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1 Introduction

Although the Mixed Proportional Hazard (MPH) model for duration data that was indepen-

dently introduced by Lancaster (1979) and Manton, Stallard, and Vaupel (1981) has been

used quite frequently in empirical work, the standing of this model among econometricians

has changed over time. Lancaster noted that the MPH model provided a simple framework

for the distinction between unobserved heterogeneity and duration dependence. The question

whether these two components of the MPH model are separately identied and estimable with

samples of reasonable size, has been answered differently. Lancaster’s original answer was nega-

tive. He gave a simple example in which an observed duration distribution was consistent with

an MPH model with duration dependence, but no heterogeneity, and an MPH model with no

duration dependence, but with unobserved heterogeneity. Elbers and Ridder (1982) (see also

Heckman and Singer (1984b) ) showed that to identify unobserved heterogeneity and duration

dependence separately, some exogenous variation is needed. Besides exogenous variation they

made an at first sight innocuous assumption on the distribution of the unobserved heterogeneity,

namely that this distribution had a finite mean. Heckman and Singer replaced this assumption

by a restriction on the tail behavior of the unobserved heterogeneity distribution, in particular

that the exponential rate at which this tail went to 0 was known.

These results on nonparametric identification led to the development of estimation methods

that required fewer parametric assumptions. Heckman and Singer (1984a) used the NPMLE for

mixture models that was first characterized by Linsay (1983), to estimate regression parameters

and the parameters of the baseline hazard in an MPH model. Biostatisticians who are reluctant

to make parametric assumptions on the baseline hazard introduced a method the assumes a

parametric distribution for the unobserved heterogeneity, but is nonparametric with respect to

the duration dependence , Nielsen et al. (1992). A problem with Heckman and Singer’s NPMLE

is that the speed of convergence and the asymptotic distribution of the estimators is not known.

This is not just a theoretical concern. Simulation studies, e.g. the recent study by Baker and

Melino (2000), have shown that the NPMLE gives biased estimates of all the parameters in the

MPH model, if the baseline hazard is left fairly free.

Horowitz (1999) proposed a semi-parametric estimator for the MPH model that does not

require parametric assumptions neither on the unobserved heterogeneity nor on the duration
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dependence. This estimator is based on Horowitz (1996) estimator for a semi-parametric trans-

formation model. The main problem in the estimation of the parameters of the MPH model is

the estimation of a scale parameter. This scale parameter enters the (integrated) baseline hazard

as a power and the regression parameter as a multiplicative constant. The scale parameter is

identified by the assumption that the mean of the distribution of the unobserved heterogeneity

is finite. Because the estimator of the scale parameter only uses information on durations close

to 0, the rate of convergence is N1/3. Honoré (1990) proposed an estimator for the Weibull

MPH based an the same idea and his estimator has the same rate of convergence. The slow rate

of convergence of these estimators is an impediment to their use in applied work. It is however

consistent with the Monte Carlo evidence on the NPMLE and also with a result in Hahn (1994)

who shows that in the MPH model with Weibull baseline hazard (but unspecified distribution

for the unobserved heterogeneity) the efficiency bound is singular. This precludes the existence

of regular
√
N consistent estimators of the parameters of this model. He also shows that

√
N

consistent estimators may exist if there are repeated spells on the same individual, and there

seems to be an emerging consensus that unobserved heterogeneity and duration dependence can

only be distinguished if one has access to multiple spells for each individual.

These results suggest that the original idea of using the MPH model to distinguish between

unobserved heterogeneity and duration dependence is sound in theory, but that in practice this

can be done only in very large samples. However, the situation may not be as bleak. For

instance, Ridder and Woutersen (2003) reconsider Hahn’s (1994) result. They show that the

Weibull example is a worst case, although it is not the only parametric model that gives a sin-

gular efficiency bound. They characterize the class of parametric models for the baseline hazard

that gives a singular bound and they show that a common feature of this class is that the baseline

hazard in 0 is either 0 or ∞. Note that this is the case for the Weibull baseline hazard. Although

MPH models with Weibull like baseline hazards are identified, their estimation is problematic.

Ridder and Woutersen argue that Weibull type behavior near 0 is a consequence of a convenient

functional form and not of interest in its own right. The distinction between unobserved het-

erogeneity and duration dependence is more relevant for strictly positive durations. They show

that bounding the baseline hazard from 0 and ∞ in 0 resolves the problem. Incidentally, this

assumption is also sufficient for nonparametric identification of the MPH model and with it the
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finite mean assumption can be discarded.

Until now we have taken for granted that it is important to make a distinction between

unobserved heterogeneity and duration dependence. It has been argued (see e.g. Wooldridge

(2005) ) that the distinction is irrelevant if one wants to estimate the impact of covariates on

the average duration. There are instances that the distinction is important in its own right.

Examples are the distinction between heterogeneity and duration dependence as an explanation

of the decreasing probability of re-employment for the unemployed ( Lancaster (1976), Heckman

(1991)). Recently, Chiaporri and Salanie (2000) have argued that the distinction is also impor-

tant to understand insurance contracts. The distinction is also important if one is interested

in the effect of covariates on the quantiles of the duration distribution, which may often be the

more interesting effect. For an MPH with time constant covariates the derivative of the qth

quantile tq(X) with respect to the covariate X is

∂tq(X)

∂X
= −βΛ

(

tq(X);α
)

λ
(

tq(X);α
) (1)

which is independent of the distribution of the unobserved heterogeneity, but depends on the

baseline hazard.

In this paper we consider a simple
√
N consistent estimator for the parameters of a semi-

parametric MPH model with unspecified distribution of the unobserved heterogeneity. This

estimator is a GMM estimator that uses moment conditions to derive estimating equations. It

is based on the linear rank statistic of Prentice (1978). That statistic has been used by Tsiatis

(1990) to estimate the parameters of a censored regression model and by Robins and Tsiatis

(1992) in the Accelerated Failure Time model. In its simplest form the estimator does not require

non-parametric estimation of unknown densities. Hence, it is simpler than the semi-parametric

maximum likelihood estimator of Bearse et al. (2007). Both the simple estimator in this paper

and the Bearse et al. estimator are based on the idea that population distribution of the

integrated baseline hazard is independent of the covariates. Woutersen (2000) and Ridder and

Woutersen (2003) use the same idea to obtain an estimator that does not require parametric

assumptions on the baseline hazard. The GMM estimator can be extended to the case that

some of the covariates are endogenous (Bijwaard (2009) uses the estimator in such a case). The

simple GMM estimator is not efficient. In the case of constant covariates and no censoring it

does not reach the Hahn (1994) efficiency bound. Fully efficient estimation requires a second
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step, in which the hazard of the distribution of the integrated hazard is estimated. This hazard

is then used to construct the likelihood function for arbitrarily (non-informatively) censored

integrated hazards, and this likelihood is maximized over the parameters of the MPH model. As

is evident from the simulation results in Bearse et al., the second step requires much care, even

in the simpler case of no censoring, and achieving the efficiency gain associated with it may be

problematic.

The outline of the article is as follows. In Section 2 a counting process interpretation of the

MPH model is given. The counting process approach simplifies the definition of predictable time–

varying explanatory variables and noninformative censoring. Within the framework of counting

processes, the asymptotic properties of our estimator, which is introduced in section 3, can be

elegantly justified by martingale theory. In Section 4 we derive the asymptotic properties of the,

two stage, optimal LRE. The weight functions of this estimator are obtained by substituting

consistent first stage estimators for the parameters and by using a nonparametric estimator for

the hazard and its derivative of the transformed durations. The Monte Carlo experiments of

Section 5 give some insight in the (small) sample behaviour of the estimator. Finally, in section 6

we apply our estimator on a real data set of unemployment durations. Section 7 summarizes

the results and states our conclusion.

2 The Mixed Proportional Hazard model

The waiting time to some event T has a conditional distribution given observed and unobserved

covariates with hazard rate

κ(t|X(t), V, θ) = λ(t, α)eβ
′X(t)V (2)

In (2) X(t) = {X(s)|0 ≤ s ≤ t} is the sample path of X up to time t, which without loss of

generality is assumed to be left continuous, and V is the multiplicative unobserved heterogeneity.

Because V is time constant we assume that its value is determined at time 0. We assume that

X(t) is independent of V . Note that, although we express the hazard at t is a function of X(t)

we can allow for lagged covariates by redefiningX(t). The positive function λ(t;α) is the baseline

hazard that is specified up to a vector of parameters α.It reflects the duration dependence of

the hazard rate.

4



2.1 A Counting process approach

The cdf and pdf of the distribution of the duration T can be expressed as functions of the

hazard rate. These expressions can be used to obtain the MLEs of the parameters of the

model. To understand all the features of the Linear Rank Estimator the counting process

approach provides a better framework. The counting process approach has increasingly become

the standard framework for analyzing duration data. Andersen et al. (1993) have provided

an excellent survey of counting processes. Less technical surveys have been given by Klein

and Moeschberger (1997), Therneau and Grambsch (2000), and Aalen et al. (2009). The

main advantage of this framework is that it allows us to express the duration distribution as

a regression model with an error term that is a martingale difference. Regression models with

martingale difference errors are the basis for inference in time series models with dependent

observations. Hence, it is not surprising that inference is much simplified by using a similar

representation in duration models.

To start the discussion, we first introduce some notation. A counting process {N(t); t ≥ 0} is

a stochastic process describing the number of events in the interval [0, t] as time proceeds. The

process contains only jumps of size +1. For single duration data, the event can only occur once,

because the units are observed until the event occurs. Therefore we introduce the observation

indicator Y (t) = I(T ≥ t) that equal to 1 if the unit is under observation at time t and zero

after the event has occurred. The counting process is governed by its random intensity process

Y (t)κ(t), with κ(t) is the hazard in (2). If we consider a small interval (t − dt, t] of length dt,

then Y (t)κ(t) is the conditional probability that the increment dN(t) = N(t) − N(t−) jumps

in that interval given all that has happened until just before t. By specifying the intensity as

the product of this observation indicator and the hazard rate we effectively limit the number of

occurrences of the event to one. It is essential that the observation indicator only depends on

events up to time t.

Usually we do not observe T directly. Instead we observe T̃ = g(T,C) with g a known

function and C a random vector. The most common example is right censoring with g(T,C) =

min(T,C). By defining the observation indicator as the product of the indicator I(t ≤ T ) and,

if necessary, an indicator of the observation plan, we capture when a unit is at risk for the event.

In the case of right censoring Y (t) = I(t ≤ T )I(t ≤ C) and in all cases of interest we have

5



Y (t) = I(t ≤ T )IA(t) with A a random set that may depend on random variables. We assume

that C and T are conditionally independent given X. The history up to t, Y (t) is assumed to

be a left continuous function of t. The history of the whole process also includes the history of

the covariate process, X(t), and V . Thus, we have

Pr
(

dN(t) = 1|Y (t),X(t), V
)

= Y (t)κ(t|X(t), V, θ) (3)

The sample paths of the conditioning variables should be up to t−, but because these paths

are left continuous we can take them up to t. A fundamental result in the theory of counting

processes, the Doob-Meier decomposition, allows us to write

dN(t) = Y (t)κ(t|X(t), V, θ)dt+ dM(t) (4)

with M(t), t ≥ 0 a martingale with conditional mean and variance

E
(

dM(t)|V, Y (t),X(t)
)

= 0 (5)

Var
(

dM(t)|V, Y (t),X(t)
)

= Y (t)κ(t|X(t), V, θ)dt (6)

The (conditional) mean and variance of the counting process are equal, so that the disturbances

in (4) are heteroscedastic. The probability in (3) is 0, if the unit is no longer under observation.

A counting process can be considered as a sequence of Bernoulli experiments, because if dt is

small, (5) and (6) give the mean and variance of a Bernoulli random variable. The relation

between the counting process and the sequence of Bernoulli experiments is given in (4), that

can be considered as a regression model with an additive error that is a martingale difference.

This equation resembles a time-series regression model. The Doob-Meier decomposition is the

key to the derivation of the distribution of the estimators, because the asymptotic behavior of

partial sums of martingales is well-known.

2.2 Durations and Transformed Durations

The MPH model in (2) specifies the conditional hazard of the distribution of T given X(t), V .

Because V is not observed, we need to integrate with respect to the conditional distribution of

V given T > t,X(t) to obtain the hazard conditional on X(t). An alternative approach is to

consider the transformed duration

h(T,X(t), θ) =

∫ T

0
λ(t, α)eβ

′X(t) dt (7)
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This transformation is the observed integrated baseline hazard, i.e. the integrated baseline

hazard except for the unobservable V . A key feature of the MPH model is that in the population

h(T,X(t), θ0) =
A

V

d
= U0 (8)

with A a standard exponential random variable.

Equations (7) and (8) show that the MPH model is essentially a transformation model

that transforms the conditional distribution of T given the observable covariates X(.) to a

positive random variable that is independent of X(.) and of the baseline hazard λ(., α0). This

independence is the key to understand the intuition behind the proposed Linear Rank Estimator

(LRE). The fact that the right hand side random variable is the ratio of a standard exponential

and a positive random variable only plays a role in the interpretation of the components of

the transformation as a baseline hazard and a regression function that multiplies the baseline

hazard. For parameter values θ 6= θ0, i.e. not equal to the true values, we have

h(T,X(t), θ) = U (9)

with U a nonnegative random variable. The hazard rate of U = h(T ) is

κU (u|V ) = κT
(

h−1(u)
) 1

h′
(

h−1(u)
)

=
λ
(

h−1(u,X(u), θ), α0

)

λ
(

h−1(u,X(u), θ), α
) e(β0−β)′XU (u,θ)V (10)

with XU (u, θ) = X
(

h−1(u,X(u), θ)
)

, the process of the time-varying covariate on the trans-

formed duration time.

Just as the distribution of T , that of the transformed duration U can be expressed by

a (transformed) counting process {NU (u, θ);u ≥ 0}. The relation between the original and

transformed counting process and observation indicator is

NU (u, θ) = N
(

h−1(u,X(u), θ)
)

(11)

Y U (u, θ) = Y
(

h−1(u,X(u), θ)
)

(12)

The intensity of the transformed counting process (with respect to history X
U
(u, θ), Y

U
(u, θ) is
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(see Andersen et al. (1993), p. 87, and using (10))

Pr
(

dNU (u, θ) = 1
∣

∣X
U
(u, θ), Y

U
(u, θ)

)

=

= Y U (u, θ)
λ
(

h−1(u,X(u), θ), α0

)

λ
(

h−1(u,X(u), θ), α
) e(β0−β)′XU (u,θ)E

[

V |XU
(u, θ), Y

U
(u, θ)

]

du (13)

and we denote this hazard by κU
(

u|XU
(u, θ), Y

U
(u, θ)

)

. For the population parameter value θ0

this becomes

Pr
(

dNU (u, θ0) = 1
∣

∣

∣
X
U
(u, θ0), Y

U
(u, θ0)

)

= Y U (u, θ)E
[

V |XU
(u, θ0), Y

U
(u, θ0)

]

du (14)

If censoring is non-informative, i.e. Y (t) = I(t ≤ T )IC(t) with C independent of T (but possibly

dependent on X), then

Pr
(

dNU (u, θ0) = 1
∣

∣

∣
X
U
(u, θ0), Y

U
(u, θ0)

)

= Y U (u, θ)E
[

V
∣

∣U0 ≥ u
]

du (15)

and the intensity is independent of X
U
(u, θ0). This independence is the basis for the estimation

of the parameters of the MPH model. We denote the hazard in (15) by κ0(u).

Example 1 (Piecewise constant hazard and time-varying covariate). Consider an MPH model

with a single time-varying covariate X(t). The baseline hazard is piecewise constant

λ(t, α) = eαI(0 ≤ t ≤ t1) + I(t > t1)

The covariate X(t) is changing, for all individuals, at time t2 > t1 from random variable X1 to

X2. Thus, the hazard rate of U is

κU (u) =



























e(α0−α)+(β0−β)X1E[V |U ≥ u] 0 ≤ U ≤ eα+βX1t1

e(β0−β)X1E[V |U ≥ u] eα+βX1t1 < U ≤ eα+βX1t1 + eβX2(t2 − t1)

e(β0−β)X2E[V |U ≥ u] U > eα+βX1t1 + eβX2(t2 − t1)

(16)

For the population parameter value θ0 = (α0, β0) this becomes

κ0(u) = E[V |U ≥ u]

If V has a Gamma distribution with mean 1 and variance σ2, then

κ0(u) =
1

1 + σ2u
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The basis of the LRE is that for the true transformation, and only for the true parameter vector,

the hazard only dependents on the distribution of V . A typical way to test the significance of

a covariate on the hazard is the rank-test, see Prentice (1978). This test is based on (possibly

weighted) comparisons of the estimated non-parametric hazard rates. It is also equivalent to the

score test for significance of a (vector of) coefficient(s) that arises from the Cox partial likelihood.

The test rejects the influence of the covariate(s) on the hazard when it is ‘close’ to zero. Tsiatis

(1990) shows that the inverse of the rank test, the value of the (vector of) coefficient(s) that

sets the rank-test equal to zero, can be used as an estimation equation for AFT models. Here

we extend the inverse rank estimation to include the parameters of the duration dependence.

Before we elaborate on the LRE in detail we first discuss non-parametric identification of

the MPH model.

2.3 Identification

Using the counting process framework we can express an important assumption on the covariate

process. We assume that with dX(t) = X(t+) −X(t)

dX(t)⊥N(s), s ≥ t|Y (t),X(t) (17)

For the observation process we make a similar assumption. As noted, in all cases of interest we

have Y (t) = I(t ≤ T )IC(t) with a some random set, e.g. the set t ≤ C for right censoring. We

assume

dIC(t)⊥N(s), s ≥ t|Y (t),X(t) (18)

In other words, we assume that changes in X and IC at t are conditionally independent of the

occurrence of the event after t. This means that X(t) and IC(t) are predetermined at t. Note

that if X(t) or IC(t) depends on V , then these assumptions cannot hold.

In (3) and the following equations we condition on the unobserved V . The corresponding

unconditional results are obtained by taking the expectation of V given Y (t),X(t). If Y (t) =

I(t ≤ T )IC(t) with IC(t) independent of V , then we need not condition on IC(t) and the

conditional expectation is

E
(

V |T ≥ t, Y (t),X(t)
)

(19)

9



The hazard that is not conditional on V is

κ(t|X(t), θ) = λ(t, α)eβ
′X(t)E

[

V |T ≥ t, Y (t),X(t)
]

(20)

Non-parametric identification of the MPH model has been studied by Elbers and Ridder (1982)

and Heckman and Singer (1984b). Their results refer to the model in which both the baseline

hazard and the distribution of the unobserved heterogeneity are left unspecified. In their proofs

they need the assumption the mean of the ditribution of V is finite, Elbers and Ridder (1982), or

the assumption that the tail of that distribution decreases at a fast enough rate, Heckman and

Singer (1984b). Ridder and Woutersen (2003) show that it is possible to replace assumptions on

the distribution of V by an assumption on the behavior of the baseline hazard near 0. They show

that with time constant covariates the semi-parametric MPH model with parametric baseline

hazard is identified if the following assumptions hold.

(I1) 0 < limt↓0 λ(t, α0) < ∞. Further Λ(t, α0) = 1 for some t0 and Λ(∞, α0) = ∞ with

Λ(t, α0) =
∫ t
0 λ(s, α0) ds

(I2) V and X are stochastically independent.

(I3) There are x1, x2 in the support of X with β′0x1 6= β′0x2.

(I4) If λ(t, α0) = λ(t, α̃0) for all t > 0, then α0 = α̃0, and if β′0x = β̃′0x for all x in the support

of X, then β0 = β̃0.

The key assumptions are the bound on the baseline hazard in 0 in assumption (I1) and

assumptions (I2) and (I3). The other assumptions are normalizations (second part of assumption

(I1)) or assumptions that ensure the identification of the parametric functions (assumption (I4)).

The main difference with the identification results in Elbers and Ridder and Heckman and Singer

is that assumptions on the distribution of V are replaced by an assumption on the baseline hazard

in 0. The duality of these two types of assumptions is a consequence of the Tauber theorem (see

Feller (1971), Chapter 13). The assumptions for identification can be weakened if some of the

covariates are time varying, but the assumptions (I1)-(I4) are also sufficient in that case.
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3 The Linear Rank Estimator

There are a number of estimators for transformation models that transform to an unspecified

distribution. Amemiya (1985) has shown that the Nonlinear 2SLS estimator introduced in

Amemiya (1974) can be used to estimate both the regression parameters and the parameters

in the transformation. Han (1987) proposed an estimator that maximizes the rank correlation

between the transformed dependent variable and a linear combination of the covariates (see

also Sherman (1993) ). Han’s estimator can be used, if the regressors are time constant and if

the durations are not censored and the same is true for more recent estimators that are based

on rank correlation, e.g. Khan (2001), Chen (2002) and Khan and Tamer (2007). Amemiya’s

N2SLS estimator can be used even with time varying covariates, but not with censored data.

The Linear Rank Estimator (LRE) for this transformation model can deal with both with time

varying regressors and general non-informative censoring.

Before we turn to the general model we discuss a simple example to provide more insight

into the inverse rank estimation approach. Suppose we would like to test whether a covariate X

influences the hazard. If the covariate does not influence the hazard, the mean of the covariate

among the survivors does not change with the survival time, i.e. E[X|T ≥ t] = E[X]. Then the

rank test-statistic is (assuming no censoring)

n
∑

i

[

Xi −
∑

j Yj(ti)Xj
∑

j Yj(ti)

]

where the second term is the average of the covariate among those units still alive at ti. Thus,

for each observation of the covariate we compare the observed value with its expected value

among those still alive (under the hypothesis of no effect of the covariate) and sum over all

observations. If this sum is significantly different from zero, we reject the null of no influence.

Now assume that the true model is an MPH-model without duration dependence with trans-

formed duration U = eβXT . Then, for the true parameter β = β0 the hazard of U does not

depend on the covariate X. This implies that the rank statistic for the true parameter on the

transformed U–time is zero. However the β0 is unknown and an inverse rank estimate β̂ of β0

is the value of β for which
n

∑

i

[

Xi −
∑

j Y
U
j (Ui)Xj

∑

j Y
U
j (Ui)

]

= 0

11



with Ui = eβ̂Xiti and Y U
j (u) = I(Uj ≥ u), the observation indicator on the (transformed)

U–time. Tsiatis (1990) used this statistic as an estimating equation for the parameters in a

censored linear regression model and Robins and Tsiatis (1992) employed the same statistic

to estimate the parameters in the Accelerated Failure Time (AFT) model with time varying

covariates introduced by Cox and Oakes (1984).

3.1 The Linear Rank Estimator

In the general MPH-model we consider a random sample T̃i,∆i,X i(Ti), i = 1, . . . , N . The

indicator ∆i is 1 if the duration is observed and 0 if it is censored. For some θ this random

sample can be transformed to Ũi(θ),∆i,X
U
i

(

Ũi(θ)
)

, i = 1, . . . , N . The rank-statistic for these

data is

SN (θ,W ) =
N

∑

i=1

∆i

{

W
(

Ũi(θ),X
U
i

(

Ũi(θ)
)

)

−W
(

Ũi(θ)
)}

(21)

with

W
(

Ũi(θ)
)

=

∑N
j=1 Y

U
j

(

Ũi(θ)
)

W
(

Ũi(θ),X
U
j

(

Ũi(θ)
)

)

∑N
j=1 Y

U
j

(

Ũi(θ)
)

In (21) W is a known function of Ũi(θ) and X
U
i

(

Ũi(θ)
)

of a dimension that not smaller than

that of θ. The interpretation of SN is that it compares the weight function for a transformed

duration that ends at Ũi(θ) to the average of the weight functions at that time for the units

that are under observation. The suggestion is that the difference between the weight function

for unit i and the average weight function for the units under observation is 0 at the population

parameter value θ0.

Because SN (θ,W ) is not continuous in θ (if W is continuous in Ũ(θ) it need not be a step

function either), we may not be able to find a solution to SN (θ,W ) = 0. For that reason we

define the Linear Rank Estimator (LRE) of the parameters of the MPH model by

θ̂N (W ) = arg min
θ∈Θ

SN (θ,W )′SN (θ,W ) (22)

Lemma 1 below shows that SN is asymptotically equivalent to a linear (and hence continuous)

function in θ.

The interpretation of SN is that it compares the weight function for a transformed duration

that ends at Ũi(θ) to the average of the weight functions at that time for the units that are under

12



observation. The suggestion is that the difference between the weight function for unit i and the

average weight function for the units under observation is 0 at the population parameter value θ0.

In large samples this is correct if we choose for instance W
(

Ũi(θ),X
U
i

(

Ũi(θ)
)

)

= X
U
i

(

Ũi(θ)
)

)

,

because for θ = θ0 the transformed duration U0 is independent of X
U
i . Another choice of W

is W
(

Ũi(θ),X
U
i

(

Ũi(θ)
)

)

= I(uk < Ũi(θ) ≤ uk+1). For θ = θ0 the transformed durations U0i

are identically distributed and this implies that the rank statistic is 0 in large samples for this

choice of W .

Example 2 (Continuation of Example 1). Simple weight functions for this example are

Wβ(u,X) = X(u)

Wα(u,X) = I
(

0 ≤ u ≤ eαt1e
βX(u)

)

with X(u) = X1 when h−1(U,X) ≤ t2 and X(u) = X2 otherwise. Denote the interval indicator

by I1
(

u,Xi(u)
)

The estimation equations become

SN,β(θ,W ) =

N
∑

i=1

∆i

{

Xi(Ũi) −
∑N

j=1 I(Ũj ≥ Ui)Xj(Ũi)
∑N

j=1 I(Ũj ≥ Ũi)

}

SN,α(θ,W ) =
N

∑

i=1

∆i

{

I1
(

Ũi,Xi(Ũi)
)

−
∑N

j=1 I(Ũj ≥ Ũi)I1
(

Ũi,Xj(Ũi)
)

∑N
j=1 I(Ũj ≥ Ũi)

}

The expression for the rank statistic simplifies if we order the observations by increasing trans-

formed duration

Ũ(1)(θ) ≤ Ũ(2)(θ) ≤ . . . ≤ Ũ(N)(θ)

In the ordered transformed durations we obtain

SN,β(θ,W ) =
N

∑

i=1

∆(i)

{

X(i)(Ũ(i)) −
∑N

j=iX(j)

(

Ũ(i)

)

N − i+ 1

}

SN,α(θ,W ) =

N
∑

i=1

∆(i)

{

I1
(

Ũ(i),X(i)(Ũ(i))
)

−
∑N

j=i I1
(

Ũ(i),X(j)(Ũ(i))
)

N − i+ 1

}

Thus, SN,β compares the value of X(i) at transformed duration Ũ(i) (which is either drawn from

X1 or from X2) to the average value of X(j) of all j > i at Ũ(i) and takes the sum over all

(uncensored) units. SN,α compares the value of the indicator-function, I
(

Ũ(i),X(i)(Ũ(i))
)

at

transformed duration Ũ(i) (which is either 1 or 0) to the average value of the indicator functions,

I
(

Ũ(i),X(j)(Ũ(i))
)

of all j > i at Ũ(i).

13



The functions SN,β and SN,α are not continuous in θ = (α, β). The points of discontinuity are

values of θ that make e.g. Ũ(k)(θ) and Ũ(k+1)(θ) equal. If ∆(k) = ∆(k+1) = 1, the discontinuity

is

X(k+1)

(

Ũ(k)(θ)
)

−X(k)

(

Ũ(k)(θ)
)

N − k
(23)

I

(

Ũ(k) ≤ eαt1 exp
[

βX(k+1)

(

Ũ(k)(θ)
)

])

−I
(

Ũ(k) ≤ eαt1 exp
[

βX(k)

(

Ũ(k)(θ)
)

])

N − k
(24)

and this goes to 0 if N increases for both Wβ(u,X) and Wα(u,X).

For consistency and asymptotic normality of the MPH LRE estimator we make the following

assumptions. To simplify the expressions we use the notation hi(t, θ) = h(t,X i(t), θ).

(A1) The conditional distribution of T given X(·) and V has hazard rate

κ(t|X(t), V, θ) = λ(t, α)eβ
′X(t)V (25)

with X(·) a K variate bounded stochastic process that is independent of V and such that

if the probability of the event {c′1X(t) + c2 lnλ(t, α0) = 0, t ∈ S} with S some set with

positive measure and for some constants c1, c2, then c1 = c2 = 0. For the baseline hazard

0 < limt↓0 λ(t, α0) <∞.

(A2) For the covariate process X(t), t ≥ 0 we assume that the sample paths are piecewise

constant, i.e. its derivative with respect to t is 0 almost everywhere, and left continuous.

We also assume

E
(

V |T ≥ t, Y (t),X(t)
)

(26)

The hazard that is not conditional on V is

κ(t|X(t), θ) = λ(t, α)eβ
′X(t)E

[

V |T ≥ t, Y (t),X(t)
]

(27)

The observation process is Y (t), t ≥ 0 with Y (t) = I(t ≤ T )I(t ≤ C) and we assume

dI(t ≤ C)⊥N(s), s ≥ t|Y (t),X(t) (28)

The density of C is bounded.
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(A3) The parameter vector θ = (β′, α′)′ is anM vector with β aK vector and α an L vector. The

parameter space Θ is convex. The baseline hazard λ(t, α) > 0 and is twice differentiable

and the second derivative is bounded in α (in the parameter space) and t.

(A4) The weight functionW
(

u,X
U
(u)

)

is anM vector of bounded and left continuous functions.

If

W
(

Ũi(θ)
)

=

∑N
j=1 Y

U
j

(

Ũi(θ)
)

W
(

Ũi(θ),X
U
j

(

Ũi(θ)
)

)

∑N
j=1 Y

U
j

(

Ũi(θ)
)

then there are functions µ(u, θ) (an M vector), Vβ(u, s, θ) (an M × K matrix), and

Vα(u, s, θ) (an M × L matrix) such that

sup
θ∈Θ,u≤τ+ψ

∣

∣W (u, θ) − µ(u, θ)
∣

∣

p→ 0 (29)

and

sup
θ∈Θ,u≤τ+ψ

∣

∣

∣

∣

1

N

N
∑

i=1

(

W
(

u,X
U
i (u, θ)

)

−W (u, θ)
)

Y U
i (u, θ)XU

i (s, θ)′ − Vβ(u, s, θ)

∣

∣

∣

∣

p→ 0 (30)

and

sup
θ∈Θ,u≤τ+ψ

∣

∣

∣

∣

1

N

N
∑

i=1

(

W
(

u,X
U
i (u, θ)

)

−W (u, θ)
)

Y U
i (u, θ)

∂ lnλ

∂α′

(

h−1
i (s, θ) − Vα(u, s, θ)

∣

∣

∣

∣

p→ 0

(31)

Define

B(θ0) = −
∫ τ

0

∫ u

0
Vβ(u, s, θ)κ

′
0(u) ds du−

∫ τ

0
Vβ(u, u, θ)κ0(u) du (32)

A(θ0) = −
∫ τ

0

∫ u

0
Vα(u, s, θ)κ′0(u) ds du−

∫ τ

0
Vα(u, u, θ)κ0(u) du (33)

We assume that the M ×M matrix
[

B(θ0)A(θ0)
]

is nonsingular.

The restriction on the baseline hazard in Assumption A1 ensures identification (see Sec-

tion 3) and guarantees that the semi-parametric information bound is nonsingular (see below).

Assumption A2 states that the covariates and the observation indicator are predetermined. The

derivation of the asymptotic distribution of the LR estimator follows the proof in Tsiatis (1990).

Tsiatis requires that the density of U0 is bounded. For the MPH model this density is

f(u0) = E
[

V e−u0V
]
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If E(V ) = ∞, this density is not bounded in 0. Inspection of Tsiatis’ proof, shows that this

does not change the result and we do not need to impose the restriction that E(V ) is finite. The

transformed durations are observed up to τ with τ <∞ such that for some ψ, η > 0

Pr
[

min(U0, C) > τ + ψ
]

≥ η

In the MPH model this is just an assumption on the distribution of C, because for U0 it is

satisfied for all τ <∞.

The next lemma shows that the linear rank statistic is asymptotically equivalent to a statistic

that is linear in the parameters.

Lemma 1

Under assumptions (A1)–(A4) for all C > 0

sup

|θ−θ0|≤CN
−

1
2

N−
1
2

∣

∣

∣
SN (θ,W ) − S̃N (θ,W )

∣

∣

∣

p→ 0 (34)

with

S̃N (θ,W ) =

N
∑

i=1

∫ τ

0

(

W
(

u,X
U
i (u, θ0)

)

−W (u, θ0)
)

dM0
i (u)

+B(θ0)N(β − β0) +A(θ0)N(α− α0) (35)

Proof : See Appendix.

From Lemma 1 we obtain the asymptotic distribution of the LRE

Theorem 1

Under assumptions (A1)–(A4) we have with D(θ0) =
[

A(θ0)B(θ0)
]

√
N(θ̂N − θ0)

d→ N
(

0,D(θ0)
−1V (θ0)D

′(θ0)
−1

)

(36)

with

1

N

N
∑

i=1

∫ τ

0

(

W
(

u,X
U
i (u, θ0)

)

−W (u, θ0)
)(

W
(

u,X
U
i (u, θ0)

)

−W (u, θ0)
)′
·

· Y U
i (u, θ0)κ0(u) du

p→ V (θ0) (37)
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Proof : By van der Vaart (1998), Theorem 5.45 we have from Lemma 1

√
N(θ̂N − θ0) = D(θ0)

−1 1√
N

∫ τ

0

(

W
(

u,X
U
i (u, θ0)

)

−W (u, θ0)
)

dMi0

with M0 the martingale associated with the counting process N0 for U0. By the central limit

theorem for integrals of predetermined functions with respect to a martingale (see e.g. Andersen

et al. (1993)), the sum on the right-hand side converges to a normal distribution with the

variance matrix in (37).

The variance matrix of the LRE is the limit of (we suppress the dependence on X
U
i (u, θ0) and

Y
U
i (u, θ0) and use a subscript i instead)

[

1

N

N
∑

i=1

∫ τ

0

(

Wi(u) −W (u, θ0)
)∂ lnκUi

∂θ′
Y U
i (u, θ0)κ0(u) du

]−1

·

[

1

N

N
∑

i=1

∫ τ

0

(

Wi(u) −W (u, θ0)
)(

Wi(u) −W (u, θ0)
)′
Y U
i (u, θ0)κ0(u) du

]

·

[

1

N

N
∑

i=1

∫ τ

0

(

Wi(u) −W (u, θ0)
)∂ lnκUi

∂θ′
Y U
i (u, θ0)κ0(u) du

]′−1

(38)

By the Cauchy-Schwartz inequality this matrix in minimal if

W0i

(

u,X
U
i (u, θ0)

)

=
∂ lnκU

(

u|XU
i (u, θ0)

)

∂θ
(39)

With this weighting matrix V (θ0) = D(θ0) and the variance matrix of the LRE with the optimal

weighting matrix is V (θ0). A consistent estimator of this matrix is

1

N

N
∑

i=1

∫ τ

0

(

W0i(u) −W 0(u, θ0)
)(

W0i(u) −W 0(u, θ0)
)′

dN(u) (40)

which is just the average over the uncensored population transformed durations U0.

The optimal weighting function depends on the distribution of U0 through its hazard and

the derivative of that hazard. In the Appendix we find from (B.1) and (B.2)

∂ lnκU (u, θ)

∂α
= −κ

′
0(u)

κ0(u)

∫ u

0

∂ lnλ

∂α

(

h−1
0 (s), α0

)

ds− (41)

− ∂ lnλ

∂α

(

h−1
0 (u), α0

)

∂ lnκU (u, θ)

∂β
= −κ

′
0(u)

κ0(u)

∫ u

0
X

(

h−1
0 (s)

)

ds−X
(

h−1
0 (u)

)

(42)

Note that the inverse of the transformed duration is also needed, so that a closed form of this

inverse is desirable.
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Example 3 (Continuation of Example 1). By (B.1) and (B.2) the optimal weighting functions

are

W0β(u,X) = −
(

1 + u
κ′0(u)

κ0(u)

)

X(u)

W0α(u,X) = −
(

1 + u
κ′0(u)

κ0(u)

)

I(0 ≤ u ≤ eαt1e
βX(u))

If U0 is unit–exponentially distributed, i.e. if there is no unobserved heterogeneity, then we

obtain the weighting functions in Example 2 and this is a feasible, but in general suboptimal

choice. Because the optimal weighting function factorizes the optimal linear rank statistic is a

weighted version of the linear rank statistic based on W1.

The factor in W0 depends on the distribution of V . If V has a Gamma distribution with

mean 1 and variance σ2, then

1 + u
κ′0(u)

κ0(u)
=

1

1 + σ2u

Hence the weight decreases with the transformed duration.

4 The Linear Rank Estimator with an Estimated Weight Func-

tion

First, we simplify the notation by suppressing the dependence of the weight function on the

covariate history. Instead we make the dependence of this function on the parameters θ0 and

the hazard of U0, κ0 explicit. With this change, the LRE estimating equation is

SN (θ,W ) =

N
∑

i=1

∆i

{

Wi

(

Ũi(θ), θ0, κ0

)

−W
(

Ũi(θ), θ0, κ0

)

}

(43)

with

W
(

Ũi(θ), θ0, κ0

)

=

∑N
j=1 Y

U
j

(

Ũi(θ)
)

Wj

(

Ũi(θ), θ0, κ0

)

∑N
j=1 Y

U
j

(

Ũi(θ)
)

The optimal weight functions are given in (41) and (42). We obtain an estimated weight function

by substituting the consistent first-stage estimates β̂N , α̂N for the parameters and by using

a nonparametric estimator for the hazard κ0 of U0 and its derivative. This complicates the

asymptotic analysis of the estimator, because the estimated weight function is not predictable,

i.e. at (transformed duration) time u it depends on values of the transformed durations beyond

u.
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To deal with this problem we use a method that was first used by Lai and Ying (1991). They

suggested to split the sample i = 1, . . . , N randomly into two subsamples of size N1 and N2 with

N1 + N2 = N and N1 = O(N), N2 = O(N). Sample 1 is used to obtain consistent, but not

necessarily efficient, estimators of α, β which we denote by β̂N1
, α̂N1

and the corresponding trans-

formed durations U1i(θ̂N1
), i = 1, . . . , N1. The residuals are used in a nonparametric estimator

of the hazard of U(θ0), κ̂0N1
and this nonparametric estimator and the estimated parameters

are substituted in (41) and (42) to obtain the estimated weight function Wi(u, θ̂N1
, κ̂0N1

). The

same steps for subsample 2 gives the estimated weight function Wi(u, θ̂N2
, κ̂0N2

). The estimated

weight function Wi(u, θ̂N1
, κ̂0N1

) is used in the estimating equation for subsample 2

S2N2

(

θ,W (·, θ̂N1
, κ̂0N1

)
)

=

N2
∑

i=1

∆i

{

Wi

(

Ũ2i(θ), θ̂N1
, κ̂0N1

)

−W
(

Ũ2i(θ), θ̂N1
, κ̂0N1

)

}

(44)

In the same way the estimated weight function derived from subsample 2 is used in the estimating

equation for subsample 1, S1N1

(

θ,W (·, θ̂N2
, κ̂0N2

)
)

. The efficient LRE estimator makes the

combined estimating equation

SN
(

θ,W (·, θ̂N2
, κ̂0N2

),W (·, θ̂N1
, κ̂0N1

)
)

= S1N1

(

θ,W (·, θ̂N2
, κ̂0N2

)
)

+ S2N2

(

θ,W (·, θ̂N1
, κ̂0N1

)
)

(45)

equal to 0 or because the SN is a step function the efficient LRE is defined by

θ̂N (W ) = arg min
θ∈Θ

∣

∣

∣
SN

(

θ,W (·, θ̂N2
, κ̂0N2

),W (·, θ̂N1
, κ̂0N1

)
)

∣

∣

∣

2
(46)

The advantage of the sample splitting is that the estimated weight functionWi(u, θ̂N1
, κ̂0N1

) does

not depend on the transformed durations U2i(θ), i = 1, . . . , N2 that enter in S2N2

(

θ,W (·, θ̂N1
, κ̂0N1

)
)

.

We can think of the parameters θ̂N1
and the estimated transformed durations U1i(θ̂N1

), i =

1, . . . , N1 as determined at time 0 in the analysis of S2N2

(

θ,W (·, θ̂N1
, κ̂0N1

)
)

and the usual op-

erations can be performed to derive e.g. its variance (conditional on θ̂N1
and the estimated

transformed durations U1i(θ̂N1
), i = 1, . . . , N1. The linearization lemma applies to random, but

predictable weight functions that converge uniformly to a nonstochastic function. To prove

uniform convergence of the weight function we must establish the uniform convergence of the

nonparametric estimator of κ0 based on the estimated transformed durations (see Lemma 2

and 3). We need to know the uniform rate of convergence because we need to modify the

nonparametric hazard estimator to avoid a 0 denominator in the weight function.
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The nonparametric hazard estimator is the kernel estimator of Ramlau-Hansen (1983). If

we were to observe the possibly censored transformed durations Ũi(θ0), i = 1, . . . , N the kernel

estimator is

κ̂N (u, θ0) =
1

bN

N
∑

i=1

∆i
I
(

Y U
N (Ũi(θ0), θ0) > 0

)

Y
U
N (Ũi(θ0), θ0)

K

(

u− Ũi(θ0)

bN

)

(47)

with Y U
N (u, θ0) =

∑N
i=1 Y

U
i (u, θ0) and Y

U
N (u, θ0) = Y U

N (u, θ0)/N .

The properties of the kernel hazard estimator have been studied by Ramlau-Hansen (1983)

and Andersen et al. (1993). In particular, Theorem IV.2.2. of Andersen et al. (1993) gives

a sufficient condition for uniform convergence. Inspection of their proof shows that the same

method gives

Lemma 2

If the derivative κ′ is bounded on [0, τ ] then for ǫ > 0 with

inf
0≤u≤τ

b2NN
1−ǫY

U
N (u, θ0)

p→ ∞ (48)

and

bNN
1−ǫ → ∞ (49)

we have

sup
u1≤u≤u2

N ǫ
∣

∣κ̂N (u, θ0) − κ0(u)
∣

∣

p→ 0 (50)

for u1, u2 with 0 < u1 < u2 < τ .

If Y N (t) bounded from 0 on [0, τ ] for large N , then (48) and (49) imply that if bN = N−c, ǫ <

c < 1
2 − ǫ, and hence ǫ < 1

4 . Note that the uniform convergence holds on a compact subset of

[0, τ ]. Although this can be generalized to uniform convergence on [0, τ ], the variable kernels that

are needed for this generalization complicate the asymptotic analysis. In practice, estimation of

the hazard is inaccurate near the endpoints, and it may be preferable to exclude observations

that are close to the endpoints. Note that the observations near the endpoints are used in the

estimation of the hazard.

We do not observe the transformed duration Ũ0(θ0), but rather an estimate Ũ0(θ̂N ) of this

transformed duration and hence we consider the kernel estimator

κ̂N (u, θ̂N ) =
1

bN

N
∑

i=1

∆i
I
(

Y U
N (Ũi(θ̂N ), θ̂N ) > 0

)

Y
U
N (Ũi(θ̂N ), θ̂N )

K

(

u− Ũi(θ̂N )

bN

)

(51)
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We have

Lemma 3

The kernel K is positive and bounded on [−1, 1] (0 elsewhere) and satisfies a Lipschitz condition

on this interval. The covariate process X(t) is bounded on [0, τ ] and so is
∣

∣

∂λ(t,α)
∂α

∣

∣ for all α in

an open neighborhood of α0. Moreover

I
(

Y U
N (u, θ) > 0

)

Y
U
N (u, θ)

p→ H(u, θ) (52)

uniformly for 0 ≤ u ≤ τ, θ ∈ N(θ0) and H has derivatives that are bounded for 0 ≤ u ≤ τ, θ ∈
N(θ0). Then for ǫ > 0 such that

b2NN
1
2−ǫ → ∞ (53)

we have

sup
0≤u≤τ

N ǫ
∣

∣κ̂N (u, θ̂N ) − κ̂N (u, θ0)
∣

∣

p→ 0 (54)

Proof : See Appendix.

Note that the conditions on bN are determined in Lemma 2. The fact that we use estimated

transformed durations does not change the restrictions on the bandwidth choice.

At this point we consider the condition in (52) more closely. With h(T, θ) =
∫ T
0 λ(t, α)eβ

′X(t)dt

we have if the duration T is (right) censored at C that Y (t) = I(T ≥ t)I(C ≥ t) so that

Y U (u, θ) = I
(

h(T, θ) ≥ u
)

· I
(

h(C, θ) ≥ u
)

If the censoring time and the duration are conditionally independent given the history up to t,

i.e.

I(T ≥ t)⊥I(C ≥ t)
∣

∣Y (s),X(t), 0 ≤ s ≤ t (55)

then also

I
(

h(T, θ) ≥ u
)

⊥I
(

h(C, θ) ≥ u
)
∣

∣Y U (s),XU (t), 0 ≤ s ≤ u (56)

We have with N(θ0) an open neighborhood of θ0, and if Xi and Ci i.i.d. and

sup
θ∈N(θ0)0≤u≤τ

Pr
(

h(T, θ) < u
)

< 1 (57)

sup
θ∈N(θ0)0≤u≤τ

Pr
(

h(C, θ) < u
)

< 1 (58)
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that

inf
θ∈N(θ0)0≤u≤τ

I
(

Y U
N (u, θ) > 0

) p→ 0 (59)

and by the uniform law of large numbers

Y
U
N (u, θ)

p→ Pr
(

h(T, θ) ≥ u
)

· Pr
(

h(C, θ) ≥ u
)

(60)

uniformly for θ ∈ N(θ0)0 ≤ u ≤ τ . Because by (57) the limit is bounded from 0, we have

I
(

Y U
N (u, θ) > 0

)

Y
U
N (u, θ)

p→ H(u, θ) (61)

uniformly for θ ∈ N(θ0)0 ≤ u ≤ τ with

H(u, θ) =
1

Pr
(

h(T, θ) ≥ u
)

· Pr
(

h(C, θ) ≥ u
) (62)

Because h(T, θ0) = U0 (53) holds for θ = θ0 if κ0(u) is bounded for 0 ≤ u ≤ τ . From the

expression for κU (u, θ) in (13) a sufficient condition for κU (u, θ) being bounded for all θ in a

neighborhood of θ0 and 0 ≤ t ≤ τ is that λ(t, α) > 0 for all t and on a neighborhood of α0.

In the same way (54) holds if the hazard of C is bounded and λ(t, α) is bounded from 0 on a

neighborhood of α0.

5 Monte Carlo experiments

In this section we show that estimating a hazard regression with NPMLE can lead to biased

inference if we allow for duration dependence and unobserved heterogeneity when it is not present

in de DGP. The LRE does not suffer from this misspecification.

5.1 Sample design

We try to resemble the simulation experiments by Baker and Melino (2000), who choose a true

hazards that match those typically observed in unemployment duration data. They assume a

discrete time duration model, while we consider a continuous time model. First we consider the

very simple exponential model without unobserved heterogeneity (and no duration dependence)

and one explanatory variable, that is

λ(t|Xi) = exp(Xiβ + β0) (63)
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where X is normally distributed with mean zero and variance 0.5. The true value of the re-

gression parameter, β, is 1. The true value of the intercept, β0, is ln(0.05). The variance of X

and the regression parameter determine the relative importance of the observed heterogeneity

and they determine how accurate we can estimate β and whether we can distinguish duration

dependence from unobserved heterogeneity. We choose the variance of X such that the R2 from

a regression of the log duration on X is 0.13, close to values typically observed in practice.

This implies that the average duration is 22.5, say weeks. In practice the durations are often

censored, that is only observed up to a certain time. We choose a moderate censoring scheme

that censors all durations lasting more than 40 (weeks). This implies a censoring rate of 16%.

We generated 100 random samples of size 5000 for this GDP and stored it.

We are interested in the effect of wrongly assuming duration dependence and/or unobserved

heterogeneity. We therefore consider estimating a flexible duration dependence despite that the

DGP has no duration dependence. In the estimation we assume three alternative specifications

for the duration dependence: none, a piecewise constant duration dependence on four intervals

and a piecewise constant duration dependence on 10 intervals. This implies the following baseline

hazard

λ0(t) =
K

∑

k=1

eαkIk(t) (64)

with K = 4 or 10 and Ik(t) = I(tk−1 ≤ t < tk) which is one if the duration falls between tk−1

and tk. For the 4 interval piecewise constant duration dependence we choose t0 = 0, t1 = 5, t2 =

10, t3 = 20 and t4 = ∞, such that each interval contains about a quarter of the durations. For

the 10 interval piecewise constant duration dependence we have t0 = 0, t1 = 2, t2 = 4, t3 = 6, t4 =

10, t5 = 13, t6 = 16, t7 = 20, t8 = 25, t9 = 30 and t10 = ∞, such that each interval contains about

10% of the durations. The parameter of the first interval, α1, is fixed to zero. The remaining α’s

now reflect the proportional shift in the baseline hazard in each interval compared to the first,

base, interval. This facilitates the comparison between the MLE results and the LRE results.

The effect of wrongly assuming unobserved heterogeneity is investigated by estimating a

Mixed proportional hazards models with a discrete unobserved heterogeneity with a maximum

likelihood procedure. In one approach we assume a fixed number of two support points for the

distribution of the unobserved heterogeneity, (MLE two points).1 The other approach estimates

1In the MLE for models with duration dependence we do not need the standard identification restriction that
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the NPMLE of Heckman and Singer (1984b) where the number of support points is determined

by the Gateaux derivative. Note that multiplicative unobserved heterogeneity does not influence

the LRE procedure.

For the LRE we use the most simple weight-functions, Xi for β and the interval indicator on

the transformed time-scale, Ik(u) = I
(

mk−1(X, t) ≤ u < mk−1(X, t)
)

for αk, with mk(X, t) =

eβX
∫ tk
0 λ(s) ds. These weight-functions might be inefficient but it simplifies the estimation. In

Section 5.3 we elaborate on estimating efficient LRE in just one additional step. To obtain

the LRE we need to solve the minimizer of the quadratic form of the estimation equations in

(22). However the statistic Sn(θ;W ) is a multi–dimensional step–function and the standard

Newton–Raphson algorithm cannot be used to solve this. One of the alternative methods for

finding the roots of a non–differentiable function is the Powell-method. This method (see Press

et al. (1986, §10.5) and Powell (1964)) is a multidimensional version of the Brent algorithm.

The Powell-method does not always stop at a parameter value that makes the S-statistic was

close to zero. A nice feature of our estimation procedure is that it provides a convergence test,

because the solution of the estimation equations implies that a small change of the value of any

element of the parameter leads to a sign change in the S-statistic. Thus, when the Powell method

stopped before reaching convergence we reiterated the method untill convergence is found.

We also investigate the effect of sample size on our estimations. We consider three values

for the number of observations in the sample: 500, 1000 and 5000. The experiments involving

a sample size of 500 are constructed using the first 500 observations of the 5000 observations

generated by the true DGP. For the experiments involving a sample size of 1000 we add to the

observations in the experiments the next 500 observations of the generated observations.

For each of the alternative duration dependences and each sample size we apply four differ-

ent estimation procedure: MLE of MPH without unobserved heterogeneity (PH-model), MLE

two points, NPMLE and LRE. Thus in total we have 36 experiments in our sample design con-

structed from 1 DGP, 3 specifications for the duration dependence, 3 sample sizes and 4 different

estimation techniques.

the unobserved heterogeneity term has mean one, because the restricted the baseline hazard in the first interval.
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5.2 Monte Carlo Results

In Table 1 we report the average bias and standard deviation of the average for the estimates

of β in the 36 experimental settings.2 For each of the 3 sample sizes we took the 100 simulated

samples and estimated β using each of the three alternative duration dependence specifications

and the four different estimation procedures.3

The results indicate that assuming a discrete unobserved heterogeneity distribution when it

is absent leads to well behaved estimates when it is known that there is no duration dependence.

The LRE is also unbiased and the efficiency of the LRE is close to the MLE.

Assuming duration dependence when it is absent also leads to well behaved estimators of

β when it is known that there is no unobserved heterogeneity. However, the combination of

a flexible duration dependence and the distribution of the unobserved heterogeneity leads to a

systematic positive bias for the maximum likelihood estimates of β that declines very slowly

with sample size. This is in line with the results from Baker and Melino (2000). The LRE

continues to provide unbiased estimates of β despite assuming duration dependence that is not

present.

If β is not estimated well this is reflected in the estimates of the parameters of the duration

dependence, see Table A.1 and Table A.2 in Appendix A. Assuming unobserved heterogeneity

when it is absent leads to a positive duration dependence, that declines very slowly with the

sample size. Baker and Melino (2000) also find that an overestimation of β is accompanied

by a positive bias in the estimated duration dependence. Note that the MLE of the model

without unobserved heterogeneity also leads to a bias in the estimated duration dependence in

small samples. The LRE estimates the, non-existing, duration dependence well, although at the

expense of efficiency loss.

2Our calculations were done in Gauss 6.0 on 3 parallel computers: a Pentium 2.1 PC, a Pentium 2.8 PC and

a 2.0 laptop. The calculations took about 9 weeks of CPU time.
3The LRE with a duration dependence on 10 intervals for a sample size of 500 did not converge in 7 of the

experiments. The average is therefore base on 93 experiments instead of 100.
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Table 1: Average bias of estimates of β across the experiments

Duration dependence estimation method Sample size
500 1000 5000

No duration dependence MLE no hetero 0.0017 0.0051 -0.0010
(0.0115) (0.0080) (0.0035)

MLE 2 points 0.0198 0.0247∗ 0.0038
(0.0122) (0.0086) (0.0040)

NPMLE 0.0191 0.0165∗ 0.0046
(0.0118) (0.0082) (0.0037)

LRE 0.0028 0.0045 -0.0008
(0.0122) (0.0084) (0.0038)

4 piecewise constant MLE no hetero 0.0022 0.0048 -0.0022
(0.0115) (0.0082) (0.0036)

MLE 2 points 0.0599∗ 0.0531∗ 0.0144∗

(0.0153) (0.0120) (0.0044)
NPMLE 0.1142∗ 0.0765∗ 0.0241∗

(0.0160) (0.0116) (0.0045)
LRE 0.0286 0.0179 -0.0041

(0.0172) (0.0128) (0.0057)

10 piecewise constant MLE no hetero 0.0005 0.0038 -0.0022
(0.0116) (0.0082) (0.0036)

MLE 2 points 0.0734∗ 0.0571∗ 0.0273∗

(0.0162) (0.0127) (0.0052)
NPMLE 0.2376∗ 0.1519∗ 0.0592∗

(0.0247) (0.0162) (0.0067)
LREa -0.0161 -0.0124 -0.0040

(0.0247) (0.0192) (0.0092)
∗
p < 0.05

a Based on 93 experiments, because in 7 experiments the estimation procedure did not con-
vergence
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5.3 Duration dependence and efficiency

Two remaining interesting issues are estimating duration dependence that is truly present and

the efficiency of the (optimal) LRE. If unobserved heterogeneity is present the optimal LRE

should be more efficient than the first stage LRE, see example 3. To this end we simulate four

different random samples from a gamma-mixture with different types of duration dependence.

We assume a piecewise constant baseline hazard on 3 intervals, 0–5, 5–20 and 20 and over, with

λ0(t) =
∑3

k=1 e
αkIk(t) and α1 = 0 with the following four types of duration dependence:

1 Positive duration dependence: α2 = 0.2 and α3 = 0.5;

2 Negative duration dependence: α2 = −0.2 and α3 = −0.4;

3 U-shaped duration dependence: α2 = −0.2 and α3 = 0.2;

4 Inverse U-shaped duration dependence: α2 = 0.2 and α3 = −0.2;

Again we assume that we have only one explanatory variable X that is normally distributed with

mean zero and variance 0.5. The true value of the regression parameter, β, is 1. The variance

of the gamma mixture is 0.75. For each GDP we create 100 samples of 1000 observations and

stored it. We estimate the regression parameter and the parameters of the duration dependence

by the following six alternative methods (i) MLE for a gamma-mixture (the true model); (ii)

MLE no unobserved heterogeneity; (iii) MLE with discrete unobserved heterogeneity and two

points of support; (iv) NPMLE where the number of support points is determined by the

Gateaux derivative; (v) LRE and (vi) Optimal LRE. We estimate the parameters using both

the uncensored sample and a sample in which the durations are artificially censored at 30. This

implies a censoring rate of around 15%.

For the first stage LRE we use, again, the weight-functions, Xi for β and the interval indicator

on the transformed time-scale, Ik(u) for αk. For calculating the optimal LRE we need to know

the distribution of U0, because the optimal weighting function depends on the distribution of U0

through its hazard and the derivative of that hazard, see (41) and (42). We use the method with

an estimated weight function described in Section 4 to obtain the efficient optimal LRE. First

we randomly split each sample into two subsamples. Then, for each subsample we estimate the

parameters and the corresponding transformed durations using LRE. Based on the transformed
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durations of the first subsample we estimate the weights in the second subsample and vice versa.

We use the kernel estimator of Ramlau-Hansen to obtain these functionals. The efficient LRE

is now obtained from the combined estimation equation (45) and equal is given in (46), see

Section 4.

Table 2: Average bias, standard error and RMSE of estimates of β across the experiments

Duration dependence estimation method
bias std error RMSE

positive duration dependence MLE gamma -0.0074 0.0222 0.0234
MLE no hetero −0.3884∗ 0.0232 0.3889
MLE 2 points −0.2656∗ 0.0202 0.2664
NPMLE -0.0036 0.0216 0.0219
LRE -0.0264 0.0245 0.0360
LRE-opt -0.0205 0.0238 0.0314

negative duration dependence MLE gamma 0.0331 0.0206 0.0390
MLE no hetero −0.3963∗ 0.0270 0.3970
MLE 2 points −0.2797∗ 0.0242 0.2808
NPMLE 0.0382 0.0230 0.0446
LRE 0.0341 0.0238 0.0416
LRE-opt 0.0296 0.0231 0.0375

U-shaped duration dependence MLE gamma -0.0208 0.0192 0.0283
MLE no hetero −0.3707∗ 0.0299 0.3711
MLE 2 points −0.2895∗ 0.0170 0.2900
NPMLE -0.0088 0.0203 0.0221
LRE -0.0138 0.0231 0.0269
LRE-opt -0.0124 0.0206 0.0240

inverse U duration dependence MLE gamma 0.0248 0.0184 0.0309
MLE no hetero −0.3798∗ 0.0165 0.3806
MLE 2 points −0.2743∗ 0.0174 0.2748
NPMLE 0.0341 0.0191 0.0391
LRE 0.0190 0.0205 0.0280
LRE-opt 0.0195 0.0202 0.0281

∗
p < 0.05. For each DGP (gamma mixture) 100 simulations with 1000 observations each.

In Table 2 we report the average bias, the standard deviation of the average bias and the

RMSE for the estimates of β in the 4 experimental settings. Table 3 gives the results for the

censored sample.4 The results indicate that ignoring the unobserved heterogeneity leads to a

severe bias. Using a 2 point discrete unobserved heterogeneity distribution to approximate the

4The results for the parameters of the piecewise constant duration dependence, α2 and α3, are given in

Table A.3 and Table A.4 in Appendix A.
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true gamma heterogeneity distribution still leads to biased estimation results. The MLE based

on the true gamma mixture DGP is, not surprisingly, the most efficient estimation procedure.

The NPMLE is more efficient than the rank estimators. However, for two of the four DGP’s

the RMSE of the NPMLE is higher. In particular, for both a negative and the inverse U-shaped

duration dependence the NPMLE is biased if the sample is censored. The optimal LRE is 5%

to 25% (uncensored U-shaped duration dependence) more efficient than the LRE.

Table 3: Average bias, standard error and RMSE of estimates of β across the experiments,
censored sample

Duration dependence estimation method
bias std error RMSE

positive duration dependence MLE gamma -0.0098 0.0228 0.0248
MLE no hetero −0.3420∗ 0.0158 0.3424
MLE 2 points −0.1204∗ 0.0236 0.1227
NPMLE 0.0048 0.0238 0.0243
LRE -0.0277 0.0249 0.0372
LRE-opt -0.0253 0.0247 0.0353

negative duration dependence MLE gamma 0.0398 0.0213 0.0451
MLE no hetero −0.3164∗ 0.0151 0.3668
MLE 2 points −0.0527∗ 0.0241 0.0579
NPMLE 0.0550∗ 0.0228 0.0595
LRE 0.0419 0.0231 0.0478
LRE-opt 0.0406 0.0229 0.0466

U-shaped duration dependence MLE gamma -0.0171 0.0194 0.0259
MLE no hetero −0.3289∗ 0.0144 0.3292
MLE 2 points −0.1346∗ 0.0226 0.1365
NPMLE -0.0094 0.0203 0.0224
LRE -0.0330 0.0198 0.0385
LRE-opt -0.0298 0.0196 0.0356

inverse U duration dependence MLE gamma 0.0265 0.0185 0.0323
MLE no hetero −0.3311∗ 0.0126 0.3321
MLE 2 points −0.0632∗ 0.0203 0.0664
NPMLE 0.0395∗ 0.0193 0.0440
LRE 0.0297 0.0194 0.0355
LRE-opt 0.0263 0.0191 0.0325

For each DGP 100 (gamma mixture) simulations with 1000 observations each. 10-18% censored.
∗
p < 0.05
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6 Empirical Application

Between mid–1984 and mid–1985, the Illinois Department of Employment Security conducted

two controlled social experiments. These experiments were conducted to evaluate the poten-

tial of using cash bonus offers to induce early return to work by unemployment insurance (UI)

claimants5. These experiments provide the opportunity to explore, within a controlled exper-

imental setting, whether bonuses paid to Unemployment Insurance (UI) beneficiaries or their

employers reduce the unemployment of beneficiaries relative to a randomly selected control

group. Both treatments consisted of a $500 bonus payment, which was about four times the

average weekly unemployment insurance benefit.

In another article we focus on estimating the effects of these bonus payments on the duration

of unemployment in an MPH (Bijwaard and Ridder (2005) and Bijwaard (2009)). The extra

complication for the analysis of these treatment effects is that some of the UI claimants did not

comply with their assigned treatment. They were free to choose not to become eligible for the

bonus. The choice whether or not to comply may depend on unobserved characteristics that

also influence the duration. Then the censoring times are not independent of U0 anymore for

all observed transformed durations In the articles mentioned above we explain how we can solve

this problem.

Here, we only use the data on those people who were assigned to the control group. This

group consisted of 3952 individuals, who were excluded from participation in the experiment.

In fact, they did not know that the experiment took place. We shall estimate the parameters of

an MPH model for these data using Linear Rank Estimators and an NPMLE. The efficient LRE

is obtained using the steps described in Section 4. We include the following (all time–invariant)

explanatory variables: age and age squared, the logarithm of the pre–unemployment earnings

(LNBPE), gender (MALE= 1), ethnicity (BLACK= 1), and the logarithm of the weekly amount

of UI benefits plus dependence allowance (LNBEN). Thus, we have six regression parameters to

estimate.

We assume that the duration dependence can be approximated by a piecewise constant

function. The maximum unemployment duration in our sample is 26 weeks. We assume the

5A complete description of the experiment and a summary of its results can be found in Woodbury and

Spiegelman (1987).
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hazard is constant on each two–week interval. The last interval is the reference interval, i.e.

α13 = 0.

The results are presented in Table 4. The re-employment hazard is the lowest at age 44.

Blacks have a lower and males (not significant for the optimal LRE) a higher re-employment

hazard. Higher pre-employment earnings increase the hazard and higher dependence allowance

decrease the hazard. For the NPMLE we could not find an indication of unobserved hetero-

geneity. Thus the results from the NPMLE do not differ from the results of a PH-model. This

may indicate that unobserved heterogeneity is only a minor issue in these data. However, as

Bijwaard and Ridder (2005) point out, even in large samples inference on the unobserved het-

erogeneity using the NPMLE is inaccurate. We find that the NPMLE differs substantially from

the LRE. The NPMLE seems to overestimate (in absolute value) the effect of the covariates.

The U-shaped duration dependence is more pronounced for the LRE and the optimal LRE.
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Table 4: Linear Rank estimates for the regression coefficients of the control group of the Illinois
data

NPMLE LRE optimal LRE

age −0.1598∗ −0.1188∗ −0.0968∗

(0.0346) (0.0302) (0.0257)
age-squared 0.0720∗ 0.0541∗ 0.0448∗

(0.0280) (0.0225) (0.0195)
LNBPE 0.2494∗ 0.1830∗ 0.1480∗

(0.0700) (0.0558) (0.0480)
Black −0.5216∗ −0.3758∗ −0.3188∗

(0.0849) (0.0777) (0.0676)
Male 0.1026∗ 0.0744∗ 0.0564

(0.0454) (0.0359) (0.0309)
LNBEN −0.4886∗ −0.3598∗ −0.2961∗

(0.1211) (0.1024) (0.0880)
duration dependence
α1 (0–2 weeks) −0.4789∗ −0.4783∗ −0.5214∗

(0.1153) (0.1700) (0.1699)
α2 (2–4 weeks) −0.6525∗ −0.9161∗ −1.0662∗

(0.1560) (0.2177) (0.2138)
α3 (4–6 weeks) −0.7296∗ −1.1278∗ −1.3048∗

(0.1890) (0.2466) (0.2393)
α4 (6–8 weeks) −0.8085∗ −1.2742∗ −1.4951∗

(0.2186) (0.2683) (0.2586)
α5 (8–10 weeks) −0.9378∗ −1.4367∗ −1.6605∗

(0.2435) (0.2854) (0.2739)
α6 (10–12 weeks) −0.8814∗ −1.4115∗ −1.6707∗

(0.2639) (0.3003) (0.2871)
α7 (12–14 weeks) −1.0729∗ −1.6317∗ −1.8864∗

(0.2806) (0.3134) (0.2985)
α8 (14–16 weeks) −1.0455∗ −1.6380∗ −1.8967∗

(0.2940) (0.3241) (0.3082)
α9 (16–18 weeks) −0.9847∗ −1.6084∗ −1.9253∗

(0.3090) (0.3350) (0.3176)
α10 (18–20 weeks) −0.7121∗ −1.3741∗ −1.7078∗

(0.3181) (0.3447) (0.3249)
α11 (20–22 weeks) −0.8654∗ −1.5498∗ −1.8852∗

(0.3321) (0.3584) (0.3351)
α12 (22–24 weeks) −1.4938∗ −2.1748∗ −2.4569∗

(0.3312) (0.3614) (0.3388)

Standard error in brackets. The age is centered by its mean value (33)
and divided by ten. Both LNBPE and LNBEN are centered by their
mean value. ∗

p < 0.05
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7 Conclusion

In this paper we have discussed and implemented a simple
√
N consistent estimator for the

parameters of a semi-parametric MPH model with unspecified distribution of the unobserved

heterogeneity. This Linear Rank Estimator (LRE) is a GMM estimator that uses moment

conditions to derive estimating equations. It is based on the linear rank statistic. We have

derived the asymptotic properties of the LRE and of the two-stage optimal LRE.

We presented Monte Carlo evidence that the LRE performs well in samples of moderate

size. In contrast to the commonly applied Nonparametric MLE of Heckman and Singer the

LRE provides unbiased estimates of the regression coefficients despite assuming nonexistent

duration dependence.
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A Appendix: Additional tables

Table A.1: Average bias of estimates of the log α’s across the experiments with a piecewise
constant duration dependence on 4 intervals

Estimation method Sample size
500 1000 5000

MLE no hetero α2 −0.0480∗ −0.0319∗ −0.0095∗

(0.0150) (0.0103) (0.0042)
α3 −0.0082 −0.0127 −0.0094∗

(0.0132) (0.0088) (0.0041)
α4 −0.0149 −0.0102 −0.0079

(0.0127) (0.0089) (0.0046)

MLE 2 points α2 0.0282 0.0257 0.0140∗

(0.0194) (0.0158) (0.0053)
α3 0.1131∗ 0.0713∗ 0.0257∗

(0.0237) (0.0175) (0.0064)
α4 0.1480∗ 0.1013∗ 0.0438∗

(0.0273) (0.0213) (0.0076)

NPMLE α2 0.0785∗ 0.0495∗ 0.0211∗

(0.0210) (0.0152) (0.0050)
α3 0.2011∗ 0.1207∗ 0.0389∗

(0.0275) (0.0183) (0.0059)
α4 0.2835∗ 0.1782∗ 0.0612∗

(0.0339) (0.0228) (0.0079)

LRE α2 −0.0333 −0.0234 −0.0074
(0.0230) (0.0184) (0.0066)

α3 0.0391 0.0158 −0.0087
(0.0306) (0.0224) (0.0093)

α4 0.0536 0.0264 −0.0109
(0.0383) (0.0287) (0.0128)

∗
p < 0.05
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Table A.2: Average bias of estimates of the log α’s across the experiments with a piecewise
constant duration dependence on 10 intervals

Sample size Sample size
500 1000 5000 500 1000 5000

MLE no hetero MLE 2 points
α2 −0.0240 −0.0098 0.0068 0.0704∗ 0.0498∗ 0.0464∗

(0.0216) (0.0153) (0.0063) (0.0230) (0.0176) (0.0080)
α3 −0.0162 −0.0089 −0.0090 0.1096∗ 0.0740∗ 0.0420∗

(0.0241) (0.0157) (0.0061) (0.0283) (0.0195) (0.0086)
α4 −0.0609∗ −0.0378∗ −0.0069 0.0958∗ 0.0627∗ 0.0590∗

(0.0207) (0.0135) (0.0054) (0.0273) (0.0204) (0.0098)
α5 0.0073 −0.0035 −0.0115 0.1991∗ 0.1229∗ 0.0690∗

(0.0206) (0.0144) (0.0069) (0.0305) (0.0231) (0.0117)
α6 −0.0097 −0.0024 −0.0059 0.1986∗ 0.1348∗ 0.0766∗

(0.0207) (0.0127) (0.0067) (0.0340) (0.0226) (0.0123)
α7 −0.0593∗ −0.0464∗ −0.0074 0.1617∗ 0.0971∗ 0.0823∗

(0.0226) (0.0154) (0.0072) (0.0364) (0.0269) (0.0135)
α8 −0.0144 −0.0130 −0.0023 0.2161∗ 0.1491∗ 0.0963∗

(0.0204) (0.0151) (0.0070) (0.0360) (0.0277) (0.0141)
α9 −0.0209 −0.0076 −0.0120 0.2309∗ 0.1616∗ 0.0964∗

(0.0243) (0.0149) (0.0075) (0.0388) (0.0284) (0.0137)
α10 −0.0383 −0.0217 −0.0078 0.2324∗ 0.1658∗ 0.1068∗

(0.0206) (0.0153) (0.0071) (0.0379) (0.0287) (0.0154)

NPMLE LREa

α2 0.1790∗ 0.1157∗ 0.0703∗ −0.0648∗ −0.0460∗ 0.0088
(0.0267) (0.0184) (0.0088) (0.0298) (0.0221) (0.0106)

α3 0.3039∗ 0.1880∗ 0.0871∗ −0.0784 −0.0664∗ −0.0070
(0.0397) (0.0239) (0.0099) (0.0446) (0.0315) (0.0136)

α4 0.3730∗ 0.2298∗ 0.1181∗ −0.1236∗ −0.0942∗ −0.0041
(0.0466) (0.0298) (0.0120) (0.0514) (0.0387) (0.0166)

α5 0.5390∗ 0.3248∗ 0.1372∗ −0.0554 −0.0605 −0.0093
(0.0554) (0.0343) (0.0146) (0.0599) (0.0443) (0.0203)

α6 0.5848∗ 0.3649∗ 0.1573∗ −0.0716 −0.0617 −0.0050
(0.0583) (0.0383) (0.0151) (0.0646) (0.0496) (0.0220)

α7 0.5910∗ 0.3554∗ 0.1692∗ −0.1230 −0.1079∗ −0.0078
(0.0646) (0.0413) (0.0170) (0.0698) (0.0530) (0.0245)

α8 0.6916∗ 0.4232∗ 0.1884∗ −0.0844 −0.0792 −0.0042
(0.0678) (0.0429) (0.0179) (0.0782) (0.0570) (0.0258)

α9 0.7346∗ 0.4594∗ 0.1918∗ −0.0921 −0.0819 −0.0157
(0.0734) (0.0441) (0.0191) (0.0782) (0.0578) (0.0278)

α10 0.7758∗ 0.4816∗ 0.2123∗ −0.1230 −0.1038 −0.0117
(0.0736) (0.0486) (0.0209) (0.0803) (0.0637) (0.0309)

a For sample size of 500 based on 93 experiments, because in 7 experiments the esti-
mation procedure did not convergence . ∗

p < 0.05
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Table A.3: Average bias, standard error and RMSE of estimates of parameters of piecewise
constant baseline hazard across the experiments, Second set of Monte Carlo experiments

Duration dependence estimation method
bias std error RMSE

positive duration dependence MLE gamma α2 0.0069 0.0096 0.0118
α3 −0.0149 0.0206 0.0255

NPMLE α2 0.0205 0.0157 0.0258
α3 0.0091 0.0283 0.0298

LRE α2 −0.0130 0.0200 0.0238
α3 −0.0645 0.0329 0.0724

LRE-opt α2 −0.0134 0.0195 0.0236
α3 −0.0533 0.0327 0.0625

negative duration dependence MLE gamma α2 0.0211 0.0111 0.0239
α3 0.0553∗ 0.0229 0.0598

NPMLE α2 0.0345∗ 0.0174 0.0386
α3 0.1079∗ 0.0310 0.1123

LRE α2 0.0369∗ 0.0179 0.0410
α3 0.0643∗ 0.0315 0.0716

LRE-opt α2 0.0358∗ 0.0178 0.0400
α3 0.0627∗ 0.0314 0.0701

U-shaped duration dependence MLE gamma α2 −0.0009 0.0097 0.0097
α3 −0.0338∗ 0.0173 0.0379

NPMLE α2 0.0385∗ 0.0155 0.0416
α3 0.0149 0.0251 0.0292

LRE α2 0.0334 0.0186 0.0383
α3 −0.0215 0.0271 0.0346

LRE-opt α2 0.0261 0.0183 0.0319
α3 −0.0247 0.0263 0.0361

inverse U duration dependence MLE gamma α2 0.0102 0.0104 0.0146
α3 −0.0047 0.0232 0.0237

NPMLE α2 0.0232 0.0140 0.0271
α3 0.0327 0.0295 0.0440

LRE α2 0.0335 0.0183 0.0381
α3 0.0400 0.0336 0.0522

LRE-opt α2 0.0321 0.0182 0.0369
α3 0.0344 0.0336 0.0481

For each DGP (gamma mixture) 100 simulations with 1000 observations each. ∗
p < 0.05
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Table A.4: Average bias, standard error and RMSE of estimates of parameters of piecewise
constant baseline hazard across the experiments, Second set of Monte Carlo experiments,

censored sample

Duration dependence estimation method
bias std error RMSE

positive duration dependence MLE gamma α2 0.0010 0.0135 0.0135
α3 −0.0267 0.0269 0.0379

NPMLE α2 0.0120 0.0177 0.0213
α3 −0.0204 0.0310 0.0371

LRE α2 −0.0148 0.0199 0.0248
α3 −0.0656∗ 0.0329 0.0734

LRE-opt α2 −0.0138 0.0199 0.0242
α3 −0.0599 0.0328 0.0683

negative duration dependence MLE gamma α2 0.0347∗ 0.0131 0.0371
α3 0.0633∗ 0.0277 0.0691

NPMLE α2 0.0417∗ 0.0184 0.0456
α3 0.0898∗ 0.0325 0.0956

LRE α2 0.0378∗ 0.0182 0.0420
α3 0.0539 0.0329 0.0631

LRE-opt α2 0.0375∗ 0.0181 0.0416
α3 0.0501 0.0327 0.0598

U-shaped duration dependence MLE gamma α2 0.0052 0.0133 0.0143
α3 −0.0269 0.0225 0.0350

NPMLE α2 0.0308 0.0173 0.0353
α3 −0.0159 0.0292 0.0333

LRE α2 0.0266 0.0184 0.0323
α3 −0.0321 0.0254 0.0410

LRE-opt α2 0.0263 0.0182 0.0320
α3 −0.0315 0.0253 0.0404

inverse U duration dependence MLE gamma α2 0.0137 0.0123 0.0184
α3 −0.0030 0.0263 0.0264

NPMLE α2 0.0183 0.0149 0.0236
α3 0.0283 0.0305 0.0416

LRE α2 0.0340 0.0185 0.0387
α3 0.0360 0.0335 0.0491

LRE-opt α2 0.0313 0.0183 0.0363
α3 0.0290 0.0333 0.0441

For each DGP (gamma mixture) 100 simulations with 1000 observations each. ∗
p < 0.05
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B Appendix: Proofs

B.1 Proof of Lemma 1

S̃N (θ) is a linearization of S̃N (θ). Because SN (θ) is not continuous in θ it is not possible to

linearize this function by a first order Taylor series expansion. Instead we linearize the hazard

rate of the transformed durations U(θ). From (8) and (9) we obtain

U = h
(

h−1
0 (U0), θ

)

This relates the hazard of the distribution of U(θ) to that of U0

κU (u, θ) = κ0

(

h0

(

h−1(u, θ)
)

)λ
(

h−1(u, θ), α0

)

λ
(

h−1(u, θ), α
) e(β0−β)′X

(

h−1(u,θ)
)

Because h
(

h−1(u, θ), θ
)

= u, we have

∂h−1

∂θ
(u, θ) = −

∂h
∂θ

(

h−1(u, θ), θ
)

∂h
∂t

(

h−1(u, θ), θ
)

The derivatives of κU (u, θ) with respect to θ are

∂κU (u, θ)

∂α

∣

∣

∣

θ=θ0
= −κ′0(u)

∫ h−1

0
(u)

0

∂λ

∂α
(t, α0)e

β′
0
X(t)dt− κ0(u)

∂ lnλ

∂α

(

h−1
0 (u), α0

)

= κ′0(u)

∫ u

0

∂ lnλ

∂α

(

h−1
0 (s), α0

)

ds− κ0(u)
∂ lnλ

∂α

(

h−1
0 (u), α0

)

(B.1)

where the last equality follows from a change of variables in the integral. In the same way we

obtain with a change of variable in the integral

∂κU (u, θ)

∂β

∣

∣

∣

θ=θ0
= −κ′0(u)

∫ h−1

0
(u)

0
λ(t, α0)e

β′
0
X(t)dt− κ0(u)X

(

h−1
0 (u)

)

= κ′0(u)

∫ u

0
X

(

h−1
0 (s), α0

)

ds− κ0(u)X
(

h−1
0 (u)

)

(B.2)

The proof consists of checking the conditions for asymptotic linearity of SN (θ) in Tsiatis (1990)

and a computation of the coefficients in the linear approximation. In Tsiatis’ proof the covariate

in the estimating equation is Xi. We have W
(

u,X
U
i (u, θ)

)

and hence the requirement that this

is a vector of bounded functions. The equations (29), (30) and (31) are stability conditions (see

also Andersen and Gill (1982)). Instead of a mean and variance condition as in Tsiatis (1990),

we have a mean and two covariance conditions. Note that by setting s = u we obtain conditions
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for uniform convergence to Vα(u, u) and Vβ(u, u). The final condition for linearization is that

for u ≤ τ
∣

∣

∣
κU (u, θ) − κ0(u) −

∂κU
∂θ′

(u, θ0)(θ − θ0)
∣

∣

∣
≤ |θ − θ0|2h(u) (B.3)

The assumptions that λ(t, α) is bounded from 0 for all t ≥ 0 and α in the parameter space, that
∣

∣

∂2λ
∂α∂α′ (t, α)

∣

∣ < ∞ for all t ≥ 0 and α in the parameter space, and that X(t) is bounded, imply

that the second derivative of κU (u, θ) with respect to θ is bounded for all u ≤ τ and θ ∈ Θ. This

is sufficient for (B.3) if the parameter space is convex.

Next we linearize SN (θ). Because

dNU
i (u, θ) = dMU

i (u, θ) + Y U
i (u, θ)κUi

(u, θ)du

we have if |θ − θ0| is small

SN (θ) ≈
N

∑

i=1

∫ τ

0

(

W
(

u,X
U
i (u, θ0)

)

−W (u, θ0)
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dM0
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N
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)

Y 0
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]
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The second term is after substitution of (B.1), and (B.2)
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The normalized vectors of coefficients converge to (32) and (33) if (30) and (31) hold. This

proves the lemma.
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B.2 Proof of Lemma 2 and 3

We have
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(B.6)

We first consider the second term. Because K is Lipschitz this is bounded by

CN ǫ

Nb2N
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(B.7)

Moreover by the mean value theorem, we have that for some intermediate βiN , αiN

Ũi(θ̂N ) − Ũi(θ0) =

∫ T̃i

0
λ(t, αiN )eβ

′

iNXi(s)Xi(s)
′ ds(β̂N − β0) + (B.8)
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0
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Because Xi(t) is bounded on [0, τ ] and so is
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∂λ(t,α)
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∣

∣ for all α in an open neighborhood of α0,

(B.8) is bounded by |c′1(β̂N−β0)|+ |c′2(α̂N−α0)
∣

∣ and substitution in (B.7) gives the upperbound
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(B.9)

Because the estimator θ̂N is
√
N consistent, the upperbound converges to 0 in probability if

b2NN
1
2−ǫ → ∞.

Next we consider the first term in (B.6). By subtraction and addition of expected values
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this term is bounded by
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∣

∣

∣

+

+
N ǫ

NbN

N
∑

i=1

∆i

∣

∣

∣

∣

∣

E

[

I
(

Y U
N (Ũi(θ̂N ), θ̂N ) > 0

)

Y
U
N (Ũi(θ̂N ), θ̂N )

K

(

u− Ũi(θ̂N )

bN

)∣

∣

∣

∣

∆i = 1

)]

−

E

[

I
(

Y U
N (Ũi(θ0), θ0) > 0

)

Y
U
N (Ũi(θ0), θ0)

K

(

u− Ũi(θ0)

bN

)
∣

∣

∣

∣

∆i = 1

)]

∣

∣

∣

∣

∣

(B.10)

The first and second term converge to 0 in probability if bNN
1
2−ǫ → ∞. Because of (52) the

final term converges in probability to

N ǫ

NbN

N
∑

i=1

∆i

∣

∣

∣

∣

∣

E

[

H
(

Ũi(θ̂N ), θ̂N
)

K

(

u− Ũi(θ̂N )

bN

)]

− E

[

H
(

Ũi(θ0), θ0
)

K

(

u− Ũi(θ0)

bN

)]

∣

∣

∣

∣

∣

(B.11)

This expression is bounded (both H and K are bounded) by

N ǫ

NbN

N
∑

i=1

∆iE

[

∣

∣

∣
H

(

Ũi(θ̂N ), θ̂N
)

−H
(

Ũi(θ0), θ0
)

∣

∣

∣

]

+

+
N ǫ

NbN

N
∑

i=1

∆iE

[∣

∣

∣

∣

K

(

u− Ũi(θ̂N )

bN

)

K

(

u− Ũi(θ0)

bN

)∣

∣

∣

∣

]

(B.12)

The first time goes to 0 in probability if bNN
1
2−ǫ → ∞ and the second if b2NN

1
2−ǫ → ∞. This

completes the proof.
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