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ABSTRACT 
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Survival Times with Application in the Health and Social Sciences*

 
In this paper we perform inference on the effect of a treatment on survival times in studies 
where the treatment assignment is not randomized and the assignment time is not known in 
advance. Two such studies are discussed: a heart transplant program and a study of 
Swedish unemployed eligible for employment subsidy. We estimate survival functions on a 
treated and a control group which are made comparable through matching on observed 
covariates. The inference is performed by conditioning on waiting time to treatment, that is 
time between the entrance in the study and treatment. This can be done only when sufficient 
data is available. In other cases, averaging over waiting times is a possibility, although the 
classical interpretation of the estimated survival functions is lost unless hazards are not 
functions of waiting time. To show unbiasedness and to obtain an estimator of the variance, 
we build on the potential outcome framework, which was introduced by J. Neyman in the 
context of randomized experiments, and adapted to observational studies by D. B. Rubin. 
Our approach does not make parametric or distributional assumptions. In particular, we do 
not assume proportionality of the hazards compared. Small sample performance of the 
estimator and a derived test of no treatment effect are studied in a Monte Carlo study. 
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1 Introduction

In order to illustrate the type of studies we address in this paper, let us consider the
Stanford heart transplant data set previously analyzed by, e.g., Crowley and Hu (1977)
and Kalbfleisch and Prentice (1980). The data set consists in survival times of potential
heart transplant recipients after their acceptance into the Stanford heart transplant
program. The choice of heart recipients is not randomized in the program. In such an
observational study, background characteristics affecting both treatment assignment and
survival time must be controlled for when evaluating the effect of heart transplantation.
One of the peculiarities of the Stanford program, which complicates the analysis (see
Keiding, 1995), is that individuals may change treatment status during the follow-up
time, being first control (not transplanted) and later treated (transplanted). Thus,
survival times are censored due both to external reasons (e.g., end of study, drop out)
and to internal reasons (treatment).

In this paper, we study the non-parametric estimation of a treatment effect in studies
of the Stanford program type. Following Fredriksson and Johansson (2004) we estimate
survival functions on a treated and a control group which are made comparable through
matching on observed covariates. We contribute by developing a formal framework that
allows us to show the unbiasedness of the matching estimator utilized. We also pro-
vide an estimator for its variance. This is done by building on the potential outcome
framework, which was introduced by Neyman (1990, translation of a text published in
1923) in the context of randomized experiments, and adapted to observational studies
by Rubin (1974); see also Holland (1986) for a review. We perform inference by con-
ditioning on waiting time to treatment, that is time between the entrance in the study
and treatment. This can be done only when sufficient data is available. In other cases,
averaging over waiting times is a possibility, although the classical interpretation of the
estimated survival functions is lost unless hazards are not functions of the waiting times.

Our approach does not make parametric or distributional assumptions. In particu-
lar, we do not assume proportionality of the hazards compared, which is equivalent to a
constant multiplicative treatment effect. Other matching estimators have been proposed
in the literature for similar situations, see, e.g., Lechner (1999) and Sianesi (2004). How-
ever, none of these consider the estimand we are interested in, namely the difference in
survival function obtained from taking or not taking treatment. An exception, however,
is Heller and Venkatraman (2004) where a non-parametric test of the no-treatment effect
hypothesis is presented. Their proposal does, however, not allow for the actual estima-
tion of a treatment effect. Also related to our work is the large literature on parametric
modelling for the estimation of a treatment effect on survival times, see, e.g., Robins
(1999), Hernán, Brumback and Robins (2001) and Abbring and van der Berg (2003).
For instance, Robins and co-authors also use a potential outcome framework although
focusing on parametric modelling of the data generating mechanism. The parametric
approach has the advantage of being able to deal with more complex situations such as,
e.g., the application of sequences of treatments. This is achieved, however, at the price
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of imposing structure (stronger assumptions) on the data generating mechanism.
Observational studies of the Stanford program type may be found in other fields

than medical applications, including labour economics, where the interest often lies on
the estimation of the effect of a training program (treatment) on, e.g., unemployment
duration. Such a study is presented in Section 5. While we have found the Stanford
heart transplant study to be appropriate as a red thread to illustrate the concepts
and methods developed in the paper because of its simplicity and previous use in the
literature, the case study of Section 5 is a more realistic application, because of the
richness of background information on the individuals. Moreover, the large number of
individuals in the study allows us to conduct inference conditionally on waiting time.

The remainder of the paper is organized as follows. The next section describes the
inferential issues of interest on an intuitive level. Section 3 presents the potential outcome
framework and its associated Neyman’s inference, and generalizes it to survival time
outcomes. For non-censored real valued outcomes this approach has a long history for
observational studies, see, e.g., Cochran and Rubin (1973), Rubin (1973a, 1973b, 1990b),
and Rosenbaum and Rubin (1984, 1985). In Section 4 the treatment effects of interest are
defined. These are basically differences in hazard and survival functions for the treated
and the controls. These functions are made comparable through matching on observed
covariates while conditioning on waiting time to treatment. Thus, matching estimators
are used. They are shown to be unbiased and an estimator of their variance is deduced.
In Section 5, we use a large data-set on Swedish unemployed and estimate the effect of
an employment subsidy on their unemployment duration. In Section 6, a Monte Carlo
study is conducted to analyze the finite sample performance of the proposed estimators
and a corresponding test of no treatment effect. Finally, the paper is concluded in
Section 7.

2 Matching treated with controls

We, purposely, begin by presenting the inferential issues on an intuitive level and delay
its formal justification to Section 3 and 4 in order to improve the readability of the
paper. We use the Stanford study described in the introduction as background for the
discussion. The survival times of the individuals in the study are schematically displayed
using Lexis diagrams in Figure 1. In Panel A of the figure, survival times of treated
individuals, i.e., patients having received a heart transplant, are represented. Survival
times without treatment, i.e. for control individuals, are displayed in Panel B. Note
that individuals of Panel A are also included in Panel B since treated patients are not
treated until they obtain treatment. Treatment assignment is not made at entrance in
the study but only when a heart becomes available. Hence, deleting treated patients from
the control group would imply a conditioning on survival outcomes, thereby yielding a
biased analysis.

In both panels, the x-axis represents calendar time with the origin at the beginning of
the study, while the y-axis represents time with origin at the time patients are treated in
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Panel A, and at the time patients enter the study in Panel B. Treatment assignments are
represented by an open circle in both panels. The diagonal lines represent the history of
each patient, starting with their entrance in the study and finishing with death (denoted
with a filled circle) or censoring. The solid part of the line highlights the survival time
(outcome) of interest, while the dashed part of the line is part of the survival history,
however, not part of the outcome.

We want to know which controls can be compared to which treated in order to
evaluate the effect of the treatment on the survival times (solid diagonal lines).

 

W 

W Treatment starts 

Follow-up time 

Entrance time 

Follow-up time 

Panel A 

Panel B 

Figure 1: The x-axis represents calendar time and the y-axis represents time with origin
when the patients are treated (Panel A) or enter the study (Panel B). Treatments are
represented by an open circle. The diagonal lines represent the history of each patient.
Exits (deaths) are denoted with a filled circle, and W denotes the first treated patient
waiting time.

Randomized treatment: Assume first that treatment is randomized, that is each
time a heart transplant can be performed a patient is randomly chosen for treatment
from those still alive. Then, in contrast with usual randomized studies, the treated
and controls cannot directly be compared, because on average the observed survival
durations after transplantation are shorter than the survival durations for the controls.
This problem can be corrected by conditioning inference on waiting time. For that
purpose, you consider all patients having been transplanted after a given waiting time
W , and use as a control group all those that have survived and have not been treated
until time W . This is illustrated in the Lexis diagrams of Figure 1 for the first patient to
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receive a transplantation in Panel A. She/he has waited time W before being treated and,
therefore, controls for this treated patient are all those patients passing the horizontal
dotted-dashed line alive and untreated in Panel B.
Observed treatment: Randomization of the treatment is seldom possible for ethical
and/or practical reasons. In the Stanford heart transplant program there was no ran-
domization of treatment (e.g., donors and patients must be compatible) and, therefore,
one should not only condition for the waiting time W but also match for other pre-
treatment characteristics. In this context, the crucial assumption is that conditional on
waiting time and the observed pre-treatment characteristics affecting both the treatment
and the outcome, the treatment assignment can be considered as randomized-like, see
Rosenbaum and Rubin (1983). This assumption is sometimes called unconfoundedness
assumption. Thus, for a patient having been transplanted, a control having survived
until time W without being treated is selected such that her/his pre-treatment charac-
teristics are similar to the treated. This is a so called matching procedure to construct
a relevant control group; see, e.g., Rubin (1973a,1974).
Estimation of a treatment effect: When a control group is constructed by a matching
procedure −we call such a group a matched control group in the sequel−, it remains to
compare survival times for the treated with the survival times for the controls. Average
survival times cannot be estimated because censoring arises in both groups. On the
other hand, hazards of death and survival functions can be computed and compared
for both groups. An extra difficulty arises in the control group since patient’s survival
may not only be censored by an external mechanism (such as the end of the study)
but also by the fact that some controls receive treatment. However, we show in the
next section that, under certain conditions, the unconfoundedness assumption yields
that the censoring due to treatment is independent of the outcome when conditioning
on pre-treatment characteristics.

3 Inferential framework:

3.1 Potential outcome specification

Potential outcomes were introduced by Neyman (1990) in the context of randomized
experiments as a framework to perform inference on treatment effects. Rubin (1974)
generalized their applicability to the context of observational studies. We adapt below
the potential outcome framework to the context described in the previous section.

For an individual which, up to time W, has both survived and has not been treated,
we define two potential outcomes:

T 1(W ) = survival time after time W if treated at W,

T 0(W ) = survival time after W if neither treated at W nor later.
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Table 1: Observed status of some variables for a subset of patients among those alive at
time W = 21 and not treated before that time. We use the convention that for a given
day death precedes always treatment, and death precedes always censoring.

patient ident. D(21) T 1(21) T 0(21)
101 0 NA C@10
66 0 NA 21
4 0 NA T@15
47 1 51 NA
97 1 C@110 NA
58 1 321 NA

Note: NA for non-available; C@t for censored at time t after W ; T@t for treated at time t.

We, further, denote by X the vector of pre-treatment characteristics, and by

D(W ) =

{
1 if treated at time W,
0 if not treated at time W,

the treatment indicator. While, in general, X and D(W ) are observed, at most one
of the two potential outcomes T 0(W ) or T 1(W ) can be observed for a given individual
having survived until time W . As an example, we summarize in Table 1 the observed
status of the variables for a subset of individuals from the Stanford heart transplant
study given the waiting time W = 21.

We make a first assumption, often called the stable-unit-treatment-value assumption;
see, e.g., Rubin (1990b).

Assumption A:The values T 1(W ) and T 0(W ) for a given individual are not affected
by the values taken by D(W ) for any other individual.

3.2 Inference

Assume now that at a given time W in a study, n1 individuals are treated, indexed
by i = 1, 2, . . . , n1. A certain amount of individuals (often ≫ n1) have also survived
until time W although they are not treated at that time, thereby providing a reservoir
of controls. A matched control group is extracted from this reservoir as described in
Section 2, indexed by i = n1 + 1, . . . , 2n1. In this paper, we focus on estimands of the
following type:

∆(W ) =
1

2n1

2n1∑

i=1

(
T 1i (W )− T 0i (W )

)
,
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i.e. the average treatment effect for treated patients and their match in the control group
for a given waiting time. Other type of estimands based on different populations may be
considered, see Rubin (1991) and Imbens (2004). For instance, one may be interested in
”the average treatment effect for a future patient exposed to treatment, where treatment
is assigned with p(X,W ) at a given time W”. The latter is defined on an implicit super-
population. The information available in the observed sample on ∆(W ) is also all the
information we have on the estimand defined on the super-population. Moreover, for
an unbiased estimator of ∆(W ) to be an unbiased estimator of the second estimand,
we need to further assume that the patients in the study are representative (e.g., a
random sample) of the super-population implicitly defined. Yet another estimand of
interest might be ”the average treatment effect for a future patient on which treatment
is imposed at a given waiting time W”. This is again a super-population estimand. All
the estimands described are equivalent if we have constant additive treatment effect, i.e.
T 1(W ) = T 0(W ) = δ for all individuals. Notice that the constant additive treatment
effect assumption is often made, for instance, when using Cox regression models. We do
not make such a restrictive assumption in the sequel.

To perform inference, we need a probability model. Several models and resulting
modes of inference may be entertained, see Rubin (1990b, 1991). In any case, a model
for the treatment assignment mechanism is the corner stone to the identifiability of the
estimand of interest. That is a specification of Pr(D(W ) = 1|X, T 1(W ), T 0(W )) the
probability of being treated when the waiting time has been W . The following two
assumptions are often made within the potential outcome framework.

Assumption B: The assignment mechanism D(W ) is independent of the potential
outcomes, conditional on the set of pre-treatment characteristics X, i.e., Pr(D(W ) =
1|X, T 1(W ), T 0(W )) = p(X,W ), where p(X,W ) is a function of (X,W ) only; see
Dawid (1979) for an account on conditional independence statements.

Assumption C: 0 < p(X,W ) < 1.
Assumption B is sometimes called the unconfoundedness assumption. Assumption C

states that each individual having survived without being treated until time W has non-
zero probability of being both treated and not treated at time W . Assumption B and
C together were termed strong ignorability of the treatment assignment by Rosenbaum
and Rubin (1983). They guarantee that a treated and a control individual having the
same value for X (a matched pair) can be compared in order to infer a treatment effect.

If we would have uncensored survival times, an estimator of ∆(W ) would be

∆̂(W ) =
1

n1

n1∑

i=1

(
T 1i (W )− T 0i+n1(W )

)
, (1)

where we assume that individual i + n1 is a match to individual i, i = 1, . . . , n1. The
properties of the statistic (1) can be studied by considering its sampling distribution
under treatment reassignments through p(X,W ) for fixed values of T 1i (W ), T

0
i (W ), i =

1, . . . , 2n1, with the constraint that within each matched pair both treatment and non-
treatment arise. Under this assignment mechanism, over the

(
2n1
n1

)
randomizations, we
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have unbiasedness (Neyman, 1990, Rubin, 1990a): E{∆̂(W )} = ∆(W ). If, moreover, we
have constant additive treatment effect, then (Neyman, 1990)

1

n1

n1∑

i=1

{
(T 1i (W )− T 0i+n1(W ))− ∆̂(W )

}2
(2)

is an unbiased estimate of the variance of ∆̂(W ). Otherwise, if the treatment effect
is not constant additive, then this variance estimator is conservative. This mode of
inference dates back to Neyman (1990) and is called by Rubin (1990b) randomization-
based repeated-sampling inference; see also the Appendix.

4 Survival analysis

4.1 Hazards: estimand and estimators

The estimator ∆̂(W ) above cannot be computed, because the survival times of the
observed individuals are censored. Controls can be censored by treatment and both
controls and treated can be censored, for instance, by the end of the study period. In
such situations, it is customary to use the survival analysis approach, see, e.g., Kalbfleisch
and Prentice (1980). Assumptions on the censoring mechanisms must be made, however.

First, we want censoring due to treatment after time W to be independent of the
potential outcome T 0(W ) conditional on X. To shed light on this issue let CT (W )
denote the time to treatment for an individual not treated at time W . By convention
T 0(W ) is censored when CT (W ) < T 0(W ).We have, for k < t0,

Pr(CT (W ) = k|X, T 0(W ) = t0)

= Pr(D(W + k) = 1,D(W + l) = 0, l = 1, . . . k − 1|X, T 0(W ) = t0).

In order to be able to take advantage of Assumption B we assume that the following
decomposition holds.

Assumption D: For k < t0,

Pr(D(W + k) = 1,D(W + l) = 0, l = 1, . . . k − 1|X, T 0(W ) = t0)

= Pr(D(W + k) = 1|X, T 0(W ) = t0) Pr(D(W + k − 1) = 0|X, T 0(W ) = t0)

× · · · × Pr(D(W + 1) = 0|X, T 0(W ) = t0).

Assumption D says that treatment assignments at different times (after time W ) are
independent of previous assignment when conditioning on X and T 0(W ). Under this
assumption and Assumption B, we can then write

Pr(CT (W ) = k|X, T 0(W ) = t0)

= Pr(D(W + k) = 1|X) Pr(D(W + k − 1) = 0|X) · · ·Pr(D(W + 1) = 0|X). (3)
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By the latter equality we see that with Assumptions B and D we obtain a censoring
mechanism due to treatment which is independent of the potential outcome T 0(W ) when
conditioning on X.

Let us now define the variable CE(W ), the time to censoring (by other reasons
than treatment, e.g. end of study and drop out) for an individual having survived
until time W . Then, the observed survival time is censored depending on whether
CE(W ) < T 1(W ), or CE(W ) < T 0(W ). We make the following assumption.

Assumption E: CE(W ) is independent of T 1(W ) and of T 0(W ) when conditioning
on X.

Assumption E corresponds to usual hypotheses of independent censoring mechanism
made in survival analysis. We restrain here to introduce a new notation to denote
censored potential outcomes. Thus, in the sequel, T j(W ), j = 0, 1, denotes time to
death or to censoring.

In a survival analysis approach, instead of comparing the average survival times,
∆(W ) above, the sample hazards (proportion of individuals dying at time t among
those having survived up to time t) are compared for the treated and controls. We
therefore consider the estimand

∆h(t;W ) = h1(t;W )− h0(t;W ), (4)

where

hj(t;W ) =

∑2n1
i=1 I(T

j
i (W ) = t)∑2n1

i=1 I(T
j
i (W ) ≥ t)

, for j = 0, 1.,

where I(T ≥ t) = 1 if T ≥ t, i.e. if the individual has survived and is not censored until
time t, and I(T ≥ t) = 0 otherwise. Also, I(T = t) = 1 if T = t because of death (not
censoring) and I(T = t) = 0 otherwise.

Estimand∆h(t;W ) and its building blocks hj(t;W ), j = 0, 1, are defined with respect
to the potential outcomes which have been censored. Another estimand could have been
defined based on the uncensored potential outcomes. Our focus on the censored version
is justified by Assumption E and by (3), consequence of Assumptions B and D, which
together guarantee that the ∆h(t;W ) defined under censoring is representative (in a
frequentist sense) of the same estimand without censoring. Note, moreover, that under
a zero constant additive treatment effect, T 1i (W )− T 0i (W ) = 0, for all i, the estimands
with and without censoring are equivalent.

Estimand ∆h(t;W ) can be estimated with

∆̂h(t;W ) = ĥ1(t;W )− ĥ0(t;W ),

where

ĥj(t;W ) =

∑n1
i=1 I(T

j
ij+(i+n1)(1−j)

(W ) = t)
∑n1

i=1 I(T
j
ij+(i+n1)(1−j)

(W ) ≥ t)
, for j = 0, 1.
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We show in the Appendix that, under the Assumptions A-C, ∆̂h(t;W ) is unbiased for

∆h(t;W ): E{∆̂h(t;W )} = ∆h(t;W ). Moreover, the variance of the estimator ∆̂h(t;W )
can be estimated with

V̂ ar{∆̂h(t;W )} =
ĥ1(t;W ){1− ĥ1(t;W )}∑n1
i=1 I(T

1
i (W ) ≥ t)− 1

+
ĥ0(t;W ){1− ĥ0(t;W )}∑n1
i=1 I(T

0
i+n1

(W ) ≥ t)− 1
.

This estimator is unbiased, for instance, when there is no treatment effect in the sense
that T 1i (W ) = T 0i (W ), for i = 1, . . . , 2n1. In general, however, it is positively biased
(yielding conservative inference); see the Appendix. This is a qualitatively different
result from that of Neyman (1990), where unbiasedness of the variance estimator (2) is
guaranteed under constant additive treatment effect. This difference is due to the fact
that the hazard is based on indicator functions of the survival times and not on the
times themselves.

4.2 Survival function

The survival function, the proportion of individuals surviving at least up to time t,
constitutes a convenient way to summarize or aggregate the information from the hazards
calculated above. Denote by T 1(1)(W ) ≤ T 1(2)(W ) ≤ · · · ≤ T 1(m1)

(W ) the m1 ≤ 2n1 not
censored survival times if treated, sorted in ascendant order. Then, the survival function
when treated is defined as

F 1(t;W ) =
∏

i:T 1
(i)
<t

{1− h1(T 1(i)(W );W )}. (5)

Similarly, we define the survival function when not treated by

F 0(t;W ) =
∏

i:T 0
(i)
<t

{1− h0(T 0(i)(W );W )}, (6)

where T 0(1)(W ) ≤ T 0(2)(W ) ≤ · · · ≤ T 0(m0)
(W ) are the m0 ≤ 2n1 not censored survival

times if not treated, sorted in ascendant order. We are, thus, interested in estimating
the difference

∆s(t;W ) = F 1(t;W )− F 0(t;W ). (7)

An estimator of ∆s(t;W ) is readily available by replacing the hazards by their esti-
mators described above, as follows

F̂ 1(t;W ) =
∏

i:T̃ 1
(i)
<t

{1− ĥ1(T̃ 1(i)(W );W )},
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where T̃ 1(1)(W ) ≤ T̃ 1(2)(W ) ≤ · · · ≤ T̃ 1(m̃1)
(W ) are the m̃1 ≤ n1 observed and not censored

survival times for the treated individuals, and

F̂ 0(t;W ) =
∏

i:T̃ 0
(i)
<t

{1− ĥ0(T̃ 0(i)(W );W )},

where T̃ 0(1)(W ) ≤ T̃ 0(2)(W ) ≤ · · · ≤ T̃ 0(m̃0)
(W ) are the m̃0 ≤ n1 observed and not censored

survival times for the matched control individuals. These estimators of the survival
functions are usual Kaplan-Meier estimators (Kaplan and Meier, 1958).

The asymptotic variance of the estimated survival functions can be estimated by, for
j = 0, 1,

V̂ ar{F̂ j(t;W )} = F̂ j(t;W )2×

∑

i:T̃ j
(i)
<t

ĥj(T̃ j(i)(W );W )∑n1
k=1 I(T

j
kj+(k+n1)(1−j)

(W ) ≥ T̃ j(i)(W ))−
∑n1

k=1 I(T
j
kj+(k+n1)(1−j)

(W ) = T̃ j(i)(W ))
,

see Kaplan and Meier (1958). The above expression is called the Greenwood’s formula
(Greenwood, 1926). Finally, the estimator based on this asymptotic approximation

V̂ ar{∆̂s(t;W )} = V̂ ar{F̂ 1(t;W )} + V̂ ar{F̂ 0(t;W )} is, as in Section 4.1, expected to
be conservative when the treatment effect is not exactly zero for all individuals. The
simulation study of Section 6 shows that this estimated variance can be useful to test
the hypothesis of no treatment effect.

4.3 Averaging over waiting times

The theory above has been developed for a fixed waiting time to treatment, W . However,
estimating the survival functions non-parametrically for a given waiting time assumes
the availability of sufficiently many observations at each waiting time W of interest.
This is not always the case as, e.g., with the Stanford heart transplant data. In such
cases, one may average over the observed waiting times yielding the new estimand

∆h(t) = h
1
(t)− h

0
(t), (8)

where h
j
(t) =

∑2N1
i=1 I(T

j
i
=t)

∑2N1
i=1 I(T

j
i ≥t)

, for j = 0, 1, and now i = 1, . . . , N1 indexes all the treated

individuals in the study, and i = N1 + 1, . . . , 2N1 indexes all the corresponding match
controls. This is the average treatment effect for treated patients and their match in
the control group. The corresponding estimator is obtained by considering all individ-
uals in the treated-matched sample instead of only those with a given waiting time.
This estimand and estimator have a clear interpretation (average difference in hazard).

However, ∆s(t) obtained by “plugging in” h
j
(t), j = 0, 1, in (6) and (5), is difficult to

interpret unless the hazards hj(t;W ), j = 0, 1, are not functions of W . On the other
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hand, interpretability of ∆s(t) is less of an issue if the main objective of the analysis is
to test the hypothesis of no treatment effect.

Finally, computing and estimating the variance of such an estimator is difficult since
some treated may be used as control. However, in cases where such double use of the
same individual is rare (e.g., many untreated controls are available) the variance provided
in the previous section may be used as an approximation when averaging over waiting
times.

4.4 The Stanford heart transplant program

We replicate the analysis of Crowley and Hu (1977) based on the Cox proportional
hazard model. They model the hazard for patient i with

h(ti) exp{δZ(ti;Wi) +X
′
iβ}, (9)

where h(ti) is the baseline hazard and Z(ti;Wi) = I(ti ≥ Wi), the heavy side function.
We use exact partial maximum likelihood to estimate the parameters of model (9),
where the vector Xi contains age when eligible and year of acceptance into the study.
Information on prior surgery is not included because it was found not significant.

The estimate ∆̂s(t) is displayed in Figure 2. The estimation is obtained by one
to one matching. That is for each treated a control is chosen by matching exactly on
year of acceptance and waiting time to transplant, while matching on the age when
eligible on a nearest neighbor (Euclidean distance) basis. The nearest neighbor must
not be more than four years apart. This restricts the sample to 60 treated and matched

control individuals. Together with ∆̂s(t) we display in Figure 2 the difference in survival
functions resulting from the fitted Cox proportional hazard model described above. We
do not display the 95% confidence bands to improve readability. They clearly include
zero. However, since the number of controls is not large compared to the number of
treated, the variance estimator is not reliable as noted in Section 4.3.

Model (9) assumes proportionality of the hazards with and without treatment. More-
over, both the parametric and the matching estimators must assume that hazard func-
tions do not to depend on W due to the small sample available. This together with the
fact that there is little background information on patients make the evaluation of the
transplantation effect difficult.

5 Effect of an employment subsidy program

To illustrate the use of the non-parametric estimator with a realistic application we use
Swedish register data to evaluate the effect on employment of an employment subsidy
program targeted at the long-term unemployed. Individuals are eligible for the subsidy
if they are at least 25 years-of-age and have been registered as unemployed at the public
employment service (PES) for at least 12 months without interruption. The subsidy
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Figure 2: Estimated (by matching) treatment effect ∆̂s(t) (plain line) and the difference
in survival functions resulting from the Cox proportional hazard model (9).

amounted to 50 percent of total wage costs and was paid for a maximum period of
6 months. The subsidy was also capped at 350 Swedish crowns per day and could be
extended to 12 months in some exceptional cases; see Forslund, Johansson and Lindqvist
(2004).

Register data from the Swedish National Labour Market Board is used to evaluate
this program. The database contains information on all individuals registering at the
PES in Sweden since August 1991, including, age, sex, educational attainment, the
individuals’ registration date and past job training activities.

The individuals in the data are classified into two different groups: those who start
the employment subsidy program after having become eligible and eligibles who do not
start the program. The study start on January 1998. Each time a person becomes
eligible, the duration (months) until she or he either finds an employment or becomes
right censored (end of study on October 1 2002, drop out) is recoded. A total of 631,358
individuals, aged 25—63, were eligible for the program during the study period. Three
percent of the eligible spells ended into the program. The most salient feature of the
eligible persons is that they, on average, had a long lasting relationship with the em-
ployment service; see Forslund et al. (2004) for more details.

To obtain ∆̂s(t;W ) and ∆̂s(t) we use one to one exact matching. For each participant
we look for one control (non-participant) which has exactly the same values for a set
of covariates: sex, Nordic citizenship, unemployment insurance, disabled, high school
degree, university degree−all binary−, age (≤ 30, 31-40, 40-50), number of previous days
in unemployment register (0, 1-100, 101-500, 501-1000, >1000), number of previous spells
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in unemployment register (0, 1-5,6-15), and the local labour market of the individuals
(Sweden is divided into 100 local labour markets). All these covariates are expected to
affect both the unemployment duration and the participation into the program. The
matching estimator is based on 7, 651 treated individuals, thus 12, 300 people in the
employment subsidy program are removed due to lack of common support (no matching
individual found in the control group).

This study does not suffer of the limitations of the Stanford heart transplant program.
Because we have many observations (7, 651) we are able to estimate treatment effects
by conditioning on W . Moreover, we have few treated (3%) and, therefore, only 265
individuals in the matched control group also belongs to the treated group. This allows

us to use the variance calculations of Section 4.2 for the estimator ∆̂s(t). Note that here
right censoring concerns 51% of the sample. There are few drop-outs, see Forslund et
al. (2004) for more details on those.

Thus, Figure 3 shows the estimated treatment effects ∆̂s(t) and the estimated treat-

ment effects ∆̂s(t;W ) for W = 1, 11, 21 and, 31. In all cases 95% confidence bands (based
on a normal approximation) are also displayed to judge significance.

The conditional (on waiting time) results are similar which indicates that the hazards
are fairly constant with respect to waiting time. This enables us to focus our discussion
on the average estimate. We see that after an initial period of about 6 months with a
negligible (negative) program effect there is an downward jump; from then on the effect
gradually becomes smaller, but it is positive (i.e., the program shorten unemployment
duration) and significant over the rest of the follow-up horizon (57 months). This sce-
nario is consistent with an initial period of locking in effect (i.e. individuals do not find
a job while being in the program −they are supposed to seek non-subsidized employ-
ment while into the program) and a subsequent period with a positive program effect.
The sum of the effects over the whole follow-up horizon is 7.8, i.e. we have an average
decrease in unemployment duration (from the entrance into the program) by almost 8
months.

6 Monte Carlo study

6.1 Design

We study here the small sample performance of the matching estimators studied in this
paper. To this end we generate geometrically distributed survival times. Without loss
of generality we consider a situation where all n individuals simulated have same entry
time into the study. The study lasts 50 units of time. From the entry time, time to
death Ti, for each individual i, is simulated from a geometric distribution function with
probability of success (death) equal to p0(Xi). The probability distribution of time to
death is, thus, given by Pr(Ti = ti|Xi) = p0(Xi){1 − p0(Xi)}

ti . Similarly, we generate
the time to treatment T di , for each individual i, from a geometric distribution function
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Figure 3: Estimates (including approximate 95 % confidence intervals) of the effect

∆̂s(t;W ) of employment subsidy on the duration in unemployment for W = 1, 11, 21, 31

and the average ∆̂s(t).

with probability of success (treatment) pd(Xi). The probability distribution of time
to treatment is then given by Pr(T di = ti|Xi) = pd(Xi){1 − pd(Xi)}

ti. For p0(Xi) and
pd(Xi) we use logistic functions: p0(Xi) = [1 + exp{−(a0 + a1Xi)}]

−1, and pd(xi) =
[1+exp{−(b0+b1Xi)}]

−1. We consider the following situations: a0 = −3.0, b0 = −5.5 and
−3.0, and b1 = a1 are set either to 0 or 1. In the homogeneous case (i.e. b1 = a1 = 0) the
death hazard if not treated is p0(Xi) = 0.047 and the hazards into treatment are pd(Xi) =
0.0041 and 0.047 respectively for b0 = −6.5 and −3.0. The proportion of treated was on
average equal to 2.9 and 49 per cent in these two simulated situations. These designs
were chosen to resemble the situation encountered in the two applications described
earlier: the employment subsidy where only 3% were treated and the Stanford heart
transplant program where we had 67% of treated individuals. In the employment subsidy
treatment the unconditional monthly hazard to death (employment in this application)
if not treated is approximately constant, around 0.045. In the Stanford heart transplant
program the daily unconditional hazard to death if not treated is decreasing: we obtained
an unconditional hazard of 7%, 4%, 3% and 1% based on respectively the first 7 deaths,
the first 13 deaths, the first 23 deaths, and on all 30 observed deaths. In order to keep
the design simple and transparent we use a constant unconditional hazard of 0.047 in
both simulations.

We further need to simulate a time to death T 1i from the time of treatment, for
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those individuals who are treated, i.e. such that T di < Ti. We use again a geometric
distribution Pr(T 1i = ti|Xi) = p1(Xi){1 − p1(Xi)}

ti , where p1(Xi) = [1 + exp{−(a0 +
aw + a1Xi)}]

−1. Finally, the Xi’s are generated from a (0, 1) uniform distribution, and
are fixed in repeated samples.

This simulation design can be related to the potential outcome framework of Section
3 as follows. The treatment assignment mechanism at time Wi, Di(Wi), is given by

Pr(Di(Wi) = 1|Xi) = Pr(Ti > Wi, T
d
i = Wi|Xi)

= Pr(Ti > Wi|Xi) Pr(T
d
i =Wi|Xi).

For a given individual i, the potential outcomes simulated are: T 0i (W ) = Ti −W for
individuals such that Ti > Wi and T 1i (W ) = T 1i for individuals such that T di = W . Thus,
while we simulate T 0i (W ) for all individuals having survived until time W , we simulate
T 1i (W ) only for those treated at time W . A consequence is that the hazard h0(t;W ) is
known while h1(t;W ) is not. We, therefore, choose to use their limit (letting the number

of treated n1 tend to infinity) in probability, hj(t;W )
p
−→ h̃j(t;W ) as n1 →∞, j = 0, 1,

to assess the quality of the estimators. We have

h̃j(t;W ) =

∫
Pr(T j(W ) = t|T j(W ) ≥ t, Xi)dxi ≃

1

n

n∑

i=1

pj(Xi)

for n, the number of simulated design points, large enough. In particular, when a1 = 0,
h̃j(t;W ) = pj(Xi) = pj. Thus, we use ∆̃s(t;W ) obtained by using h̃1(t;W ) and h̃0(t;W )
as an approximation of the estimand of interest ∆s(t;W ). This approximation is used

to compute the bias of the estimator ∆̂s(t;W ) with 1,000 simulated replicates. This is

reasonable because the difference hj(t;W )− h̃j(t;W ), j = 0, 1, is zero on average (over
the replicates).

In general, the hazard h0(t;W ) may depend on W . This is not the case here due to
the choice of the geometric distribution for generating survival times. In this experiment
we have, therefore, that the difference in hazards depends on W only through aw.

The no-treatment effect situation is obtained by letting T 1i (W ) = T 0i (W ). Situations
with a non-zero treatment effect are designed for an homogeneous (a1 = 0) and an
heterogeneous (a1 = 1) case as follows. We let aw = ln[{0.047 + (1/(W + 23))}/{1 −
0.047 − (1/(W + 23))}]. For the homogeneous case this yields the treatment effects

∆̃h(t; 1) = 1/24 ∼= 4.2%, ∆̃h(t; 5) = 1/28 ∼= 3.6%, ∆̃h(t; 10) = 1/33 ∼= 3.0%, ∆̃h(t; 15) =

1/38 ∼= 2.6%. Figure 4 displays the treatment effects ∆̃s(t;W ) for these four values of
W as well as for the average. The figure shows clearly that the treatment effect varies
with W , getting smaller as waiting time goes.

6.2 Results

We study the bias of the estimator ∆̂s(t;W ), where matching is performed as described
in the applications, see Section 2. The continuous covariate xi is matched using the
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Figure 4: The treatment effects ∆̃s(t;W ) for W = 1, 5, 10 and 15. The average ∆̃s(t;W )
is computed analytically over the observed W .

nearest neighbor with respect to the Euclidean distance. Moreover, the size and the
power of the test of no treatment effect (T 1i (W ) = T 0i (W )) with the Wald-test statistic

∆̂s(t;W )

V̂ ar{∆̂s(t;W )}1/2

is also studied. We perform experiments, where the number of individuals are varied as
n = 500, 1,500 and 6,000, and the number of replicates is 1,000.

To save space, we restrict the presentation of the results to the setting with covariates
(i.e. a1 = b1 = 1). For the bias study, we show results for the case with a treatment
effect (i.e. aw �= 0). The non-reported cases gave a similar picture to those reported. We
start by presenting the case with 2.9% treated. Thereafter, results for the situation with
49% treated are commented. The results are displayed in figures with panels ordered
from left to right with respect to sample size and from bottom to top with respect to W,
except for the panels on the first row, where the results for the average estimator/test
are displayed.

6.2.1 The case with 2.9 percent treated

The bias of the estimator and the size and power of the test of no treatment effect are
presented in Figures 5, 6 and 8, respectively. In this setting, the number of treated
equals on average 14.5, 44 and 174 when the sample size equal 500, 1, 500 and 6, 000,
respectively. For W = 1 and 15 the corresponding figures are 1.63, 3.37 and 9.13 and
1.18, 1.57 and 4.01, respectively.

The bias (Figure 5) is, as expected, decreasing with sample size n. Considering
the relatively small sample sizes of treated for each W the estimator does well. The
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Figure 5: Bias for the matching estimator in the heterogeneous treatment setting (i.e.
a1 = b1 = 1 and aw �= 0) with proportion of treated equal to 2.9%.

size of the Wald test is displayed in Figure 6. For sample sizes 1,500 and 2,500 the
average estimator have approximately correct size. For the conditional estimator the
size is too small for small n and too large when n = 6, 000 and W > 5. Considering the
extremely few number of treated for each W these results are perhaps not surprising.
When extending the sample size to 12, 000 the correct size is well approximated for all
values of W. The power of the Wald test is displayed in Figure 8. As expected the Wald
test has significant power only for the average effects, due to the low number of treated
individuals in each sub-group defined by W .

6.2.2 The case with 49 percent treated

The bias of the estimator, and the size and power of the test of no treatment effect are
presented in Figures 7, 9 and 10, respectively. In this setting the number of treated
is for sample size of 500, 1, 500 and 6, 000 on average 240, 718 and 2,876, respectively.
For W = 1 and 15 the corresponding figures are 30, 90 and 363 and 4, 10 and 39,
respectively.

The bias displayed in Figure 7 is positive however decreasing with n. The size of the
Wald test is displayed in Figure 9. There is a small tendency of too large size when n
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Figure 6: Empirical size (nominal size 5 %) for the matching estimator in the heteroge-
neous treatment setting (i.e. a1 = b1 = 1 and aw �= 0) with proportion of treated equal
to 2.9%. Empirical sizes above the horizontal dotted line (6.4%) are significantly higher
(at a 2.5% level of significance) than the nominal size of 5%.

is small for the conditional estimator. The average estimator always displays too large
a size. Larger sample sizes do not help in this situation. Because the fraction of treated
is large and constant, this result should be expected. The power of the Wald test is
displayed in Figure 10. It increases with n. The power of the test for the average case
is not comparable to the others due to the size failure.

7 Concluding discussion

In this paper we study non-parametric estimators for the effect of a treatment on a
survival outcome. The effect (estimand) is a difference of survival functions computed
on two groups of matched individuals (treated and control). The methods introduced
are best suited for observational studies including many individuals. Such large obser-
vational studies allows us to relax restrictive assumptions such as parametric functional
forms, proportionality of the hazards, and homogeneity of the hazards with respect to
waiting time until treatment.
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Figure 7: Bias for the matching estimator in the heterogeneous treatment setting (i.e.
a1 = b1 = 1 and aw �= 0) with proportion of treated equal to 49%.

To avoid assumptions of constant hazard with respect to waiting time until treatment
we propose to perform inference conditionally on waiting time, when the number of
treated individuals at each waiting time of interest is large enough. Otherwise, one may
average over waiting times. In the latter case, the estimated treatment effect does not
keep necessarily its interpretation of a difference of survival functions, although one may
still test the hypothesis of no treatment effect.

The variance estimator we provide is in general conservative unless there is zero con-
stant additive treatment effect. Hence, the null hypothesis of zero constant additive
treatment effect can be tested with correct size with a Wald statistic. This is true un-
der the Neyman inferential framework used herein but also under a classical frequentist
setting if the observed sample has been randomly drawn from a population of interest.
When this null hypothesis does not hold our estimator is still unbiased but its Ney-
man inference is conservative. Our simulation results have confirmed these theoretical
insights. They have also shown that the Wald test has power, although, it is essential
to observe enough treated individuals at a given waiting time, when conditioning the
inference on the latter.

An application on an employment subsidy to shorten unemployment duration shows
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Figure 8: Power for the matching estimator in the heterogeneous treatment setting (i.e.
a1 = b1 = 1and aw �= 0) with proportion of treated equal to 2.9%. The dotted line shows
the nominal size 5%.

the applicability of the proposed matching estimator. Although our applications did not
include time-dependent covariates, such situations are straightforward to handle when
conditioning the inference on waiting time, thereby making the time dependence of the
covariates obsolete.

Note, finally, that the matching estimators studied herein could also make use of
Rosenbaum and Rubin (1983) results, by matching on Pr(D(W ) = 1|X) −the propoen-
sity score− instead ofX. This is often advocated in the matching literature, for instance,
when X includes many continuous covariates in order to diminish the bias due to poor
matches.
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Figure 9: Empirical size (nominal size 5%) for the matching estimator in the heteroge-
neous treatment setting (i.e. a1 = b1 = 1 and aw �= 0) with proportion of treated equal
to 49%. Empirical sizes above the horizontal dotted line (6.4%) are significantly higher
(at a 2.5% level of significance) than the nominal size of 5%.

Appendix: Sampling properties of ∆̂h(t;W )

Sampling scheme

We adapt the sampling model of Neyman (1990) to our context. Let us consider two
urns representing each one of the two potential outcomes. For a given time W , urn j,
j = 0, 1, contains the potential outcomes (possibly censored) T ji (W ) for i = 1, . . . , 2n1,
the n1 matched pairs that have survived up to time W . At a given time t > W , the
elements in the urns are of three different types: (×) those who have died or have been
censored before time t (T ji (W ) < t or censored before t, j = 0, 1), (0) those who have
not been censored until time t and die at time t (T ji (W ) = t, j = 0, 1) and (1) those who
have survived and have not been censored up to time t (T ji (W ) ≥ t, j = 0, 1). Denote
by mj

×(t), m
j
0(t), and mj

1(t), respectively, the number of elements in the three categories
for the two urns j = 0, 1.

These two urns describe the population in the inferential framework adopted in this
paper. From this population, at the beginning of the sub-study conditional on waiting
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Figure 10: Power for the matching estimator in the heterogeneous treatment setting (i.e.
a1 = b1 = 1 and aw �= 0) with proportion of treated equal to 49%. The dotted line shows
the nominal size 5%.

time W , we sample without replacement n1 individuals from one of the urn. Each time
one individual is sampled, say from the urn with the treated potential outcome, the
non-treated potential outcome corresponding to the same unit is also removed from the
other urn.

Assume that n1 individuals are drawn without replacement from urn j, and define
by

Y j : the number of individuals (out of the n1 sampled) which are of type (1);

Xj : the number of individuals among the Y j above which are of type (0).

Then, Y j is a hypergeometric random variable with parameters (2n1, n1,
mj
1(t)

2n1
). Sim-

ilarly, Xj |Y j = y is also hypergeometric with parameters (mj
1(t), y,

mj
0(t)

mj
1(t)

).

Unbiasedness

We show here the unbiasedness of ∆̂h(t;W ) for ∆h(t;W ), i.e. E{∆̂h(t;W )} = ∆h(t;W ),
where the expectation operator is defined by the sampling scheme described above. Note
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that ĥj(t;W ) = Xj

Y j
, j = 0, 1. Then, using the distribution identified above we have

E{ĥ1(t;W )} = E(X1/Y 1)

= E{E(X1/Y 1|Y 1)} = E

{
1

Y 1
E(X1|Y 1)

}

= E

(
1

Y 1
Y 1m

1
0(t)

m1
1(t)

)
=

m1
0(t)

m1
1(t)

= h1(t;W ).

Similarly, for the urn with the controls, we have

E{ĥ0(t;W )} =
m0
0(t)

m0
1(t)

= h0(t;W ).

Hence, E{∆̂h(t;W )} = ∆h(t;W ).

Variance

We want to estimate V ar{ĥ1(t;W )− ĥ0(t;W )}. We have

V ar{ĥ1(t;W )− ĥ0(t;W )} = V ar(X1/Y 1 −X0/Y 0)

= E{V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0)}

+V ar{E(X1/Y 1 −X0/Y 0|Y 1, Y 0)}

= E{V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0)}.

The last equality follows because E(X1/Y 1 − X0/Y 0|Y 1, Y 0) is constant; see previous
section. By the same arguments used in Neyman (1990) −see also Rubin (1990a, Eq.
2)− we can write

V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0)

= E

(
ĥ1(t;W ){1− ĥ1(t;W )}

Y 1 − 1
+

ĥ0(t;W ){1− ĥ0(t;W )}

Y 0 − 1

∣∣∣∣∣Y
1, Y 0

)

−
1

Y 1 + Y 0
S2,

where

S2 =
1

Y 1 + Y 0 − 1

Y 1+Y 0∑

i=1

{
I(T 1i (W ) = t)− I(T 0i (W ) = t)−D

2
}
,

D =
1

Y 1 + Y 0

Y 1+Y 0∑

i=1

{
I(T 1i (W ) = t)− I(T 0i (W ) = t)

}
.
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This is, in particular, due to the fact that ĥj(t;W ){1− ĥj(t;W )} is the usual variance
estimator based on a sample of size Yj, j = 0, 1. Note that for us to be able to use the
results of Neyman we have to condition on Y 1 and Y 0. Putting the two previous results
together we have

V ar{ĥ1(t;W )− ĥ0(t;W )}

= E

(
ĥ1(t;W ){1− ĥ1(t;W )}

Y 1 − 1
+

ĥ0(t;W ){1− ĥ0(t;W )}

Y 0 − 1

)

− E

(
1

Y 1 + Y 0
S2
)
.

This tells us that ĥ1(t;W ){1−ĥ1(t;W )}
Y 1−1

+ ĥ0(t;W ){1−ĥ0(t;W )}
Y 0−1

is an unbiased estimator of

V ar{ĥ1(t;W )− ĥ0(t;W )} when S2=0, that is, for instance, when T 1i (W ) = T 0i (W ), for
i = 1, . . . , 2n1. In general, the estimator of the variance is positively biased.
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