) := arg maxqj

E[Πj(pi, qj)], is given by

qr
j (pi) =

a b + aα− α pi

2 b2 − 2 α2
. (14)

Using the reaction functions given by equations (13) and (14) one shows that

(pPQ
i , qPQ

j ) =

(
1

2

(
a +

aα (2 b + α)

4 b2 − 3 α2

)
,
a (2 b + α)

4 b2 − 3 α2

)

holds in equilibrium. In this case equilibrium profits are given by

(Πi(p
PQ
i , qPQ

j ), Πj(p
PQ
i , qPQ

j )) =

(
a2 (2 b2 + b α− α2)

2

b (4 b2 − 3 α2)2 ,
a2 (2 b + α)2 (b2 − α2)

b (4 b2 − 3 α2)2

)
.

(15)

Lemma 1 For each monopolistic airport, prices as instruments is a strictly

dominant strategy in stage 1 of the game if α > 0. In particular, in the

subgame perfect Nash equilibrium airports choose prices as instruments.

Proof From equations (15) and (9) it follows that Πi(p
PQ
i , qPQ

j ) > Πi(q
Q
i , qQ

j )

if and only if α > 0. Furthermore, from (15) and (12) it follows that

Πi(p
P
i , pP

j ) > Πi(q
PQ
i , pPQ

j ) if and only if α > 0. Hence, no matter what

the other airport does, it is always better to use prices as instruments. This

shows that the choice of prices as instruments is a strictly dominant strategy

in stage one of the game. It directly follows that in the subgame perfect Nash

equilibrium airports choose prices as instruments. ¥

Lemma 2 Airports set pP
i > p̂ if condition (6) holds.

Proof One shows that pP
i > p̂ if and only if α <

√
b (b− c). Furthermore,

since √
b2(b− c)

b + c
<

√
b (b− c) (16)

it follows that condition (6) implies pP
i > p̂. ¥
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Proposition 2 Monopolistic airports produce a suboptimally low expected

social welfare if α > 0 is satisfied.

Proof Necessary conditions for monopolistic airports to optimize expected

social welfare are, first, to choose the optimal instruments in stage 1, and,

second, to choose the optimal price or slot constraint, respectively. Due to

lemma 1 in the subgame perfect equilibrium airports always choose prices as

instruments if α > 0 is satisfied. By proposition 1, prices as instruments opti-

mize expected social welfare if and only if condition (6) is fulfilled. However,

due to lemma 2 prices of monopolistic airports do not maximize expected

social welfare because they are too high in equilibrium. ¥

Proposition 2 indicates that airports should be regulated for any α >

0. The reason is, first, that monopolistic airports do not switch to slot

constraints when they should. Second, even if they correctly choose prices

as instruments, equilibrium prices are too high from a social point of view.

Only in one specific case would monopolists take their instruments right.

Note, from (9), (12), and (15) it follows that for α = 0:

Πi(q
Q
i , qQ

j ) = Πi(p
P
i , pP

j ) = Πi(p
PQ
i , qPQ

j ) = Πj(p
PQ
i , qPQ

j ) =
a2

4 b
. (17)

Now:

Proposition 3 Monopolistic airports maximize expected social welfare if and

only if α = 0 and b = c.

Proof If and only if α = 0 the expected profits of monopolistic airports

are identical for both instruments (see (17)). It follows from inequality (6)

that in optimum the expected social welfare is identical no matter which

instruments are chosen if α = 0 and b = c holds. Furthermore, pP
i = pPQ

i = p̂

and qQ
i = qPQ

i = q̂ holds for α = 0 and b = c. ¥
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Figure 4: Expected monopoly profits under prices as instruments

and slot constraints with a = b = 1 and α = 0.5.

For the general case, α > 0, figure 4 illustrates why airports are in favor of

prices as instruments compared to slot constraints. Suppose that a = b = 1

and α = 0.5. Additionally, assume that both airports choose slot constraints

as instruments. The equilibrium number of slots is given by qQ
i = 2/3 for

both airports, and the expected profit of each airport under slot constraints

is equal to the sum of A and B. Now assume that both airports choose prices

as instruments. In equilibrium pP
i = 3/5 for both airports. In this case the

expected profit of each airport is equal to the sum of B and C. Comparison

of A and C shows that expected profits are higher under congestion pricing

than under slot constraints. The reason is that under congestion pricing

demand is more elastic because airport usage is not fixed and changes of

demand are reinforced by demand complementarity. Moreover, the reason

why the choice of the instruments can be diverse from the airports’ and a
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social planner’s point of view is that airports do not take external congestion

costs into account.

5 Conclusions

To control airport congestion two different policy options are normally un-

der discussion: slot constraints and congestion pricing. The former requires

airlines to buy slots for the operation of flights at congested airports. The

latter reduces the demand for take off and landing operations of airlines by

rising airport fees. Under perfect information about the social benefits and

costs of slot usage both instruments can reach optimal welfare results. In

contrast, under uncertainty about the social benefits of slot usage the choice

of instrument normally affects the expected level of social welfare.

Due to the network character of the airline industry, the demand for slots

of monopolistic airports is complementary. As a consequence, the advanta-

geousness of congestion pricing and slot constraints depends on the slope of

the inverse demand and marginal congestion cost function and on the level

of demand complementarity between airport services. In particular, we show

that demand complementarity increases the expected social welfare under

slot constraints compared to congestion pricing. The reason is that under

congestion pricing demand uncertainty translates into uncertainty with re-

gard to airport usage. Furthermore, demand complementarity for airport

services reinforces the effect of demand uncertainty on airport usage and, as

a consequence, reduces expected social welfare under congestion pricing.

Turning to the behavior of monopolistic airports we also showed that

they fail to optimize expected social welfare. The interaction between air-

ports is modelled as a two-stage game in which, first, the airports choose
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prices or slot constraints as instruments, and, second, they choose prices or

slot constraints, respectively. In stage one of the game prices as instruments

is a dominant airport strategy. Therefore, in the subgame perfect equilib-

rium airports always choose prices as instruments. Since prices only have

the potential to optimize expected social welfare if the level of demand com-

plementarity is low enough, this is a first source of market failure. A second

source of market failure is that monopolistic airport prices are too high, if

prices are the correct instruments from a social point of view. These results

indicate a need for the regulation of monopolistic airports which is not only

based on the effects of monopolistic market power and external congestion

costs, but also arises from the network character of the air transport industry,

namely demand complementarity.
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