Autor, David H.; Dorn, David

Working Paper
This job is getting old: measuring changes in job opportunities using occupational age structure

IZA Discussion Papers, No. 3970

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Autor, David H.; Dorn, David (2009) : This job is getting old: measuring changes in job opportunities using occupational age structure, IZA Discussion Papers, No. 3970, Institute for the Study of Labor (IZA), Bonn, http://nbn-resolving.de/urn:nbn:de:101:1-2009021091

This Version is available at:
http://hdl.handle.net/10419/35632

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
This Job Is ‘Getting Old:’
Measuring Changes in Job Opportunities
Using Occupational Age Structure

David H. Autor
MIT, NBER and IZA

David Dorn
Boston University, University of St. Gallen and IZA

Discussion Paper No. 3970
January 2009

IZA
P.O. Box 7240
53072 Bonn
Germany
Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

This Job Is ‘Getting Old:’ Measuring Changes in Job Opportunities Using Occupational Age Structure

High- and low-wage occupations are expanding rapidly relative to middle-wage occupations in both the U.S. and the E.U. We study the reallocation of workers from middle-skill occupations towards the tails of the occupational skill distribution by analyzing changes in age structure within and across occupations. Because occupations typically expand by hiring young workers and contract by curtailing such hiring, we posit that growing occupations will get younger while shrinking occupations will ‘get old.’ After verifying this proposition, we apply this observation to local labor markets in the U.S. to test whether markets that were specialized in middle-skilled occupations in 1980 saw a differential movement of both older and younger workers into occupations at the tails of the skill distribution over the subsequent 25 years. Consistent with aggregate trends, employment in initially middle-skill-intensive labor markets hollowed-out between 1980 and 2005. Employment losses among non-college workers in the middle of the occupational skill distribution were almost entirely countered by employment growth in lower-tail occupations. For college workers, employment losses at the middle were offset in roughly equal measures by gains in the upper- and lower-tails of the occupational skill distribution. But gains at the upper-tail were almost entirely limited to young college workers. Consequently, older college workers are increasingly found in lower-skill, lower-paying occupations.

JEL Classification: E24, J11, J21, J24

Keywords: job polarization, occupational structure, age structure, local labor markets, technical change

Corresponding author:

David Dorn
Department of Economics
Boston University
270 Bay State Road
Boston, MA 02215
USA
E-mail: ddorn@bu.edu

* We thank Maarten Goos, Steven Machin, and Anna Salomons for helpful comments. Autor acknowledges support from the National Science Foundation (CAREER award SES-0239538). Dorn acknowledges funding from the Swiss National Science Foundation.
One of the most remarkable developments in the U.S. labor market of the past two and a half decades has been the rapid, simultaneous growth of employment in both the highest- and lowest-skilled jobs. This phenomenon is depicted in Figure 1, which plots changes in the share of aggregate hours worked at each percentile of the occupational skill distribution over the period 1980 through 2005. These skill percentiles are constructed by ranking occupations according to their mean hourly wages in 1980 and grouping them into 100 bins, each comprising one percent of 1980 employment.\(^1\) The pronounced U-shape of Figure 1 underscores that employment growth over this 25 year period has been disproportionate in the top and bottom of the occupational skill distribution. Occupations that were in the lowest and highest deciles of the 1980 distribution grew in relative size by 10 to 25 percent between 1980 and 2005, while occupations in the 2nd through 6th deciles contracted.\(^2\) This hollowing out, or ‘polarization,’ of the occupational employment distribution is not unique to the United States. Using harmonized European Union Labour Force Survey data, Maarten Goos, Alan Manning and Anna Salomons (2008) find that in 14 of 16 European countries for which data are available, high- and low-paying occupations expanded relative to middle-wage occupations in the 1990s and 2000s.

A leading explanation for the hollowing out of the occupation distribution in industrial countries is that non-neutral technical change, augmented by offshoring, is eroding demand for middle-skilled ‘routine’ cognitive and manual activities, such as bookkeeping, clerical work and repetitive production tasks (Daron Acemoglu, 1999; David H. Autor, Frank Levy and Richard J. Murnane, 2003, ‘ALM’ hereafter; Autor, Lawrence F. Katz, and Melissa S. Kearney, 2006; Alan Blinder, 2007; Maarten Goos and Alan Manning, 2007; Autor and David Dorn, 2008).\(^3\) Because the core job tasks of these occupations follow precise, well-understood procedures, they are increasingly codified in computer software and performed by machines or, alternatively, offshored over computer networks to foreign worksites. This displacement of routine job tasks raises relative demand for non-routine tasks in which workers hold a comparative advantage over current technology, in particular ‘abstract’ tasks requiring problem-solving, creativity, or complex interpersonal interactions (e.g., attorneys, scientists, managers), and ‘manual’ tasks requiring, variously, situational adaptability, visual and language recognition, and in-person interactions (e.g., janitors and cleaners, home health aides, beauticians, construction laborers, security personnel, and motor vehicle operators). Notably, these two categories of non-routine tasks lie

\(^1\) All analyses in the paper use data from the 1980, 1990 and 2000 Census IPUMS and the 2005 American Community Survey (ACS). Samples are limited to workers of age 16 through 64 years in the prior year, and all calculations are weighted by labor supply, equal to the product of the Census sampling weight, weeks worked in the prior year, and usual weekly hours. We group occupations into a balanced panel of 330 harmonized Census Occupation categories encompassing all of U.S. employment over 1980 through 2005.

\(^2\) The series in Figure 1 is smoothed with a locally weighted regression using a bandwidth of 0.8. Results are extremely similar if we use the 2000 Census IPUMS in place of the 2005 ACS.

\(^3\) See also Manning (2004), and Francesca Mazzolari and Giuseppe Ragusa (2008) for an alternative hypothesis attributing the growth of low-skill employment to marketization of household production.
at opposite ends of the skill distribution: abstract tasks are the core activity of professional specialty and technical occupations while manual tasks are most intensive in personal service, transportation, construction, and operative occupations. Thus, displacement of occupations intensive in routine tasks and growth of occupations intensive in non-routine tasks may give rise to the U-shaped pattern of job growth visible in Figure 1.

An important, unstudied question raised by this pattern of non-neutral occupational change is: where do the routine workers go? In particular, as middle-skill routine occupations decline, which age and skill groups move upward in the occupational distribution towards high-skill, non-routine jobs, and conversely which groups gravitate downwards towards the lower tail of non-routine occupations? Analyzing this process of occupational change offers insights into the shifting opportunity set faced by workers at different age and education levels.

Our analysis relies on a simple and, to the best of our knowledge, novel approach for measuring how changing job opportunities affect worker re-allocation across occupations. The underlying idea of this approach is that because workers develop occupation-specific human capital as they gain work experience, skill specificity makes the costs of occupational mobility higher for older than younger workers (cf. Derek Neal, 1999). When an occupation declines, therefore, older workers will face an incentive not to exit the occupation while younger workers will face an incentive not to enter. Moreover, firms may react to changing demands for occupations by hiring young workers into growing occupations and curtailing such hiring into contracting jobs. These suppositions imply that occupations will ‘get old’ as their employment declines—that is, the mean age of an occupation’s workforce will rise.

The plan of the paper is as follows. We first offer a simple ‘proof of concept’ to demonstrate the tight empirical link between declines in an occupation’s employment and increases in the mean age of its workforce. The balance of the paper then applies this tool to the study of local labor markets to assess how shifts in occupational structure have affected the job composition of young and old workers at different education levels between 1980 and 2005. In particular, we exploit pre-existing differences in occupational specialization across local labor markets to identify areas subject to differing degrees of ‘hollowing out’ of employment. We use this variation to measure how, in response to contracting routine employment, workers of differing ages and education levels are reallocated towards the tails of the occupation distribution.
Are Middle-Skill Jobs Getting Old?

We first document the robust relationship between changes in occupational size and shifts in the age distribution of the occupation’s workforce. Table 1 reports simple bivariate regressions of the form:

\[\Delta Y_j = \alpha + \beta_1 \Delta E_j + \varepsilon_j, \]

where \(Y_j \) is the mean age of workers in occupation \(j \) or the share of workers in that occupation who fall into a given age bracket, \(E \) is the share of an occupation in total employment in a given year, and the \(\Delta \) operator denotes the change in a variable over the time interval 1980 to 2005.

The average age of the working population rose by 3.3 years during 1980 through 2005, reflecting the aging of the baby boom cohorts. Occupations that contracted over this period aged substantially faster than average. Column (1) of the first panel shows that occupations that contracted by 1 percentage point as a share of aggregate employment between 1980 and 2005 gained in age by an additional 0.78 years relative to the mean. Columns (2) through (4) show that, as hypothesized, age increases in contracting occupations are driven by a falling employment share of young workers and rising employment shares of prime age and older workers.

Figure 2 plots smoothed changes in the mean age of workers by occupational skill percentile between 1980 and 2005. This figure shows a distinct inverted U-shape that is a near mirror-image of changes in occupational employment shares depicted in Figure 1. Occupations in the bottom and top two deciles of the skill distribution aged by roughly 2 years between 1980 and 2005, which is substantially below the overall average of 3.3 years. By contrast, occupations in the second through sixth skill deciles aged disproportionately rapidly, gaining approximately 4 years on average. Thus, over the last twenty-five years, middle-skill jobs have gotten old.

Are Routine Task-Intensive Jobs Getting Old?

If routine tasks are indeed being supplanted by technology and offshoring, then employment declines should be concentrated in occupations that are specialized in such tasks. The year 1980 is a particularly apt starting point for gauging the effects of workplace computerization. National Income and Product Accounts data show that the share of computer hardware and software in all U.S. private nonresidential capital investment hovered at approximately 4 percent from 1970 to 1978, and then rose steeply at approximately three-quarters of a percentage point per year through the year 2000.\(^4\) Thus, occupations concentrated in routine tasks would be predicted by our hypothesis to experience sharp contractions

\(^4\) Authors’ calculations using NIPA data (U.S. Department of Commerce, 2002).
To assess this hypothesis using occupational age structure as above, we draw on occupation level data assembled by ALM, who merge job data on task requirements—manual, routine and abstract—from the fourth edition of the US Department of Labor’s *Dictionary of Occupational Titles* (US Department of Labor, 1977) to their corresponding Census occupation classifications. For each occupation j, we form an index of routine task-intensity, RTI:

$$RTI_j = \ln \left(\frac{\hat{R}_{j,1980}}{\hat{M}_{j,1980}} \right),$$

where \hat{R} and \hat{M} are, respectively, the intensity of routine and manual task input in each occupation in 1980, measured on a 0 to 10 scale. This measure is rising in the relative importance of routine tasks within an occupation and falling in the relative importance of manual tasks. Since RTI does not have a cardinal scale, we standardize it with a mean of zero and an employment weighted, cross-occupation standard deviation of unity in 1980.

This simple measure appears to capture well the job categories that motivate our conceptual framework. Among the 10 most routine task-intensive occupations in our sample of 330, 6 are clerical and accounting occupations and several others represent repetitive physical motion activities. Among the 10 least routine task intensive occupations, 4 are in-person service occupations, while the remainder involve driving motor vehicles.\(^5\)

To test the link between routine task-intensity and changes in age structure, we estimate a variant of equation (1) in which the RTI measure is included as a predictor of changes in occupational age structure. The second and third panels of Table 1 show that this variable is highly significant in all specifications. Occupations that in 1980 were one standard deviation above the mean of routine-intensity, gain 0.6 years of age relative to the mean over the next twenty-five years. This age gain is driven by declining relative employment of young workers in routine task-intensive occupations, and by rising relative employment of older workers, particularly those ages 55 to 64. The third panel of Table 1 shows that the predictive relationship between routine-intensity and occupation aging is quite robust to controlling for contemporaneous changes in occupations’ employment shares—though of course the employment shares of routine task-intensive occupations fall significantly in this period.

Thus, like middle-skill occupations, routine task-intensive occupations are getting old. This finding is not entirely surprising, of course; middle-skill occupations are also disproportionately routine task-intensive.

\(^5\)Additional details on the Routine Task Intensity measure are found in Autor and Dorn (2008), who develop this measure using the ALM data.
3 Where do the Routine Workers Go?

We now exploit the robust predictive relationship between occupational decline and aging to study how the decline of routine occupations affects the opportunity set of workers at different age and skill levels. Specifically, we ask which non-routine jobs absorb young and older workers as routine task-intensive occupations are displaced.

For this analysis, we shift the unit of observation from changes in age structure within occupations to changes in the age composition of employment within local labor markets, following an approach developed by Christopher L. Smith (2008). Based on the results above, we anticipate that local labor markets that were specialized in routine task-intensive occupations at the start of the sample period should have experienced a differential contraction of middle-skill jobs over the subsequent 25 years. We use this cross-market variation in (expected) occupational declines to analyze the effect of the thinning of the ranks of middle-skill occupations on the occupational distribution of young and old workers.

As a time-consistent measure of local labor markets, we implement the concept of Commuting Zones (‘CZs’), developed by Charles M. Tolbert and Molly Sizer (1996), who used confidential commuting data from the 1990 Census to identify clusters of counties—i.e., Commuting Zones—that exhibit strong commuting ties within clusters but weak commuting across clusters. Our analysis uses 722 CZs that cover the entire mainland of the US, including both metropolitan and rural areas.⁶

To measure cross-market variation in employment in routine task-intensive occupations, we apply a simple binary approach to distinguish ‘routine’ and ‘non-routine’ occupations. We classify as routine occupations those that fall in the top-third of the employment-weighted distribution of the RTI measure in 1980. Using this classification, we then assign to each commuting zone k a routine employment share measure (RSH_{kt}) equal to the fraction of CZ employment at the start of a decade that falls in routine task-intensive occupations. The mean of this measure in 1980 is, by construction, equal to 0.33. The population weighted 80/20 percentile difference in routine employment share is 10 percentage points (specifically, RSH^{P20} = 0.27 and RSH^{P80} = 0.37).

Putting these pieces together, we estimate in Table 2 a set of OLS stacked first-difference models for CZ level changes in occupational employment by age and education:

\[\Delta Y_{akt} = \alpha_t + \beta_2 RSH_{kt} + X'_{kt} \beta_3 + \omega_{akt}, \]

⁶ Commuting zones have two advantages over other geographic units typically used for analysis of local labor markets: they are based primarily on economic geography rather than incidental factors such as minimum population or state boundaries; and they cover the entire U.S. In addition, it is possible to use Census Public Use Micro Areas (PUMAs) to consistently match Census geography to CZs for the full period of our analysis (see Autor and Dorn, 2008 for details).
where Y is an outcome measure for age-education group a in commuting zone k over the 5 or 10 year time interval τ, RSH is the routine employment share in the CZ at the start of the time interval, α is a vector of time dummies, and X is a vector of start-of-period control variables, including state dummies and measures of the initial age, education, and employment structure of the commuting zone.

Estimates of equation (3) produce a number of striking results. Panel A of Table 2 shows that, as predicted, CZ’s that were initially specialized in routine task-intensive occupations saw substantial declines in the share of workers employed in these occupations between 1980 and 2005. These declines are evident at all age levels, but they are uniformly larger for younger than older workers. Interestingly, the decline in routine employment is greater for non-college workers (high school or lower education) than for college workers (at least one year of college). A potential explanation for this pattern is that less educated workers in routine task-intensive occupations perform a disproportionate share of the routine tasks, and thus are differentially subject to displacement.

Which occupations absorb workers from these different age brackets as routine task-intensive jobs in a Commuting Zone contract? To form a simple accounting, we use occupational wage data from 1980 to evenly divide the two-thirds of employment classified as non-routine into two occupation clusters containing equal shares of 1980 employment, one cluster containing low-wage occupations and the other high-wage occupations. Notably, these occupational clusters roughly correspond to the two non-routine task categories defined above (i.e., abstract and manual). The high-skill non-routine cluster is largely composed of professional specialty and technical occupations, with mean log hourly wages that are 40 percent above the routine occupation mean. The low-skill non-routine group is largely composed of low-education service, labor, and operative occupations, with mean log hourly wages 20 percent below the routine occupation mean.

Panels B and C of Table 2 show that relative declines in routine occupation employment within CZs are primarily offset by relative employment gains in low-skill non-routine occupations—jobs that are significantly less skill-intensive and lower-paying than the routine occupations that are displaced. Among the three age brackets we consider, only young workers ages 16 to 29 gain in employment in high-skill non-routine occupations. Both the prime age and older age groups gain employment in low-skill non-routine occupations. Moreover, even among the young, employment gains in high-skill non-routine occupations are less than half as large as gains in low-skill non-routine occupations. Clearly, the hollowing out of employment in initially routine task-intensive local labor markets primarily generates a movement of employment into low-skill, non-routine jobs.
When we drill down on these occupational shifts by education group, however, it is immediately apparent that declines in routine employment have decidedly non-neutral impacts across education groups and across age groups within an education level. The second row of Table 2 shows that college workers in initially routine task-intensive labor markets gain employment in both high- and low-skill non-routine jobs. But the gains in high-skill non-routine employment are concentrated among the young and almost entirely absent among the old. Thus, the bulk of the differential decline in routine employment among young college workers in these labor markets is offset by gains in high-skill non-routine employment. Among prime-age and older workers, however, offsetting employment gains are found mostly in low-skill non-routine jobs. Thus, it appears that the opportunity for high-education workers to reallocate upward depends greatly on age.

The final row of Table 2 portrays an even less encouraging picture for non-college workers. For this skill group, the entire differential decline in routine employment in routine task-intensive CZ’s is absorbed by increased low-skill, non-routine employment. Moreover, while young non-college workers roughly hold their ground in high-skill, non-routine occupations, prime age and older non-college workers differentially lose employment in high-skill, non-routine jobs and gain in employment in low-skill, non-routine jobs.

In summary, the occupational structure of college workers in routine task-intensive labor markets is hollowing out, with movement of workers towards both tails. The occupational structure of non-college workers, however, is shifting uniformly leftward towards lower-paying, non-routine jobs. This leftward shift is most pronounced for older age groups.

These patterns are quite robust. Although the models in Table 2 include only time dummies and implicitly, Commuting Zone effects (recall that these are first-difference models), the qualitative pattern of results is little changed when the model is augmented with state fixed effects and detailed controls for the initial human capital, demographic, and industrial structure of commuting zones.7

4 Conclusion

Aggregate employment has shifted over the last twenty-five years against middle-skill, routine task-intensive work and towards the tails of the occupational skill distribution. Occupations at both tails are appropriately labeled as non-routine, but they differ greatly in skill and pay. The right-hand tail of the distribution encompasses high-skill, non-routine occupations that typically require capabilities in problem-solving, abstract reasoning, and decision-making. The left-hand tail encompasses low-skill

7 A supplementary table is available from the authors.
non-routine occupations that demand basic human adaptability but little in the way of formal training. The contraction of routine occupations is therefore likely to have different impacts on workers across age and skill groups, depending on their ability to move upward towards high-skill, non-routine jobs or, conversely, downwards towards low-skill, non-routine jobs.

By comparing local labor markets that, due to initial differences in concentration in routine task-intensive activities in 1980, are subject to differing degrees of occupational change over the subsequent twenty-five years, we find that contractions of routine employment within local markets disproportionately raise the share of workers employed in low-skill, non-routine jobs. In fact, only the youngest category of workers exhibits both downward and upward occupational reallocation; for other age groups, movement is entirely downward. Highly-educated workers are clearly better prepared to adapt to changing occupational opportunities, and thus it is to be expected that college-educated workers are reallocating upwards as well as downwards. But the degree of upward reallocation is strongly negatively correlated with age: while young college workers are gaining employment in high-skill, non-routine occupations, older college workers are increasingly found in low-skill, non-routine work.

These secular shifts of age and education groups across occupational categories provide only a preliminary sense of what may potentially be learned from changing occupational age structures. We focus here on changes in occupational structure within age groups, but do not address how changes in aggregate job composition shape the progression of birth cohorts across occupations as they age. Our ongoing work suggests that the simple tools used above hold some promise for exploring these questions.

5 References

Figure 1. Smoothed Changes in Employment Share by Occupational Skill Percentile, 1980 - 2005

Figure 2. Smoothed Changes in Mean Worker Age by Occupational Skill Percentile, 1980 - 2005
Table 1. Predicting Changes in the Age Structure of Occupations 1980 - 2005 using Changes in Occupation Size and Initial Routine Task-Intensity

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Δ Mean Age 16-29</th>
<th>Δ Mean Age 30-54</th>
<th>Δ Mean Age 55-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ Occ's Share of Total Emp (pct pts)</td>
<td>-0.78 **</td>
<td>0.027 **</td>
<td>-0.020 **</td>
</tr>
<tr>
<td>(0.18)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

A. OLS model 1

<table>
<thead>
<tr>
<th>Occ's Routine Task Intensity in 1980</th>
<th>Young</th>
<th>Prime</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55 ** (0.11)</td>
<td>-0.015 ** (0.003)</td>
<td>0.004 (0.003)</td>
<td>0.011 ** (0.002)</td>
</tr>
</tbody>
</table>

B. OLS model 2

<table>
<thead>
<tr>
<th>Occ's Routine Task Intensity in 1980</th>
<th>Young</th>
<th>Prime</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50 ** (0.10)</td>
<td>-0.013 ** (0.003)</td>
<td>0.003 (0.003)</td>
<td>0.010 ** (0.002)</td>
</tr>
</tbody>
</table>

C. OLS model 3

<table>
<thead>
<tr>
<th>Δ Occ's Share of Total Emp (pct pts)</th>
<th>Young</th>
<th>Prime</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.66 ** (0.18)</td>
<td>0.023 ** (0.006)</td>
<td>-0.019 ** (0.005)</td>
<td>-0.004 (0.003)</td>
</tr>
</tbody>
</table>

D. Descriptive statistics

<table>
<thead>
<tr>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25</td>
<td>1.99</td>
</tr>
<tr>
<td>-0.128</td>
<td>0.065</td>
</tr>
<tr>
<td>0.120</td>
<td>0.057</td>
</tr>
<tr>
<td>0.008</td>
<td>0.036</td>
</tr>
</tbody>
</table>

N=330 harmonized occupations. Each column of panels A, B, and C corresponds to a separate OLS regression of the outcome variable at the top of the column on tabulated control variables and a constant. Standard errors are in parentheses. Models are weighted by occupational shares in total hours worked in 1980. ~ p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01.

<table>
<thead>
<tr>
<th>Coefficient on [Share of Routine Occs.] for Skill Group Below</th>
<th>∆ Occupation's Share of Age Bracket</th>
<th>Young 16-29</th>
<th>Prime 30-54</th>
<th>Older 55-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Routine-Intensive Occs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All workers</td>
<td>-0.31 **</td>
<td>-0.21 **</td>
<td>-0.25 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>College workers</td>
<td>-0.18 **</td>
<td>-0.11 **</td>
<td>-0.12 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.01)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Non-college workers</td>
<td>-0.46 **</td>
<td>-0.28 **</td>
<td>-0.23 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>B. High-Skill Non-Routine Occs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All workers</td>
<td>0.10 **</td>
<td>-0.01</td>
<td>-0.06 *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>College workers</td>
<td>0.15 **</td>
<td>0.04</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Non-college workers</td>
<td>0.04</td>
<td>-0.09 **</td>
<td>-0.19 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>C. Low-Skill Non-Routine Occs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All workers</td>
<td>0.22 **</td>
<td>0.22 **</td>
<td>0.31 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>College workers</td>
<td>0.02</td>
<td>0.08 **</td>
<td>0.15 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Non-college workers</td>
<td>0.42</td>
<td>0.37 **</td>
<td>0.42 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.05)</td>
<td></td>
</tr>
</tbody>
</table>

N=2166 (3 time periods x 722 commuting zones). Robust standard errors in parentheses are clustered on state. Each cell corresponds to a separate stacked first difference model. Models are weighted by start of period commuting zone share of national population and contain a constant and two time dummies. College workers are those with at least some college education. Occupations are classified as routine task-intensive if they fall in the top third of the employment-weighted distribution of the routine-intensity measure in 1980. Nonroutine occupations are classified as high-skill if they fall in the top half of the employment-weighted distribution of mean wages in non-routine occupations in 1980, and are classified as low-skill otherwise. ~ p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01.