

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Caliendo, Marco; Uhlendorff, Arne

Working Paper

Self-employment dynamics, state dependence and crossmobility patterns

IZA Discussion Papers, No. 3900

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: Caliendo, Marco; Uhlendorff, Arne (2008): Self-employment dynamics, state dependence and cross-mobility patterns, IZA Discussion Papers, No. 3900, Institute for the Study of Labor (IZA), Bonn,

https://nbn-resolving.de/urn:nbn:de:101:1-2009010772

This Version is available at: https://hdl.handle.net/10419/35556

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

IZA DP No. 3900

Self-Employment Dynamics, State Dependence and Cross-Mobility Patterns

Marco Caliendo Arne Uhlendorff

December 2008

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

Self-Employment Dynamics, State Dependence and Cross-Mobility Patterns

Marco Caliendo

IZA and IAB

Arne Uhlendorff

IZA and DIW Berlin

Discussion Paper No. 3900 December 2008

IZA

P.O. Box 7240 53072 Bonn Germany

Phone: +49-228-3894-0 Fax: +49-228-3894-180 E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT

Self-Employment Dynamics, State Dependence and Cross-Mobility Patterns

This paper analyzes the mobility between self-employment, wage employment and non-employment. Using data for men in West Germany, we find strong true state dependence in all three states. Moreover, compared to wage employment, non-employment increases the probability of self-employment significantly, and self-employment goes along with a higher risk of future non-employment.

JEL Classification: J64, L26, C23, C25

Keywords: self-employment, state dependence, labor market dynamics, unemployment

Corresponding author:

Arne Uhlendorff IZA P.O. Box 7240 53072 Bonn Germany

E-mail: uhlendorff@iza.org

_

We thank Peter Haan, Kostas Tatsiramos and participants at the seminar of the Berlin Network of Labour Market Research (BeNA), the EEA Meeting in Budapest and the VfS Conference in Graz for helpful discussions and comments. We thank the German Research Foundation (DFG) for financial support of the project CA 829/1-1. Arne Uhlendorff also thanks DIW DC, where part of this research was pursued. The usual disclaimer applies.

1 Introduction

Self-employment has received substantial attention both from policy makers and academic research in the last two decades. Most of the empirical literature has analyzed self-employment in a cross-sectional framework (see, e.g., Evans and Jovanovic, 1989; Evans and Leigthon, 1989; Taylor, 1996; Blanchflower and Oswald, 1998; Clark and Drinkwater, 2000; Cressy, 2000; Taylor, 2004). While this is an important contribution to understand why people *are* self-employed at some point in time, it neglects the underlying labor market dynamics and more specifically state dependence. Taking account for the possibility of state dependence has been shown to be an important factor in the analysis of labor market dynamics (see, inter alia, Heckman, 1981; Hyslop, 1999).

This paper analyzes the extent of true state dependence in self-employment and whether there exist cross dependencies between self-employment, non-employment, and wage employment. To our knowledge, this is the first study modeling the individual dynamic interdependencies between these three states and taking the potential endogeneity of the initial state into account. The analysis is based on panel data for West German men drawn from the German Socio-Economic Panel (SOEP). We estimate a dynamic multinomial logit model with random effects.

We find strong true state dependence in all three states which is clearly overestimated when not taking the endogeneity of the initial state into account. Moreover, compared to wage employment, non-employment increases the probability of self-employment, and self-employment goes along with a higher risk of future non-employment.

2 Data and Estimation Approach

Our classification of individuals as self-employed, wage employed or not-working is based on a survey question about the occupational status of the respondents. We restrict the sample to individuals between 20 and 60 years of age and exclude farmers, civil servants, and those currently in education, vocational training, or military service. Using the waves from 1984 to 2005 this gives us a total number of around 54,800 year to year transitions for 8,860 men in West Germany.¹

We estimate the transition probabilities between wage employment (j = 1), self-employment (j = 2) and non-employment (j = 3) from period t - 1 to t assuming a

¹The observed transitions are reported in Table A.1 in the Appendix. Table A.2 contains some descriptive statistics for individuals in the three states.

first-order Markov process. The latent propensity E^* of individual i to be in state j in period t can be written as

$$E_{ijt}^* = X_{it}\beta_j + Z_{it-1}\gamma_j + \alpha_{ij} + \epsilon_{ijt}. \tag{1}$$

 X_{it} contains individual observed characteristics in t and Z_{it-1} contains the lagged state, consisting of two dummy variables which indicate the state in period t-1 with wage employment as the base category. Vector $\alpha_i = \{\alpha_{i1}, \alpha_{i2}, \alpha_{i3}\}$ describes the individual specific unobserved heterogeneity and ϵ_{ijt} is the error term. The error term is assumed to be independent from observable and unobservable individual characteristics and to follow a Type I extreme value distribution. The labor market state Z_{it} with the highest propensity E_{ijt}^* is realized $(Z_{it} = j \text{ if } E_{ijt}^* > E_{ilt}^*$ for any $l \neq j$). This ends up in a three states multinomial logit panel data model with random effects.

For a given unobserved heterogeneity the probability of individual i to be in state j in period t corresponds to

$$P(Z_{it} = j | X_{it}, Z_{it-1}, \alpha_i) = \frac{exp(X_{it}\beta_j + Z_{it-1}\gamma_j + \alpha_{ij})}{\sum_{k=1}^{3} exp(X_{it}\beta_k + Z_{it-1}\gamma_k + \alpha_{ik})}.$$
 (2)

The coefficient vectors β_1 and γ_1 and the unobserved heterogeneity term α_{i1} of the base category are set to 0 for identification reasons.

The observation period of transitions does not coincide with the start of the stochastic process generating individual's employment dynamics. Therefore, when modeling transition probabilities the initial condition problem has to be taken into account (see, e.g., Heckman, 1981). We follow Wooldridge (2005), who proposes to estimate the distribution of the outcome variables conditional on the initial state and time invariant variables.

The specification of the unobserved heterogeneity is given by:

$$\alpha_{ij} = \kappa_{ij} + Z_{i0}\theta_j + \overline{X_{it}}\zeta_j. \tag{3}$$

We model the distribution of the individual specific random term κ_i as a one-factor loading model, assuming that one unobserved factor enters the model. The unobserved factor follows a discrete distribution with a finite number of mass-points m (see Heckman and Singer, 1984). In our empirical specification we choose m = 5.

The individual likelihood contribution can be written as

$$L_{i} = \int_{-\infty}^{\infty} \prod_{t=1}^{T} \frac{exp(X_{it}\beta_{2} + Z_{it-1}\gamma_{2} + Z_{i0}\theta_{2} + \overline{X_{it}}\zeta_{2} + \kappa_{2})^{l_{t}}}{1 + \sum_{k=2}^{3} exp(X_{it}\beta_{k} + Z_{it-1}\gamma_{k} + Z_{i0}\theta_{k} + \overline{X_{it}}\zeta_{k} + \kappa_{k})}$$

$$*exp(X_{it}\beta_{3} + Z_{it-1}\gamma_{3} + Z_{i0}\theta_{3} + \overline{X_{it}}\zeta_{3} + \kappa_{3})^{n_{t}}f(\alpha)d\alpha \qquad (4)$$

with $l_t = 1$ ($n_t = 1$) if the individual is self employed (not employed) in t and $l_t = 0$ ($n_t = 0$) if not.

The individual likelihood contribution consists of the weighted factor loading specific contributions, whereby the weights correspond to the probabilities of factor combinations π_r . The sample likelihood is given by

$$L = \prod_{i=1}^{n} \sum_{r=1}^{m} \pi_r L_{ir}.$$
 (5)

The measure of true state dependence SD is derived by calculating the average of pairwise individual differences between the predicted probabilities of being in state j conditional on two of the three labor market states. For example, the effect of being self employed (j = 2) compared to being in wage employment (j = 1) in t - 1 on the probability of being self employed in t can be written as

$$SD = \frac{1}{N} \sum_{i=1}^{N} (P_i(j_t = 2|j_{t-1} = 2) - P_i(j_t = 2|j_{t-1} = 1)).$$
 (6)

In order to derive the individual specific probabilities for each category given observed and unobserved characteristics we assign individual values to the random intercepts. An individual value is given by the mean of the individual specific posterior distribution of unobserved heterogeneity.

3 Results

We estimate the model with and without the inclusion of unobserved heterogeneity α_i . The inclusion significantly increases the log-likelihood and clearly reduces the coefficients of the lagged labor market state variables. These results confirm previous research on unemployment dynamics and emphasize the importance of the initial condition problem within dynamic panel data models. Moreover, we estimate the model with and without interaction effects of the covariates and the lagged labor market states. The inclusion of the interaction effects clearly increases the log-likelihoods. The results we present here are based on the model with interaction effects². The coefficients provide little information about the extent of true state dependence. Therefore, we calculate and discuss the extent of true state dependence and cross-dependencies in the following.³

²The coefficients of the different models are reported in the Appendix, Tables A.4 and A.5.

³Our model reproduces the observed transition probabilities quite well, see Table A.3 for predictions conditional on observed and unobserved characteristics as well on the lagged state, which are very similar to the transition probabilities in Table A.1.

Table 1 contains the transition matrix between the three states, based on averaged transition probabilities across all individuals.

Insert Table 1 about here

The probability of being in wage employment is, independent of the previous labor market state, above 60%. This result can be explained by the influence of observable and unobservable characteristics shifting the main share of individuals into wage employment, independent of their employment state in the last year. However, the probability of being in wage employment is with 92% the highest for individuals who have been in wage employment in the previous period. Previous non-employment goes along with a probability of 63% and previous self-employment with 60% of wage employment in t. Previous self-employment goes along with the highest probability of being self-employed in period t (26%) and previous non-employment leads to the highest probability of future non-employment with 27%.

Insert Table 2 about here

These results indicate strong true state dependence in all three states. Table 2 contains the extents of the true state dependence and cross dependencies between the states non-employment and self-employment and the corresponding standard errors. Previous non-employment increases the probability of being not employed in the future by 22% compared to previous wage employment. The corresponding state dependence in selfemployment is also 22%. All numbers are clearly significant different from zero. However, in a model without taking the endogeneity of the initial state into account, these estimates would be clearly overestimated with 54% for non-employment and 87% for selfemployment. Previous non-employment leads with a significantly higher probability to self-employment than previous wage employment (6%). Non-employment seems to increase the relative attractiveness and therewith the probability of becoming self-employed for the not employed. On the other hand, self-employment significantly increases the probability of non-employment if it is compared to wage employment (9%) and leads to a lower probability of wage-employment if it is compared to non-employment (Table 1). The direction of most of the results holds if we use the sample of the non-working men for the predictions only, although the extent of the transition probabilities differs due to differences in observable and unobservable characteristics. In contrast to the complete sample, for the unemployed in our data previous self-employment increases the probability of wage employment if it is compared with previous non-employment, see Table 3.

4 Conclusions

We use dynamic multinomial logit panel data models with random effects to analyze the mobility between self-employment, wage employment and non-employment. We show that there is strong true state dependence in all three states. However, in a model not taking the endogeneity of the initial state into account, the extent of state dependence is clearly overestimated. The results also indicate, that there is a high cross-mobility between non-employment and wage employment. The probability to become self-employed is clearly higher in case of previous non-employment compared to previous wage employment. Non-employment seems to increase the relative attractiveness and therewith the probability of becoming self-employed for the not employed. Furthermore, the probability to be not employed is significantly higher for previous non-employment compared to previous self-employment. This indicates that self-employment can be a promising way to end individual non-employment.

References

- Blanchflower, D., and A. Oswald (1998): "What Makes an Entrepreneur?," *Journal of Labor Economics*, 16, 26–60.
- CLARK, K., AND S. DRINKWATER (2000): "Pushed out or pulled in? Self-employment among ethnic minorities in England and Wales," *Labour Economics*, 7, 603–628.
- CRESSY, R. (2000): "Credit Rationing or Entrepreneurial Risk Aversion? An Alternative Explanation for the Evans and Jovanovic Finding," *Economics Letters*, 66, 235–40.
- EVANS, D., AND B. JOVANOVIC (1989): "An Estimated Model of Entrepreneurial Choice under Liquidity Constraints," *Journal of Political Economy*, 97, 808–827.
- Evans, D., and L. Leigthon (1989): "Some Empirical Aspects of Entrepreneurship," *American Economic Review*, 79, 519–535.
- HECKMAN, J., AND B. SINGER (1984): "A Method for Minimizing the Distributional Assumptions in Econometric Models for Duration Data," *Econometrica*, 52, 271–320.
- HECKMAN, J. J. (1981): "Heterogeneity and state dependence," in *Studies in Labor Markets*, ed. by S. Rosen, pp. 91–139. Chicago University Press, Chicago.
- Hyslop, D. (1999): "State dependence, serial correlation and heterogeneity in intertemporal labor force participation of married women," *Econometrica*, 67, 1255–1294.
- Taylor, M. (1996): "Earnings, independence or unemployment: Why become self-employed?," Oxford Bulletin of Economics and Statistics, 58(2), 253–266.
- TAYLOR, M. (2004): "Self-Employment in Britain: When, who and why?," Swedish Economic Policy Review, 11, 139–173.
- Wooldridge, J. (2005): "Simple Solutions to the Initial Conditions Problem for Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity," *Journal of Applied Econometrics*, 20, 39–54.

Tables

Table 1: Estimated Transition Matrix

	Wage Employment	Self-Employment	Non-employment
Wage Employment (t-1)	0.915	0.036	0.049
Calf Emplayers (4.1)	0.006	0.006	0.002
Self-Employment (t-1)	0.602 0.054	$0.260 \\ 0.056$	$0.139 \\ 0.017$
Non-employment (t-1)	0.628	0.099	0.273
	0.014	0.008	0.013

Source: SOEP, wave 1984-2005.

Note: All numbers are in shares. Standard deviations are in italic, derived using parametric bootstrap with 250 replications.

Table 2: Estimated State Dependence (SD)

SD Non-Employment	22.38	1.38
SD Self-Employment	22.40	6.11
SD Self-Employment-Non-Employment	8.97	1.75
SD Non-Employment-Self-Employment	6.39	0.85

Source: SOEP, waves 1984-2005

Note: Standard deviations are in italic, derived using para-

metric bootstrap with 250 replications.

Table 3: Estimated Transition Matrix, not employed individuals

	Wage Employment	Self-Employment	Non-Employment
Wage Employment (t-1)	0.768 <i>0.011</i>	0.012 0.002	0.220 <i>0.011</i>
Self-Employment (t-1)	$0.388 \\ 0.045$	0.191 <i>0.057</i>	$0.422 \\ 0.040$
Non-Employment (t-1)	0.327 <i>0.008</i>	0.031 <i>0.004</i>	$0.642 \\ 0.009$

Source: SOEP, wave 1984-2005.

Note: All numbers are in shares. Standard deviations are in italic, derived using parametric bootstrap with 250 replications.

A Appendix

Table A.1: Observed Transitions, 1984-2005

	Wage Employment	Self-Employment	Non-Employment
Wage Employment (t-1)	43,777	475	1,647
	(95.4)	(1.0)	(3.6)
Self-Employment (t-1)	329	4,436	98
	(6.8)	(91.2)	(2.0)
Non-Employment (t-1)	1,298 (32.5)	119 (3.0)	2,574 (64.5)

Source: SOEP, waves 1984-2005.

Note: Numbers in the first row show the absolute number of observations in each state, conditional on the employment state in the previous year. Number in parentheses are row percentages.

Table A.2: Some Descriptive Statistics - Differentiated by Labour Market State

	Wage E	mployment	Self-Em	Self-Employment		Non-Employment	
	Mean	SD	Mean	SD	Mean	SD	
Age (mean)	41.30	(10.11)	44.00	(9.03)	43.20	(12.12)	
Number of children (mean)	0.88	(1.07)	0.84	(1.02)	0.79	(1.13)	
Father self-employed	0.05	(0.22)	0.21	(0.41)	0.04	(0.20)	
High-school degree	0.17	(0.37)	0.32	(0.47)	0.07	(0.26)	
Apprenticeship	0.43	(0.50)	0.33	(0.47)	0.34	(0.47)	
Higher technical college	0.21	(0.41)	0.27	(0.44)	0.15	(0.36)	
University degree	0.14	(0.34)	0.27	(0.45)	0.07	(0.26)	
German nationality	0.74	(0.44)	0.87	(0.33)	0.60	(0.49)	
Disabled	0.06	(0.24)	0.04	(0.20)	0.17	(0.38)	
Married	0.75	(0.43)	0.74	(0.44)	0.66	(0.47)	
Unemployment rate ¹	8.46	(2.30)	8.70	(2.21)	8.99	(2.23)	
$GDP growth^1$	1.99	(1.86)	1.78	(1.86)	1.67	(1.79)	
Observations ²	45	5,404	5,	030	4	,319	

Note: Shares are reported (if not indicated otherwise), standard deviations in parentheses.

¹ Measured on state level.

² Refers to person-year observations. One person might be in different employment states over different years.

Table A.3: Estimated Transition Matrix, conditional on observed lagged states

	Wage Employment	Self-Employment	Non-Employment
Wage Employment (t-1)	0.954	0.010	0.036
wage Employment (* 1)	0.001	0.001	0.001
Self-Employment (t-1)	0.071	0.908	0.021
	0.005	0.005	0.003
Non-Employment (t-1)	0.327	0.031	0.642
	0.008	0.004	0.009

Source: SOEP, wave 1984-2005.

All numbers are in shares. Standard deviations are in italic, derived using parametric bootstrap with 250 replications.

Table A.4: Estimation Results for the (Simple) Dynamic Multinomial Logit Model

	Model 1a		Mode	el 1b
	Coeff.	s.e.	Coeff.	s.e.
Self-Employment				
Unemployment rate	-0.008	0.015	-0.030	0.024
Gross national product	-0.033	0.017^{**}	-0.064	0.022^{***}
Age	0.001	0.004	0.005	0.007
Age squared	-0.001	0.000**	-0.002	0.001^{***}
Number of children	-0.035	0.034	-0.103	0.071
Father self-employed	0.850	0.100^{***}	0.927	0.189^{***}
High school degree	0.196	0.106^*	0.236	0.171
Apprenticeship	0.054	0.103	-0.089	0.190
Higher techn. coll.	0.284	0.108***	0.195	0.207
University	0.433	0.135^{***}	0.396	0.259
German	0.242	0.096^{***}	0.345	0.151^{**}
Disabled	-0.185	0.148	-0.074	0.200
Married	-0.105	0.088	0.175	0.205
Self-employed (t-1)	6.993	0.111^{***}	4.639	0.216^{***}
Not employed $(t-1)$	2.234	0.109^{***}	1.724	0.220^{***}
Self employed (t0)	_	_	4.930	0.868^{***}
Not employed (t0)	_	_	1.196	0.583^{**}
Mean married	_	_	-0.564	0.266^{**}
Mean children	_	_	0.144	0.094
κ_1^2	_	_	-1.664	0.918^*
κ_1^3	_	_	-0.399	0.792
$\kappa_1^2 \ \kappa_1^3 \ \kappa_1^4 \ \kappa_1^5$	_	_	3.383	0.511^{***}
κ_1^5	_	_	-2.912	0.769^{***}
Constant	-4.681	0.174^{***}	-5.291	0.630***
Non-employment				
Unemployment rate	0.058	0.010^{***}	0.093	0.014^{***}
Gross national product	-0.093	0.012^{***}	-0.113	0.014^{***}
Age	0.030	0.002^{***}	0.045	0.004***
Age squared	0.002	0.000***	0.003	0.000***
Number of children	0.077	0.025***	-0.013	0.048
Father self-employed	0.155	0.108	0.255	0.154^{*}
High school degree	-0.397	0.096^{***}	-0.503	0.121***
Apprenticeship	-0.506	0.061^{***}	-0.567	0.086^{***}
Higher techn. coll.	-0.573	0.067^{***}	-0.679	0.094***
University	-0.617	0.105^{***}	-0.747	0.135^{***}
German	-0.314	0.060***	-0.434	0.092^{***}
Disabled	0.731	0.066^{***}	0.930	0.095^{***}
Married	-0.450	0.058^{***}	0.046	0.126
Self-employed (t-1)	2.104	0.122^{***}	1.225	0.299^{***}
Not employed (t-1)	3.741	0.061^{***}	2.544	0.114***
Self employed (t0)	_	_	1.071	0.484^{**}
Not employed (t0)	_	_	1.835	0.180^{***}
Mean married	_	_	-0.817	0.161^{***}
Mean children	_	_	0.187	0.063***
	_	_	1.469	0.430***
κ_2^3	_	_	-1.202	0.569**
κ_2^2 κ_2^3 κ_2^4 κ_2^5	_	_	0.223	0.854
$\kappa_2^{ar{5}}$	_	_	-3.025	1.204***
Constant	-3.012	0.119***	-2.806	0.587***
$\overline{P_1}$	5.5± 2		0.243	0.115
P_2			0.030	0.057
<u> </u>			0.124	0.048
			U. 14T	
P_3				
			$0.467 \\ 0.137$	0.154 0.028

Note: The base category is wage employment. ***/**/* indicate significance at the 1/5/10%-level; robust standard errors.

Model 1a: No unobserved heterogeneity; Model 1b: Wooldridge estimator.

Table A.5: Estimation Results for the (Interaction) Dynamic Multinomial Logit Model

	Model 2a		Mod	Model 2b	
	Coeff.	s.e.	Coeff.	s.e.	
Self-Employment					
Unemployment rate	-0.010	0.025	-0.034	0.031	
Gross national product	-0.014	0.027	-0.029	0.030	
Age	-0.023	0.007^{***}	-0.015	0.008*	
Age squared	-0.001	0.001	-0.001	0.001^*	
Number of children	0.019	0.054	-0.044	0.081	
Father self-employed	1.073	0.164^{***}	1.119	0.200***	
High school degree	0.186	0.166	0.214	0.210	
Apprenticeship	0.153	0.172	0.096	0.198	
Higher techn. coll.	0.459	0.175^{***}	0.509	0.214^{***}	
University	0.690	0.211^{***}	0.713	0.271^{***}	
German	0.086	0.158	0.213	0.183	
Disabled	-0.141	0.277	-0.186	0.304	
Married	-0.339	0.136***	0.013	0.220	
UE(t-1)xUnemployment rate	-0.077	0.053	-0.069	0.064	
UE(t-1)xGross national product	-0.120	0.066^{*}	-0.126	0.078	
UE(t-1)xAge	0.049	0.014***	0.054	0.017***	
UE(t-1)xAge squared	-0.003	0.001***	-0.003	0.002**	
UE(t-1)xNumber of children	-0.117	0.124	-0.182	0.176	
UE(t-1)xFather self-employed	-0.175	0.351	0.083	0.559	
UE(t-1)xHigh school degree	0.398	0.352	0.641	0.538	
UE(t-1)xApprenticeship	-0.083	0.333	-0.233	0.397	
UE(t-1)xHigher techn. coll.	0.157	0.380	0.161	0.470	
UE(t-1)xUniversity	-0.298	0.456	-0.406	0.600	
UE(t-1)xGinversity UE(t-1)xGerman	0.238	0.430° 0.319^{*}	0.700	0.359**	
UE(t-1)xDisabled	-0.307	0.519 0.593	-0.345	0.654	
UE(t-1)xMarried	0.304	0.393 0.298	0.266	0.054 0.351	
SE(t-1)xUnemployment rate	0.011	0.298	0.200	0.055	
SE(t-1)xGross national product		0.048 0.045		0.053 0.052	
	-0.028	0.045 0.012^{***}	-0.039		
SE(t-1)xAge	0.053		0.034	0.015**	
SE(t-1)xAge squared	-0.001	0.001	-0.001	0.001	
SE(t-1)xNumber of children	-0.105	0.103	-0.152	0.109	
SE(t-1)xFather self-employed	-0.771	0.290***	-0.572	0.336*	
SE(t-1)xHigh school degree	-0.025	0.296	-0.026	0.329	
SE(t-1)xApprenticeship	-0.496	0.308	-0.484	0.335	
SE(t-1)xHigher techn. coll.	-0.647	0.312**	-0.682	0.338**	
SE(t-1)xUniversity	-0.759	0.372**	-0.784	0.422*	
SE(t-1)xGerman	0.061	0.282	0.126	0.305	
SE(t-1)xDisabled	0.504	0.577	0.511	0.621	
SE(t-1)xMarried	0.641	0.238***	0.644	0.257***	
Self-employed (t-1)	7.265	0.636***	4.815	0.696***	
Not employed (t-1)	3.065	0.619***	2.871	0.754***	
Self employed (t0)	_	_	5.501	1.213***	
Not employed (t0)	-	_	0.433	0.305	
Mean married	-	_	-0.537	0.247^{**}	
Mean children	-	_	0.124	0.089	
κ_1^2	-	_	-5.643	1.947^{***}	
$\kappa_1^{ ilde{3}}$	-	_	-6.334	1.404^{***}	
κ_1^4	-	_	-1.108	0.749	
$egin{array}{c} \kappa_1^{ ilde 4} \ \kappa_1^5 \end{array}$	-	_	-4.142	0.609^{***}	
Constant	-4.658	0.284***	-2.127	0.439^{***}	

Table continued on the next page

Table continued from last page

	Model 2a		Model 2b	
	Coeff.	s.e.	Coeff.	s.e.
Non-employment				
Unemployment rate	0.066	0.013***	0.086	0.015***
Gross national product	-0.118	0.014^{***}	-0.131	0.015^{***}
Age	0.012	0.003***	0.029	0.004***
Age squared	0.003	0.000***	0.003	0.000***
Number of children	0.109	0.033***	0.040	0.050
Father self-employed	0.362	0.140^{***}	0.408	0.158***
High school degree	-0.667	0.127^{***}	-0.749	0.150***
Apprenticeship	-0.432	0.079^{***}	-0.444	0.097^{***}
Higher techn. coll.	-0.493	0.088***	-0.553	0.107***
University	-0.563	0.137***	-0.634	0.156***
German	-0.402	0.075***	-0.472	0.094***
Disabled	0.757	0.088***	0.892	0.107***
Married	-0.579	0.075***	-0.142	0.130
UE(t-1)xUnemployment rate	-0.022	0.025	0.000	0.029
UE(t-1)xGross national product	0.059	0.028**	0.056	0.032^*
UE(t-1)xAge				
	0.053	0.006***	0.065	0.006***
UE(t-1)xAge squared	-0.002	0.001***	-0.001	0.001
UE(t-1)xNumber of children	-0.084	0.060	-0.106	0.070
UE(t-1)xFather self-employed	-0.449	0.284	-0.569	0.322*
UE(t-1)xHigh school degree	0.692	0.237***	0.776	0.274***
UE(t-1)xApprenticeship	-0.279	0.151^*	-0.349	0.163^{**}
UE(t-1)xHigher techn. coll.	-0.154	0.170	-0.219	0.189
UE(t-1)xUniversity	-0.232	0.251	-0.497	0.271^*
UE(t-1)xGerman	0.369	0.141^{***}	0.245	0.153
UE(t-1)xDisabled	-0.099	0.182	-0.030	0.207
UE(t-1)xMarried	0.381	0.141^{***}	0.436	0.156^{***}
SE(t-1)xUnemployment rate	-0.010	0.058	-0.039	0.063
SE(t-1)xGross national product	-0.002	0.067	-0.006	0.078
SE(t-1)xAge	0.008	0.017	-0.003	0.017
SE(t-1)xAge squared	-0.004	0.002^{***}	-0.004	0.002**
SE(t-1)xNumber of children	-0.035	0.154	-0.130	0.160
SE(t-1)xFather self-employed	-1.314	0.519***	-1.501	0.567***
SE(t-1)xHigh school degree	0.466	0.365	0.298	0.469
SE(t-1)xApprenticeship	-0.383	0.354	-0.283	0.388
SE(t-1)xHigher techn. coll.	-0.277	0.392	-0.172	0.431
SE(t-1)xHigher techn. con. SE(t-1)xUniversity	0.125	0.332 0.447	0.517	0.431 0.537
SE(t-1)xGinversity SE(t-1)xGerman	-0.459	0.305	-0.709	0.339**
` '				
SE(t-1)xDisabled	0.999	0.539*	1.017	0.581*
SE(t-1)xMarried	0.456	0.341	0.686	0.357*
Self-employed (t-1)	2.904	0.719***	2.683	0.819***
Not employed (t-1)	3.854	0.304^{***}	2.447	0.361***
Self employed (t0)	-	_	0.421	0.357
Not employed (t0)	_	_	1.840	0.122^{***}
Mean married	_	_	-0.777	0.148***
Mean children	_	_	0.143	0.059***
κ_2^2	_	_	2.300	0.544^{***}
$\kappa_2^2 \\ \kappa_2^3 \\ \kappa_2^4 \\ \kappa_2^5 \\ \kappa_2^5$	-	_	0.295	0.374
κ_2^4	-	_	1.898	0.636***
κ_2^5	_	_	-1.610	0.434***
Constant	-3.070	0.157***	-3.272	0.316***
P_1	2.2,0	·	0.175	0.036
P_2			0.038	0.018
P_3			0.030	0.040
P_4			0.081 0.594	
				0.052
P_5			0.111	0.084

Note: The base category is wage employment. **/**/* indicate significance at the 1/5/10%-level; robust standard errors.

Model 2a: No unobserved heterogeneity; Model 2b: Wooldridge estimator.