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I. Introduction

Rising wage inequality has been a key feature of the U.S. labor market since the late 1970s.

This phenomenon, both in the United States and worldwide, has received much attention

in the literature. One possible explanation is provided by the capital-skill complementarity

(CSC) hypothesis. The hypothesis states that physical capital and skilled labor are more

complementary than unskilled labor and physical capital. Assuming the hypothesis is true,

an increase in physical capital, ceteris paribus, will increase the demand for skilled labor

(and thus wages for skilled laborers). Capital-deepening seen across many economies in

recent years combined with CSC could be one such explanation for rising wage inequality.

Thus, if significant increases in physical capital have been made and CSC is shown to hold

for a particular economy, policymakers could use this information to possibly find ways to

decrease inequality.

Griliches (1969) finds empirical evidence that physical capital and skilled labor are less

substitutable than physical capital and unskilled labor and concludes that the CSC hypothe-

sis holds using a data set of U.S. manufacturers. Since Griliches (1969), the CSC hypothesis

has been empirically studied in great detail. While some authors debate the specification

of the model, others debate the type of data which should be studied. Fallon and Layard

(1975), and others, study the CSC hypothesis on an international scale. Specifically, they

piece together data from 22 developed and developing countries for the year 1963. They find

mild evidence in favor of the CSC hypothesis. Duffy, Papageorgiou, and Perez-Sebastian

(2004), hereafter DPP, extend the work of Fallon and Layard (1975) to a balanced data set

of 73 countries over a 25 year period (1965-90). They use a two-level constant elasticity of

substitution production function specification and use nonlinear estimation methods which

allow them to relax the assumption of perfectly competitive markets. Further, they present

five alternative ways of dividing the labor force into two categories, ‘skilled’ and ‘unskilled’.1

This allows them to find the greatest support for CSC when the category for skilled laborers

1These categories or thresholds will be described in greater detail in Section 3.
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is defined as those who have attained some secondary education, those who have completed

primary education or as those who gained some primary education. Part of their purpose for

looking at an international panel was to find evidence of CSC over long periods of time and

across countries at different stages of development. This strategy was partly influenced by

Goldin and Katz (1998) who note that physical capital and skilled labor have not always been

viewed as relative complements. In particular, they suggest that transitions between pro-

duction processes change the relative demand for skill, thus different economies at different

times may or may not possess CSC.

Most studies simply give a single conclusion for all observations. This could prove to be

detrimental. For example, suppose a researcher found that CSC exists in a panel of countries.

Then if countries take that information as given, it may affect their policy. If CSC holds true

for that economy, it could increase spending on education to potentially reduce the impact

of advancing technology on inequality. However, if CSC does not exist, those resources spent

on education may have been better allocated.

Although observation-specific estimates seem logical, the aforementioned papers sim-

ply give a single estimate for each elasticity.2 An increasingly popular method to obtain

observation-specific estimates is to use nonparametric kernel methods. In addition, these

methods have the luxury of not having to assume a specific functional form for the technol-

ogy. This technique is extremely beneficial here because as DPP (pp. 331) note, ‘there is

no consensus yet on the appropriate functional form to use to capture capital-skill comple-

mentarity.’ Thus, if one chooses a specific functional form, and that assumption is incorrect,

estimation will likely lead to inconsistent parameter estimates.

This paper uses nonparametric methods to study the CSC hypothesis. The approach

allows for at least three contributions to the literature. (1) The nonparametric technique

allows the model to be solved using a single-level production function. (2) It decreases

2There is, however, some work being done with translog cost functions (which require price data) that
allow for observation-specific estimates (Bergström and Panas, 1992; Ruiz-Arranz, 2002).
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the number of assumptions of the model, including the choice of functional form for the

technology and (3) it allows for observation-specific estimates of elasticities of substitution.

The main finding of the paper shows some support for the CSC hypothesis. As in

DPP, the elasticities of substitution between physical capital and skilled labor are generally

smaller than the elasticities of substitution between physical capital and unskilled labor, but

the difference is often insignificant. Stochastic dominance (SD) tests show some support

for CSC, but the evidence depends upon the measure used and the definition of a skilled

laborer. Subsequent analysis breaks down the elasticities across pre-specified groups. As

hypothesized by Goldin and Katz (1998), it is shown that the degree of substitutability

varies amongst countries, across groups of countries and across time.

The remainder of the paper is organized as follows: Section 2 describes the model, gives a

brief history of elasticity of substitution measures, and describes the estimation procedure as

well as the SD testing procedure. The third section gives the data while the fourth describes

the results. Finally, the fifth section concludes.

II. Methodology

Model

Consider the simple aggregate production model of the form

Y = f(K,S,N), (1)

where the function f transforms inputs into aggregate output (Y ). K represents the capital

stock, and S and N represent skilled and unskilled labor, respectively. The CSC hypothesis

states that capital and skilled labor are more complementary than capital and unskilled

labor. Formally, denoting σql as the elasticity of substitution between inputs q and l, CSC is
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said to hold if σKS < σKN . That is, K and S are less substitutable (or more complementary)

than K and N .

Elasticity of Substitution Measures

The elasticity of substitution measure, first developed by Hicks (1932), measures the percent-

age change in factor proportions due to a change in the marginal rate of technical substitution

in a two-input world. It is, effectively, a measure of the curvature of an isoquant. Although

this result is intuitive, complication occurs when one allows for more than two inputs. Sev-

eral measures have since been created in order to combat this complication. Unfortunately,

there is no consensus on the appropriate measure for the elastity of substitution between

inputs q and l for the multiple-input production function y = f (x1, x2, . . . , xP ).

One such measure, which has fallen out of fashion in the literature, is the direct elasticity

of substitution (DES) defined by Allen and Hicks (1934). The measure, which defines the

elasticity of substitution between inputs xq and xl as

σDql =
xqfq + xlfl

xqxl

Hql

|H| , (2)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 f1 · · · fP

f1 f11 · · · f1P
...

...
. . .

...

fP fP1 · · · fPP

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

|H| is the determinant of the bordered Hessian, Hql is the cofactor of the element fql in H,

and fq, fqq, and fql represent the first partial, second partial, and cross-partial derivatives

of the production function respectively, can be interpreted as ∂ log (xq/xl) /∂ log (fl/fq) for

constant output and other input quantities. The downfall of this measure is that it is identical

to the two-input case, effectively assuming that the other factors in the production function
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are fixed and can be ignored. In fact, it is only theoretically plausible to use this aggregate

production function if all factors are being competitively allocated. If one factor is being

held constant, then an aggregate production function no longer exists.

The most popular measure in the literature is the Allen-Uzawa (or the partial) elasticity

of substitution (AES). This method, first suggested by Allen and Hicks (1934) and further

studied by Allen (1938) and Uzawa (1962), has become a staple in the applied literature. It

was designed to combat the downfall of the DES measure (by attempting to examine changes

in other inputs) and is formally defined as

σAql =

PP
p=1

xpfp

xqxl

Hql

|H| , (3)

where xp is the pth input and fp is the pth first partial derivative of the production function,

p = 1, 2, . . . P . Although the measure is continually used, it has met sharp criticism. Black-

orby and Russell (1989) show that the Allen-Uzawa measure fails to preserve the relevant

properties of the original Hicksian notion (for the multi-input case). They further state (pp.

883) that ‘as a quantitative measure, it has no meaning; as a qualitative measure, it adds

no information to that contained in the (constant output) cross-price elasticity. In short,

the AES is (incrementally) completely uninformative.’ Perhaps the only redeeming feature

of the AES is that it preserves the sign of the compensated derivative.

In its place they suggest an alternative elasticity of substitution measure originally pub-

lished in Japanese by Morishima (1967) and independently discovered by Blackorby and

Russell (1975, 1981). This measure, which Klump and de La Grandville (2000) term the

Morishima-Blackorby-Russell elasticity of substitution (MES), preserves the salient charac-

teristics of the original Hicksian concept, which are lacking in the Allen-Uzawa measure.3

This measure is usually employed when estimating cost functions (Thompson and Taylor,

3The under-cited Klump and de La Grandville (2000) paper not only suggests the name for the elasticity
of substitution measure, it also proposes that empirical growth research in this area be based on the MES.
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1995), but is also used when estimating production functions (Hoff, 2004) and has a well-

known relationship to the partial elasticity of substitution:

σMql =
fl
xq

Hql

|H| −
fl
xl

Hql

|H| (4)

=
flxl
fqxq

¡
σAql − σAll

¢
.

A detailed examination of this formula shows two important facts. First, a pair of goods can

be complements in terms of the AES, but substitutes according to the MES. On the other

hand, if two goods are substitutes according to the AES, they are always substitutes accord-

ing to the MES. Thus, either the MES has a bias towards treating inputs as substitutes or

the AES has a bias towards treating them as complements. Second, the MES is asymmetric.

Although some view this as an unusual property, Blackorby and Russell (1981, 1989) argue

that this should be natural for the multi-input case.

When examining the asymmetric property for this data set, it is found that, in general,

the absolute value of σKS is less than σSK and at the same time σKN is less than σNK .

What these inequalities (literally) say is that the capital-labor ratio (skilled or unskilled) is

more sensitive to changes in the marginal product of capital than to changes in the marginal

product of labor. Given that the main conclusions of the paper do not change with either

measure, to conserve space, the paper chooses to focus on the estimates of σKS and σKN .

The results using σSK and σNK are available in Appendix A.4 For a more detailed discussion

on elasticity of substitution measures see Allen (1938), Allen and Hicks (1934), Blackorby

and Russell (1975; 1981; 1989), Chambers (1988), Hicks (1932; 1946), and McFadden (1963).

Nonparametric Estimation of Production Functions

Nonparametric estimation of production functions is not new, but the literature is somewhat

scattered. The term nonparametric estimation encompasses a broad range of procedures.

4All appendicies for the paper are available at http://bingweb.binghamton.edu/∼djhender/pdffiles/h_obes_appendix.pdf.
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Early attempts to estimate production functions using kernel methods can be found in, for

example, Vinod and Ullah (1988) and Kneip and Simar (1996). Other methods to estimate

production functions include Allon et al. (2007) who use entropy measures, Chavas and Cox

(1988) who use Data Envelopment Analysis, Epple et al. (2007) who use series estimation,

Kumbhakar et al. (2007) who use local-maximum likelihood estimation and Lewbel and

Linton (2007) who use nonparametric matching estimators.

The choice of which methodology to choose depends on the problem at hand and the

data in question. This paper uses Li-Racine Generalized Kernel Estimation (Li and Racine,

2004; Racine and Li, 2004). This methodology is not new to the estimation of production

functions. For example, Henderson and Kumbhakar (2006) use generalized kernel estima-

tion to estimate the U.S. aggregate production function and examine the public capital

productivity puzzle. The benefit of this procedure is that it smooths both continuous and

categorical regressors. Besides the obvious benefit of not having to automatically resort to

a semiparametric procedure, the rate of convergence of the estimators depend only on the

number of continuous regressors. In other words, adding additional categorical regressors

does not accelerate the curse of dimensionality. This is especially important because the

data set being studied is relatively small.

Generalized Kernel Estimation

Here, generalized kernel estimation is used to estimate the (single level) production func-

tion (1), which may be written as

Yi = m(xi) + ui, i = 1, 2, ..., NT. (5)

Y is the output variable measured in levels,m (·) is the unknown smooth production function
with argument xi = (xci , x

u
i , x

o
i ), x

c
i = (Ki, Si, Ni) is a vector of continuous inputs measured

in levels, xui is a vector of regressors that assume unordered discrete values (in this case a

single variable for geographic region), xoi is a vector of regressors that assume ordered discrete

8



values (in this case a single variable for time), u is the additive error, N is the number of

countries, and T is the number of time periods (N = 73, T = 6).5 Taking a second-order

Taylor expansion of (5) with respect to xj yields

Yi ≈ m(xj) + (x
c
i − xcj)β(xj) + 0.5(x

c
i − xcj)

0(xci − xcj)γ(xj) + ui, (6)

where β(x) (≡ 5m(x)) is the partial derivative of m(x) with respect to xc and γ(x) (≡
52m(x)) is the Hessian.

The local-quadratic least-squares estimator of δ(x) ≡ (m(x), β(x), γ(x))0 is given by

bδ(x) = ³bm(x), bβ(x),bγ(x)´0 = (X 0K(x)K)−1X 0K(x)Y, (7)

where X =
¡
1, (xci − xcj), (x

c
i − xcj)

0(xci − xcj)
¢
and K(x) is a NT × NT diagonal matrix of

kernel (weight) functions commonly used for mixed data (Hall et al., 2007; Li and Racine,

2006).6

Bandwidth Selection

Estimation of the bandwidths is typically the most salient factor when performing non-

parametric estimation. Although there exist many selection methods, this study utilizes

Hurvich et al.’s (1998) Expected Kullback Leibler (AICc) criteria. This method — which

chooses smoothing parameters using an improved version of a criterion based on the Akaike

5Maasoumi, Racine and Stengos (2007) use generalized kernel estimation in their study of a nonparametric
growth regression and include OECD status as a categorical regressor. They do this to control for differences
between groups of countries similar to the way a dummy variable shifts the intercept in a linear model.
However, with Generalized Kernel Estimation the categorical variable is allowed to interact with the other
regressors in an unknown fashion. Following the lead of Temple (1998), in addition to OECD status, the
regional categorical variable includes categories for Africa, the Caribbean, Latin American, the Middle East,
and Asia. The results of the exercise were also examined solely using OECD status and although these
coefficients have more variation, the main conclusions of the paper do not change. The results are available
upon request.

6It should be noted that the second-order Taylor expansion and thus estimation of the model by local-
quadratic least-squares is not necessary here. For instance, estimation of (5) can be performed using local-
constant least-squares (which estimates only the unknown function) and then separately obtaining the deriv-
atives of m(·) (Pagan and Ullah, 1999; Rilstone and Ullah, 1989; Ullah, 1988a,b). For further information on
the benefits and relationships between local constant, linear and quadratic least-squares, see Fan and Gijbels
(1996).
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Information Criterion — has been shown to perform well in small samples and avoids the

tendency to undersmooth as often happens under other approaches such as Least-Squares

Cross-Validation. Specifically, the bandwidths are chosen to minimize

AICc = log
¡bσ2¢+ 1 + tr(H)/NT

1− [tr(H) + 2] /NT
(8)

where

bσ2 =
1

NT

NTX
j=1

(Yj − bm(xj))2
=

µ
1

NT

¶
Y 0(I −H)0(I −H)Y, (9)

and bm(xj) = HYj.

A major benefit of nonparametric type estimators is that they give a separate estimate

for each observation. This allows one to construct observation-specific estimates of (2),

(3), and (4), where observation-specific values of fq =
∂m(·)
∂xq

, fqq =
∂2m(·)
∂x2q

, and fql =
∂2m(·)
∂xq∂xl

are retrieved from bβ(x) and bγ(x). This result allows one to track elasticity of substitution
estimates across countries and over time.

The nonparametric model gives several other important benefits over the parametric

models.7 First, the model does not require the elasticity of substitution between N and S

to be the same as that between K and N (equation 1 in DPP) or K and S (equation 2 in

DPP).8 Second, the model does not require Hicks-neutral technological growth (equations 5

7It should also be noted here that the translog model allows for observation-specific estimates and a
partial relaxation of the functional form. However, there are a few downfalls to the second-order Taylor
approximation of the constant elasticity of substitution production function. First, as compared to the
nonparametric model, it is more restrictive. Second, some authors have found that the translog model
sometimes gives poor results (Kmenta, 1967; Thursby and Lovell, 1978). Results for this paper were also
estimated using the translog production function. It was found that these results were less intuitive than
the nonparametric model, but are available from the author upon request.

8In the estimation of the model it is found that the elasticities of substitution between N and S, and
K and N or K and S are not equal. The results for elasticities of subsitution between N and S are not
reported in the tables, but are available from the author upon request.
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and 6 in DPP). Finally, it allows for time effects which are allowed to vary across countries

(embodied technical change).

Identification

In theory, the relationship between capital-skill complementarity and the distribution

of income relies on a number of assumptions. Some of them are general to much of the

production theory literature such as returns to scale. Some are special to the capital-skill

complementarity literature. With nonparametric estimation it is not entirely clear to what

extent the elasticities obtained are able to confirm or refute theoretical predictions.

Perhaps more important than refuting/confirming theories is the issue of identification.

Diamond et al. (1978) show for what conditions the elasticities of substitution and patterns

of technological change can be identified and for what conditions they cannot be identified.

For example, the Cobb-Douglas production function implicitly assumes that the elasticity of

substitution between inputs is equal to one. Hence, simultaneous nonparametric identifica-

tion is not guaranteed because the nonparametric model nests the Cobb-Douglas model. In

that sense, the nonparametric model is not fully identified.

Given that the nonparametric model is not fully identified if the true underlying data

generating process is one in which we cannot identify each of the parameters, we could

potentially estimate the nonparametric model and then test whether or not it is different from

those known ‘problematic’ parametric functional forms. For example, using the Hsiao et al.

(2007) test for correct parametric functional form, the Cobb-Douglas model is rejected at the

1% level for each data set run in this paper. However, this approach, of course, is infeasible

in practice. A likely better solution would be to develop tests for the conditions outlined in

Diamond et al. (1978). If it is found that the conditions do not hold, then procedures may be

developed to estimate the nonparametric model imposing these assumptions (for example,

neutral technological change). There is a small literature on testing for structure (Bowman

et al., 1998; Hall and Van Keilgom, 2005) and imposing structure in nonparametric kernel
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estimators (Hall and Huang, 2001; Hall et al., 2002). This possibility suggests a non-trivial

future research agenda.

Stochastic Dominance

Nonparametric estimation as described in equation (7) allows one to generate unique elas-

ticity of substitution estimates for each observation. To examine the empirical comparisons

between elasticities, this paper uses a SD approach. The comparison of the elasticities of

substitution between physical capital, and skilled and unskilled labor on a particular index is

highly subjective; different indices may yield different substantive conclusions. In contrast,

finding a SD relation provides uniform ranking regarding the elasticities of substitution and

offers robust inference.

To proceed, let σKNi
be the actual elasticity of substitution between physical capital and

unskilled labor unique to an individual country during a specific year. σKSi is defined simi-

larly. In practice, the actual elasticities of substitution are unknown, but the nonparametric

regression allows us to construct an estimate of each of these. Define {bσKN}NT
i=1 as a vector of

NT estimates of σKN and {bσKS}NT
i=1 as an analogous vector of estimates of σKS. Let G(σKN)

and F (σKS) represent the cumulative distribution functions of σKN and σKS, respectively.

Consider the null hypotheses of interest as

Equality of Distributions :

G(σKN) = F (σKS) ∀σKN ∪ σKS ∈ Ω. (10a)

First Order Stochastic Dominance : G dominates F (CSC) if

G(σKN) ≤ F (σKS) ∀σKN ∪ σKS ∈ Ω, (10b)
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where Ω is the union support for σKN and σKS. To test this null hypothesis, define the

empirical cumulative distribution function for σKN as

bG(σKN) =
1

NT

NTP
i=1

1(bσKN ≤ σKN), (11)

where 1 (·) denotes the indicator function and bF (σKS) is defined similarly. Next, define the

following Kolmogorov-Smirnov statistics

TEQ = sup
σKN∪σKS∈Ω

| bG(σKN)− bF (σKS)|; (12a)

TFSD = sup
σKN∪σKS∈Ω

nbG(σKN)− bF (σKS)
o
; (12b)

for testing the equality and first order stochastic dominance (FSD) relation, respectively.

Unfortunately, the asymptotic distributions of these nonparametric sample-based statis-

tics under the null are generally unknown because they depend on the underlying distribu-

tions of the data. Thus one needs to approximate the empirical distributions of these test

statistics to overcome this problem. The strategy following Abadie (2002) is as follows:

(i) Let T be a generic notation for TEQ and for TFSD.Compute the test statistics T

for the original sample of {bσKN1 , bσKN2 , . . . , bσKNNT
} and {bσKS1, bσKS2, . . . , bσKSNT

}.

(ii) Define the pooled sample as Ω = {bσKN1, bσKN2 , . . . , bσKNNT
, bσKS1,bσKS2 , . . . , bσKSNT

}. Resample NT + NT observations with replacement from Ω

and call it Ωb. Divide Ωb into two groups to obtain bTb.
(iii) Repeat step (ii) B times.

(iv) Calculate the p-value of the test with p-value = B−1
PB

b=1 1(
bTb > T ). Reject

the null hypotheses if the p-value is smaller than some significance level α, where

α ∈ (0, 1/2).
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By resampling from Ω, we approximate the distribution of the test statistics when

G(σKN) = F (σKS). Note that for (12b), G(σKN) = F (σKS) represents the least favor-

able case for the null hypothesis. This strategy allows us to estimate the supremum of

the probability of rejection under the composite null hypothesis, which is the conventional

definition of test size.9

III. Data

The data used in this paper are identical to that of DPP and will only be briefly described

here. Real GDP (Y ) and investment shares (I) as well as labor (L) are obtained from the

Penn World Tables, Mark 5.6. The physical capital stock (K) data are constructed by using

the investment shares data and the perpetual inventory method. Real GDP and physical

capital are both measured in constant U.S. dollars (1985 international prices).

Given the limited availability of educational data, there are six annual observations for

each of the 73 countries (both developed and developing), spaced 5 years apart, over the

period 1965-90. Five proxies are constructed for skilled and unskilled labor (because it is

unclear how skilled labor should be defined in a cross-country analysis) based on the Barro

and Lee (2001) international education data set. In the Barro and Lee (2001) data set

observations are available once every five years. This helps explain the nature of the sample.

Formally, DPP obtain each of the skilled labor variables (S) by multiplying achievement

rates for a particular cutoff criterion by the size of the labor force in each country at each

point in time as S = e×L. Here, e is the percentage of the adult population in a particular

country in a particular year who have a given level of education and L is the labor force for

that same observation. Unskilled labor (N) is defined similarly as N = (1− e)× L.

9Ideally one would like to reestimate the nonparametric returns within each bootstrap replication to
take into account the uncertainty of the returns. Unfortunately, it could be argued that in doing this one
should reestimate the bandwidths for each bootstrap replication, which would be extremely computationally
difficult, if not impossible. Thus, the bootstrapped p-values most likely differ slightly from their ‘true’ values.
Nonetheless, if one obtains a large p-value, it is unlikely that accounting for such uncertainty would alter
the inference. Determining an ideal bootstrapping procedure is left for future research.
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For a given cutoff criterion, the proxies for skilled labor are as follows: (S1) workers who

have attained some college, (S2) workers who have completed secondary education, (S3)

workers who have attained some secondary education, (S4) workers who have completed

primary education, and (S5) workers who have attained some primary education. The

remaining portion of the labor force in each category is considered unskilled labor, and is

correspondingly labeled as N1, N2, N3, N4, and N5, respectively. It should be obvious that

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5 and that N1 ≥ N2 ≥ N3 ≥ N4 ≥ N5. Further, given that a

certain percentage of the labor force is deemed skilled and the remainder unskilled, the sum

of skilled and unskilled must equal the labor force. In other words, S1 +N1 = S2 +N2 =

S3 +N3 = S4 +N4 = S5 +N5 = L.

IV. Results

Before diving into tables and formal statistical tests, one can innocently look at the per-

centage of elasticities between skilled labor and physical capital which are smaller than their

corresponding elasticities between unskilled labor and physical capital. Performing this naive

operation shows that, in all but one circumstance, a majority of the observations have elas-

ticities of substitution between physical capital and skilled labor which are less than their

corresponding elasticities of substitution between physical capital and unskilled labor. The

lone outlier is when skilled labor is defined as attained some secondary education and when

using the DES measure. That being said, this percentage is 0.411. The other thresholds for

the DES measure range from 0.541 to 0.739. At the same time, the percentages range from

0.515 to 0.689 for the AES and from 0.562 to 0.650 for the Morishima-Blackorby-Russell

measure. This shows that regardless of how a skilled laborer is defined, a majority of the

observations show evidence of CSC. Although this type of approach is informative, it lacks

any consideration of sampling variability.
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The main results of this study are displayed in Tables 1-4. Table 1 gives the SD tests

for the equality of distributions of elasticities, as well as tests for FSD. Table 2 presents a

summary of the elasticities of substitution between physical capital, and skilled and unskilled

labor. The table reports the elasticity of substitution at the 25th, 50th and 75th percentile

(labelled Quartile 1, 2 and 3) along with the corresponding standard error below each esti-

mate in italics. Table 3 presents the median results for specific groups of countries across

the sample and Table 4 gives the median elasticities for each time period. For the sake of

comparison, the first table gives the results for each elasticity of substitution measure. For

the sake of brevity, as well as following the suggestion of Klump and de La Grandville (2000),

the final three tables give the results for only the MES.10

Stochastic Dominance Tests

To formally test the differences between the estimated distributions of parameter estimates,

SD tests are employed. Here two separate null hypotheses are tested First, the null that

the distribution (for all countries over all time periods) of the estimated elasticity of substi-

tution between physical capital and skilled labor (at a given threshold) is different from the

distribution of the estimated elasticity of substitution between physical capital and unskilled

labor (at the same threshold) is tested. Once it has been determined that the distributions

are different from one another, the test for the null that σKN first order dominates σKS is

performed. This test will provide statistical evidence of whether or not there exists a first

order dominance relation, and hence, if there is evidence of CSC across the entire sample for

a given definition of skilled labor.

The results of the tests are reported in Table 1. In each circumstance, the tests reject

the null that the two distributions are equal at conventional confidence levels. These results

differ across thresholds and across elasticity of substitution measures. Among the various

elasticity of substitution choices, there is some significant evidence of CSC at each threshold.
10The results of the three tables for the other elasticity of substitution measures are available in Appendix

B.
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In the fifteen (five thresholds × three measures) cases considered, failure to reject the null

of CSC (p-values in excess of 0.500) obtains in seven of them.11

Although at each threshold there is some evidence of CSC, the results for significance

differ according to the elasticity of substitution measure. For the DESmeasure, there appears

to be strong evidence of CSC for the lower two thresholds and no evidence for the higher

three thresholds. The AES only shows significant evidence of CSC for the second and

third thresholds and the MES measure only shows significant evidence for the highest three

thresholds.

In sum, employing SD tests on the elasticity of substitution estimates reveals at least two

findings. First, SD tests find some support for CSC in each of the thresholds. Second, the

SD tests reveal that the evidence is not uniform across elasticity of substitution measures or

definitions of skilled labor. There are cases where the cumulative distributions cross and in

these cases we cannot conclude CSC across the sample.

Comparison of Quartiles

Given that we do not find FSD at each threshold for a given measure, it may prove fruitful to

examine the quartiles of the elasticity of substitution estimates. Table 2 gives the individual

elasticity of substitution estimates at their quartiles for each of the definitions of skilled

labor. When using nonlinear least squares (with or without fixed effects) DPP find general

evidence for CSC. Further, they find stronger evidence when skilled labor is defined as those

who have attained some secondary education, completed primary education or attained some

primary education and insignificant evidence when skilled labor is defined as workers who

have attained some college or workers who have completed secondary education. However,

when using a GMM-IV estimator, their evidence for CSC is greatly weakened.

The former method is comparable to the nonparametric approach in this paper. Table 2

shows that for each threshold, the results show an overwhelming majority (14 of the 15) of the
11Here the upper bound of 0.500 is chosen as the critical point for testing the null hypotheses given the

sample size and concerns of uncertainty in the elasticities.
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quartiles show evidence of CSC. Unfortunately, a majority of this evidence is insignificant.

In fact of those 14 quartiles that show evidence of CSC, only three of them show significant

evidence of CSC. This finding can be consistent with at least two stories. First, it may be

an artifact of the small sample. Second, it may be difficult to obtain a significant result

because, as Goldin and Katz (1998) argue, CSC is subject to change and may or may not

hold for different countries in different time periods.

If the study were to stop here, it would conclude with DPP (pp. 340) that ‘there is some

evidence in support of the capital-skill complementarity hypothesis at the aggregate pro-

duction level, but the evidence is not very strong.’ Fortunately, the nonparametric approach

allows for observation-specific estimates and thus the estimates can be further broken down

to examine different strata.

Comparison by Group

Although results at the quartiles are informative, one can always wonder how groups of

countries behave together. Table 3 reports the median elasticity of substitution for specific

groups of countries.12 The table shows CSC for most groups at most thresholds. A few

points are worth noting. First, for each of the groups, CSC generally holds for the median

values. This should not necessarily be surprising. These results are consistent with those

in the second quartile of Table 2. Second, the median elasticity of substitution between

physical capital and skilled labor for the OECD countries is generally less than that of the

non-OECD countries, but greater than that of the Latin American countries. Second, the

elasticity of substitution between physical capital and unskilled labor is the smallest for

OECD countries, regardless of the threshold. However, more important is the prevalence of

CSC across groups. Here it is seen that CSC is more pronounced in non-OECD economies

as opposed to OECD economies. The same holds true for Latin American countries as

compared to OECD countries.
12The median refers to the median elasticity of substitution for all countries in a specific group over all

periods studied.
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These result are not necessarily surprising. In a recent paper, Papageorgiou and Chem-

larova (2005) find that a particular group of countries (‘Regime 2’ in Table 3 of their paper),

that have a moderate income level but a low level of education, have a more pronounced level

of CSC compared with countries with a high education (‘Regime 1’) or countries with both a

low income and low education level (‘Regime 3’). In this sample it is found that their results

hold. CSC is more pronounced in Regime 2 relative to Regime 3, and at the same time it

is more pronounced for Regime 2 relative to Regime 1. It should be noted that these data

are not identical to Papageorgiou and Chemlarova (2005). Although the group of Regime 2

is the full sample of countries, data are missing for Hong Kong and Nicaragua from Regime

1, and for the Dominican Republic from Regime 3. Further, the aforementioned paper uses

a cross-sectional data set with fewer countries than the panel data set of the current paper.

In addition, the data in their paper are from 1988 while the data in the current paper are

from 1965 to 1990.

Another point worth noting is that CSC appears to be most prevalent at the lowest

threshold. Specifically, in the seven groups of countries considered, five of them show signifi-

cant evidence of CSC. Recall that DPP were able to find more evidence of CSC when skilled

labor was defined at a low threshold. The results here show the extreme case when skilled

labor is defined as those who have attained some primary schooling.

Given that the nonparametric approach gives observation-specific parameter estimates, it

is possible to further analyze the variation across observations. Appendix B gives the median

elasticity for each country along with the corresponding standard error. For countries across

the sample, regardless of threshold, there appears to be significant variation in the elasticity

of substitution within each measure. Although there is general evidence of CSC across the

entire sample, some countries show strong evidence of capital-skill substitutability at each

threshold. Again, it is suggested that obtaining a single estimate for an entire panel is

not correct for this particular data set. These results show the importance of obtaining

observation-specific estimates.
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Comparison by Time Period

Table 4 presents the median elasticities by year.13 The results show general support for CSC.

However, the results are often insignificant. As in the previous sub-section, one interesting

result is that the strongest results for CSC come when skilled labor is defined as those who

have some primary education (the fifth threshold). However, different from both DPP and

the previous sub-section is that there is some significant evidence of CSC when skilled labor

is defined as those who have attained some college (first threshold). Specifically, in two of

the six time periods, there is significant evidence of CSC at the median. This anomaly raises

a question that deserves further study.

These results are important for at least two reasons. First, they show some evidence

of CSC at the median during the entire sample period. There appears to be no systematic

change across time at the median. Second, the strongest evidence of CSC comes when skilled

labor is defined by either a high or a low threshold.

V. Conclusion

This paper set out to study the CSC hypothesis in a balanced panel of 73 developed and

developing countries using nonparametric kernel techniques. This method allowed for three

contributions to the literature. (1) The nonparametric approach allowed for the model to be

solved using a single-level production function. (2) It did not require a specific functional

form to be assumed for the technology, and (3) it allowed for observation-specific estimates

of elasticities of substitution. With regard to the first contribution, it was shown that the

single-level production function sidestepped the problem of specification choice which arose

in the two-level approach. Second, the nonparametric approach made no assumption on the

functional form of the technology, nor did it require additional restrictive assumptions such

as specifying initial parameters or neutral technological change. Finally, as nonparametric

13The median refers to the median elasticity of substitution for all countries in a specific time period.
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methods give parameter estimates for each observation, it was possible to obtain an elasticity

of substitution for each input pair for each observation in the sample.

The inclusion of these techniques on the panel showed some evidence of CSC across

the sample. These results appeared to generally hold when examining the quartiles of the

elasticities as well as country groups and time medians. Further, the observation-specific

estimates allowed for deeper analysis of individual countries, and groups of countries as well

as countries across time. The results were shown to be in line with the theories of Goldin

and Katz (1998) who suggested that the elasticity of substitution between inputs varies with

a country’s stage of development and therefore is subject to change over time.

As noted in the introduction, one of the main reasons for studying the CSC hypothesis

is to attempt to explain the skilled/unskilled wage differential. Again, if physical capital

and skilled labor are found to be more complementary than unskilled labor and physical

capital, then an increase in physical capital, ceteris paribus, will increase the demand and

thus wages for skilled laborers. Unfortunately, many of the results of this study are insignif-

icant and therefore it is difficult to conclude that CSC is the factor behind the rise in the

skilled/unskilled wage differential.

However, it is also premature to rule out CSC as an important factor in cross-country

studies. To help answer to this question, it is important to extend this study in several

dimensions. First, as was stated in the identification sub-section, imposing constraints from

the relevant economic theory on the nonparametric estimators should improve their perfor-

mance. Also, a longer and wider sample of data may reduce the relatively large standard

errors of the nonparametric estimates. That being said, the same could hold true for the

estimates in DPP. This may lead to uncovering more cases of significant evidence of CSC.
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Null hypothesis G(σKN) = F(σKS) G(σKN) ≤ F(σKS)
Direct elasticity of substitution
Threshold 1 0.000 0.000
Threshold 2 0.000 0.000
Threshold 3 0.000 0.000
Threshold 4 0.000 0.954
Threshold 5 0.000 0.801

Allen-Uzawa elasticity of substitution
Threshold 1 0.000 0.000
Threshold 2 0.000 0.598
Threshold 3 0.000 0.888
Threshold 4 0.000 0.055
Threshold 5 0.000 0.000

Morishima-Blackorby-Russell elasticity of substitution
Threshold 1 0.000 0.692
Threshold 2 0.000 0.957
Threshold 3 0.000 0.997
Threshold 4 0.000 0.039
Threshold 5 0.000 0.015

Notes : Probability values are obtained via bootstrapping. The null 
hypothesis is rejected if the p-value is smaller than some significance 
level α, (0 < α < 1/2).  The first column tests the null hypothesis that the 
two distributions are equal. The second column tests the null hypothesis 
that the distribution of elasticity of subsitution estimates between physical 
capital and unskilled labor dominates the distribution of elasticity of 
substitution estimates between physical capital and skilled labor (CSC). 
The thresholds refer to the different definitions of skilled labor.

TABLE 1
Stochastic dominance tests



Q1 Q2 Q3
σKS1 -8.311 -0.440 * 3.436

22.319 0.680 0.763
σKS2 -19.713 * -0.381 2.772

4.515 0.955 3.695
σKS3 -5.695 0.067 3.685

4.948 0.686 5.157
σKS4 -0.873 -0.050 0.651 †

0.853 0.841 1.048
σKS5 -1.281 0.010 2.233

0.665 0.689 0.370

σKN1 0.482 1.950 4.728
0.444 0.513 3.693

σKN2 0.256 2.553 7.379
3.034 8.241 1.521

σKN3 -1.588 0.917 7.933
2.996 2.087 3.894

σKN4 -2.092 1.105 4.892
1.649 2.806 1.453

σKN5 -0.344 3.152 26.004
0.565 1.963 14.650

Notes : In the regression function used to estimate each of 
these Morishima-Blackorby-Russell elasticities, the dependent 
and independent variables are in levels.  Region and time 
effects are also included.  Q1, Q2 and Q3 refer to the first, 
second, and third quartile, respectively.  S1-S5 and N1-N5 refer 
to the different definitions for skilled and unskilled labor, 
respectively.  AICc used for bandwidth selection.  Standard 
errors are listed in italics beneath each estimate.  The symbol * 
(†) corresponds to where the quantile estimates show 
significant evidence of CSC at the 5% (10%) level.  

TABLE 2
Quartile values for the nonparametric estimates



Year σKS1 σKS2 σKS3 σKS4 σKS5 σKN1 σKN2 σKN3 σKN4 σKN5

OECD -0.711 † -0.095 -0.419 -0.065 -0.008 1.578 2.285 -0.135 -4.675 1.165
0.754 0.808 3.112 0.942 0.831 0.595 11.127 2.339 16.283 0.143

Non-OECD -0.239 -0.961 * 0.270 -0.036 0.011 * 2.401 2.708 1.966 2.819 3.739
13.485 0.381 4.106 5.699 0.244 0.778 1.048 2.221 2.717 1.627

Latin America 0.369 2.231 1.612 -0.462 * 0.005 * 2.510 2.605 3.429 4.302 3.796
0.339 1.094 1.060 1.015 0.440 0.976 1.369 1.752 0.787 0.475

Africa -11.324 -72.931 † -3.104 0.350 0.051 2.327 7.798 3.972 2.043 4.539
7.742 39.030 8.378 8.269 2.609 4.088 2.373 22.983 5.057 1.071

Regime 1 -0.147 0.005 0.181 -0.386 -0.266 * 1.718 1.378 0.103 0.507 7.310
5.228 2.295 0.649 0.635 0.226 3.761 0.790 6.728 0.492 0.843

Regime 2 2.207 1.484 1.155 0.025 -0.045 * 2.027 1.810 1.911 2.505 1.800
1.895 1.603 1.553 1.147 0.265 0.515 0.766 0.894 0.615 0.262

Regime 3 0.035 -0.173 0.485 -0.018 0.003 * 1.239 1.416 0.147 0.735 1.723
1.439 0.915 94.814 3.640 0.185 1.030 0.954 2.429 2.191 0.207

All -0.440 * -0.381 0.067 -0.050 0.010 1.950 2.553 0.917 1.105 3.152
0.680 0.955 0.686 0.841 0.689 0.513 8.241 2.087 2.806 1.963

Notes : In the regression function used to estimate each of these Morishima-Blackborby-Russell elasticities, the dependent and independent variables are in levels.  Region 
and time effects are also included.  The median refers to the median elasticity for all countries over all periods for a particular group.  S1-S5 and N1-N5 refer to the different 
definitions for skilled and unskilled labor, respectively.  AICc used for bandwidth selection.  OECD includes countries which were in the OECD as of 1990, whereas 'Regime 1, 
2, and 3' includes the countries of Regimes 1, 2 and 3 in Table 3 of Papageorgiou and Chmelarova (2005).  Standard errors are listed in italics beneath each estimate.  The 
symbol * (†) corresponds to where the median estimates exhibit significant evidence of CSC at the 5% (10%) level.

TABLE 3
Median elasticity of substitution across different groups of countries



Year σKS1 σKS2 σKS3 σKS4 σKS5 σKN1 σKN2 σKN3 σKN4 σKN5

1965 -0.467 0.194 1.287 -0.099 † 0.006 2.329 2.495 2.653 2.259 3.241
0.761 1.575 2.785 0.300 0.440 4.088 0.837 3.931 1.043 2.413

1970 -0.673 0.393 -3.922 -0.085 -0.305 * 2.264 2.956 0.062 1.240 3.411
7.202 3.090 3.305 1.692 0.328 0.694 0.797 2.864 0.745 0.359

1975 -1.562 * -0.915 -0.368 -0.053 -0.327 * 1.962 2.568 0.059 1.269 2.916
0.541 2.071 1.598 0.441 0.328 0.559 0.577 1.781 0.616 0.570

1980 -0.980 -1.252 0.035 0.040 0.071 * 1.685 3.189 0.707 0.542 3.382
2.625 4.633 0.428 0.151 0.109 0.769 12.465 0.772 0.764 0.359

1985 -1.191 † -2.246 -1.937 0.015 -0.037 1.008 2.786 0.492 0.918 1.309
0.769 2.774 35.846 1.777 0.048 0.413 0.751 1.612 2.035 3.921

1990 1.956 -0.988 * 2.716 -0.453 1.197 2.090 0.990 2.041 0.487 11.911
15.370 0.381 1.915 2.316 0.490 0.657 0.497 1.727 0.274 23.328

All -0.440 * -0.381 0.067 -0.050 0.010 1.950 2.553 0.917 1.105 3.152
0.680 0.955 0.686 0.841 0.689 0.513 8.241 2.087 2.806 1.963

Notes : In the regression function used to estimate each of these Morishima-Blackorby-Russell elasticities the dependent and independent variables are in levels.  
Region and time effects are also included.  The median coefficient for each year over all countries is given.  S1-S5 and N1-N5 refer to the different definitions for 
skilled and unskilled labor, respectively.  AICc used for bandwidth selection.  Standard errors are listed in italics beneath each estimate.  The symbol * ( †) 
corresponds to where the median estimates exhibit significant evidence of CSC at the 5% (10%) level.

TABLE 4
Median elasticity of substitution across countries for each time period




