Fan, Elliott; Meng, Xin; Wei, Zhichao; Zhao, Guochang

Working Paper
Rates of return to university education: the regression discontinuity design

IZA Discussion Papers, No. 4749

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Fan, Elliott; Meng, Xin; Wei, Zhichao; Zhao, Guochang (2010) : Rates of return to university education: the regression discontinuity design, IZA Discussion Papers, No. 4749, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/36094

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Rates of Return to University Education: The Regression Discontinuity Design

Elliott Fan
Xin Meng
Zhichao Wei
Guochang Zhao

February 2010
Rates of Return to University Education: The Regression Discontinuity Design

Elliott Fan
Australian National University

Xin Meng
Australian National University
and IZA

Zhichao Wei
Brown University

Guochang Zhao
Australian National University

Discussion Paper No. 4749
February 2010

IZA
P.O. Box 7240
53072 Bonn
Germany

Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

Rates of Return to University Education: The Regression Discontinuity Design

Estimating the rate of return to a university degree has always been difficult due to the problem of omitted variable biases. Benefiting from a special feature of the University Admission system in China, which has clear cutoffs for university entry, combined with a unique data set with information on individual National College Entrance Examination (NCEE) scores, we estimate the Local Average Treatment Effects (LATE) of university education based on a Regression Discontinuity design. To the best of our knowledge, this is the first study to use RD design to estimate the causal effect of a university education on earnings. Our results show that the rates of return to 4-year university education relative to 3-year college education are 40 and 60 per cent for the compliers in the male and female samples, respectively, which are much larger than the simple OLS estimations revealed in previous literature. Since in our sample a large proportion of individuals are compliers (45 per cent for males and 48 per cent for females), the LATEs estimated in this paper have a relatively general implication. In addition, we find that the LATEs are likely to be larger than ATEs, suggesting that the inference drawn from average treatment effects might understate the true effects of the university expansion program introduced in China in 1999 and thereafter.

JEL Classification: I21, I28, J24

Keywords: rate of return to education, regression discontinuity design, China

Corresponding author:

Xin Meng
Division of Economics
Research School of Economics
Australian National University
Canberra 0200
Australia
E-mail: Xin.Meng@anu.edu.au
1 Introduction

It is common knowledge that people who are more educated, on average, earn more than the less educated. A key question, however, is to what extent does higher levels of education cause higher earnings? Perhaps higher earnings are caused by the more-educated having higher ability levels or other unobserved advantages. Many studies have attempted to account for differences in various unobserved endowments by using within-twin comparisons (see, for example, Ashenfelter and Krueger, 1994; Berhman, Rosenzweig, and Taubman, 1994; Miller, Mulvey, and Martin, 1995; Isacsson, 1999; and Bingley, Christinsen, and Jensen, 2009). Other studies have used natural experiments (see, for example, Angrist and Krueger, 1991; Card, 1995; Harmon and Walker, 1995; Acemoglu and Angrist, 2001; Lochner and Moretti, 2004; and Oreopoulos, 2006). Critics, however, have been skeptical about the returns to education estimated using these techniques (critics of within-twin variations include Bound and Solon, 1999; Neumark, 1999; Leigh and Ryan, 2008; and Lee and Lemieux, 2009; criticisms of natural experiments include Bound, Jaeger and Baker, 1995 and Oreopoulos, 2006).

The best way to estimate the causal effect of education on earnings is to use a randomized trial. However, education is a long run investment and measuring the resulting labor market outcomes demands a long window of observation, not to mention that such experiments on humans are not executable. This may be one of the reasons why we have not seen any studies on returns to education using a randomized trial. Recently, Lee and Lemieux (2009) have labeled Regression Discontinuity (RD) design as “a closer cousin to randomized experiments”. To date, however, Oreopoulos (2006) is the only study known to us which uses the Regression Discontinuity design to estimate the causality between one additional year of high school education and labor market earnings.

The main contribution of this paper is to extend the application of RD design to assessing the returns to higher education. Utilizing an essentially unique feature of the Chinese College Admission System (CAS), which uses test scores from a centralized examination—the National College Entrance Examination (NCEE)—as the benchmark to select students, we are able to find well-defined cut-offs for university admission. This, together with a rich survey data set
with information on individual NCEE scores, provides a rare opportunity for us to apply fuzzy RD design with IV to estimate the local average treatment effects (LATE) of the university education. To the best of our knowledge, our study is the first to use RD design to estimate the causal effect of university education on earnings.

While our LATE estimate can be interpreted as the average treatment effect for the subpopulations whose treatment status is induced by the instrument, i.e., compliers, this might not provide information on the average treatment effect (ATE) for the population as a whole, unless the estimate can be extrapolated to all other subpopulations. However, knowing about the ATE is of special importance as this can be used to make predictive inferences about the treatment effect on a randomly selected individual. While it is impossible to consistently estimate the ATE for the subpopulations other than compliers in the presence of omitted variables and measurement error biases and when there exist heterogeneous treatment effects (Imbens and Wooldridge, 2007), in the paper we try to use two strategies to gauge whether the ATE is likely to be larger or smaller than the LATE estimate. First, following a method proposed by Imbens and Wooldridge (2007), we calculate and compare the differences in average earnings between eligible compliers and eligible always-takers, and between ineligible compliers and ineligible never-takers. The magnitudes of these differences can assist in assessing whether the LATE estimate is similar to the treatment effects for non-compliers. Second, we try to judge whether the ATE is larger or smaller than the LATE estimate through comparisons between estimates based on samples with and without observed non-compliers. Details of these strategies are presented in Section 3.

The LATE carries strong policy implications in the Chinese context. In China, where the economy has grown at an unprecedented speed for the past twenty or so years, the annual enrollment at universities skyrocketed from just over 284,000 in 1979 to 5.99 million in 2008, a twenty-fold increase.\(^1\) In particular, China expanded university enrollment by 47 per cent in one year in 1999 and since then the enrollment figure has increased by almost three-fold. As a

\(^1\)China is not alone in expanding education investment. Despite the lack of consensus as to the size of the causal effect of education on earnings, governments in many parts of the world are investing heavily in education. The 1993 World Bank Report *The East Asian Miracle* identifies the rapid growth of human capital as one of the two principal engines of economic growth in East Asian countries (World Bank, 1993).
result, the proportion of the urban labor force with tertiary education increased from just over 10 per cent in 1987 to 40 per cent in 2007 (Meng, Shen, and Xue, 2009). Although studies have shown that the return to education increased during the 1990s, the rate of increase has slowed down significantly since the late 1990s (Zhang, Zhao, Park, and Song, 2005 and Meng et al. 2009). It is unfortunate that the drastic expansion of the tertiary education in the late 1990s was not based on careful assessments of the returns to education, especially the rate of return for the group whose university attainment is more likely to be affected by the expansion policy.

Our estimate of the LATE, which measures the returns to university education for the group whose cut-off scores are marginal, and hence, are more likely to be affected by the university expansion policy, provides an important insight into the effect of the education expansion. In addition, our LATE estimate applies to 45 to 48 per cent of our sample who participated in the NCEE (the compliers), and hence, should have a relatively general relevance.

Using fuzzy RD with IV estimation, we find that the LATE of obtaining a 4-year university degree relative to a three-year college qualification on annual earnings is very large—an increase of around 40% and 60% for males and females, respectively. If compared to the unsuccessful NCEE examinees (all with high school education), the effects are enlarged to around 112% and 95% for males and females, respectively. Compared to the LATE estimates, our analysis suggests that the ATE for the entire population is likely to be smaller—a result consistent to the assumption of heterogeneous treatment effects.

The remainder of the paper is structured as follows. Section 2 describes the institutional background which affects our research design. Section 3 discusses the methodologies. Data are presented in Section 4, which is followed by sections which discuss the RD-LATE results and the results on the ATE. Conclusions are given in Section 7.

2 Background

The Chinese schooling system is quite similar to that of the West. Figure 1 provides a sketch of the system. Students begin primary school at the age of 6-7. The primary school normally

\footnote{School starting age may differ across regions and over time. Currently in most of the urban areas it is 6 years.}
requires six years to complete, and this is followed by three years at junior high school. Upon completion of junior high school, students have the option to continue studying for three years in an academic senior high school or entering a vocational secondary school for 2-4 years. Normally, those who complete the academic senior high school program participate in the NCEE to gain their undergraduate admission. Chinese higher education at the undergraduate level is divided into three-year college and four-year university programs. There are two tiers of four-year universities and the first tier is of higher quality and hence attracts greater central government funding. Within these tiers, undergraduate education is divided into two streams: a humanities/social sciences stream and a sciences stream.

The National College Entrance Examination and College Admission System were established in 1952. During the Cultural Revolution (1966-1976) the system stopped operating for 10 years and resumed after the Cultural Revolution in 1977. The system operates on the basis of universal examination papers and marking standards across all regions in China. The subjects tested for the humanities/social sciences stream include: Politics, Chinese, Math, Foreign Language, and History, while those for the sciences stream include Chinese, Math, Foreign Language, Physics and Chemistry. Although, in general, the total score for different provinces within the same year is the same, it varies over years because the number of subjects tested and the total score of each subject varies over years. For example, in 1977, the year the NCEE first resumed after the Cultural Revolution, only four subjects for each stream were tested (Foreign Language was excluded) and the full score for each subject was set at 100. Thus, the full score for that year was 400. In later years, however, the number of subjects tested increased to five while the full score for each subject was set at 150 instead of 100. Consequently the total score increased to 750. In addition, in a few provinces for several years the original individuals’ test scores

3The two tier system was first established by the central government in 1954. In that year six universities, including Peking University and Tsinghua University, were assigned to the first tier entitlement. By 1963, three years before the Culture Revolution, there were 68 first tier universities. In 1978, two years after the Culture Revolution, the central government released a new list of 88 first tier universities. In the 1990s this number reached 100 (China Ministry of Education, 2006 and Harbin Institute of Technology, 2008).

4For a detailed discussion of the NCEE and CAS see Meng et al. (1989).

5The exact subjects tested for different streams in different years vary slightly.

6For detailed information on which province implemented "standardized scores", in which years, and the years they did so, please see Data Appendix.
were standardized based on their ranking in the distribution of the scores for all students in the province for that year. The full standardized scores are higher than the total original scores. These differences will have some implications later in the paper when we try to normalize the scores across different provinces and different years. We will discuss these implications in detail in the Data Section.

Admissions into either a four-year university or a three-year college (either first or second tier) are based on the NCEE scores. Before they take the NCEE, students normally need to choose either a humanities-social sciences or a science stream for their undergraduate study. In addition, they also need to fill in an application form. This form normally has three panels. The first two panels are for four-year university degrees. A student is allowed to apply for up to 4 first tier and up to 4 second tier universities. The third panel is for three-year college degrees, where a student can also apply for up to 4 universities/colleges. The application forms may be submitted before or after the students take the NCEE. In some cases, submission may be after they know their final score. In any case, the application occurs before the publication of the cutoff scores for the different types of universities. In this paper, though, we do not consider the division between the first and second tier universities, nor do we examine the rate of return for the three-year colleges, as we only have limited cutoff score data for the first tier universities and the three-year colleges.

Once all the NCEE results are known, each province will determine their own cut-offs for the different tier university and three-year colleges, based on the quota given to the province and the distribution of the current year NCEE results. This design ensures that before participating in the NCEE no student would have any knowledge of the cutoff scores. In addition, the cut-offs are normally set at a percentile which is 10 to 20 per cent higher than that implied by the quota. In other words, 10 to 20 per cent more students may have their NCEE scores above the cut-offs than the actual number of students who can be admitted. These cutoff scores will then be made publicly available through schools, local education bureaus, local newspapers, internet and television channels.

7The quota is first given by the central government to each university. The universities then divide their quota to different provinces.
The university/college admission process follows the rule of “better school, earlier admission”. In particular, after the NCEE scores are known, all the application forms submitted, and cut-offs published, the first tier universities will start their admission process and continue until all their quotas are filled, followed by the second tier universities, and then the three-year colleges. Based on the cut-offs published by each province and the number of admissions (quota) the university/college has allocated to the province, each school processes the admissions in priority order. That is, students who exceeded the cut-off score and listed a particular university as their first preference will be considered first, based on the rank of their NCEE score among all students who applied to that school. If the university’s quota for the province is less than the number of students in the province whose NCEE scores exceeded the cutoff, those whose NCEE scores ranked lower may not be admitted. If the quota is greater than the number of students with NCEE scores exceeding the cut-off, the school will process students who listed the school as their second preference and so on. In this case, the process will stop at the point where all the quotas are filled. Inevitably, due to lack of demand, some schools may end up admitting students whose NCEE scores are below the cut-off score.

Three features of this admission system are worth emphasizing. First, for any individual student, the cut-offs are exogenously determined. Second, the design ensures that before participating in the NCEE, a student will have no knowledge about the exact cut-off points, implying that it is impossible for any student to exercise complete control over his/her test score around the cutoff points. This feature satisfies the primary requirement for a valid RD design.

The third feature is about non-compliance. The discussion above indicates that the cut-offs will be fuzzy by design. This is because: (i) Some universities may admit students with scores lower than their cut-off because of lack of interest in the university; (ii) Normally the cut-offs are set at the point where there are 10 to 20 per cent more students with scores exceeding the cut-offs than the quotas. Hence, students with NCEE score above the cut-offs may not necessarily be admitted; (iii) Because students submit their application forms before they know the cut-offs for different schools and sometimes even before they know their own NCEE scores, some students may mis-judge their own ability/performance. Hence, some with higher scores than the cutoff may miss out on admission because they listed lower schools as their first and...
second preferences in their application. Finally, there may also exist corruption, which may allow individuals with a lower score than cutoff scores be admitted. These non-compliance cases will have significant implications on our research design and we will discuss the issue in detail in the Methodology Section.

3 Methodology

In this paper, we examine the causal effect of having a four-year university degree on earnings. Consider the following equation:

\[\ln W_i = \alpha + \beta ED_i + \gamma X_i + \epsilon_i \]

(1)

where \(\ln W_i \) refers to the logarithm of annual earnings for individual \(i \); \(ED_i \) is a dummy variable indicating whether the individual possesses a four-year university degree; \(X_i \) is a vector of control variables, and \(\epsilon_i \) is the error term. The OLS estimation of the Equation (1) may provide a biased estimate of \(\beta \) because \(\epsilon \) may include components, such as ability and drive, which are correlated with \(ED \) and \(\ln W \). To resolve this problem, we adopt the Regression Discontinuity (RD) design.

The basic idea of the RD design is to utilize the fact that a treatment is given to a group of people for whom a measurable characteristic (forcing variable) is equal to, or greater than, an exogenously set threshold value. This generates a sharp discontinuity in the treatment, which is a function of the forcing variable. If individuals are unable to precisely manipulate the forcing variable it is reasonable to attribute the discontinuous jump in the outcome to the causal effect of the treatment (Lee and Lemieux, 2009). To avoid the possible omitted variable problem, Heckman and Robb (1985) propose estimating the effect of the treatment by adding a flexible function of the forcing variable into the estimating equation. Thus, in our case Equation (1) may be re-written as:

\[\ln W_i = \alpha + \beta ED_i + \gamma X_i + k(C_i) + \epsilon_i, \]

(1a)

\[ED_i = 1\{C_i + u_i \geq \tau\}, \]

(1b)
where \(C_i \) is the NCEE test score for individual \(i \), \(k(C_i) \) is a flexible function of \(C \), which can be a vector of high order polynomial terms, and \(\bar{C} \) is the cutoff score. Equation (1b) indicates the eligibility rule: if individual’s test score is equal to or greater than \(\bar{C} \), they will gain admission to a four-year university. Otherwise, they will be placed in the control group.

In the case where the forcing variable perfectly predicts treatment receipt (\(u_i \) is a constant, a sharp RD design) and the treatment effect is heterogeneous, the estimate emanating from the RD design is a ‘weighted average treatment effect’. The weights are directly proportional to the \textit{ex ante} probability of an individual’s realized value for the forcing variable being close to the cutoff point (Lee and Lemieux, 2009).

In the case where the forcing variable does not relate to the treatment receipt in a deterministic way (\(u_i \) is a variable), we have a “fuzzy” RD design. In this case the OLS estimation of Equation (1a) is biased. However, an IV estimate can provide an unbiased estimate of a weighted local average treatment effect (LATE) for the compliers if the treatment effect is heterogeneous, and of the weighted average treatment effect (ATE) for the population if the treatment effect is homogeneous across subpopulations of various compliance types. The natural candidate for the instrument should be the eligibility rule (Hahn, 2001 and Lee and Lemieux, 2009).

In this paper, we have a fuzzy RD design. Although whether or not a student passes the cutoff score is the most important criterion for university admission, there does exist noncompliance. As discussed in the background section, there are situations where individuals with scores lower than the cut-offs are admitted and those with results higher than the cutoff scores missed out on admission. In this case we may rewrite Equation (1b) as:

\[
Pr(ED_i = 1|C_i \geq \bar{C}) > Pr(ED_i = 1|C_i < \bar{C}).
\]

(1b2)

Using a dummy variable indicating whether an individual’s NCEE score (\(C_i \)) is equal to or greater than the cutoff (\(\bar{C} \)) as the instrument (in other words, eligibility for admission), and providing that the assumptions of monotonicity and excludability are satisfied,\(^8\) we are able

\(^8\)As pointed out by Hahn et al. (2001), it requires two assumptions – ‘monotonicity’ and ‘excludability’ – for the LATE to be interpreted as a causal effect. The monotonicity assumption states that the forcing variable crossing the cutoff point cannot cause some individuals to accept and others to reject the treatment at the same time. The excludability assumption demands that the forcing variable crossing the cutoff point can only affect
to estimate an unbiased local average treatment effect (LATE). The LATE gives us the causal effect of attending a four-year university on earnings for a group of individuals whose university participation is induced by their eligibility status.

The empirical importance of estimating the LATE in our case lies in its policy relevance. As discussed in the Introduction Section, over the past ten or more years, China has implemented a policy which significantly expanded university admission. To understand whether and to what extent the policy is beneficial, it is important to know the magnitude of the causal effect of university education on the group of individuals whose university attainment can be affected by the policy.

In the case where the effect of university attainment on earnings is the same for the compliers and non-compliers (homogenous effect), the LATE can also be the average treatment effect (ATE) for the entire population. To gauge whether in our case the treatment effect is homogenous, we follow Imbens and Wooldridge (2007) to examine the unconditional mean payoffs for the never-takers and always-takers, which gives us some information on which to infer whether the LATE is close to the ATE. More specifically, we calculate the proportions of compliers, never-takers, and always-takers in the population, and then use these to calibrate separately the average earnings for (1) compliers if eligible, (2) compliers if ineligible, (3) always-takers if ineligible, and (4) never-takers if eligible. Imbens and Wooldridge (2007) argue that if a substantial difference in the levels of earnings is found between (1) and (3) and/or (2) and (4), it is then less plausible that the LATE is indicative of the treatment effects for other compliance types.

In addition, while we are unable to observe eligible always-takers or ineligible never-takers because they are mixed with compliers, we can directly identify the ineligible always-takers and eligible never-takers as their non-compliance is revealed in the data. Thus, one straightforward way to analyze the treatment effects on non-compliers is to compare the results from regressions with, and without, these observed non-compliers in the sample. To do so, we estimate an OLS regression using the full sample, and compare the estimated treatment effect to that from the same regression with the observed non-compliers excluded from the sample.

the outcome variable through its impact on the treatment.
Excluding observed non-compliers has two effects on the estimated ATE (see the illustrative model detailed in Appendix B): First, it reduces the bias caused by the correlation between ϵ_i and ED_i. Second, it increases the proportion of compliers in the sample, thus putting more weight on the effect of compliers in the estimated ATE. The sign of the two effects combined is generally ambiguous, and is dependent on the signs and magnitudes of the two effects.

However, under the assumption that the correlation between ϵ_i and ED_i is positive—as commonly believed in the literature and can be indirectly detected in our data—the exclusion of the observed non-compliers should reduce the bias caused by the endogeneity, and hence reduce the estimated return to education relative to the estimate from the full sample. In this situation, if we observe that the estimated result increases rather than reduces, we may infer the sign of the second effect. This can help us to assess whether the ATE for the population is greater or smaller than the LATE.

The purpose of this paper is to estimate the returns to a four-year university education. Throughout the paper the treatment group is defined as individuals who possess a four-year university degree, whereas the two different control groups are defined as: 1) individuals who possess three-year college degrees, and 2) individuals who attended the NCEE but were not admitted to either college or university. Hereafter, the two control groups are referred to as ‘three-year college group’ and ‘not-admitted group’, respectively.

4 Data

The main data used in this paper are from the Urban Residents Education and Employment Survey (UREES) conducted in 2005 by the National Bureau of Statistics (NBS) of China. The survey covers 10,000 urban households from 12 provinces. It uses the same NBS Urban Household Income and Expenditure Survey (UHIES) sampling frame, which is based on Probability Proportional to Size (PPS) sampling with stratifications at the provincial, city, county, town, and neighborhood community levels. Households are randomly selected within each chosen neighborhood community (see Han, Wailes, and Cramer, 1995; Fang, Zhang, and Fan, 2002;

9The Provinces where the survey was conducted are: Beijing, Shanxi, Liaoning, Heilongjiang, Zhejiang, Anhui, Hubei, Guangdong, Sichuan, Guizhou, Shaanxi, and Gansu.
Gibson, Huang, and Rozelle, 2003; and Meng, Gregory and Wang, 2005 for detailed discussion of the sampling).

In addition to individual demographic characteristics, income and wages in 2004, the UREES focuses mainly on the education and employment status of household members. There are several unique features of the survey. The one which is particularly useful for this study is that the survey asks a set of retrospective questions regarding the respondent’s participation in the National College Entrance Examination. The questions include whether the individual participated in the NCEE, if so, the year and province of the participation, the total test score, whether he/she was admitted, the type of the education they completed (three-year college or four-year university), the name of the university/college, and the subject major. In addition to the information on tertiary education, the survey also asks about the quality of the senior high school the individual attended and the household’s relative income/expenditure level at the time when the individual graduated from senior high school.

The purpose of this study is to evaluate the rate of return to a four-year university education relative to a three-year college or senior high school education (the two control groups). To this end, our sample includes everybody who has completed at least senior high school education, participated in the NCEE from 1977 onwards, was working and reported positive earnings for the year 2004. Thus, those who participated in the NCEE after the year 2000 are excluded as they were not due to graduate from universities until 2005 and hence did not report labor market outcome variables in the survey. Similarly, those who participated in the NCEE before 1977 are also excluded because of the lack of information on cutoff scores for this earlier period. Restricting the sample to our interest groups and excluding observations with missing values on the NCEE test score, education level and other important demographic variables our final sample includes 702 individuals with a four-year university degree (the treatment group), 693 with a three-year college degree (the 1st control group), and 919 who were not admitted to the university (the second control group). The dependent variable used is logarithm of the 2004 annual earnings.10

10 We also have a sub-sample of individuals with information on their hourly earnings and we test the sensitivity of our estimation with annual or hourly earnings in Section 5.3.
Table 1 reports the summary statistics of the variables for the three subsamples. On average, the treatment group earn 31 and 59 per cent higher wages than the first and second control groups, respectively. The difference in earnings is larger for females than for males. The average age of the treatment and the 1st control groups is about the same, but the not-admitted group is on average around 4 years older. Males are more likely to have a higher level of education than their female counterparts, whereas very little difference is detected in terms of individual ethnicity across different education levels or gender groups. Father’s years of schooling is slightly higher for the treatment group than for the 1st control group, while for both these groups this variable is more than two years higher than the 2nd control group. This is especially true for women. Furthermore, significantly more individuals in the treatment group are from richer families than are their counterparts in the two control groups, especially for women. This is indicated by the proportion of individuals who reported that, at the time of their senior high school graduation, their family’s relative consumption level was very high for their city. In addition, almost half of the sample in the treatment group attended the best local senior high schools. The ratio for those with three-year college education and those with a senior high school education is 16 and 26 percentage points lower, respectively. Finally, as expected, the average NCEE test score is highest for the treatment group, followed by the three-year college degree holders, and then those who failed to be admitted to either of these two education levels.

Another important data set we use in this paper is the cutoff scores for four-year university over the period 1977 to 2000 across different provinces for the humanities-social sciences stream and the sciences stream. We collected these data ourselves from various sources, including published books (for example, Meng, Yi, Xue, Qi, Xu, Liu, and Xia, 1988), local newspapers, and some official internet sites.11 Despite our widespread search effort, there are still 8 per cent of the year-province cells with missing cutoff data.12 To handle the problem of the missing cut-offs, we use existing data to impute missing values. The basic idea is to use variations within a province over time and within one year across different provinces to extrapolate the missing cutoff scores. The details of our imputation method are presented in the Data Appendix.

11Detailed data sources are listed in the Data Appendix.
12We have some information on the cutoff scores for the first tier universities and for the three-year colleges. But a much larger proportion of them are missing.
While in our main estimation the imputed cut-offs are included, we do test the robustness of excluding them. Figure 2 presents the NCEE cut-offs for the humanities-social sciences and the sciences streams by year. The hollow triangles show the original scores, while the solid dots are the imputed scores. The figure shows a significant increase in the value of the cutoff scores between 1977 and 1988, and since then they have not been changed much. As discussed in the background section, the early increase in cutoff scores was mainly due to the change in the NCEE settings (variations in the number of subjects examined and the full scores for each subject).

Another important point revealed from Figure 2 is that since the late 1980s there are a few outlier provinces, where the cut-off scores are much higher than those for other provinces. These outliers are the provinces which adopted the standardized scores (see Background Section for detailed discussion). Finally, the figure also shows that including or excluding imputed missing cutoff scores does not change the ranges and the trend of the cutoff scores.

As indicated earlier, the range and the distribution of the NCEE scores vary significantly across years, and in some years, even across provinces within the same year. In addition, the cutoff scores are also different for different provinces over different years. It is, therefore, important to standardize the NCEE scores so that our forcing variable can be a comparable variable across different years and different provinces. To do so, we take residuals from a linear regression of raw scores on a full set of the provincial and year dummy variables, plus a dummy variable indicating whether a province was using standardized scores in a particular year.

5 **Fuzzy RD results—LATE**

5.1 **Validity of the RD design**

Before presenting our fuzzy RD results (LATE), it is important to conduct the validity tests for the RD design. The most important assumption underlying the validity of the RD design is that each individual cannot exercise precise control over the forcing variable around the cutoff point. Although this assumption cannot be directly tested (Lee and Lemieux, 2009), it is difficult to imagine that individuals have precise control over the test scores around the cutoff point, based on our description of the Chinese National College Entrance Examination.
and the Chinese College Admission system. This is mainly because the cut-offs are determined after the NCEE is finished each year. However, because our data on NCEE scores are collected retrospectively through individual self reporting rather than through administrative records, it is possible that individuals have forgotten what their original scores were and reported them based on their knowledge of the cutoff scores.\footnote{This issue is similar to the misreporting problem raised in Lemieux and Milligan (2008).} If this is the case, our estimation may suffer from a problem of violating this important assumption.

Fortunately, there are two implicit features of the RD underlying assumption that may be testable. First, if individuals do not have precise control over the forcing variable around the cutoff point, the density of the forcing variable should not exhibit any discontinuity around the cutoff. Second, the means of the baseline covariates should be continuous at the cutoff. Below, we test these two implications.

We adopt a test suggested by McCrary (2008) to examine whether the density of the forcing variable exhibits any discontinuity around the cutoff. A jump in the density at the cutoff is direct evidence of some degree of sorting around the threshold, and should cast serious doubt about the appropriateness of the RD design (Lee and Lemieux, 2009). The result of the t-test proposed by McCrary (2008) cannot reject the hypothesis that the density distribution is continuous around the cutoff at the 95% significant level for both males ($t = 1.44$) and females ($t = 1.64$), though for females the test result is marginal.\footnote{The figure presenting the density distribution of the normalized difference taken between each individual’s raw NCEE score is available upon request from the authors.}

To test whether the conditional means of the observable characteristics are continuous at the cutoff, we first present a group of graphs to show that the outcome and treatment variables are discontinuous at the cutoff (Figures 3 and 4) but all the other covariates are not (Figure 5). The plots in these figures are non-parametric predictions from local polynomial smoother and the dotted lines are the 95% confidence interval. The figures are plotted for the positive and negative normalized test scores, separately.

Figures 3 and 4 show a very clear discontinuity of the outcome (log annual earnings) and treatment (having a four-year university degree) variables at the cutoff point for both male and female samples. Figure 4 also reveals that we do not have a sharp discontinuity, but rather a
fuzzy one for both males and females.

Figure 5 tests whether the conditional means of baseline covariates included in our RD regression (age, father’s years of schooling, and whether the household consumption level was high relative to the local average at the time the individual graduated from the senior high school) jump in a discontinuous fashion at the cutoff point. The top and bottom panels present the figures for the male and female samples, respectively. The figure shows that none of the variables are statistically significantly different at the cutoff for either sample. The slight difference in age for the male and female samples and the difference in father’s years of schooling for the male sample are all within the 95% confidence interval.

More formally, following Lee and Lemieux (2009) we also estimate the Seemingly Unrelated Regression for the three covariates included to test whether they are jointly significantly different at the two sides of the cutoff point. Two sets of results are reported in Table 2, one regressing the covariates on the dummy variable that indicates eligibility for university, and the other on the dummy variable for university and using eligibility as the IV. We observe no statistically significant difference at the two sides of the cutoff in any of the regressions separately; and the \(\text{Chi}^2 \) tests also reject the non-hypothesis that they are jointly significant.

5.2 Estimation results

As discussed earlier, due to the fuzziness of our treatment, we employ the IV approach to estimate the local average treatment effect (LATE). The instrument used is the ‘eligibility’ dummy variable indicating whether an individual passed the cutoff score in the year and province where he/she participated in the NCEE. Our estimations compare the four-year university group with two control groups—the three-year college group and the not-admitted group.

The control variables include age, father’s years of schooling, a dummy variable indicating household consumption level at the time of high school graduation, and a vector of regional dummy variables which is used to capture regional cost of living differences. The flexible function of the forcing variable \(k(C_i) \) includes a 5-order polynomial function of the standardized NCEE scores.\(^{15}\) The results are presented in Table 3 for male (left panel) and female (right panel).

\(^{15}\) We examine the robustness to various polynomial orders later in this section.
panel) samples and for using three-year college (Panel A) and not-admitted (Panel B) as control
groups. Within each quadrant, we also present the results using the full sample and those using
the sample with optimal bandwidth of the forcing variable.

Before discussing the estimated results we first examine the results from the first stage and
reduced form estimations. These results are presented in columns 1 and 2 of the right and left
panels in Table 3. The results from the first stage estimation show that the instrument is very
strong in all the cases, as indicated by the F-tests presented at the bottom row of each panel.
All of them pass the rule-of-thumb test of F-statistics being greater than 10. The reduced form
results all have the correct signs and are statistically significant.

The IV results are revealed in the last column of each quadrant. All the results are positive
and statistically significant at the 1 to 5 per cent significance level. Let us examine the results
using three-year college as the control group first (Panel A). Relative to this control group, a
four-year university degree provides 45 and 52 per cent additional earnings to male and female
individuals, respectively. These estimates are based on the full sample. However, as the basic
idea of RD design is to evaluate the effect at the cutoff, it is important to choose the bandwidth
of estimation so that it optimizes the tradeoff between precision and bias. Following Lee and
Lemieux (2009) we use the cross-validation (CV) method to estimate the optimal bandwidth
for each subsample, the subsequent results using the three-year college as the control group are
presented at the bottom of the Panel A. Compared to the full-sample results these results using
optimal bandwidth change slightly. The RD-IV estimate for the male sample reduces to 0.40
and for the female sample increases to 0.60. These results focus more on the information closer
to the cutoff points and hence are less biased.

Considering that there is only a difference of one year education between the treatment
(four-year university) and control group (three-year college), the estimates presented above
seem to be very large if we ignore the quality difference between the two types of education.
Previous estimates for the return to one year of education have been much lower. For example,
using a simple OLS estimation, Zhang et al. (2005) report that the average rate of return to
an additional year of schooling in urban China is around 10 per cent in 2001, which is less
than one quarter of our estimation. To further illustrate the difference between our fuzzy-RD
estimates and the OLS estimates, we estimate the OLS regression for the same treatment and control groups, using our data as well as the data from National Bureau of Statistics (NBS) Urban Household Income and Expenditure survey for the year 2004 (the same year as our data). We find that the returns to four-year university degree relative to three-year college degree for males and females are 26 and 34 per cent, respectively, using our own data; and 22 and 27 per cent, respectively, using the NBS data. These estimates are around half of what we estimated using the fuzzy-RD design.16

We also compare the four-year university education with the not-admitted group (Panel B of Table 3). We find that relative to this control group, a four-year university education accounts for 81 and 93 per cent of average annual earnings for the male and female samples, respectively. Using the optimal bandwidth, the subsequent results are 112 and 95 per cent, respectively. It is not surprising that using this control group leads to higher estimated returns to university education than when the three-year college group is used as the control group. This is because in our current comparison, the difference in years of education is four years. Thus, the rates of return to an additional year of schooling for these comparisons are 28 and 24 per cent for the male and female samples, respectively. Once again using the same NBS data we find that relative to the group that only completed senior high school as benchmark, the OLS estimates of the returns to four-year university education for males and females are 58 and 82 per cent, respectively, or 15 and 21 per cent for each additional year of schooling.17 Using a simple OLS and a normal IV estimation for a combined male and female sample, Heckman and Li (2004) find that the returns to a four-year university education relative to a senior high school education is 29 and 56 per cent, respectively, for urban China. These are again lower than our RD estimates, especially for the male sample.18

16 The regression using our own data includes the same covariates, whereas for using the NBS data it includes age and its squared term, the provincial dummy variables, and an indicator for having four-year university degree. The results using our own data are presented in Table 6. The results using the NBS data are available upon request from the authors.

17 Using our own data with a simple OLS estimation we find 52 and 73 per cent returns for male and female samples, respectively.

18 These estimates are around 72 and 59 percentage points higher than those estimated using the 3-year college group as the control group. Although not precise, these differences imply positive returns to the three-year college education.
5.3 Robustness tests

We conduct several robustness tests. First we test whether imposing different functional forms on the forcing variable function (i.e. function \(k(C) \) in Equation (1a)) makes a difference. We use from the 1st order to the 8th order of the polynomial terms of the forcing variable. The results are presented in the first panel of Table 4. We find that the estimated coefficients across different specifications only change slightly, especially those for the male sample, which seem to stabilise at the 5th or higher orders of polynomial specifications. For the female sample, the change is more obvious, but not significant enough to cause any concern.

The second panel of Table 4 presents results excluding all the individuals whose year-province cutoff scores are missing but were previously included using predicted values extrapolated from the available cutoff data for other year-province cells. These results are very close to the IV results presented in Table 3.

We also test the robustness of our results using a subsample whose information on hours worked is available. In the survey only the household heads and spouses are asked the questions on the number of days per week and number of hours per day they worked in 2004. The last panel of Table 4 presents the results using log hourly earnings as well as log annual earnings as dependent variables based on the consistent sub-sample of individuals who reported information on hours worked. We find that with the restricted sample, the estimated returns using log annual earnings are reduced somewhat, relative to the full sample as shown in Table 3. However, on average, the result using log hourly earnings seems to suggest a higher return to four-year university degree for both males and females when compared to the three-year college group. The results remain almost the same when using those not-admitted as the control group.

6 Gauging the direction of the difference between the LATE and ATE

The preceding section presented the local average treatment effect (LATE) of four-year university education on earnings for the compliers. As indicated in Oreopoulos (2006), the average
treatment effect (ATE) for the population is also important, as it offers a theoretically more stable parameter than the LATE when considering potential gains for anyone receiving university education. In this section, therefore, we try to gauge whether the ATE and the LATE are different for our samples and the direction of the differences, even though it is difficult to precisely estimate the ATE in the present of heterogeneous treatment effect (Oreopoulos, 2006).

To conduct such an evaluation, we do two things.

First, following Imbense and Wooldridge (2007) we calculate the following proportions: (i) those who went to university but were not eligible (observed always-takers) out of total ineligibles (π_{oa}); (ii) those who did not go to university but were eligible (observed never-takers) out of total eligibles (π_{on}); (iii) those who went to university and were eligible (including compliers and unobserved always-takers) out of total eligibles ($\pi_{ce} + \pi_{noa}$); and (iii) those who did not go to university and were not eligible (including compliers and unobserved never-takers) out of total ineligibles ($\pi_{cne} + \pi_{non}$). The fact that eligibility status is random implies that $\pi_{oa} = \pi_{noa}$, and $\pi_{on} = \pi_{non}$. Thus we can calculate the proportions of eligible and ineligible compliers (π_{ce} and π_{cne}).

Using these calculated proportions we then calculate the unconditional average earnings for the eligible compliers, ineligible compliers, observed always-takers and observed never-takers.\(^{19}\) These calculated results for the full samples and the samples with the optimal bandwidths using the three-year college as the control group are reported in Table 5. The results in Table 5 show that in almost all the cases, and in all the samples, the difference in payoff between the compliers and never-takers and between the compliers and always-takers is quite large. For example, for the male full sample, the average log earnings for eligible compliers is 10.01, while for always-takers it is 9.76, which is 24 per cent lower. Similarly, for ineligible compliers the average log earnings is 9.45 while for never-takers it is 9.71. These differences indicate that the effects are more likely to be heterogeneous, and hence, the estimated LATE for the compliers is less likely to carry over to the non-compliers.

Knowing the heterogeneous effects and the estimated magnitude of LATE, can we say anything about the possible direction of the ATE? Should it be larger or smaller than the LATE?

\(^{19}\)For the detailed method of these calculations, see Imbense and Wooldridge (2007).
To understand these issues, we employ the second method introduced in the Methodology Section. To this end, we compare the results obtained from (i) the simple OLS without controlling for the forcing variable; (ii) OLS controlling for the forcing variable, and (iii) OLS controlling for the forcing variable but for the sample excluding observed always-takers and never-takers. These results are presented in Table 6 for the male (left panel) and female (right panel) samples, using the two different control groups (Panels A and B).

The results when using three-year college as the control group show that the estimated rates of return to four-year university education from the simple OLS estimation of Equation (1a) (columns 1 and 4 of Table 6) are 0.26 and 0.33 for the male and female samples, respectively. These are biased estimates of the ATE due to two possible reasons. One is the correlation between the error term (ϵ_i) and education (ED_i), and the other one is the possible heterogeneous effect across different groups. Ignoring the second reason and assuming the correlation between ϵ_i and ED_i is positive, these estimates are upward biased estimates of the ATE. However, taking into account the possible heterogeneous effect, it is unclear which direction the bias may be.

After controlling for the forcing variable (standardized NCEE test score), which, to some extent, proxies for unobserved ability, the level of bias due to the omitted variable should be reduced. Columns 2 and 5 of Table 6 presents these results. The estimated return to a four-year university degree for male and female samples reduced to 0.21 and 0.31, respectively. These comparisons imply that the part of unobserved ability that can be proxied by the forcing variable, presumably an important element of ϵ_i, is indeed positively correlated with ED_i. We may, therefore, infer from this finding that the remaining part of unobserved ability may also be positively correlated with ED_i.

The next columns (columns 3 and 6) exhibit the results using the same estimation method (OLS with control for forcing variable) but excluding observed always-takers (individuals who were not eligible but went to a university) and never-takers (individuals who are eligible but did not go to a university). Assuming a positive correlation between ϵ_i and ED_i and the existence of the heterogeneous effect of ED_i on lnW_i between compliers and non-compliers, excluding observed non-compliers may have two effects: First, it will further reduce the bias generated by the the correlation between ϵ_i and ED_i because such a correlation only exists for non-compliers.
Thus, dropping these non-compliers should further reduce the size of the estimated coefficient on ED_i. Second, it will change the weight between the complier and non-complier groups. Note that in the full sample we have both observed and unobserved never-takers and always-takers. Excluding the observed non-complier group increases the weight for the complier group. If the treatment effect for the compliers (LATE) is larger than ATE for the total sample, then excluding the observed non-compliers will result in a larger estimate than when using the full sample. This is exactly what we found in columns 3 and 6 of Table 6 (compared to the results presented in columns 2 and 5 of Table 6). This finding suggests that perhaps the rate of return for compliers is higher than that for non-compliers and that the ATE should be smaller than LATE. The above pattern is consistently observed across all our samples.

Another important point to note is that the proportions of compliers in our male and female samples are 45 and 48 per cent, respectively. These are quite large proportions of the population, and hence the LATE estimates should have relatively general implications. In particular, our LATE estimates carry some policy implications for the potential effect of the post-1999 university expansion in China, which allows individuals who otherwise would have failed to acquire a university degree. Our estimates suggest that at the cut-off point the four-year university degree brings a 40 to 60 per cent increase in earnings relative to the three-year college group and 112 to 95 per cent increase relative to the not-admitted group. These estimates are particularly accurate for individuals whose score is around the admission thresholds and who are most likely to have been affected by the university expansion policy. That being said, we must acknowledge that our results may not carry full weight in predicting the possible effect of the 1999 university expansion program as most students admitted after the university expansion had not yet entered the labor market in 2004.

7 Conclusions

Exploiting the special feature of the Chinese University Admission system and a unique data set that provides individuals’ NCEE scores, we have estimated the local average treatment effect (LATE) of university education on earnings using fuzzy RD design. The empirical results
suggest that the average return to obtaining a four-year university degree for the compliers is 40 and 60 per cent for the male and female samples, respectively, using the three-year college group as the control group, and 112 and 95 per cent, respectively, if the not-admitted group is used the control group. These estimates are much larger than the rate of return to university education revealed in the existing literature for urban China for a similar period.

Further investigation in the paper indicates that in our sample a relatively large proportion of individuals are compliers (45 per cent for males and 48 per cent for females). Thus, the LATE estimated in this paper should have relatively general implications.

We also find that the average earnings for the always-takers and never-takers are very different from those of the compliers, indicating heterogeneous treatment effects across different complier types. Furthermore, we find that the treatment effect for the compliers is likely to be higher than that for the non-compliers, and hence, the LATE is higher than the ATE.

Given that the literature is very limited in applying RD design to estimating the returns to education, this paper makes an important contribution to the literature by applying RD design to evaluate the returns to higher education.

Empirically, the LATE constitutes valuable implications for the effects of university expansion in China, which exhibits an increasing trend of annual enrollment at universities from the late 1970s to the 1990s, followed by a drastic three-fold jump since 1999. The LATE estimates offer solid evidence on the earnings effect on individuals whose scores are around the admission thresholds and who are most likely to have been affected by the university expansion. Thus, the findings of higher LATE estimates, as opposed to the ATE, suggest that, in general, the inference drawn from average treatment effects might understate the true effects of the university expansion. That being said, these estimates are by no means direct assessments of the university expansion policy.
References

application of selection on observables and unobservables", Quarterly Journal of Economics,
107(4), 1491-1527.

Fang, Cheng, Xiaobo Zhang and Shenggen Fan (2002), "Emergence of urban poverty and in-

Gibson, John, Jikun Huang and Scott Rozelle (2003), "Improving estimates of inequality and
poverty from urban china’s household income and expenditure survey", Review of Income
and Wealth, 49(1), 53-68.

Hahn, Jinyong, Petra Todd and Wilbert Van der Klaauw (2001), "Identification and estimation
of treatment effects with a regression-discontinuity design," Econometrica, 69(1), 201-209.

Han, Tong, Eric J. Wailes, and Gail L. Cramer 1995, "Rural and urban data collection in the
people’s republic of China", In The China Market Data and Information Systems. Proceedings
of WRCC-101 Symposium, Washington, D.C.

Heckman, James and Xuesong Li. 2004. “Selection bias, comparative advantage and heteroge-
neous returns to education: evidence from China in 2000”, Pacific Economic Review 9(3),
pp.155-171.

Isacsson, Gunnar (1999), "Estimates of the return to schooling in Sweden from a large sample
of twins", Labour Economics, 6, 471-489.

Lee, D. and T. Lemieux (2009), "Regression discontinuity designs in economics", NBER Work-
ing Paper 14723.

Leigh, A. and C. Ryan (2008), "Estimating returns to education using different natural experi-
ment techniques", Economics of Education Review, 27(2), 149-160.

Lochner, Lance and Enrico Moretti (2004), "The effect of education on crime: evidence from
McCrary, Justin (2008), "Manipulation of the running variable in the regression discontinuity

Meng, Mingyi, Yi, Guohua, Xue, Yipeng, Qi, Lin, Xu, Zhong, Liu, Ziqiang, Xia, Guangjin,
(1988), The Complete Collection of China’s College Entrance Examination (Zhong Guo Gao
Kao Da Quan), Jilin People’s Press, Changchun.

Meng Xin, Robert Gregory and Youjuan Wang (2005), "Poverty, inequality, and growth in

Meng, Xin, Kailing Shen and Xue Sen (2009), "Economic reform, education expansion, and
earnings inequality for urban males in China, 1988-2007", Unpublished manuscript, Canberra:
Australian National University.

Miller, Paul, Charles Mulvey and Nick Martin (1995), "What do twins studies reveal about the
economic returns to education? a comparison of Australian and U.S. findings", American

Neumark, D. (1999), "Biases in twin estimates of the return to schooling", Economics of Edu-
cation Review, 18(2), 143-148.

Oreopoulos, Philip (2006), "Estimating average and local average treatment effects of education
when compulsory schooling laws really matter", American Economic Review, 96(1), 152-175.

Zhang, Junsen, Yaohui Zhao, Albert Park and Xiaoqing Song (2005), "Economic returns to
Table 1: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Std. Dev.</td>
</tr>
<tr>
<td>4-Year University (treatment group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(annual earnings)</td>
<td>9.82 0.64</td>
<td>9.87 0.65</td>
<td>9.75 0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>34.74 7.42</td>
<td>36.20 7.51</td>
<td>32.36 6.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for males</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for Han ethnicity</td>
<td>0.95</td>
<td>0.95</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's years of schooling</td>
<td>9.03 4.65</td>
<td>8.30 4.86</td>
<td>10.21 3.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for high family cnsmpt. level a</td>
<td>0.12</td>
<td>0.09</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for quality of the SHS b: Best</td>
<td>0.47</td>
<td>0.49</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEE c test score</td>
<td>469.18 89.86</td>
<td>467.73 90.92</td>
<td>471.53 88.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>702</td>
<td>435</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Year College (1st control group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(annual earnings)</td>
<td>9.51 0.65</td>
<td>9.59 0.63</td>
<td>9.40 0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>34.82 7.04</td>
<td>35.81 7.27</td>
<td>33.45 6.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for males</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for Han ethnicity</td>
<td>0.96</td>
<td>0.97</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's years of schooling</td>
<td>8.71 4.55</td>
<td>8.21 4.69</td>
<td>9.39 4.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for high family cnsmpt. level a</td>
<td>0.09</td>
<td>0.10</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for quality of the SHS b: Best</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEE test score</td>
<td>423.24 86.99</td>
<td>419.74 89.20</td>
<td>428.07 83.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>693</td>
<td>402</td>
<td>291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior High Completion (2nd control group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(annual earnings)</td>
<td>9.24 0.67</td>
<td>9.42 0.63</td>
<td>9.08 0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>39.25 5.68</td>
<td>39.24 5.82</td>
<td>39.26 5.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for males</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for Han ethnicity</td>
<td>0.97</td>
<td>0.98</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's years of schooling</td>
<td>6.94 4.43</td>
<td>6.60 4.47</td>
<td>7.22 4.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for high family cnsmpt. level a</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for quality of the SHS b: Best</td>
<td>0.21</td>
<td>0.22</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEE test score</td>
<td>288.57 103.11</td>
<td>294.96 108.68</td>
<td>283.23 98.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>919</td>
<td>418</td>
<td>501</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a: Dummy for family consumption level being high relative to the level in the city the respondent lived at the time of senior high school graduation. b. Senior high school. c.National College Entrance Examination
Table 2: Validity test for joint significance of baseline covariates

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th></th>
<th>Female Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>Father years of</td>
<td>High HH</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schooling</td>
<td>consumption</td>
<td></td>
</tr>
<tr>
<td>SUR:</td>
<td>0.246</td>
<td>-0.066</td>
<td>-0.013</td>
<td>-0.492</td>
</tr>
<tr>
<td>Eligible</td>
<td>0.05 [0.553]</td>
<td>0.05 [0.371]</td>
<td>0.02 [0.022]</td>
<td>0.09 [0.636]</td>
</tr>
<tr>
<td>5 order polynomial terms of forcing variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provisinal fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1255</td>
<td>1255</td>
<td>1255</td>
<td>1059</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>Chi²-test on joint significance</td>
<td>Chi²=0.53, prob>chi²=0.92</td>
<td></td>
<td>Chi²=4.78, prob>chi²=0.19</td>
<td></td>
</tr>
<tr>
<td>3SLS</td>
<td>Age</td>
<td>Father years of</td>
<td>High HH</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schooling</td>
<td>consumption</td>
<td></td>
</tr>
<tr>
<td>4-Year Uni (Eligible as IV)</td>
<td>0.800</td>
<td>-0.214</td>
<td>-0.043</td>
<td>-1.307</td>
</tr>
<tr>
<td></td>
<td>0.04 [1.807]</td>
<td>0.05 [1.206]</td>
<td>0.01 [0.072]</td>
<td>1.659</td>
</tr>
<tr>
<td>5 order polynomial terms of forcing variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provisinal fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1255</td>
<td>1255</td>
<td>1255</td>
<td>1059</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.13</td>
</tr>
<tr>
<td>Chi²-test on joint significance</td>
<td>Chi²=0.53, prob>chi²=0.91</td>
<td></td>
<td>Chi²=4.80, prob>chi²=0.19</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in brackets
Table 3: Results from the Fuzzy Regression Discontinuity Design

Panel A: 4-year university vs. 3-year college

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th>Female Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td>Reduced form</td>
</tr>
<tr>
<td>4-year university degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility</td>
<td>0.295*** [0.042]</td>
<td>0.134*** [0.052]</td>
</tr>
<tr>
<td>Observations</td>
<td>837</td>
<td>837</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.233</td>
<td>0.338</td>
</tr>
<tr>
<td>F-test for instrument</td>
<td>48.11</td>
<td></td>
</tr>
</tbody>
</table>

Sample with optimal bandwidth:

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th>Female Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td>Reduced form</td>
</tr>
<tr>
<td>4-year university degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility</td>
<td>0.288*** [0.045]</td>
<td>0.115** [0.053]</td>
</tr>
<tr>
<td>Observations</td>
<td>723</td>
<td>723</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.337</td>
</tr>
<tr>
<td>F-test for instrument</td>
<td>41.82</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: 4-year university vs. not admitted

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th>Female Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td>Reduced form</td>
</tr>
<tr>
<td>4-year university degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility</td>
<td>0.255*** [0.037]</td>
<td>0.205*** [0.060]</td>
</tr>
<tr>
<td>Observations</td>
<td>853</td>
<td>853</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.486</td>
<td>0.280</td>
</tr>
<tr>
<td>F-test for instrument</td>
<td>46.16</td>
<td></td>
</tr>
</tbody>
</table>

Sample with optimal bandwidth:

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th>Female Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td>Reduced form</td>
</tr>
<tr>
<td>4-year university degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility</td>
<td>0.149*** [0.043]</td>
<td>0.167** [0.068]</td>
</tr>
<tr>
<td>Observations</td>
<td>610</td>
<td>610</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.421</td>
<td>0.264</td>
</tr>
<tr>
<td>F-test for instrument</td>
<td>11.96</td>
<td></td>
</tr>
</tbody>
</table>

*Note: Other control variables included are: age and its squared term, father’s years of schooling, dummy for high level household consumption, provincial dummies, and 5 order of polynomial of standardized test scores.
Standard errors in brackets, * significant at 10%; ** significant at 5%; *** significant at 1%*
Table 4: Sensitivity tests for RD estimation

<table>
<thead>
<tr>
<th>1. Functional form test</th>
<th>Linear</th>
<th>Quadratic</th>
<th>Cubic</th>
<th>4 orders</th>
<th>5 orders</th>
<th>6 orders</th>
<th>7 orders</th>
<th>8 orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni vs. college Males</td>
<td>0.386**</td>
<td>0.401**</td>
<td>0.415**</td>
<td>0.407**</td>
<td>0.455**</td>
<td>0.460***</td>
<td>0.449**</td>
<td>0.457**</td>
</tr>
<tr>
<td></td>
<td>[0.153]</td>
<td>[0.156]</td>
<td>[0.167]</td>
<td>[0.167]</td>
<td>[0.177]</td>
<td>[0.177]</td>
<td>[0.184]</td>
<td>[0.183]</td>
</tr>
<tr>
<td>Uni vs. college Females</td>
<td>0.421***</td>
<td>0.433**</td>
<td>0.421**</td>
<td>0.462**</td>
<td>0.490**</td>
<td>0.489**</td>
<td>0.528**</td>
<td>0.561**</td>
</tr>
<tr>
<td></td>
<td>[0.152]</td>
<td>[0.170]</td>
<td>[0.187]</td>
<td>[0.195]</td>
<td>[0.198]</td>
<td>[0.198]</td>
<td>[0.212]</td>
<td>[0.219]</td>
</tr>
<tr>
<td>Uni vs. not-admitted Males</td>
<td>0.668***</td>
<td>0.670***</td>
<td>0.737***</td>
<td>0.722***</td>
<td>0.806***</td>
<td>0.793***</td>
<td>0.827***</td>
<td>0.894***</td>
</tr>
<tr>
<td></td>
<td>[0.098]</td>
<td>[0.185]</td>
<td>[0.215]</td>
<td>[0.212]</td>
<td>[0.235]</td>
<td>[0.256]</td>
<td>[0.287]</td>
<td>[0.304]</td>
</tr>
<tr>
<td>Uni vs. not-admitted Females</td>
<td>0.881***</td>
<td>0.895***</td>
<td>0.931***</td>
<td>0.905***</td>
<td>0.929***</td>
<td>0.892***</td>
<td>0.880***</td>
<td>0.930***</td>
</tr>
<tr>
<td></td>
<td>[0.122]</td>
<td>[0.166]</td>
<td>[0.191]</td>
<td>[0.202]</td>
<td>[0.214]</td>
<td>[0.255]</td>
<td>[0.240]</td>
<td>[0.177]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Excluding predicted cutoffs</th>
<th>Uni vs. college Males</th>
<th>Uni vs. college Females</th>
<th>Uni vs. not-admitted Males</th>
<th>Uni vs. not-admitted Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-year university degree</td>
<td>0.485***</td>
<td>0.475**</td>
<td>0.848***</td>
<td>0.912***</td>
</tr>
<tr>
<td></td>
<td>[0.182]</td>
<td>[0.215]</td>
<td>[0.242]</td>
<td>[0.226]</td>
</tr>
<tr>
<td></td>
<td>775</td>
<td>521</td>
<td>784</td>
<td>716</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. with hourly earnings</th>
<th>In(hourly earnings)</th>
<th>In(annual earnings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni vs. college</td>
<td>Uni vs. not-admitted</td>
<td>Uni vs. college</td>
</tr>
<tr>
<td>Males</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>4-year university degree</td>
<td>0.484**</td>
<td>0.360*</td>
</tr>
<tr>
<td></td>
<td>[0.188]</td>
<td>[0.196]</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>691</td>
<td>432</td>
</tr>
</tbody>
</table>

Standard errors in brackets, * significant at 10%; ** significant at 5%; *** significant at 1%
Table 5: Estimated proportion and average log earnings for different compliance types

<table>
<thead>
<tr>
<th></th>
<th>Male Sample</th>
<th>Female Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always takers (1)</td>
<td>0.28</td>
<td>0.23</td>
</tr>
<tr>
<td>Never takers (2)</td>
<td>0.26</td>
<td>0.29</td>
</tr>
<tr>
<td>Compliers (3)</td>
<td>0.45</td>
<td>0.48</td>
</tr>
<tr>
<td>Average log earnings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated always takers (4)</td>
<td>9.76</td>
<td>9.58</td>
</tr>
<tr>
<td>Untreated never-takers (5)</td>
<td>9.71</td>
<td>9.46</td>
</tr>
<tr>
<td>Treated compliers (6)</td>
<td>10.01</td>
<td>9.96</td>
</tr>
<tr>
<td>Untreated compliers (7)</td>
<td>9.45</td>
<td>9.33</td>
</tr>
<tr>
<td>(6)-(4)</td>
<td>0.24</td>
<td>0.38</td>
</tr>
<tr>
<td>(7)-(5)</td>
<td>-0.26</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

Optimal bandwidth sample:		
Proportions		
Always takers (1')	0.31	0.26
Never takers (2')	0.28	0.28
Compliers (3')	0.41	0.46
Average log earnings		
Treated always takers (4')	9.78	9.57
Untreated never-takers (5')	9.70	9.44
Treated compliers (6')	9.94	9.91
Untreated compliers (7')	9.47	9.42
(6')-(4')	0.15	0.34
(7')-(5')	-0.23	-0.03

Note: (i) Under the monotonicity assumption, there is no definer. The sample, therefore, is comprised of three groups – the compliers, the never-takers, and the always-takers. (ii) The randomness of the instrumental variable implies that the ratio of eligible individuals to ineligible individuals is constant across the three groups. Thus, the proportion of always-takers, either (1) or (1’), is calculated as ineligible individuals who went to university (their non-compliance is thus revealed) out of total ineligible individuals. Similarly, the proportion of never-takers, either (2) or (2’), is calculated as eligible individuals who did not go to university (their non-compliance is thus revealed) out of total eligible individuals. Finally, the proportion of compliers, either (3) or (3’) is calculated as one minus the proportions of always-takers and never-takers. (iii) Using these proportions, and the formula provided by Inbens and Wooldridge (2007), we are able to calibrate the expected log earnings for the four groups listed in (4) to (7) (and (4’) to (7’)).
Table 6: Guaging the average treatment effects

Panel A: 4-year university vs. 3-year college

<table>
<thead>
<tr>
<th></th>
<th>Simple OLS</th>
<th>OLS with forcing variable</th>
<th>OLS with forcing var. & excl. observed non-compliers</th>
<th>Simple OLS</th>
<th>OLS with forcing variable</th>
<th>OLS with forcing var. & excl. observed non-compliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-year university degree</td>
<td>0.255***</td>
<td>0.207***</td>
<td>0.246***</td>
<td>0.338**</td>
<td>0.312***</td>
<td>0.325***</td>
</tr>
<tr>
<td></td>
<td>[0.038]</td>
<td>[0.041]</td>
<td>[0.066]</td>
<td>[0.049]</td>
<td>[0.053]</td>
<td>[0.089]</td>
</tr>
<tr>
<td>Observations</td>
<td>837</td>
<td>837</td>
<td>604</td>
<td>557</td>
<td>557</td>
<td>407</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.341</td>
<td>0.352</td>
<td>0.371</td>
<td>0.310</td>
<td>0.318</td>
<td>0.343</td>
</tr>
</tbody>
</table>

Panel B: 4-year university vs. not admitted

<table>
<thead>
<tr>
<th></th>
<th>Simple OLS</th>
<th>OLS with forcing variable</th>
<th>OLS with forcing var. & excl. observed non-compliers</th>
<th>Simple OLS</th>
<th>OLS with forcing variable</th>
<th>OLS with forcing var. & excl. observed non-compliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-year university degree</td>
<td>0.520***</td>
<td>0.439***</td>
<td>0.496***</td>
<td>0.727***</td>
<td>0.710***</td>
<td>0.732***</td>
</tr>
<tr>
<td></td>
<td>[0.041]</td>
<td>[0.053]</td>
<td>[0.079]</td>
<td>[0.053]</td>
<td>[0.063]</td>
<td>[0.091]</td>
</tr>
<tr>
<td>Observations</td>
<td>853</td>
<td>853</td>
<td>671</td>
<td>767</td>
<td>767</td>
<td>623</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.317</td>
<td>0.327</td>
<td>0.355</td>
<td>0.358</td>
<td>0.360</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Note: Other control variables included are: age and its squared term, father’s years of schooling, dummy for high level household consumption at the time of high school graduation, provincial dummies, and 5 order of polynomial of standarized test scores (not in simple OLS estimation).

Standard errors in brackets, * significant at 10%; ** significant at 5%; *** significant at 1%
Figure 1: The education system in China

- Primary school: 6 years
- Junior high school: 3 years
- Academic Senior high: 3 years
- Vocational secondary: 2-4 years
- 4 year university
- 3 year college

Figure 2: NCEE Cutoff Scores, 1977-2000

Cutoffs for Humanity-Social Sciences

Cutoffs for Sciences

△ Original H&SS cutoffs for 4-year Uni
● Predicted H&SS cutoffs

△ Original science cutoffs for 4-year Uni
● Predicted science cutoffs
Figure 3: Test of the discontinuity of the outcome variable at the cutoff

Figure 4: Test of the discontinuity of the treatment variable at the cutoff
Figure 5: Test of the discontinuity of covariances at the cutoff
A Data Appendix:

This appendix provides detailed information on how the cut-offs of the NCEE scores are collected. Essentially, there is no central source for a complete data set of the cut-offs. Thus, we collected these data from multiple, dismantled sources – a tedious and time-consuming task. Despite our relentless search, the resulting collection is less than comprehensive. Thus, we also provide details in this appendix about how we impute the predicted values for the missing cutoff data.

A.1 Data sources

The data were retrieved from three sources: (1) published books, monographs and theses; (2) archives of local newspapers and periodicals of the provinces and cities that participated in the 2004 Urban Residents Education and Employment survey; (3) websites, such as web-pages of China Education Online. The complete list of these materials, except the newspapers, is provided in the reference at the end of this Appendix.20

In a limited number of cases the recorded cut-offs from different sources are not consistent. Thus, we prepare two versions of the cutoff points – version A is based on Meng et. al. (1988), while version B is based on the data reported in newspapers.

The following points present the details of missing values and some inconsistency in the cutoff data.

(1) In each province-year cell, there are in general six different cutoffs. Firstly, there are three levels of cutoffs: 1) admissions into first-tier universities; 2) second-tier universities; 3) three-year colleges. Then, at each of these three levels, there are two different cut-offs – one for admissions into the humanity and social sciences stream and the other for the sciences stream. Approximately eight percent of the cut-offs for the second-tier universities are missing, while the missing values amount to 57% in the cases of three-year colleges, and 43% for the first-tier universities, respectively.

(2) In Shandong province in 1991 and 1992, different major cities announced their own

20 The long list of references regarding issues of newspapers from which we obtained our information is available upon request from the authors.
cutoff points. We use the average values of these cut-offs at the city level to form the provincial figure.

(3) In 1991 and 1992 there were three examination papers for Sciences in Hunan, Hainan and Yunnan provinces, and the corresponding cutoff points are inconsistent. In these cases, again, we use average values.

(4) The NCEE scores in some provinces and in some years are standardized: Guangdong (1988-2006), Shaanxi (1994-2001), Fujian (1997-2001), Hainan (1993-2009), Shandong (1996-2000), Henan (1994-2000) and Guangxi (1996-2004). The basic idea of standardization is to re-scale the raw scores according to some presumed distribution. The cut-offs for standardized scores are usually much higher than for the raw scores, as indicated in Figure 2.

A.2 Imputing the missing cut-offs

We use existing data to impute for missing values for the second-tier university for the purpose of this paper. The basic idea of this imputation is to use within-province variations over time and within-year variations over provinces to extrapolate the missing cutoff scores. The strategy is detailed as follows: Let \(C_{2L} \) denotes the cut-offs for second-tier universities and the corresponding predicted values are represented by \(\hat{C}_{2L} \). The model used to predict the missing values is:

\[
C_{2L}^{PL} = \alpha + \beta D_P + \gamma D_t + \delta D_S + \epsilon_{Pt}
\]

(\text{A1})

where the subscripts \(P \) and \(t \) represent province and year, and \(S \) indicates whether scores are standardized. Thus, \(D_P, D_t \) and \(D_S \) are three sets of dummy variables for province, year and standardized scores, and \(\epsilon_{Pt} \) is the error term. We run this regression using non-missing data, and use the predicted values for the missing cutoff scores.

There are many more missing values in the cutoff lines for first-tier universities and three-year colleges. Therefore, the loss of accuracy may be substantial if we rely on Equation (A1) to impute the missing cut-offs. An alternative method that can enhance the accuracy is to use Equation (A1) with the dependent variable replaced by \((C_{1L} - C_{2L})\), or \((C_{CL} - C_{2L})\), where \(C_{1L} \) and \(C_{CL} \) indicate the cut-offs for the first tier universities and four-year colleges, respectively.
In this case, the predicted cutoff points for first-tier universities/three-year colleges, are merely the sum of the predicted dependent variable and C_{2L} (if missing). This method should be an improvement on than Equation (A1) because it imposes useful information – the relationship that C_{1L} is greater or equal to C_{2L}, and C_{1C} is smaller or equal to C_{2L}.

Due to the large number of missing values, the above model may generate unreasonable predicted cut-offs. In these cases we can correct the values by using linear interpolation and other methods.

A.3 References

Admission Office of Harbin Engineering University 1988, Bao Kao Da Xue Zhi Nan, Harbin Engineering University Press, Harbin.

Li, Lifeng 2006, ‘The Researches into the Regional Equity of Entrance Examination in China (Wo Guo Gao Xiao Zhao Sheng Kao Shi Zhong De Qu Yu Gong Ping Yan Jiu)’, PhD thesis, Xiamen University, Xiamen.

Meng, Mingyi; Yi, Guohua; Xue, Yipeng; Qi, Lin; Xu, Zhong; Liu, Ziqiang; and Xia, Guangjin, 1988, The Complete Collection of China’s College Entrance Examination (Zhong Guo Gao Kao Da Quan), Jilin People’s Press, Changchun.

Yan, Mingming 1998, Hubei Gao Xiao Zhao Sheng 20 Nian, China University of Geosciences Press, Wuhan.

In this section, we use a simple model to illustrate the effects of excluding the observed non-compliers on the OLS estimate of the return to university education. The model can be depicted as:

\[
Y_i = \alpha + \beta_i ED_i + \varepsilon_i,
\]

\[
ED_i = \phi + \theta Z_i + u_i,
\]

\[
\varepsilon_i = \rho_i u_i + \mu_i,
\]

where \(Y_i \) represents the logarithm of income for individual \(i \); \(ED_i \) is a binary variable that equals to one if individual \(i \) receives the treatment and zero if otherwise; \(Z_i \), also a binary variable, indicates whether individual \(i \) is eligible to the treatment; \(\theta \) is assumed positive and is between 0 and 1; \(\varepsilon_i \) and \(u_i \) are the error terms, both are mean-zero, and \(E[\varepsilon_i|Z] = 0 \) and \(E[u_i|Z] = 0 \). Given the monotonicity assumption, the population can be partitioned into three subpopulations: compliers, always-takers and never-takers. The treatment effects for these three types of individuals are assumed to be different, and are denoted by \(\beta_c, \beta_a, \) and \(\beta_n \), respectively.

For compliers, \(\rho_i \) is zero because \(ED_i \) is completely determined by \(Z_i \), so \(u_i \) is also determined and is uncorrelated with \(\varepsilon_i \). For always-takers and never-takers, \(\rho_i \) is generally not zero and for illusory simplicity, we further assume that \(\rho_a = \rho_n = \rho \).

Conditional on \(ED_i \), the expected \(Y_i \) is:

\[
E[Y_i|ED_i] = \alpha + E(\beta_i|ED_i)ED_i + E(\varepsilon_i|ED_i)
\]

\[
= \alpha + E(\beta_i|ED_i)ED_i + E(\rho u_i + \mu_i|ED_i)
\]

\[
= \alpha + E(\beta_i|ED_i)ED_i + E[\rho_i(ED_i - \phi - \theta Z_i)|ED_i]
\]

\[
= [\alpha - \phi E(\rho_i|ED_i) - \theta E(\rho_i Z_i|ED_i)] + E[\beta_i + \rho_i|ED_i] ED_i
\]

\[
= [\alpha - \phi E(\rho_i|ED_i) - \theta E(\rho_i Z_i|ED_i)] + [E(\beta_i|ED_i) + E(\rho_i|ED_i)] ED_i
\]
where the first term on the right, \([\alpha - \phi E(\rho_i|ED_i) - \theta E(\rho_i Z_i|ED_i)])\), refers to the constant term, and the coefficient of \(ED_i\) is \([E(\beta_i|ED_i) + E(\rho_i|ED_i)]\), where \(E(\beta_i|ED_i)\) is a weighted average of \(\beta_{c}, \beta_{a},\) and \(\beta_{n}\), with the proportion of each type of individuals as the weight. In addition, the bias term, \(E(\rho_i|ED_i)\), is not zero, so the OLS estimation of this Equation leads to a biased estimate of \(\beta\).

If we exclude the observed always-takers and never-takers, the sample reduces to a subset of observations whose treatment status \((ED_i)\) is consistent with the eligibility status \((Z_i)\). Thus, the expected \(Y_i\) conditional on \(ED_i\) turns to:

\[
E[Y_i|ED_i = Z_i] = \alpha + E(\beta_i|ED_i = Z_i)ED_i + E(\varepsilon_i|ED_i = Z_i)
\]

\[
= \alpha + E(\beta_i|ED_i = Z_i)ED_i + E(\rho_i + \mu_i|ED_i = Z_i)
\]

\[
= \alpha + E(\beta_i|ED_i = Z_i)ED_i + E[\rho_i (ED_i - \phi - \theta Z_i)|ED_i = Z_i]
\]

\[
= \alpha - \phi E(\rho_i|ED_i = Z_i) + E[\beta_i + \rho_i (1 - \theta)|ED_i = Z_i]ED_i
\]

\[
= \alpha - \phi E(\rho_i|ED_i = Z_i) + E(\beta_i|ED_i = Z_i) + (1 - \theta) E(\rho_i|ED_i = Z_i)ED_i
\]

The coefficient of \(ED_i\) is now \([E(\beta_i|ED_i = Z_i) + E(\rho_i (1 - \theta)|ED_i = Z_i)]\). Comparing this to the corresponding coefficient based on the full sample presents two differences. First, if \(\rho\) is assumed to be positive, then \(E(\rho_i|ED_i = Z_i)\) is smaller than \(E(\rho_i|ED_i)\) because \((1 - \theta) < 1\), and \(E(\rho_i|ED_i = Z_i)\) is smaller than \(E(\rho_i|ED_i)\) as the proportion of positive entries of \(\rho\) is smaller in the former case. That is, excluding the observed non-compliers reduces the bias. Second, the proportion of compliers is higher in \(E(\beta_i|ED_i)\) than in \(E(\beta_i|ED_i = Z_i)\), so a higher weight is assigned to \(\beta_c\) in \(E(\beta_i|ED_i)\).

In this paper we find that the OLS estimate of the treatment effect declines when the observed non-compliers are dropped out of the sample. Under the assumption that \(\rho\) is positive, this finding implies that the treatment effect on compliers (that is, the LATE) is larger than the average treatment effect on non-compliers.