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occupations at the workplace. For this purpose, we estimate a competing risks duration 
model for job spells of native workers that distinguishes between job-to-job and job-to-
unemployment transitions. In general, we do not find any signs of native workers being 
displaced by immigrants. Furthermore, we find only very limited signs of replacement of 
native workers by immigrants. Instead, in particular low-skilled native workers are less likely 
to lose or leave their jobs when the firms hire immigrants. 
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1. Introduction 
How does immigration affect the employment of native workers? There are numerous studies in the 

literature seeking to answer this question and most studies find that if immigration has any effects 

on native workers, these effects are quite small; see, e.g., Longhi et al. (2006). This seems to be in 

stark contrast to the popular perceptions in destination countries where there are widespread fears 

that immigrants take the jobs of native workers; see Malchow-Møller et al. (2008a). One possible 

explanation behind this apparent paradox is that the focus in the empirical literature has been on the 

aggregate consequences of immigration, while the perceptions of people are based on the actual 

experiences of those individuals who have worked where the immigrants have been employed. 

These effects may be hard to spot in the aggregate statistics. 

 

In this paper, we therefore consider the employment consequences at the most disaggregate level by 

analysing the employment experience of native individuals working in the firms and occupations in 

which the immigrants are employed. More specifically, we ask the following question: Are there 

any signs at the firm level of native workers being replaced or even displaced by immigrants?1

The literature on job turnover at the individual level suggests that it is important to control for 

socio-economic characteristics such as gender and education; see, e.g., Royalty (1998). 

Furthermore, it is well known that job-separation rates decline with time on the job due to the 

accumulation of firm specific human capital; see Farber (1999) for an overview. For these reasons, 

we follow, e.g., Battu et al. (2008), Geishecker (2008), Munch et al. (2008) and Royalty (1998) and 

apply a duration model that controls for observed as well as unobserved individual heterogeneity, 

and allows for flexible duration dependence in the job-separation probabilities. 

 Or 

are the immigrants simply hired (and fired) together with the native workers; a situation we may 

refer to as "joint placement"? To answer these questions, we estimate the short-run relationship 

between the employment of immigrants at the workplace and the individual job-separation 

probabilities of native workers employed within the same narrowly defined occupations. These 

probabilities will most closely reflect the individually perceived threats of being replaced or 

displaced when the firms hire immigrants. To the best of our knowledge, this is a novel approach in 

the analysis of employment effects of immigration. 

 

                                                 
1 As explained below, we think of displacement as situations where native workers are fired when immigrants are hired, 

whereas replacement is when immigrants are hired to replace native workers who have left their jobs.  
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In the literature on the employment consequences of immigration, the focus has been on the net 

employment consequences for a group of individuals (typically regions or industries) when there is 

an increase in the supply of immigrant workers. Examples of such analyses are Borjas et al. (1997) 

and Card (2001), both using U.S. data, Dustmann et al. (2005), using U.K. data, Pischke and 

Velling (1997), using German data, and Angrist and Kugler (2003), using EU data. There is 

substantial variation in the results from these analyses but the general conclusion seems to be that 

immigration has very small negative employment implications for native workers; see Longhi et al. 

(2006) for an overview. 

 

Since these studies consider the net employment implications for natives at the region or industry 

level, they may not capture short-run replacement and displacement effects at the individual level 

and hence not whether immigrants "take the jobs" of native workers. As a consequence, these 

analyses may understate the costs of immigration because even reallocations that do not lead to a 

net decline in employment of natives as a group may be associated with adjustment costs for the 

individual native workers if they have to find alternative employment or are temporarily pushed into 

unemployment; see, e.g., Klein et al. (2003). Furthermore, it is clear that from the individual 

perspective, costs related to displacement may be substantial; see, e.g., Farber (2005), Bender et al. 

(2002), and Borland et al. (2002). Job loss is associated with lower re-employment earnings, long 

spells of unemployment for some workers, and a higher probability of being part-time employed 

when re-employed (Farber, 2005).  

 

Our focus is exactly the individual consequences of the adjustments taking place at the firm level 

when immigrants are hired. For this purpose, we use a very detailed linked employer-employee data 

set for the Danish labour market for the period 1993-2004. Job spells for native workers as well as 

workplace measures of immigrant employment are constructed from these data. Note that 1993-

2004 is a period with a large inflow of immigrants into the Danish economy. In our data, the 

employment share for immigrants thus increased from 3.0 percent in 1993 to 5.2 percent in 2004, 

which constitutes one of the most pronounced relative increases in immigration among developed 

countries in recent years. 
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To analyse whether individual native workers are replaced or displaced by immigrants, we estimate 

a competing risks duration model for job spells of native workers using various measures of 

immigrant employment within the same occupation and workplace as explanatory variables. The 

competing risks model allows us to distinguish between job-to-job transitions and job-to-

unemployment transitions of native workers. This is relevant as the latter transitions are both more 

likely to reflect displacements and to be associated with higher adjustment costs.  

 

The model controls for both observed and unobserved individual heterogeneity and allows for 

flexible duration dependence in the transition process out of the current job. As we wish to 

eliminate any effects resulting from, e.g., workers with less stable employment patterns self-

selecting into workplaces with immigrant employment, we also extend the basic duration model 

with selection equations for the workplace immigrant variables. Furthermore, to isolate any 

displacement or replacement effects from the effects of joint placement of natives and immigrants at 

growing (or shrinking) workplaces, we also control for various measures of job growth at the 

workplace level. Finally, as low-skilled native workers are often hypothesised to suffer more from 

immigration, we estimate separate effects for different educational groups of native workers.  

 

In general, we find no signs of natives being displaced when firms hire immigrants, and we only 

find weak signs of replacement. On the contrary, in particular low-skilled native workers are less 

likely to lose or leave their jobs when firms hire immigrants; a strong indication of joint placement 

of natives and immigrants. Only among the group of native workers with a further education does 

the hiring of immigrants give rise to an increase in the job-to-job separation probability. However, 

as this reflects that native workers move into other jobs and not into unemployment, the adjustment 

costs associated with this are likely to be limited. 

 

The rest of the paper is organised as follows: In Section 2, we present the empirical hypotheses to 

be tested in the paper and Section 3 presents our data. In Section 4, we outline the empirical strategy 

and Section 5 contains the results. Finally, Section 6 concludes. An Appendix with a detailed 

specification of the econometric model as well as detailed estimation results is attached at the end. 
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2. Empirical Hypotheses 

The analysis in this paper focuses on the adjustments taking place at the workplace level when 

immigrants are hired. Specifically, we wish to test the following three hypotheses about the 

relationship between the employment of immigrants and native workers within the same occupation 

at a workplace: 

(a) Displacement: Native workers are fired (or leave) when immigrants are hired. 

(b) Replacement: Immigrants are used to replace native workers when these leave (voluntarily). 

(c) Joint placement: Natives and immigrants are hired (and fired) jointly. 

 

We are particularly interested in analysing whether there is evidence of one of the two first effects.2

3. Data 

 

We test this by analysing whether the individual job-separation probabilities of native workers 

increase when the number of immigrants employed at the same workplace within the same 

occupation increases. Note that both (a) and (b) reflect substitution of native workers with 

immigrants – i.e. immigrants "taking the jobs" of native workers – but that especially the first effect 

is likely to be associated with considerable adjustment costs for the native workers. Hence, we also 

try to distinguish between these effects in the empirical analysis. In Section 4, we explain the 

approach in more detail including how we intend to distinguish between the different hypotheses.  

 

By focusing on native workers employed in both the same workplaces and occupations as those in 

which the immigrants are employed, we restrict attention to the group of native workers for whom it 

is most likely to identify any potential adjustment costs associated with the hiring of immigrants. 

Thus, if no adjustment costs can be identified for these workers, adjustment costs are unlikely to be 

important.  

 

We apply a very rich data set for the Danish labour market. From the Integrated Database of Labour 

Market Research (IDA), we hold annual information about labour market status and socioeconomic 

characteristics of all Danish residents in the period 1980-2004. For more details on the IDA data, 

see, e.g., Abowd and Kramarz (1999). 
                                                 
2 Actually, there is also a fourth possibility, namely the absence of any relationship between the employment of 

immigrants and natives. We can, however, consider this as a limiting case of (c). 
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From IDA we extract a 2.5% sample of native workers for the years 1993-2004, as 1993 is the first 

year in which occupational codes are observed (see below). From the observed labour market status 

of an individual combined with information about the workplace identity in the years of 

employment, it is straightforward to construct individual job spells from successive years of 

employment at the same workplace.3 Job spells are flow sampled such that only spells starting in 

1994 and later are included in the analysis.4

Furthermore, as all individuals in IDA are linked to workplaces, the whole population of full-time 

employees aged 18-65 is used to construct a number of annual workplace characteristics which are 

 At the end of a job spell, we distinguish between 

transitions into new jobs and transitions into unemployment. The destination state for all spells that 

end before 2004 is known, and if job spells end with transitions into other states than a new job or 

unemployment (e.g. out of the labour force), or if spells are not completed by the end of 2004, they 

are treated as independently right-censored observations. 

 

In the following, we restrict attention to job spells of full-time native workers between 18 and 65 

years of age and employed in private sector workplaces with at least 10 employees in the first year 

of a job spell. Some descriptive statistics for the job spells in the sample are provided in Table 1. It 

is seen that more than 60 percent of the spells end in a job-to-job change while 5 percent end in 

unemployment. 

 

[Insert Table 1 around here] 

 

For each year within a job spell, we have observations on individual characteristics such as age, 

gender, marital status, education, region of residence and type of occupation. The latter follows 

from DISCO, the Danish version of the International Standard Classification of Occupations 

(ISCO-88) developed by the International Labour Office (ILO). DISCO classifies individual 

occupations into 372 different types and is available from 1993 and onwards. 

 

                                                 
3 Note that since a firm can have more than one workplace, we count it as a job change when a worker switches 

between two workplaces within the same firm. 
4 In the empirical analysis to follow, we use covariates measuring changes between two years, so spells starting in 1993 

are not included. 
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subsequently merged on to the individual job spell data. These characteristics include, among 

others, the number of employees and the share of workers with different types of education. 

 

In particular, we construct workplace measures of the share of immigrants within different 

occupations. For this purpose, we use the 2-digit DISCO classification, which distinguishes 

between 27 different occupations. Immigrants are defined as individuals born outside Denmark with 

non-Danish parents. If there is no information about the parents and the individual is born outside 

Denmark, he/she is also classified as an immigrant.  

 

Figure 1 shows that since 1993 – the beginning of our sample window – the share of immigrants in 

the population of employed workers in Denmark has increased markedly. The increase corresponds 

to a relative increase of almost 75 percent over the period 1993-2004. Moreover, as found in 

Malchow-Møller et al. (2008b), the wages of immigrants are significantly lower than the wages of 

native workers. Hence, if the productivity of immigrants is not too low compared to that of native 

workers, there has been both an incentive and an opportunity for firms to substitute native workers 

with immigrant workers. A priori, this lends support to the hypothesis that the employment of 

immigrants leads to displacement of native workers. 

 

[Insert Figure 1 around here] 

 

In the estimations below, we use the following three measures of immigrants in the occupation of 

native worker i at workplace w:  

 

 1

1

1 1

iwt
iwt

iwt iwt

iwt iwt
iwt

iwt iwt

iwt iwt
iwt

iwt iwt

Iimm
N I
I Iimm
N I
I IL imm

N I

+

−

− −

=
+
−

∆ =
+
−

∆ =
+

      (1) 

  

where Iiwt is the number of immigrants in the occupation of (native) worker i at his/her workplace w 

in year t, and Niwt is the number of native workers in this occupation. Thus, immiwt is the share of 

immigrants in the occupation of worker i at workplace w in year t, while Δimmiwt and LΔimmiwt are 
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measures of the change and lagged change, respectively, in this share. The three immigrant 

variables in (1) are further discussed in the next section. 

 

Finally, Table 2 displays summary statistics for the individual and workplace control variables 

included in the analysis. At the individual level, there is information about age, sex, marital status 

and education. Specifically, we work with three levels of education: Basic education, vocational 

education and further education. This classification of education levels relies on Danish educational 

codes. Further education basically corresponds to the two highest categories (5 and 6) in the 

International Classification of Education (ISCED), i.e. tertiary education. Vocational education is 

defined as the final stage of secondary education encompassing programmes that prepare students 

for direct entry into the labour market. Thus, persons with just high school or equivalent are 

included in the basic education category. Also three geographical dummies are included to 

distinguish between the capital (Copenhagen), 5 large cities (large city), and all other localities 

(small city). Information about years of labour market experience is also available. Finally, we 

include dummy variables for the nine occupations in the 1-digit DISCO classification. 

 

[Insert Table 2 around here] 

 

At the workplace level, there is information about the number of employees, the share of workers 

with basic and further education, respectively, as well as the share of female workers and workers 

aged 40 years or more. Finally, the three immigrant variables defined in (1) are used. 

 

From Table 2 it follows that roughly 40% of the observations (one observation is a person-year) are 

from occupations with immigrant co-workers. It is seen that native workers in occupations with 

immigrants are more likely to have basic or further education, whereas workers without immigrant 

co-workers are more likely to have vocational education. 

 

4. Empirical Strategy 

The purpose of the empirical analysis is to search for signs of native workers losing jobs to 

immigrants, i.e. being replaced or displaced. Furthermore, we wish – to the extent possible – to 
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distinguish between the two effects (replacement and displacement) as especially the latter is likely 

to be associated with considerable adjustment costs for native workers. 

 

For this purpose, we use a competing risks duration model for job spells of native workers which 

estimates separate hazard functions for job-to-job transitions and job-to-unemployment transitions 

(Sueyoshi, 1992): 

 

( ) ( ) ( ), , exp , ,s t t s s s t s t st x z v t x z v s e uθ λ β γ= ⋅ + + =   (2) 

 

where the subscript s is used to distinguish between the two different destination states for the 

transition: employment (s = e) and unemployment (s = u). λs(t) is the baseline hazard capturing the 

time dependence for transitions into destination s. That way we handle the stylized fact that job-

separation rates typically decline with time on the job due to the accumulation of match-specific 

human capital; see, e.g., Farber (1999). ( )exp s t s t sx z vβ γ+ +  is the systematic part giving the 

proportional effects of the immigrant variables at the occupational level from (1), zt, other observed 

time-varying individual and workplace characteristics, xt, and an unobserved individual effect, vs, 

which is time invariant but allowed to differ across the two destination states. Controlling for 

unobserved heterogeneity is relevant as no measures for, e.g., ability and motivation are available. 

 

The hazard function thus gives the probability of leaving the job to a given destination state 

(unemployment or another job) in year t given that the individual is still in the job at the beginning 

of year t. Note that all other destination states are treated as right-censored observations. A detailed 

specification of the competing risks model, including the baseline hazard, the unobservables 

distribution and derivation of the likelihood function, can be found in the Appendix. 

 

As workplaces vary in size, we use the share of immigrants within an occupation, immiwt, as an 

explanatory variable in the hazard functions instead of the absolute number of immigrants. A 

problem with the immiwt variable, however, is that it does not only capture short-run effects of hiring 

immigrants. Thus, a positive effect of immiwt on the separation probability of natives may also 

reflect (i) a long-run effect on the separation probability of a workplace moving from a set-up with 

a low immigrant concentration to a set-up with a high immigrant concentration; and, more 

problematically, also (ii) cross-sectional differences between workplaces. The latter includes 
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possibly unobserved workplace characteristics which affect the individual job-separation 

probabilities and which are correlated with the share of immigrants. For example, if immigrants are 

concentrated in firms with less job security, this may result in a positive coefficient to immiwt which 

does not reflect any short-run adjustment effects. As a consequence, we do not wish to push the 

interpretation of the coefficient to immiwt too far. Instead, we prefer to think of it also as a proxy for 

unobserved workplace characteristics.5

It should be noted, however, that not all layoffs result in job-to-unemployment transitions. 

According to Browning et al. (2006), more than half of the displaced workers in the Danish labour 

market have no unemployment at all in the displacement year. Such transitions may still involve 

significant adjustment costs, in particular, if the worker takes a wage cut after a job change. The 

implication is that looking only at displacement via job-to-unemployment transitions will understate 

the amount of displacement. Still, however, job-to-unemployment transitions are informative about 

 

 

Instead, to capture the short-run displacement and replacement effects, we use the change, Δimmiwt, 

and the lagged change, LΔimmiwt, in the immigrant share, defined as in (1). That is, we ask whether 

there is a relationship between an increase (or decrease) in the workplace use of immigrants 

(relative to the number of workers employed in that occupation) in the present or the previous 

period and the native job-separation probabilities in the current period. As an example, a positive 

coefficient to Δimmiwt in the job-to-job hazard function will imply that natives are more likely to 

leave for another job in the same period as more immigrants are employed within the same 

occupation at the workplace. This will indicate that native workers are, in fact, losing jobs to 

immigrants. However, we cannot see whether this happens before or after the immigrants are 

employed. Hence, it may reflect both replacement and displacement effects – and voluntary as well 

as involuntary separations.  

 

In order to single out any displacement effects from the replacement effects, we can do two things. 

First, if we assume that displacements lead to unemployment whereas replacements result in 

another job, we can interpret a positive coefficient to Δimmiwt in the job-to-unemployment hazard as 

a displacement effect, and a positive coefficient in the job-to-job hazard as a replacement effect. 

 

                                                 
5 Similarly, unobserved worker characteristics which are correlated with the immigrant variables and determine 

individual job-separation rates may also affect the results. However, we deal explicitly with this possibility below. 
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the most important adjustment costs for individual native workers, even when all displacements do 

not lead to unemployment. 

 

The second possibility is to consider the estimated coefficients to LΔimmiwt, the change in the 

employment of immigrants last year. Positive coefficients to LΔimmiwt in the job-to-unemployment 

and the job-to-job hazards will imply that native employees are more likely to become unemployed 

and switch to another job, respectively, in the year following an increase in the number of 

immigrants in the same occupation. As these events do not suffer from the timing problem above, 

positive coefficients can in both hazard functions be interpreted as evidence of displacement effects.  

 

If, on the other hand, the coefficients to Δimmiwt and LΔimmiwt are negative, it means that native 

workers are less likely to leave the workplace when immigrants are employed. This indicates that 

firms are trying to keep their native workers when hiring immigrants, and less so when immigrants 

are fired/leave. We will take this as evidence of joint placement effects dominating any replacement 

or displacement effects. 

 

If for some reason native workers with high (or low) separation probabilities tend to self-select into 

workplaces with high values of the immigrant variables, this may affect the estimated parameters. 

To eliminate this effect, we extend the basic duration model with selection equations for the three 

workplace immigrant variables. That is, we specify and estimate equations for immiwt, Δimmiwt, and 

LΔimmiwt jointly with the hazard functions, and allow the unobserved individual effects in these 

equations to be correlated with the unobserved individual effects in the hazard functions. For 

example, for the change in the immigrant share, ∆immt, we specify the following selection equation: 

 

,t m t m t t mimm x y u vβ γ∆ = + + +     (3) 

  

where xt are the explanatory variables from the duration model in (2), and yt are instrument 

variables that are included in the selection model in (3), but not in the duration model. For a given 

individual, the error term in (3) is composed of two components, an independently normally 

distributed idiosyncratic component, ut, and a random individual-specific effect, vm, which does not 

vary over time, but which is allowed to be correlated with ve and vu from (2). 
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As instruments in the selection equations, we use the share of immigrants in the total employment 

in the local area as well as the changes in this variable in the current and the previous year. Further 

details of the specification of the selection equations are presented in the Appendix. 

 

We also try to isolate any displacement or replacement effects from the effects of joint placement of 

natives and immigrants at growing (or shrinking) workplaces. This is done by controlling for job 

growth at the workplace level. That is, we ask: Can we find any signs of a higher use of immigrants 

being associated with higher separation rates of natives if we eliminate the correlation that is due to 

joint hirings/firings of natives and immigrants at expanding/contracting workplaces?  

 

Finally, displacement effects may differ across educational groups. If, e.g., the degree of 

substitution between immigrants and native workers is higher among workers with basic skills than 

among workers with high skills, the hiring of immigrants should mainly affect native workers with 

basic skills. To study this issue, we interact the immigration variables with the individual education 

level. 

 

5. Results 

The first two columns of Table 3 present estimation results from the basic specification of the 

competing risks model without selection equations and controls for job growth included. Before we 

proceed to the impacts of the immigrant variables, we note that all model specifications include as 

controls the variables listed in Table 2. The effects of these variables are not shown in Table 3, but 

are contained in the Appendix tables. For example, we find negative duration dependence meaning 

that the probability of leaving a job (either to another job or to unemployment) decreases with the 

amount of years in the job. We also find that women and older individuals are less likely to switch 

jobs but more likely to become unemployed. Also workers with further education and more 

experienced workers are less likely to become unemployed.6

                                                 
6 With respect to the unobserved heterogeneity, we find that the probability mass is concentrated at two points revealing 

a strong positive correlation between the unobserved effects in the two hazard functions; see Table A1 in the Appendix. 

 

 

[Insert Table 3 around here] 
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With respect to the immigrant variables, we observe that the coefficients to Δimmiwt are 

significantly negative in both hazard functions indicating that the hiring of immigrants is associated 

with a decrease in the probabilities of native workers becoming unemployed or changing job. The 

estimated effects suggest that an increase in Δimmt from, say, 0 to 0.1, i.e. adding an extra 

immigrant in an occupation with 10 workers initially, lowers the job-to-job separation probability 

by 0.9% and the job-to-unemployment separation probability by 2.2%, whereas adding an extra 

immigrant in an occupation with only two workers initially will lower the job-to-unemployment 

separation probability by more than 10%.  

 

The job-to-unemployment separation probability is also lowered in the period following the 

increased immigrant employment as indicated by the estimated coefficients to LΔimmt. Finally, the 

stock of immigrants, as measured by the immigrant share, immt, is not found to be related to the job-

separation probabilities of native workers. 

 

Eliminating the correlation due to self-selection of individuals (columns 3 and 4 in Table 3) has 

only little impact on the estimated coefficients. Thus, there are no signs that individuals with higher 

job-separation rates tend to self-select into workplaces with higher values of the immigrant 

variables.7

Thus, taken together the results in Table 3 do not lend much support to the hypothesis that 

immigrants take the jobs of native workers. On the contrary, the fact that the estimated coefficients 

are negative indicates that joint placement of immigrants and natives dominate any displacement or 

replacement effects. One explanation for this may be that expanding workplaces hire immigrants 

together with native workers, and therefore also try to keep the currently employed native workers, 

while contracting workplaces fire the two groups of workers together. Thus, to investigate if we can 

 In the following estimations we therefore continue without the selection equations 

included as this reduces estimation time considerably. 

 

                                                 
7 Since many of the mass point probabilities in the full model with 32 mass points converged towards zero, we restricted 

the correlation structure between the three selection equations to be perfect. This still allows for a completely flexible 

correlation between the job-change hazard, the unemployment hazard and the selection equations. The estimated mass 

points and associated probabilities (see Table A2 in the Appendix) imply that the correlation coefficients between the 

job-change hazard and the selection equations and between the unemployment hazard and the selection equations are 

very low and insignificant (-0.0105 and -0.0156, respectively). This explains why the bias from not accounting for 

selection is small. 
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find any signs of displacement or replacement – i.e. where use of immigrants lead to higher 

separation rates of natives – we try to eliminate this effect by controlling for job growth at the 

workplace level. 

 

Table 4 contains estimates where we have included measures of employment growth at the 

workplace in the previous period (columns 1 and 2) and in the present period (columns 3 and 4).8

In the above estimations, we have not allowed for different effects for different educational groups 

of native workers. If, e.g., the degree of substitution between immigrants and native workers is 

 

We see that the growth rate in the previous period, job growtht-1, does not enter with significant 

coefficients in any of the hazard rates, and its inclusion does not affect the estimated parameter 

values for the immigration variables. In contrast, the present period growth rate, job growtht, has a 

strong negative correlation with both hazard rates, which supports the suggestion that expanding 

workplaces try harder to retain their current workers.  

 

It should be stressed here that any causal interpretation of the coefficients to job growtht is difficult 

because the workplace job growth between period t and t+1 is almost mechanically (negatively) 

related to the probability of a job separation between period t and t+1. Bearing this in mind, we also 

find that the inclusion of job growtht changes the sign of the estimated coefficient to Δimmt in the 

job-change hazard but not in the unemployment hazard. Thus, we still do not see any signs of direct 

displacement via job-to-unemployment transitions, but as discussed in the previous section, the 

positive parameter value in the job-change hazard may reflect displacement to some extent, if 

displaced native workers manage to get a new job without intermediate unemployment spells. 

However, if displacement is an important issue, it should also show up directly in the 

unemployment hazard. In any case, the estimated coefficient to Δimmt in the job-change hazard 

suggests that the employment of an extra immigrant in an occupation with 10 workers initially 

increases the job-to-job transition probability by 1.0%, e.g., from 10% to 10.1%, which is a very 

modest effect. 

 

[Insert Table 4 around here] 

 

                                                 
8 The job growth variables are defined as the growth rate in the number of employees at the workplace between t-1 and t 

and between t and t+1, respectively. 
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higher among workers with basic skills than among workers with high skills, the hiring of 

immigrants should mainly give rise to displacement of native workers with basic skills. To study 

this issue, we interact the immigration variables with our three educational indicators for the native 

workers: basic education, vocational education and further education. The results are reported in the 

first two columns of Table 5. It is seen that the impact of hiring immigrants varies somewhat over 

the different educational groups. However, all the significant coefficients are negative except one: 

The employment of immigrants is associated with an increase in the job-change probability for 

native workers with further education in the following period. The estimated coefficient is, 

however, very small, suggesting that an increase in LΔimmt from, e.g., 0 to 0.1, is associated with 

an increase in the job-to-job separation probability of native workers with further education of 

0.8%. That is, if the job-to-job separation probability was initially 10%, this increase in LΔimmt will 

raise it to 10.08%. Again, this is a very modest effect, and as the hiring of immigrants does not lead 

to a higher risk of unemployment, it is likely to be associated with very limited adjustment costs. 

 

[Insert Table 5 around here] 

 

As a robustness check, we have also included measures of employment growth at the workplace in 

the previous period (columns 3 and 4) and in the present period (columns 5 and 6). The inclusion of 

previous period job growth leaves all coefficients almost unchanged, but controlling for present 

period job growth has an influence as in Table 4. Again, these results should be interpreted with 

caution because of the (mechanical) relationship between present period job growth and job 

separations. There are still no signs of direct displacement effects via job-to-unemployment 

transitions as all coefficients in the unemployment hazard are either insignificant or negative. It is, 

however, now only workers with basic education that experience a strictly lower unemployment 

risk when the workplace hires immigrants.  

 

With respect to the job-change hazard, a positive relationship between the hiring of immigrants in 

the present period, Δimmt, and the job-to-job transition probability emerges when controlling for job 

growtht. This is similar to what we found in Table 4 (column 3). However, Table 5 (column 5) 

reveals that this only applies to workers with vocational and, in particular, further education. As we 

expect displacement mostly to happen for low-skilled native workers, this further indicates that 

these coefficients are likely to reflect replacement rather than displacement effects.  
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In sum, even when eliminating the effects of joint placement by controlling for job growth at the 

workplace level, it is difficult to find signs of any direct displacement effects. Only for educated 

workers can we detect a small positive effect on the job-to-job transition probability from hiring 

immigrants in the previous period. The size of this effect is, however, too small to have any 

practical relevance. 

 

6. Conclusion 

In this paper, we have focussed on the adjustments taking place at the workplace level when 

immigrants are employed by looking at the relationship between the job-separation probabilities of 

native workers and the increased use of immigrants within the same occupation at the workplace. 

Specifically, we have estimated a competing risks duration model for job spells of native workers 

that distinguished between job-to-job and job-to-unemployment transitions.  

 

In general, we do not find any signs of native workers being actively displaced by immigrants. 

Furthermore, we find only very limited signs of replacement of native workers by immigrants – and 

these effects are only found for skilled workers. That is, we find that the job-to-job transition 

probabilities increase slightly for skilled workers when immigrants are employed within their 

occupation. Workers with only basic education are (if anything) positively influenced in terms of 

job security by the employment of immigrant co-workers.     

 

Taken together, we can conclude that there is no evidence to support the popular perception that 

immigrants "take the jobs" of native workers – even when we look at the adjustments taking place 

at the most disaggregate level, i.e., in the occupations and workplaces in which the immigrants are 

employed. What drives this popular perception thus remains an unresolved puzzle. 
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Appendix A: The Econometric Model 
This appendix contains the details of the competing risks model used in the paper. We specify the 

mixed proportional hazard model for the two labour market transitions (job-to-job and job-to-

unemployment) as: 

 

( ) ( ) ( ), , exp , ,s t t s s s t s t st x z v t x z v s e uθ λ β γ= ⋅ + + =   (A1) 

 

where the subscript s is used to distinguish between the two different destination states for the 

transition: employment (s = e) and unemployment (s = u). λs(t) is the baseline hazard capturing the 

time dependence for transitions into destination s, and ( )exp s t s t sx z vβ γ+ +  is the systematic part 

giving the proportional effects of the immigrant variables, zt, other observed time-varying 

individual and workplace characteristics, xt, and an unobserved individual effect, vs, which is time 

invariant but allowed to differ across the two destination states. The vector of immigrant variables, 

zt, consists of the three measures from (1), where subscripts i and w are now suppressed to simplify 

notation: { , , }t t t tz imm imm L imm= ∆ ∆ . All job spells that end with a transition to another state than 

one of the two described above (e.g., out of the labour force) are treated as independent right-

censored observations. 

 

The annual nature of the data imply that the duration variable, T, is grouped into K + 1 intervals 

1 1 2{[0, ),[ , ), ,[ , )}Kt t t t ∞ , which must be accounted for in the econometric specification. Thus, 

following Kiefer (1990), the interval specific survival rate is defined as 

 

 

( )

( )

( )

1

1

,

,
,

,
,

, , ,

exp , ,

exp exp

k

k

k k k k k

t

i k k st
s e u

s k s k s s k
s e u

s k
s e u

P T t T t x z v

t x z v dt

x z v

α

θ

β γ

α

−

−

=

=

=

= ≥ ≥

 
= − 

 
 

= − + + Λ 
 

=

∑ ∫

∑

∏

   (A2)

    

where 
1

, ( )k

k

t

s k st
t dtλ

−

Λ = ∫  and , ,exp[ exp( ) ]s k s k s k s s kx z vα β γ= − + + Λ .  



 18 

To find the contribution to the likelihood function from a job spell, it is noted that the probability 

that a spell ends in interval k is given by the conditional probability of failure in that interval times 

the probability that the spell survives until interval k, i.e. 1

1
(1 ) k

k jj
α α−

=
− ∏ . Right-censored spells 

contribute to the likelihood with the survivor function, 
1

k
jj

α
=∏ , and so the contribution to the 

likelihood function from a job spell ending in interval k can be written as: 

 

( )
1

1
1 1 , ,

1

,..., , ,..., , , (1 ) (1 )e u e u

k
d d d d

eu k k e u e k u k k j
j

L t x x z z v v α α α α
−

− −

=

= − − ∏   (A3) 

 

where de and du are destination state indicators. If the job spell is right censored then de = du = 0. 

Instead of imposing a functional form on the baseline hazard, we allow for a flexible specification 

by simply estimating the interval specific baseline parameters, Λs,k. 

 

To eliminate any bias arising from ve and vu being correlated with zt, e.g., because workers with 

unstable employment patterns select into firms with high shares of immigrants and/or large changes 

in these,  we model the variables in zt simultaneously with the transition rate out of a job spell. For 

example, for the change in the immigrant share, ∆immt, we specify the following selection equation: 

 

,t m t m t timm x yβ γ ε∆ = + +      (A4) 

  

where xt are the explanatory variables from the duration model in (A1), and yt are instrument 

variables that are included in the selection model in (A4), but not in the duration model. Note that 

the subscript “m” on the parameters indicates that these belong to the selection model, whereas 

subscripts “e” and “u” are used in the duration model. For a given individual, the error term in (A4) 

is composed of two components, an independently normally distributed idiosyncratic component, 

ut, and a random individual-specific effect, vm, which does not vary over time:  

 

 mtt vu +=ε       (A5) 

 

The likelihood contribution from a sequence of changes in immigrant shares over a job spell is thus 
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( )1 1 1
1

1,..., ,..., , ,..., ,
k

j m j m j m
m k k k m

j u u

imm x y v
L imm imm x x y y v

β γ
φ

σ σ=

∆ − − − 
∆ ∆ =  

 
∏  (A6) 

 

where σu is the standard deviation of the idiosyncratic component in (A5) and φ(.) is the standard 

normal density function. Similar equations are specified for the two other variables in zt. 

 

In order to deal with the potential self-selection of individuals, we allow the unobserved individual 

effect, vm, in (A5) to be correlated with the unobserved individual effects, ve and vu, from the hazard 

model in (A1). The v's are assumed to be uncorrelated with xt and yt and time invariant. Hence, they 

are constant across repeated spells for the same individual.9

( ) ( ) ( )1 1 1 1 1
, ,

,..., , ,..., , , ,..., ,..., , ,..., , , ,
e u m

eu k k e u m k k k m e u m
v v v

L L t x x z z v v L z z x x y y v d Fv v v= ⋅∫∫∫

 

     

The complete contribution to the likelihood function from a job spell is thus: 

 

 (A7) 

 

where F is the joint CDF for the unobserved effects. Note that if selection equations are included for 

all three immigrant variables, vm is 3x1 as it then contains three unobserved effects. We use a 

flexible and widely applied specification of the distribution of these unobservables: It is assumed 

that they each can take two values, e.g., 1 2{ , }e e ev v v∈ , where one of the support points in each 

destination specific hazard is normalized to zero (i.e., ve1 = 0, and vu1 = 0), because the baseline 

hazard acts as a constant term in the hazard rates. Furthermore, we assume that the elements of vm 

(if more than one selection equation is included) are perfectly positively correlated but not 

necessarily of the same size. Thus, there are 8 possible combinations of this unobserved 

heterogeneity distribution, each with an associated probability. For more details on this class of 

mixture distributions in duration models, see, e.g., van den Berg (2001). 

 

To estimate the duration model with the selection equations, we rely both on the occurrence of 

multiple job spells for individuals, as in, e.g., Munch et al. (2006, 2008), and the existence of a set 

                                                 
9 As unobserved individual effects are constant across repeated spells for the same individual, this approach may not 

eliminate unobserved workplace specific effects which are correlated with the immigrant variables. It is for this reason 

that we think of immt as a proxy for such differences. 
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of variables (instruments), yt, that affect the workplace immigrant share but have no direct impact 

on job separations. Specifically, we use the following three instruments (one for each immigrant 

variable): The share of immigrants in employment in the local area (where local areas are defined 

from observed commuting patterns) as well as the changes in this variable from t-1 to t and from t 

to t+1. In the literature on immigration and local labour markets, similar instruments have been 

applied by, e.g., Card (2001) and Cortes (2008).  

 

 

Appendix B: Detailed Estimation Results 

Tables A1-A4 below contain the full set of estimation results from the estimations in Tables 3-5 in 

the paper.  

 

[Insert Tables A1-A4 around here] 

 

 



 21 

References 

Abowd, J.M. and F. Kramarz (1999): “The Analysis of Labor Markets using Matched Employer-
Employee Data”, in: O. Ashenfelter and D. Card (eds.), Handbook of Labor Economics, vol. 
3B, Amsterdam: Elsevier Science, 2629-2710. 

 
Angrist, J.D. and A.D. Kugler (2003): “Protective or Counter Protective? Labour Market 

Institutions and the Effects of Immigration on EU Natives”, Economic Journal, 113, F302-
F331.  

 
Bender, S., C. Dustmann, D. Margolis, and C. Meghir (2002): “Worker Displacement in France and 

Germany”, in P.J. Kuhn (ed.), Losing Work, Moving on: International Perspectives on 
Worker Displacement, W.E. Upjohn Institute for Employment Research. 

 
Battu, H., A. Ma and E. Phimister (2008), “Housing Tenure, Job Mobility and Unemployment in 

the UK”, Economic Journal, 118, 311-328. 
 
Borjas, G.J., R. Freeman and L. Katz (1997): “How Much Do Immigration and Trade Affect Labor 

Market Outcomes”, Brookings Papers on Economic Activity, 1, 1-90. 
 
Borland, J., P. Gregg, G. Knight and J. Wadsworth (2002): “The Get Knocked Down. Do They Get 

Up Again?”, in P.J. Kuhn (ed.), Losing Work, Moving on: International Perspectives on 
Worker Displacement, W.E. Upjohn Institute for Employment Research. 

 
Browning, M., A.M. Danø and E. Heinesen (2006): “Job Displacement and Stress-Related Health 

Outcomes”, Health Economics, 15, 1061-1075. 
 
Card, D. (2001): “Immigrant Inflows, Native Outflows, and the Local Market Impacts of Higher 

Immigration”, Journal of Labor Economics, 19, 22-63. 
 
Cortes, P. (2008): “The Effects of Low-Skilled Immigration on US Prices: Evidence from CPI 

Data”, Journal of Political Economy, 116, 381-422. 
 
Dustmann, C., F. Fabbri and I. Preston (2005): “The Impact of Immigration on the British Labour 

Market”, Economic Journal, 115, F324-F341. 
 
Farber, H.S. (1999): “Mobility and Stability: The Dynamics of Job Change in Labor Markets”, in 

O. Ashenfelter and D. Card (eds.), The Handbook of Labor Economics, 3, Elsevier Science, 
Holland. 

 
Farber, H.S. (2005): “What do We Know about Job Loss in the United States? Evidence from the 

Displaced Workers Survey, 1984-2004”, Economic Perspectives, Q2, 13-18. 
 
Geishecker, I. (2008): “The Impact of International Outsourcing on Individual Employment 

Security: A Micro-Level Analysis”, Labour Economics, 15, 291–314. 
 



 22 

Kiefer, N.M. (1990): “Econometric Methods for Grouped Duration Data”, in J. Hartog, G. Ridder 
and J. Theeuwes (eds.), Panel Data and Labour Market Studies, North Holland, 
Amsterdam. 

 
Klein, M.W., S. Schuh and R.K. Triest (2003): “Job Creation, Job Destruction, and the Real 

Exchange Rate”, Journal of International Economics, 59, 239-265. 
 
Longhi, S., P. Nijkamp and J. Poot (2006): “The Impact of Immigration on the Employment of 

Natives in Regional Labour Markets: A Meta-Analysis”, IZA Discussion Paper No. 2044, 
Institute for the Study of Labor (IZA). 

 
Malchow-Møller, N., J.R. Munch, S. Schroll and J.R. Skaksen (2008a): “Attitudes towards 

Immigration – Perceived Consequences and Economic Self-Interest”, Economics Letters, 
100, 254-257. 

 
Malchow-Møller, N., J.R. Munch and J.R. Skaksen (2008b): “Do Immigrants Affect Firm-Specific 

Wages?” IZA Discussion Paper no. 3264. 
 
Munch, J., M. Rosholm and M. Svarer (2006): “Are Home Owners Really More Unemployed?”, 

Economic Journal, 116, 991-1013. 
 
Munch, J., M. Rosholm and M. Svarer (2008): “Home Ownership, Job Duration and Wages”, 

Journal of Urban Economics, 63, 130-145. 
 
Pischke, J.-S. and J. Velling (1997): “Employment Effects of Immigration to Germany: An 

Analysis Based on Local Labor Markets”, Review of Economics and Statistics, 79, 594-604. 
 
Royalty, A. B. (1998): “Job-to-job and job-to-nonemployment turnover by gender and education 

level”, Journal of Labor Economics, 16, 392-443. 
 
Sueyoshi, G. T. (1992): “Semiparametric Proportional Hazards Estimation of Competing Risks 

Models with Time-Varying Covariates”, Journal of Econometrics, 51, 25-58. 
 
van den Berg, G. (2001): “Duration Models: Specification, Identification, and Mulitple Durations”, 

in J.J. Heckman and E. Leamer (eds.), Handbook of Econometrics, Vol. V, North Holland, 
Amsterdam. 



Table 1: Job Spell Statistics
Number of persons 51,960
Number of spells 89,492
Share of persons with more than one spell 0.1803
Mean duration of spells (in years) 3.0815

Proportion of spells that:
are right-censored 0.2934
end with job change 0.6051
end with unemployment 0.0539
end with other destinations 0.0475



Table 2: Summary Statistics

Mean Stdv. Mean Stdv. Mean Stdv.
Individual characteristics:
Age 36.85 10.55 36.43 10.68 37.49 10.31
Age squared 1469.43 824.41 1441.01 827.17 1511.77 818.47
Female 0.3270 0.4691 0.3234 0.4678 0.3324 0.4711
Married 0.4856 0.4998 0.4854 0.4998 0.4858 0.4998
Basic education 0.3287 0.4698 0.3168 0.4652 0.3465 0.4759
Vocational education 0.4824 0.4997 0.5200 0.4996 0.4263 0.4946
Further education 0.1889 0.3914 0.1632 0.3696 0.2271 0.4190
Large city 0.1386 0.3455 0.1471 0.3542 0.1259 0.3318
Small city 0.6328 0.4820 0.6758 0.4681 0.5688 0.4953
Copenhagen 0.2286 0.4199 0.1771 0.3818 0.3053 0.4605
Experience 0.1486 0.0930 0.1477 0.0928 0.1499 0.0935

Occupation dummies (1-digit DISCO):
Managers 0.0054 0.0729 0.0083 0.0907 0.0010 0.0310
Professionals 0.1012 0.3019 0.0767 0.2662 0.1376 0.3445
Technicians and associate professors 0.1872 0.3901 0.1852 0.3885 0.1901 0.3924
Clerical support workers 0.1409 0.3480 0.1712 0.3767 0.0959 0.2945
Service and sales workers 0.0662 0.2487 0.0752 0.2637 0.0528 0.2237
Skilled agricultural, forestry and fishery workers 0.0073 0.0852 0.0114 0.1061 0.0012 0.0353
Craft and related trades workers 0.2115 0.4083 0.2309 0.4214 0.1826 0.3863
Plant and machine operators, and assemblers 0.1526 0.3596 0.1138 0.3176 0.2102 0.4075
Elementary occupations 0.1278 0.3338 0.1273 0.3333 0.1285 0.3347

Workplace characteristics:
Log(# of employees) 4.5475 1.4648 3.8980 1.1396 5.5149 1.3577
Share with basic education 0.3427 0.1753 0.3386 0.1807 0.3487 0.1669
Share with further education 0.1816 0.2016 0.1526 0.1874 0.2247 0.2138
Share female 0.3287 0.2324 0.3222 0.2462 0.3384 0.2097
Share aged 40+ 0.4199 0.1738 0.4088 0.1884 0.4364 0.1480

Immigrant variables:
immiwt 0.0139 0.0369 0.000 0.000 0.0345 0.0517
∆immiwt 0.0006 0.0311 0.0027 0.0211 -0.0026 0.0415
L∆immiwt 0.0137 0.0916 -0.0016 0.0121 0.0366 0.1407

 # observations

Note: 1-digit DISCO codes obtained from the International Labour Organization: http://www.ilo.org/public/english/bureau/stat/isco/docs/resol08.pdf

without immigrants with immigrants

(1) (2) (3)

Note: Columns (2) and (3) divide the sample into observations where imm iwt  = 0 (column 2) and where imm iwt  > 0 (column 3). See text for explanations of variables.

Observations in occupations Observations in occupations

105,976 63,407 42,569

All observations



Table 3: Competing Risks Model
(1) (2) (3) (4)

Job change Unemployment Job change Unemployment
hazard hazard hazard hazard

∆imm iwt -0.0886 -0.2215 -0.0927 -0.2194
(0.0195) (0.0254) (0.0216) (0.0264)

L∆imm iwt 0.0166 -0.0277 0.0170 -0.0256
(0.0085) (0.0109) (0.0088) (0.0113)

imm iwt -0.0327 -0.0166 -0.0415 -0.0135
(0.0219) (0.0248) (0.0246) (0.0270)

Selection equations included

# observations
Note: Bold numbers indicate a significant parameter estimate (5% level). Standard deviations in parentheses. All models have been estimated with 
the control variables listed in Table 2. Unobserved heterogeneity is controlled for using a two-point discrete distribution in each equation. 
Parameter estimates of covariates, the distribution of unobservables and duration dependence are provided in Tables A1 and A2 in the Appendix.

no yes

118,842 118,842



Table 4: Competing Risks Model with Job Growth
(1) (2) (3) (4)

Job change Unemployment Job change Unemployment
hazard hazard hazard hazard

∆imm t -0.0884 -0.2246 0.1003 -0.0679
(0.0195) (0.0254) (0.0195) (0.0261)

L∆imm t 0.0163 -0.0259 0.0081 -0.0312
(0.0086) (0.0109) (0.0089) (0.0110)

imm t -0.0336 -0.0210 0.0095 0.0198
(0.0219) (0.0248) (0.0221) (0.0252)

Job growtht-1 0.0156 -0.0592
(0.0248) (0.0337)

Job growtht -1.9592 -1.8680
(0.0193) (0.0289)

# observations 118,842 118,842
Note: Bold numbers indicate a significant parameter estimate (5% level). Standard deviations in parentheses. All models have been 
estimated with the control variables listed in Table 2. Unobserved heterogeneity is controlled for using a two-point discrete distribution in 
each equation. Parameter estimates of covariates, the distribution of unobservables and duration dependence are provided in Table A3 in 
the Appendix.



Table 5: Competing Risks Model - Interaction with Education
(1) (2) (3) (4) (5) (6)

Job change Unemployment Job change Unemployment Job change Unemployment
hazard hazard hazard hazard hazard hazard

∆imm t  x basic education -0.1238 -0.2139 -0.1228 -0.2137 0.0562 -0.0719
(0.0293) (0.0347) (0.0293) (0.0347) (0.0305) (0.0355)

∆imm t  x vocational education -0.1047 -0.2369 -0.1043 -0.2363 0.0743 -0.0648
(0.0323) (0.0430) (0.0323) (0.0430) (0.0319) (0.0438)

∆imm t  x further education 0.0478 -0.2813 0.0435 -0.2775 0.2978 -0.12
(0.0466) (0.0747) (0.0466) (0.0746) (0.0400) (0.0764)

L∆imm t  x basic education -0.0105 -0.0276 -0.0105 -0.0263 -0.0155 -0.0317
(0.0134) (0.0135) (0.0134) (0.0135) (0.0143) (0.0135)

L∆imm t  x vocational education 0.0182 -0.0362 0.0186 -0.0346 0.0114 -0.0383
(0.0137) (0.0201) (0.0137) (0.0201) (0.0141) (0.0203)

L∆imm t  x further education 0.0808 0.0111 0.0811 0.0127 0.0533 0.0054
(0.0181) (0.0443 (0.0181) (0.0433) (0.0187) (0.0455)

imm t  x basic education -0.0143 -0.0281 -0.0147 -0.0283 0.0228 0.009
(0.0305) (0.0316) (0.0305) (0.0316) (0.0309) (0.0321)

imm t  x vocational education -0.0183 0.0048 -0.0196 0.0037 0.0256 0.039
(0.0357) (0.0439) (0.0357) (0.0439) (0.0356) (0.0435)

imm t  x further education -0.1648 -0.0604 -0.1614 -0.0604 -0.075 -0.0097
(0.0634) (0.0821) (0.0634) (0.0822) (0.0645) (0.0862)

Job growtht-1 0.0029 -0.0561
(0.0248) (0.0337)

Job growtht -1.9552 -1.8632
(0.0192) (0.0290)

# observations
Note: Bold numbers indicate a significant parameter estimate (5% level). Standard deviations in parentheses. All models have been estimated with the control variables listed in Table 2. Unobserved heterogeneity is controlled for 
using a two-point discrete distribution. Parameter estimates of covariates, the distribution of unobservables and duration dependence are provided in Table A4 in the Appendix.

118,842 118,842 118,842



Table A1: Competing Risks Model

Estimates Std. Err. Estimates Std. Err.

Individual characteristics:
Age -1.4836 0.5337 2.7018 0.6704
Age squared -0.5779 0.6619 0.9483 0.8356
Female -0.2447 0.0191 0.1957 0.0273
Married -0.0046 0.0168 -0.2982 0.0225
Vocational education 0.0753 0.0179 0.0144 0.0226
Further education -0.0100 0.0268 -0.1420 0.0415
Large city -0.2164 0.0247 0.1468 0.0339
Small city -0.1785 0.0180 0.0316 0.0269
Experience 0.5281 0.1446 -5.4735 0.1771

Occupation dummies:
Managers 0.8341 0.0818 0.4095 0.1072
Professionals 0.3963 0.0365 -0.6468 0.0626
Technicians and associate professors 0.4461 0.0292 -0.4835 0.0434
Clerical support workers 0.3440 0.0304 -0.2437 0.0391
Service and sales workers 0.5663 0.0342 0.0486 0.0433
Skilled agricultural, forestry and fishery workers 0.0922 0.0889 -0.1676 0.1018
Craft and related trades workers 0.1019 0.0279 0.1356 0.0318
Plant and machine operators, and assemblers 0.0675 0.0293 0.1501 0.0312

Workplace characteristics:
Log(# of employees) -0.5403 0.0534 -1.4392 0.0756
Share with basic education 0.4712 0.0526 1.0109 0.0671
Share with further education 0.1199 0.0514 -0.2788 0.0826
Share female 0.0254 0.0369 -0.2218 0.0497
Share aged 40+ -0.1859 0.0441 -0.1819 0.0590

Immigrant variables:
∆immt -0.0886 0.0195 -0.2215 0.0254
L∆immt 0.0166 0.0085 -0.0277 0.0109
immt -0.0327 0.0219 -0.0166 0.0248

Baseline hazard parameters:
Λ1 0.4018 0.0418 0.1504 0.0200
Λ2 0.3419 0.0359 0.1038 0.0139
Λ3 0.3250 0.0344 0.0890 0.0120
Λ4 0.2945 0.0316 0.0796 0.0111
Λ5 0.2716 0.0299 0.0707 0.0102
Λ6 0.2432 0.0276 0.0604 0.0092
Λ7 0.2046 0.0246 0.0583 0.0095
Λ8 0.1789 0.0235 0.0474 0.0086
Λ9 0.1431 0.0223 0.0411 0.0094
Λ10 0.1374 0.0291 0.0557 0.0152

Unobserved heterogeneity parameters:
v e2 1.1828 0.0350
v u2 1.6818 0.0364
P(v e = v e1 , v u  = v u1 ) 0.7875 0.0094
P(v e = v e2 , v u  = v u1 ) 0.0007 0.0090
P(v e = v e1 , v u  = v u2 ) 0.0006 0.0098
P(v e = v e2 , v u  = v u2 ) 0.2112 0.0114

# observations
Note: Bold numbers indicate a significant parameter estimate (5% level). Unobserved heterogeneity is controlled for using 
a two-point discrete distribution in each equation.

Job change hazard Unemployment hazard

118,842



Table A2: Competing Risks Model with Selection Equations

Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

Individual characteristics:
Age -1.5116 0.5352 2.7957 0.6728 0.0084 0.0720 0.4503 0.1884 0.2062 0.0504
Age squared -0.5269 0.6637 0.8040 0.8391 -0.0410 0.0888 -0.2228 0.2289 0.0499 0.0617
Female -0.2448 0.0191 0.1972 0.0275 -0.0035 0.0027 0.0335 0.0067 0.0036 0.0019
Married -0.0027 0.0168 -0.2975 0.0225 -0.0014 0.0023 0.0044 0.0057 0.0015 0.0016
Vocational education 0.0746 0.0180 0.0154 0.0227 -0.0005 0.0025 -0.0125 0.0060 -0.0002 0.0017
Further education -0.0077 0.0269 -0.1380 0.0417 -0.0039 0.0044 -0.0235 0.0114 -0.0032 0.0030
Large city -0.2207 0.0248 0.1498 0.0340 -0.0109 0.0043 0.0118 0.0108 0.0107 0.0030
Small city -0.1817 0.0181 0.0342 0.0270 -0.0083 0.0028 0.0068 0.0077 -0.0034 0.0020
Experience 0.4781 0.1452 -5.4714 0.1783 0.0194 0.0192 -0.2595 0.0488 -0.2928 0.0137

Occupation dummies:
Managers 0.8271 0.0821 0.4119 0.1077 -0.0088 0.0437 -0.2153 0.0998 -0.1568 0.0218
Professionals 0.3912 0.0366 -0.6433 0.0628 0.0137 0.0062 -0.1410 0.0167 -0.0496 0.0047
Technicians and associate professors 0.4402 0.0293 -0.4824 0.0435 0.0051 0.0047 -0.1445 0.0125 -0.0921 0.0039
Clerical support workers 0.3382 0.0305 -0.2417 0.0393 -0.0031 0.0050 -0.1862 0.0136 -0.0944 0.0032
Service and sales workers 0.5612 0.0343 0.0526 0.0435 0.0071 0.0042 -0.1942 0.0173 -0.0368 0.0035
Skilled agricultural, forestry and fishery workers 0.0805 0.0892 -0.1501 0.1024 0.0072 0.0186 -0.1568 0.0709 -0.1191 0.0177
Craft and related trades workers 0.0956 0.0280 0.1363 0.0320 -0.0017 0.0040 -0.0863 0.0103 -0.0179 0.0029
Plant and machine operators, and assemblers 0.0651 0.0294 0.1500 0.0314 0.0070 0.0030 0.0120 0.0073 0.0738 0.0021

Workplace characteristics:
Log(# of employees) -0.5361 0.0538 -1.4293 0.0761 -0.0146 0.0089 0.3582 0.0239 0.1194 0.0054
Share with basic education 0.4545 0.0527 1.0250 0.0674 -0.0091 0.0075 0.2282 0.0254 0.2173 0.0064
Share with further education 0.1048 0.0516 -0.2803 0.0829 0.0189 0.0093 0.0756 0.0281 0.0858 0.0067
Share female 0.0259 0.0371 -0.2219 0.0499 0.0018 0.0051 0.0833 0.0144 0.0240 0.0038
Share aged 40+ -0.1838 0.0443 -0.1657 0.0592 -0.0351 0.0061 -0.1144 0.0202 -0.0690 0.0048

Immigrant variables:
∆imm t -0.0927 0.0216 -0.2194 0.0264
L∆imm t 0.0170 0.0088 -0.0256 0.0113
imm t -0.0415 0.0246 -0.0135 0.0270

Selection equationSelection equation Selection equation
∆imm t L∆imm t imm tUnemployment hazardJob change hazard

Instruments:
Immigrant share (local area)t -0.1889 0.0761 1.5354 0.1876 2.2398 0.0527
∆Immigrant share (local area)t 0.0016 0.0014 0.0045 0.0030 0.0004 0.0017
L∆Immigrant share (local area)t 0.0006 0.0012 0.0155 0.0028 0.0002 0.0017

Baseline hazard parameters:
Λ1 0.4073 0.0425 0.1430 0.0191
Λ2 0.3458 0.0364 0.0986 0.0133
Λ3 0.3310 0.0351 0.0845 0.0115
Λ4 0.2999 0.0323 0.0757 0.0106
Λ5 0.2761 0.0305 0.0679 0.0098
Λ6 0.2483 0.0283 0.0574 0.0087
Λ7 0.2088 0.0252 0.0555 0.0091
Λ8 0.1827 0.0241 0.0460 0.0084
Λ9 0.1506 0.0235 0.0364 0.0083
Λ10 0.1307 0.0278 0.0491 0.0134

Unobserved heterogeneity parameters:
v e2 1.1651 0.0347
v u2 1.6676 0.0361
v m1 0.0449 0.0158 -0.1966 0.0425 -0.1184 0.0109
v m2 -0.2069 0.0160 0.9303 0.0424 1.1383 0.0111
P(v e = v e1 , v u  = v u1 , v m  = v m1 ) 0.753 0.010
P(v e = v e2 , v u  = v u1 , v m  = v m1 ) 0.001 0.009
P(v e = v e1 , v u  = v u2 , v m  = v m1 ) 0.001 0.010
P(v e = v e2 , v u  = v u2 , v m  = v m1 ) 0.213 0.012
P(v e = v e1 , v u  = v u1 , v m  = v m2 ) 0.024 0.002
P(v e = v e2 , v u  = v u1 , v m  = v m2 ) 0.001 0.002
P(v e = v e1 , v u  = v u2 , v m  = v m2 ) 0.001 0.002
P(v e = v e2 , v u  = v u2 , v m  = v m2 ) 0.005 0.002
Var(u ) -2.2370 0.0007 -0.2108 0.0016 -2.2973 0.0011

Corr(v e , v m ) -0.0105 0.0805
Corr(v u , v m ) -0.0156 0.0955

# observations 118,842
Note: Bold numbers indicate a significant parameter estimate (5% level). Unobserved heterogeneity is controlled for using a two-point discrete distribution in each equation. The correlation between the selection 
equations is restricted to be perfect. The standard errors for the correlation coefficients have been calculated based on 1000 drawings from the multivariate normal distribution with mean and covariance matrix set 
equal to the estimated parameter vector and covariance matrix. 



Table A3: Competing Risks Model with Job Growth

Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

Individual characteristics:
Age -1.4881 0.5338 2.7050 0.6708 -1.4912 0.5440 2.7216 0.6720
Age squared -0.5757 0.6619 0.9355 0.8360 -0.6131 0.6760 0.8511 0.8408
Female -0.2445 0.0191 0.1941 0.0273 -0.2611 0.0195 0.1796 0.0273
Married -0.0042 0.0168 -0.2972 0.0225 -0.0009 0.0171 -0.2924 0.0226
Vocational education 0.0750 0.0179 0.0155 0.0226 0.0766 0.0183 0.0250 0.0228
Further education -0.0091 0.0268 -0.1402 0.0415 -0.0067 0.0274 -0.1294 0.0403
Large city -0.2188 0.0247 0.1485 0.0339 -0.2116 0.0252 0.1780 0.0342
Small city -0.1797 0.0180 0.0307 0.0269 -0.1718 0.0183 0.0483 0.0273
Experience 0.5242 0.1446 -5.4769 0.1771 0.4978 0.1479 -5.4765 0.1763

Occupation dummies:
Managers 0.8335 0.0818 0.4063 0.1073 0.8288 0.0827 0.3907 0.1067
Professionals 0.3956 0.0365 -0.6459 0.0626 0.4070 0.0375 -0.6332 0.0633
Technicians and associate professors 0.4452 0.0292 -0.4851 0.0434 0.4389 0.0300 -0.4750 0.0438
Clerical support workers 0.3441 0.0304 -0.2439 0.0391 0.3397 0.0313 -0.2369 0.0395
Service and sales workers 0.5662 0.0342 0.0491 0.0433 0.5280 0.0349 0.0252 0.0431
Skilled agricultural, forestry and fishery workers 0.0886 0.0890 -0.1648 0.1018 0.0966 0.0911 -0.1653 0.0999
Craft and related trades workers 0.1020 0.0279 0.1336 0.0318 0.0921 0.0288 0.1185 0.0323
Plant and machine operators, and assemblers 0.0684 0.0293 0.1514 0.0312 0.0816 0.0303 0.1572 0.0317

Workplace characteristics:
Log(# of employees) -0.5382 0.0536 -1.4323 0.0756 -0.6080 0.0549 -1.4680 0.0772
Share with basic education 0.4686 0.0526 1.0133 0.0672 0.3796 0.0535 0.9342 0.0677
Share with further education 0.1166 0.0514 -0.2786 0.0826 0.1465 0.0530 -0.2110 0.0837
Share female 0.0285 0.0370 -0.2226 0.0497 0.0657 0.0378 -0.2208 0.0493
Share aged 40+ -0.1842 0.0444 -0.1809 0.0594 -0.2797 0.0453 -0.2217 0.0600

Immigrant variables:
∆imm t -0.0884 0.0195 -0.2246 0.0254 0.1003 0.0195 -0.0679 0.0261
L∆imm t 0.0163 0.0086 -0.0259 0.0109 0.0081 0.0089 -0.0312 0.0110
imm t -0.0336 0.0219 -0.0210 0.0248 0.0095 0.0221 0.0198 0.0252

Growth variables:
Job growtht-1 0.0156 0.0248 -0.0592 0.0337
Job growtht -1.9592 0.0193 -1.8680 0.0289

Baseline hazard parameters:
Λ1 0.4017 0.0418 0.1516 0.0201 0.4322 0.0455 0.1649 0.0219
Λ2 0.3419 0.0359 0.1037 0.0139 0.3592 0.0382 0.1102 0.0148
Λ3 0.3262 0.0345 0.0889 0.0120 0.3431 0.0369 0.0937 0.0127
Λ4 0.2956 0.0317 0.0794 0.0110 0.3055 0.0333 0.0812 0.0113
Λ5 0.2718 0.0300 0.0706 0.0102 0.2753 0.0309 0.0714 0.0103
Λ6 0.2441 0.0277 0.0601 0.0091 0.2470 0.0286 0.0595 0.0091
Λ7 0.2049 0.0247 0.0581 0.0094 0.2067 0.0253 0.0568 0.0093
Λ8 0.1788 0.0235 0.0475 0.0087 0.1805 0.0241 0.0471 0.0086
Λ9 0.1438 0.0224 0.0408 0.0093 0.1459 0.0231 0.0391 0.0091
Λ10 0.1368 0.0290 0.0556 0.0151 0.1353 0.0294 0.0550 0.0151

Unobserved heterogeneity parameters:
v e2 1.1832 0.0351 1.3138 0.0421
v u2 1.6835 0.0364 1.7973 0.0432
P(v e = v e1 , v u  = v u1 ) 0.788 0.0094 0.840 0.0076
P(v e = v e2 , v u  = v u1 ) 0.001 0.0090 0.001 0.0074
P(v e = v e1 , v u  = v u2 ) 0.001 0.0097 0.000 0.0081
P(v e = v e2 , v u  = v u2 ) 0.211 0.0114 0.159 0.0093

# observations

Job change hazard Unemployment hazard

118,842 118,842
Note: Bold numbers indicate a significant parameter estimate (5% level). Unobserved heterogeneity is controlled for using a two-point discrete distribution in each equation.

Job change hazard Unemployment hazard



Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

Individual characteristics:
Age -1.4944 0.5339 2.7239 0.6708 -1.4969 0.5340 2.7275 0.6712 -1.5174 0.5482 2.7641 0.6301
Age squared -0.5584 0.6620 0.8835 0.8362 -0.5571 0.6622 0.8793 0.8366 -0.5875 0.6808 0.7954 0.7929
Female -0.2446 0.0191 0.1951 0.0273 -0.2455 0.0191 0.1949 0.0274 -0.2595 0.0195 0.1819 0.0274
Married -0.0037 0.0168 -0.2966 0.0225 -0.0039 0.0168 -0.2965 0.0225 0.0006 0.0171 -0.2932 0.0225
Vocational education 0.0711 0.0189 0.0110 0.0240 0.0715 0.0189 0.0111 0.0240 0.0734 0.0193 0.0191 0.0242
Further education -0.0056 0.0277 -0.1424 0.0431 -0.0063 0.0277 -0.1421 0.0431 -0.0051 0.0283 -0.1362 0.0434
Large city -0.2182 0.0247 0.1485 0.0339 -0.2181 0.0247 0.1498 0.0339 -0.2131 0.0253 0.1718 0.0342
Small city -0.1800 0.0180 0.0320 0.0269 -0.1802 0.0180 0.0320 0.0269 -0.1738 0.0183 0.0428 0.0272
Experience 0.5113 0.1447 -5.4608 0.1774 0.5108 0.1447 -5.4646 0.1774 0.5004 0.1480 -5.4570 0.1759

Occupation dummies:
Managers 0.8299 0.0819 0.4065 0.1073 0.8298 0.0819 0.4063 0.1074 0.8299 0.0828 0.3897 0.1068
Professionals 0.3949 0.0365 -0.6402 0.0627 0.3948 0.0365 -0.6409 0.0627 0.4089 0.0375 -0.6285 0.0637
Technicians and associate professors 0.4421 0.0292 -0.4829 0.0435 0.4417 0.0292 -0.4829 0.0435 0.4400 0.0301 -0.4722 0.0439
Clerical support workers 0.3411 0.0304 -0.2417 0.0391 0.3407 0.0304 -0.2417 0.0392 0.3407 0.0313 -0.2369 0.0395
Service and sales workers 0.5628 0.0342 0.0517 0.0433 0.5629 0.0342 0.0514 0.0433 0.5296 0.0349 0.0267 0.0431
Skilled agricultural, forestry and fishery workers 0.0869 0.0890 -0.1559 0.1018 0.0857 0.0890 -0.1563 0.1018 0.0982 0.0911 -0.1629 0.1000
Craft and related trades workers 0.0991 0.0279 0.1349 0.0318 0.0998 0.0279 0.1364 0.0318 0.0936 0.0288 0.1194 0.0322
Plant and machine operators, and assemblers 0.0658 0.0293 0.1524 0.0312 0.0659 0.0293 0.1525 0.0312 0.0841 0.0303 0.1575 0.0317

Workplace characteristics:
Log(# of employees) -0.5400 0.0535 -1.4322 0.0756 -0.5411 0.0536 -1.4305 0.0757 -0.6094 0.0550 -1.4615 0.0773
Share with basic education 0.4647 0.0526 1.0169 0.0672 0.4645 0.0526 1.0164 0.0672 0.3771 0.0535 0.9381 0.0676
Share with further education 0.1202 0.0516 -0.2753 0.0826 0.1183 0.0516 -0.2772 0.0827 0.1447 0.0532 -0.2118 0.0841
Share female 0.0298 0.0370 -0.2217 0.0497 0.0303 0.0370 -0.2210 0.0498 0.0619 0.0379 -0.2280 0.0503
Share aged 40+ -0.1848 0.0442 -0.1720 0.0590 -0.1824 0.0444 -0.1716 0.0594 -0.2754 0.0454 -0.2229 0.0599

Immigrant variables:
∆imm t x basic edu. -0.1238 0.0293 -0.2139 0.0347 -0.1228 0.0293 -0.2137 0.0347 0.0562 0.0305 -0.0719 0.0355
∆imm t x vocational edu. -0.1047 0.0323 -0.2369 0.0430 -0.1043 0.0323 -0.2363 0.0430 0.0743 0.0319 -0.0648 0.0438
∆imm t x further edu. 0.0478 0.0466 -0.2813 0.0747 0.0435 0.0466 -0.2775 0.0746 0.2978 0.0400 -0.1200 0.0764
L∆ imm t x basic edu. -0.0105 0.0134 -0.0276 0.0135 -0.0105 0.0134 -0.0263 0.0135 -0.0155 0.0143 -0.0317 0.0135
L∆ immt  x vocational edu. 0.0182 0.0137 -0.0362 0.0201 0.0186 0.0137 -0.0346 0.0201 0.0114 0.0141 -0.0383 0.0203
L∆ imm t x further edu. 0.0808 0.0181 0.0111 0.0443 0.0811 0.0181 0.0127 0.0443 0.0533 0.0187 0.0054 0.0455
imm t x basic edu. -0.0143 0.0305 -0.0281 0.0316 -0.0147 0.0305 -0.0283 0.0316 0.0228 0.0309 0.0090 0.0321
imm t x vocational edu. -0.0186 0.0357 0.0048 0.0439 -0.0196 0.0357 0.0037 0.0439 0.0256 0.0356 0.0390 0.0435
imm t x further edu. -0.1648 0.0634 -0.0604 0.0821 -0.1614 0.0634 -0.0604 0.0822 -0.0750 0.0645 -0.0097 0.0862

Growth variables:
Job growtht-1 0.0029 0.0248 -0.0561 0.0337
Job growtht -1.9552 0.0192 -1.8632 0.0290

Baseline hazard parameters:
Λ1 0.4053 0.0421 0.1491 0.0198 0.4049 0.0421 0.1500 0.0199 0.4356 0.0461 0.1647 0.0202
Λ2 0.3445 0.0361 0.1028 0.0138 0.3446 0.0362 0.1025 0.0138 0.3624 0.0388 0.1099 0.0137
Λ3 0.3284 0.0347 0.0881 0.0119 0.3282 0.0347 0.0879 0.0119 0.3460 0.0374 0.0935 0.0118
Λ4 0.2978 0.032 0.0786 0.0109 0.2978 0.0320 0.0786 0.0109 0.3074 0.0337 0.0810 0.0105
Λ5 0.2739 0.0302 0.0698 0.0101 0.2742 0.0302 0.0698 0.0101 0.2774 0.0313 0.0712 0.0097
Λ6 0.2461 0.0279 0.0593 0.009 0.2462 0.0280 0.0593 0.0090 0.2486 0.0289 0.0592 0.0085
Λ7 0.2067 0.0249 0.0573 0.0093 0.2069 0.0249 0.0573 0.0093 0.2082 0.0256 0.0563 0.0087
Λ8 0.1802 0.0237 0.0477 0.0087 0.1803 0.0237 0.0476 0.0087 0.1818 0.0244 0.0467 0.0083
Λ9 0.1469 0.0229 0.0401 0.0092 0.1470 0.0229 0.0399 0.0091 0.1472 0.0234 0.0384 0.0087
Λ10 0.1351 0.0286 0.0546 0.0149 0.1350 0.0286 0.0546 0.0149 0.1345 0.0293 0.0540 0.0145

Unobserved heterogeneity parameters:
v e2 1.1831 0.0351 1.1834 0.0350 1.3186 0.0423
v u2 1.6815 0.0365 1.6835 0.0364 1.8004 0.0434
P(v e = v e1 , v u  = v u1 ) 0.7878 0.0094 0.7876 0.0094 0.8413 0.0075
P(v e = v e2 , v u  = v u1 ) 0.0007 0.0090 0.0007 0.0090 0.0005 0.0073
P(v e = v e1 , v u  = v u2 ) 0.0006 0.0098 0.0006 0.0097 0.0004 0.0080
P(v e = v e2 , v u  = v u2 ) 0.2109 0.0114 0.2111 0.0114 0.1577 0.0092

# observations

Job change hazard Unemployment hazard

118,842 118,842 118842
Note: Bold numbers indicate a significant parameter estimate (5% level). Unobserved heterogeneity is controlled for using a two-point discrete distribution in each equation.

Table A4: Competing Risks Model - Interaction with Education

Job change hazard Job change hazardUnemployment hazard Unemployment hazard
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