Eichhorst, Werner; Feil, Michael; Braun, Christoph

Working Paper

What have we learned? Assessing labor market institutions and indicators

IZA Discussion Papers, No. 3470

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Eichhorst, Werner; Feil, Michael; Braun, Christoph (2008) : What have we learned? Assessing labor market institutions and indicators, IZA Discussion Papers, No. 3470, Institute for the Study of Labor (IZA), Bonn, http://nbn-resolving.de/urn:nbn:de:101:1-2008042542

This Version is available at:
http://hdl.handle.net/10419/34922

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
What Have We Learned? Assessing Labor Market Institutions and Indicators

Werner Eichhorst
IZA

Michael Feil
IAB Nuremberg

Christoph Braun
Ruhr Graduate School in Economics

Discussion Paper No. 3470
April 2008

IZA
P.O. Box 7240
53072 Bonn
Germany

Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

What Have We Learned?
Assessing Labor Market Institutions and Indicators

Over the last decade, both the availability of quantitative indicators on labor market institutions and of studies trying to explain differences in national labor market performance through institutional variables have burgeoned significantly. It is now time to review these indicators and the empirical findings. Therefore, this paper has a threefold objective: first, we provide an overview of the aggregate indicators of core labor market institutions such as employment protection, the generosity of the benefit system, active labor market policies, taxation and collective bargaining. We assess the reliability of selected indicators. Second, we review the most relevant macro-econometric studies that made use of these indicators in order to explain diverging patterns of national employment performance. Third, and finally, this paper draws some preliminary conclusions regarding the further development of aggregate indicators and possible directions for future empirical research.

JEL Classification: J60, J68, J21

Keywords: labor market institutions, labor market performance, macro-economics

Corresponding author:

Werner Eichhorst
IZA
P.O. Box 7240
D-53072 Bonn
Germany
E-mail: eichhorst@iza.org

* The authors are grateful to participants of the IZA / Fondazione Rudolfo DeBenedetti workshop of the measurement of labor market institutions, 4 July 2007, for helpful comments as well as for the discussion at the Paris School of Economics research seminar, 11 February 2008, in particular Elvire Guillaud.
Overview

1. **INTRODUCTION** .. 3
2. **HOW RESEARCH INTO THE EFFECTS OF LABOR MARKET INSTITUTIONS TOOK OFF** .. 4
3. **INDICATORS** .. 8
 3.1. **GENERAL ASPECTS** .. 8
 3.2. **EMPLOYMENT PROTECTION** .. 9
 3.3. **TAXATION** .. 11
 3.4. **BENEFIT GENEROSITY** .. 12
 3.5. **ACTIVE LABOR MARKET POLICIES** ... 13
 3.6. **WAGE-SETTING** ... 14
 3.7. **PROGRESS TOWARD AN OVERALL INDICATOR OF LABOR MARKET FLEXIBILITY** .. 16
 3.8. **OVERALL ASSESSMENT** .. 16
4. **THE PERIOD OF STRONG GROWTH** .. 18
5. **MOST RECENT APPROACHES** .. 21
6. **WHAT DO WE KNOW? WHAT SHOULD WE KNOW?** .. 25
7. **REFERENCES** ... 30
1 Introduction

In recent years, attempts at explaining diverging patterns of labor market performance have received considerable attention not only in economics and the social sciences. From a policy perspective, evidence on causal factors that influence the levels and structures of employment and unemployment is relevant in order to inform policy-making in the labor market field. Most of the comparative research points at the crucial role played by complex, multi-dimensional institutional arrangements in different policy areas that have either direct or indirect influence on the labor market. Hence, institution-oriented research contributes to explaining variations in employment performance across countries and over time and helps identify more or less successful institutional arrangements and reform strategies.

Research into the causes and consequences of labor market institutions (LMI) first concentrated on qualitative issues, including narrative descriptions and comparative analysis. However, due to the general advancement of quantitative research, the measurement of labor market institutions became more and more important. Quantitative research depends on reliable summary indicators. Constructing indices, however, is not an easy task even if all the necessary data is available. Yet in empirical work, the provision of data, in particular for the construction of long time series, is the greater challenge. The construction of indices has been a controversial issue, and the debate is still going on. While the production of indices can be seen as a research topic of its own, it is certainly more interesting to discuss the application of indices in econometric studies. And it appears that the debate on the correct measurement of labor market institutions has been fuelled by these applications.

If our understanding of labor market outcomes, unemployment being the most prominent one, can be seen as an interaction of “facts and ideas”, as Blanchard (2006) put it, then quantitative research into the effects of labor market institutions can be seen as the interaction between the construction and the application of indicators. Ten years after the publication of Nickell’s (1997) very influential paper on the institutional differences between Europe and North America, we think that it is time to review indicators and empirical findings, and to assess the state of knowledge. This sort of stock-taking is similar to – and in some respect inspired by – that of Blanchard (2006). While Blanchard presents the big picture, we focus on indicators and empirical research on the effects of labor market institutions on unemployment.
2 How Research into the Effects of Labor Market Institutions Took off

Indicators of labor market institutions have been used intensively in macroeconometric studies on the causes of unemployment for roughly ten years. However, in the theoretical and the descriptive part of the empirical literature, institutions have certainly been known for at least 20 years. Earlier research had focused on the role of macroeconomic shocks experienced by most industrialized countries in the 1970s and 1980s. Nominal and real wage rigidities determined by different wage-setting arrangements were the most important explanatory variables. Given the fact that persistent differences in unemployment levels could be observed even after the shocks, research on the role of other labor market institutions became more prominent (Blanchard 2006).

This interest was spurred by theoretical research on the relationship between institutions and labor market performance. Although the fundamentals were laid in the seminal work by Layard, Nickell and Jackman (1991), it took a couple of years before the notion of “labor market institutions” eventually entered into the language of economists and found broad acceptance, as expressed by the entry into the Handbook of Labor Economics (Nickell and Layard 1999).

Theoretical Aspects

Institutions affect labor market outcomes through the price- and wage-setting processes that, in turn, influence labor supply, labor demand and the matching between workers and available jobs via flows of labor. Effective wage- and price-setting allows for the wage adjustment required by business cycle variations or structural changes and enhances the mobility of labor from declining to growing sectors. Adverse labor market institutions inhibit these processes and can therefore explain higher unemployment.

According to this approach, labor market performance is to be explained by a core set of five labor market institutions:

1. One of the most classical explanatory factors is the wage-setting arrangement due to its direct influence on wage flexibility in terms of nominal and real rigidities and wage dispersion. In terms of institutions, the extent of unionization, coverage by collective agreements or binding minimum wages and the degree of centralization and co-ordination of wage-bargaining through corporatist arrangements are the most relevant features. Wage adjustment is often seen as particularly efficient in decentralized bargaining
structures with most wages being set at the individual or enterprise level due to the direct consideration of market forces or in a centralized and co-ordinated fashion which facilitates wage moderation. Hence, regarding wage moderation and wage flexibility there can be advantages for both centralized and decentralized regimes. Wage dispersion is assumed to be more pronounced in decentralized regimes with low bargaining coverage and low or nonexistent binding minimum wages.

2. Unemployment benefits, i.e. passive labor market policies, provide income replacement in case of non-employment. In a wider sense, this not only comprises unemployment insurance, but also unemployment and social assistance and different forms of disability pensions and early retirement schemes. Through the provision of income replacement, unemployment benefits can provide some human capital insurance for qualified workers in the early phase of unemployment. However, unemployment benefits may reduce job search intensity and labor supply by presenting negative work incentives and raising the reservation wage as they provide an implicit wage floor.

3. Active labor market policies can facilitate a better matching on the labor market through placement support, raise productivity through publicly sponsored training and compensate for productivity deficits by hiring subsidies. By improving the human capital of the unemployed and intensifying job search through tight monitoring, they can increase competition on the labor market, help avoid bottlenecks and facilitate wage moderation. The use of active schemes for activation helps counter potential work disincentives stemming from generous unemployment benefits. However, ineffective labor market policies can hamper employment performance due to negative tax effects.

4. Taxes on labor, in particular non-wage labor costs resulting from social insurance contributions, can reduce labor demand and labor supply. The extent of this effect depends on the actual tax burden of employers and/or employees taking wage adjustments into account. Negative effects are more probable in the case of low-wage jobs where non-wage labor costs are not borne by the worker but by the employer since the benefit system works as an effective wage floor.

5. Employment protection, i.e. provisions for dismissal protection and restrictions on temporary employment and temporary work agencies, can influence the adaptation processes by raising layoff and hiring costs. While it stabilizes jobs and sets incentives for training, it can hamper adjustment to changes by reducing mobility in the labor market. Given the protection of regular employees, employment protection can lead to stronger wage pressure from labor market insiders. Employment protection can reduce the re-
employment opportunities of outsiders and entrants and deepen labor market segmentation.

In this model, however, the general assumptions are, first, that core labor market institutions in principle work in isolation from each other and do not form complex institutional arrangements in their interactions between each other or other, non-labor market institutions. The second assumption is that there is an optimal institutional setting that is close to the perfect functioning of market mechanisms so that differences in unemployment performance can basically be explained by the fact that countries’ labor market institutions deviate more or less from this optimal arrangement. Hence, this method of analyzing labor markets assumes that there is a single peak of superior performance that is close to the market, i.e. where wage- and price-setting mechanisms work without much disturbance. Policy advice then calls for increasing flexibility over all institutional parameters.

Early Econometric Work

At the empirical research frontier, the contributions by Nickell (1997) and Elmeskov, Martin and Scarpetta (1998) mark the beginning of a debate that has been going on ever since. Nickell (1997) starts out from the “received wisdom” that European labor markets are rigid and inflexible and tries to find empirical evidence on the adverse effects of “labor market rigidities,” as institutions were often named at this time. His analysis can be seen as a blueprint for other studies. He runs regressions of labor market institutions on unemployment and employment rates, using two cross sections. His data set is thus quite small (NT=40), and apart from the change in inflation his explaining variables only include labor market institutions. Nickell’s results support the view that generous unemployment benefits, high unionization and union coverage without wage-bargaining co-ordination, and high taxes on labor lead to higher unemployment rates. Employment protection has no significant effect on unemployment. Active labor market policies reduce unemployment.

Elmeskov et al. (1998) go a little further by studying the interaction between institutions and (active) labor market policies in more detail. They also discuss the political economy of labor market reforms, a line of research that has regularly been dealt with in the context of labor market institutions and (un-)employment performance. While their sample is almost identical to the one used by Nickell, they use yearly data covering the time span from 1983 up to 1995 (NT=238). Different panel models are estimated, confirming mostly a priori expectations of the signs of coefficients. An important difference to Nickell (1997) is a positive and significant coefficient for employment protection. While Nickell only stresses interactions be-

tween unemployment benefits and active labor market policies on the one hand and union power and centralized bargaining on the other, Elmeskov et al. (1998) also analyze interactions between employment protection and unemployment benefits or centralization. They also include interaction terms for taxes and centralization. Regressions, however, including both institutions on their own and their interactions with each other, easily result in many insignificant estimates. Since Elmeskov et al. (1998) only report their experiences with interaction terms selectively, their results should be seen as tentative hints that institutions probably interact.

Measurement of Institutions

It is rather obvious that research into the effects of labour market institutions had long been hindered by the lack of available data. In their “Multi-Country Study”, dating back to 1986, Bean, Layard and Nickell for instance note that “deriving series that adequately capture the multi-dimensional complexity of the benefit system for all 18 countries is a truly Herculean task which is well beyond the scope of this exercise” (p. S7). This sort of reluctance, which was probably shared by many researchers at that time, changed into a more active stance during the 1990s. One might be willing to recognize the OECD Job Study (1994a) in combination with the OECD Employment Outlook of the same year (1994b) as the breakthrough. However, it is probably more appropriate to see the Jobs Study as the final impetus, since a lot of data actually used in Nickell’s 1997 study was drawn from other sources.

The book by Layard, Nickell and Jackman, which appeared in 1991, is another major contribution to the development of research into the effects of LMI. The volume includes information on unemployment benefits and wage-setting systems in 19 OECD countries that is quite similar to the variables used in later studies. The econometric strategy of LNJ is different from subsequent approaches, as they estimate price and wage equations before explaining the “unemployment parameter” of the wage equation, using benefits and wage-setting variables.

A little earlier than Layard, Nickell and Jackman (1991), Lazear (1990) gathered data on employment protection. His study had a big influence on further research into the effects of labor market legislation. It also demonstrated the possible gains from time series of institutional variables. The subsequent development of research shows evolutionary features. Most studies drew on existing data but also added some additional series. The “Labour Market Institutions Database” set up by Nickell and Nunziata in the late 1990s nicely shows the piecemeal character. Data from many different sources, including contributions by, e.g., Lazear (1990), Blanchard and Wolfers (2000), and Oswald (1996) is compiled there.
The OECD has certainly played a crucial role in setting the scene for quantitative research. By being willing to create and maintain institutional data sets, it has taken the role of the producer of a public good. Particularly in fields like the measurement of tax burdens it has been the OECD that took on the “Herculean task” by gathering huge amounts of information and condensing them into handy indicators.

3 Indicators

Generally speaking, indicators can be quantitative or qualitative measures that capture observable facts in a country over time and thereby show a country's standing in relation to others or to other periods of time. As such, they are used to assess and predict the performance of the economy. This section reviews indicators that describe labor market institutions. They are defined as “generally known rules that are designed to give structure to the recurring interactions in the labor market” (Ochel 2005).

In this section, we review major institutions and attempts to measure them; that is, we focus on the right-hand side of the regression equation. We do not aim at providing a complete list of all existing indicators. Only those indicators will be mentioned that are most frequently used in empirical studies and that serve to illustrate how they are constructed.

3.1. General Aspects

Labor market institutions have many dimensions. Relevant information can be qualitative or quantitative. Of course, the latter case is easier to deal with because we can tell numbers apart. It is more difficult to handle qualitative information. For empirical analysis, this information has to be quantified. As a first step, information must be grouped and common denominators need to be defined. Since we are interested in knowing something about relative positions, the next step involves rank-ordering the groups. For this, we must have some concept of intensity or significance in mind. As a result, we get an ordinal measure. If we stop here, we assume implicitly that relative intensities are the same for all ranks. To circumvent this shortcoming, a cardinal measure can be created. For this purpose, we need a scoring system to make judgments about institutional features’ relative intensities.

Single-dimensioned institutions are the easiest to deal with. But most often, labor market institutions have many facets and are measured along many different di-
dimensions. We then have detailed indicators, each of which captures only one part of the whole picture. The problem is how to condense the information available, in order to better grasp the overall picture. This relates to problems of constructing composite indicators. It basically involves the same steps as above. Additionally, we have to find a way to aggregate the detailed indicators into one indicator. To do this, we have to assign weights to the detailed indicators. The detailed indicators then enter the composite indicator additively; other approaches are possible. As a general rule, the choice of weights should be guided by the relative importance of each detailed indicator. What we regard as relatively more or less important is a question of economic theory or statistical analysis. Weights are often simply based on subjective judgments.

Information on labor market institutions comes from many sources, such as national legislation, expert reviews and national or international statistical offices and other bodies. The comparability of data is especially impaired in a cross-country context. Statistical offices, for instance, apply different definitions and standards that may also change over time. Whether information about the labor market is comparable or standardized across countries and over time is questionable. Thus, all forms of measurement errors can arise. Where information is only insufficiently available, researchers sometimes need to fill in the gaps. A variety of methods are at the disposal of researchers, though none are free of further assumptions that change the interpretation of data sets.

Indicators exist for almost all labor market institutions. They differ with respect to the number of countries and time periods covered. Data is mostly available for OECD countries from the 1970s onwards.

3.2. Employment Protection

The construction of employment protection legislation (EPL) indicators has seen different stages. In the beginning, Lazear (1990) was the first to link EPL to unemployment and other labor market outcomes. He used weeks of notice and severance pay as a proxy for EPL. Addison and Grosso (1996) revised Lazear’s data.

Later, Grubb and Wells (1993) built the first composite indicator. They identified several dimensions of EPL and assigned scores to them. Using a rank of averaged rank procedure, they obtained a first ordinal measure. The OECD (1994a, 1999, 2004) proceeded in the same fashion but adopted a different aggregation scheme for the 18 detailed indicators and came up with weights based on subjective reasoning. To obtain a time series, Blanchard and Wolfers (2000) had to interpolate between the OECD data points for the late 1980s and 1990s and used Lazear’s proxy to finally offer data covering the time period 1960-1999. Using Blanchard
and Wolfers' data, Nickell et al. (2003) annualized the data points. Nickell (1997) uses the OECD (1994a) series on employment protection and labour standards, which also enter the Elmeskov et al. (1998) study. The latter also includes updates for the 1990s as summarized in OECD (1997a). Belot and van Ours (2001) build their own index by grading several aspects of protection for three types of jobs: open-ended contracts, fixed-term contracts, and temporary work agencies.

While the OECD, until recently, only provided data points for the late 1980s, late 1990s and 2004, the update of the OECD Jobs Study (OECD 2006) was substantiated with the first “true” time series with annual data on employment protection legislation based upon information on reforms (Brandt/Burniaux/Duval 2005). Brandt et al. look at the period 1985-2003 and provide separate scores for EPL regarding temporary and permanent employment. Based on the OECD methodology and scoring system, Allard (2005a) reviews EPL changes and derives time-series for OECD countries, based on the ILO’s International Encyclopedia for Labor Law and Industrial Relations and offers country scores for 1950-2003 at the aggregate level.

The latest approach is by Amable et al. (2007). They also use the OECD data as a starting point. To fill the gaps, they look at the Social Reforms Database maintained by the Fondazione Rodolfo De Benedetti (FRDB) that collects information on labor market reforms and assesses their impact to see whether they have increased or decreased the flexibility of the system. The authors run OLS regressions with this data to predict the evolution of the EPL indicator between 1980 and 2004. The fact that the data set does not only include information on employment protection legislation but also on reforms of working time or wage-setting institutions might challenge the validity of this approach. Moreover, it is not always possible to exactly assign the 18 OECD EPL categories to the information provided. It is, for instance, hard to argue that changes in wage-setting institutions contain information which can be used for the construction of the EPL indicator.

This last issue refers to the quest for a time series of EPL. There are Blanchard and Wolfers, Nickell et al., Allard, Brandt et al., and Amable et al., all trying to provide a complete panel. Neither Blanchard and Wolfers nor Nickell et al. offer arguments as to why their indicators are sufficiently reliable for use in empirical studies. Allard’s and Brandt et al.’s approaches are the most fruitful ones since they rely on raw data. Therefore, we do not see any alternative to the regular update of the OECD data in order to extend the time series. Only painstaking work by referring to labor laws and other sources can accomplish this task. Any attempts apart from that are “rough approximations” that are used for empirical studies as a basis for “rough” policy recommendations.

Several issues with the existing approaches remain. All existing indicators share the feature that they follow a de jure approach. Their respective constructors look at codified rules or surveys thereof, which they use to determine the strictness of the
rules. So far no EPL indicators are available that take up a de facto approach (see Bertola et al. (2000) for a discussion of this issue).

The indicators also do not include non-legislated forms of employment protection. EPL can be agreed upon in individual contracts or can be one outcome of a collective bargaining arrangement.

3.3. Taxation

The literature identifies three different approaches to measure the tax burden: i) representative worker models, ii) aggregate/macroeconomic data, iii) microsimulation models. Relevant taxes include payroll taxes, social security contributions and income taxes dependent on workers’ pay. The inclusion of consumption taxes and taxes on capital income is controversial and the same holds for the question of whether to allow for employers’ voluntary contributions.

In its publication “Taxing Wages” the OECD uses models to assess the tax burden on labor on an annual basis. The strategy is fairly simple: it identifies an individual, called average production worker, who works full-time in the manufacturing sector and earns an average wage. This worker may claim different kinds of tax relief and benefits depending on the personal circumstances such as marriage and children. For each country, the OECD then applies the tax code and thus computes the worker’s net income. The OECD repeats the same analysis for different family types and income levels. From this data, it is easy to compute several relations, most importantly the tax wedge which is used as a proxy for the tax burden on labor in empirical studies.

The second approach uses macroeconomic data. From national accounts, one extracts numbers on tax revenues and expresses them as a ratio of some defined aggregate tax base. The question left to the researcher is what to include in the numerator and denominator of these aggregate average tax rates. Available indicators differ widely with respect to this, and, as a consequence, in magnitude. However, all indicators tend in the same direction and display high positive correlations (see De Haan et al. (2003) for further details). Early econometric work on the effects of LMI (Nickell 1997, Elmeskov et al. 1998) mostly used OECD data derived by using the macro approach.

The third approach relies on microsimulation models based on household survey data. The European Commission has set up a comprehensive tax/benefit model called EUROMOD that covers 15 member countries. Sutherland (2001) provides a detailed documentation of this model.

3 The same holds true for “Benefits and Wages” where benefits are also included.
Both microeconomic approaches differ in the way income is calculated. On the one hand, Taxing Wages takes a representative agent's gross wage earnings - only one individual is considered. Euromod, on the other, uses household surveys, for instance the German Socio Economic Panel, to derive its data on household income. In this sense, Euromod is based on a richer information set than Taxing Wages. Simulated and actual tax burden differ. There is no evidence of the difference's sign and its magnitude. Given household income as an input, EUROMOD reports new income levels resulting from a changing policy environment. A major drawback of this method is that tax rules may be applied too mechanically. In essence, this criticism also applies to the model-based approach. Everything that is non-standard is not sufficiently captured by the two approaches.

To study the incentive effects of taxes we need marginal taxes – especially at the extensive margin, i.e. whether to enter the labor market or not. Macro-based tax rates cannot provide this measure. In this case, micro- and model-based approaches prove useful. To derive marginal tax rates, McKee et al. (1986) use a representative worker approach, Immervoll (2004) applies EUROMOD and Carone et al. (2004) use the OECD’s Benefits and Wages approach.

3.4. Benefit Generosity

The generosity of the unemployment protection system, i.e. unemployment insurance and assistance as well as welfare, refers to the unemployment replacement rate, the duration of entitlement, other eligibility criteria that specify insurance coverage and recipients, and to availability rules that define search effort requirements and the suitability of a job offer. Finally, the system has various sanction mechanisms available should a claimant not fulfill certain requirements and conditions. All of these different dimensions account for the system's generosity and, thereby, an unemployed individual's welfare.

The measurement of the replacement rate is subject to the same problems as the Taxing Wages approach. There is not one single replacement rate that applies to all workers. In addition, workers are entitled to receive benefits for varying periods of time depending on other labor market characteristics such as age or the length of the previous employment period.

Layard, Nickell and Jackman (1991) construct their series of benefit duration and replacement rates from statutory rules. The same method underlies the data in Nickell’s (1997) study, while Elmeskov et al. (1998) use a summary measure, provided by the OECD, which condenses replacement rates for three family situations and three duration categories into one single index number.

The OECD calculates replacement rates for different representative workers, household compositions and earnings levels. Applying the specific country rules
gives a gross replacement rate. The OECD, however, also calculates net (after tax) replacement rates in order to take differences in the national tax and benefit systems into account.

It has become evident that it is insufficient to only look at the replacement rate. Rather, we need to include more dimensions of the generosity of UI. Allard (2005b) calculates an indicator that captures both the gross replacement rate, taxes on benefits, the duration of collecting benefits and eligibility criteria. The last point has been researched by the Danish Ministry of Finance (1998, Hasselpflug 2005). It conducts a survey and asks for the conditions that the unemployed must meet in order to collect benefits. Scores assigned to eight categories, subjectively weighted, give an overall indicator. Yet, this indicator is less than conclusive with respect to the country ranking.

Scruggs (2006) adopts a different approach. He calculates an expected welfare benefit that is the product of the income replacement and coverage rate of three social security regimes: unemployment, sickness and pensions. As such, the measure looks not only at the UI system. Yet the approach by Scruggs is helpful as it takes coverage into account. In a similar fashion, Vroman (2007) calculates benefit generosity as the ratio of annual unemployment compensation payments, i.e. unemployment insurance and assistance, to the average number of recipients normalized by average wages.

3.5. Active Labor Market Policies

In order to better assess active labor market programs, OECD Employment Outlooks and European Commission publications annually report numbers on participants and public spending. Since the range of programs is extremely wide, there are eight categories that capture the dimensions of active labor market policies. Only targeted programs are included, that is, only measures to fight current or prospective unemployment are considered. The numbers are expressed as GDP ratios or as expenditure per unemployed person. The tables mostly report gross numbers – that is, taxes and other deductions are not taken into consideration.

In empirical work, ALMP is typically measured as expenditures per person relative to GDP per capita (e.g. Elmeskov et al. 1998) or relative to GDP per member of the labor force (Nickell 1997). The spending ratios and numbers of participants do not provide us with information on the programs’ success. This is the aim of evaluation studies. Expenditure data on active labor market policies cannot shed light on the potential use of active schemes for activation purposes, i.e. making benefits dependent on participation in training measures and public employment offers. Expenditure data does not allow for the interpretation of active schemes either as “benevolent” supporting measures or “work test” programs. Hence, they cannot be taken as a proxy for activation.
3.6. Wage-Setting

Wage-setting in a broader sense refers to how employees and employers can decide on the terms of their labor relations. Those terms comprise questions of remuneration, working time and procedures, health and safety regulations or even forms of employment protection. The literature usually concentrates on wage-setting issues, which are studied under four headings: i) trade union density, ii) collective bargaining coverage, iii) centralization and iv) co-ordination. Obtaining numbers on i) and ii) is relatively easy compared to iii) and iv), the reason being that union density and coverage are already expressed in numerical terms. Measures of corporatism, i.e. centralization and co-ordination in the wage bargaining process, involve subjective judgments that may give rise to measurement problems.

The study of wage-setting institutions usually starts by looking at the union density. It gives a measure of unions' presence in the labor market and of their strength to give voice to their demands. Union density is defined as the ratio of active and/or inactive union members and employed workers. The net union density adjusts for active members and is mostly used in empirical studies. Based on Visser's calculations using the model set up by Ebbinghaus and Visser (2000), the OECD Employment Outlooks (2004, 1997, 1994b) provide numbers. Data exists for the 1970s, 1980s, 1990s and 2000 for almost all OECD countries.

A union-negotiated contract gets the more weight the more it applies to non-union members and non-affiliated employers as well. This is summarized by collective bargaining coverage. Beyond this, it can be implemented by extension and enlargement mechanisms. Extension mechanisms rule that a collective agreement is binding within a sector or region regardless of whether employers participate in the wage-setting process. Enlargement goes beyond this and specifies that the collective agreement is binding in other sectors or regions. Brandt et al. (2005) construct an indicator that accounts for extensions and enlargement. Coming from labor force surveys, the European Industrial Relations Observatory and other official reports, the OECD provides numbers on collective bargaining coverage. Unfortunately, it is not possible to precisely factor out the coverage rate due to extension or enlargement mechanisms.

Layard, Nickell and Jackman (1991) used data from McCallum (1983) on union density covering the time from 1965 to 1977. They also compiled data on coverage, centralization, and co-ordination, drawing on many different sources. This information set was used by Nickell (1997), who also refers to OECD (1994b) figures.

Centralization and co-ordination are measures of corporatism. Basically, the centralization indicator should account for the bargaining level itself, the share of the workforce whose wages are determined at the corresponding level and the degree of horizontal centralization (Kenworthy 2001). Negotiations can occur at any level
from the firm to the industry and up to the national level. Moreover – and this makes the whole quantification exercise complicated – multiple levels with varying authority may be involved in the process. Iversen (1999) tries to improve the incorporation of the connections between the different levels by assigning weights to three bargaining authority levels – centralized, intermediate, decentralized – and thereby sheds light on the different structural characteristics within the bargaining process. Iversen then applies an aggregation scheme that also accounts for union density. Traxler et al. (2001) look at the actual level of the bargaining process. They include the influence of lower levels on the outcome and the share of the workforce covered. Additionally, they take note of the degree of horizontal centralization. By judging each level’s impact on wages on a case-by-case basis, they assign scores to the countries from a range of twelve points. Each score considers mixtures of bargaining levels and accounts for the share of workers collectively bound by the corresponding bargaining agreement. Additionally, the OECD (2004) provides numbers on five-year averages from 1970-2000. It identifies five levels of centralization ranging from the company/plant level to central-level agreements.

Wage co-ordination captures the extent to which low-level bargaining parties are able and willing to internalize their actions. Soskice (1990) argues that it is a broader concept than centralization. Wage centralization as such is only one means to achieve co-ordination. Other modes include state-imposed centralization, guidance of lower levels by peak-level organizations and pattern-setting by a powerful sector or group of firms (Kenworthy 2001). Soskice (1990) ranks countries on a five-point scale for the late 1980s. Layard/Nickell/Jackman and the OECD, among others, adopt this approach as well. As a result, the OECD provides data points from 1970 to 2000. Following a different track, Traxler et al. (2001) look at the co-ordination activities by the major bargaining partners and put them into six categories. Each of the indicators mentioned so far have in common that they aim at measuring the actual degree of co-ordination achieved. Kenworthy (2001) adopts a different approach and tries to form expectations over the co-ordination activities by looking at the wage setting arrangement. He sets up a database for 18 OECD countries covering the time period 1960-2000. In his publication he provides extensive explanations how he comes up with his five point scoring scheme. Traxler et al. (2001) do not only look at centralization and co-ordination but also at the extent to which lower-level bargaining partners (the rank and file) actually follow the agreements reached at higher levels. In this sense bargaining governability refers to the degree of vertical co-ordination. Using Traxler et al.’s information, the OECD (2004) derives a cardinal indicator for 2000. A time series is not available, however, as the OECD points out, we may safely assume that practices have not changed in recent years. Composite indicators of centralization and co-ordination usually exclude information on vertical co-ordination. Belot and van Ours (2001) construct a centralization index (1-3) according to the privileged level of bargaining using information from Bratt (1996), OECD (1997b) and Elmeskov et al. (1998).
The 1994 OECD Jobs Study suggests a further decentralization of wage bargaining. One such measure is to introduce opening or opt-out clauses that give the right to companies to re-negotiate collective bargaining agreements at a lower level. Data on this is scarce and what is available does not seem to warrant changes in the existing OECD rankings (OECD 2004).

So far we have only looked at the employees’ side. Numbers on employers’ affiliations are even scarcer. Clearly, these are missing parts of the overall picture of how labor market agents organize themselves.

3.7. Progress toward an Overall Indicator of Labor Market Flexibility

The only attempt at an overall indicator of labor market adaptability so far was presented by Algoé/Alphametrics (2002) for the EU 15, Japan and the United States. This was conceived as a project to develop an indicator that integrated individual behavior, institutions and the external context in an interactive way, thus going beyond institutional factors and relying mainly on labor market outcome variables. The study proposes a set of indices that stand for different dimensions of labor market adaptability such as labor availability, education and training, job mobility and working time flexibility – with some reference being made to institutional variables such as employment protection and unemployment insurance benefits. Hence, while this allows for interactions between different dimensions of adaptability as well as for specific national patterns and country clusters, the approach is not primarily institutional and, in a way, incomplete.

3.8. Overall Assessment

Existing indicators try to capture levels of regulation or the reform intensity in the labor market. There has been considerable progress regarding the coverage of policy areas and the creation of time series information on both levels of regulation intensity and changes in terms of reforms.

Of course, the development of indicators is always a bit arbitrary. Most of them are based, at least partially, on subjective judgments and weights or implicitly have some economic model in mind. This holds for the inclusion of different elements into an aggregate indicator or the weights attached to particular elements. Exactly for this reason some researchers have moved toward tests of robustness or sensitivity and discuss the economic implication inherent in the underlying model. A handbook for constructing composite indicators (Nardo 2005) offers helpful guidelines to assess the statistical part of the construction exercise. When we look
at a composite indicator, say EPL, the first step involves assigning scores to the items. After that, a weighting scheme is designed. A sensitivity analysis has to find out whether changes in the scoring or weighting system yield changes in the overall country ranking. Even though only a small number of ranks are changed, it can have an impact on the outcome of an empirical analysis. Reviewing, replicating and revising existing indicators do not seem to be popular. However, this must be done in order to find out about an indicator's reliability. For the purpose of panel analyses, we need to have time series of the indicators. Above, we discussed some, albeit not promising, approaches to tackle this problem. We, however, do not see another way than painstaking work to regularly update the indicators. Simply drawing a line between two data points cannot overcome the problem.

A more specific issue regarding the quality of available indicators is the fact that most of them rely on formal provisions or model calculations. Hence, with some exceptions, they do not take the scope of application and the de facto implementation into account, e.g. the actual enforcement of dismissal protection or availability criteria in unemployment protection. Since most of the indicators, apart from the survey-based ones, are based on a de jure approach, they do not give information on whether and how the different rules are implemented or enforced. Whether the indicators carry some degree of economic significance also does not become clear. Researchers should report numbers and results of the real relevance, coverage and implementation along with their indicators. “If a regulation [...] is not implemented, then it is not relevant” (Ochel 2005).

The international comparison of institutions is further impaired by the fact that they evolve in different contexts. That means that if we use identical concepts to measure some phenomenon, this may give rise to false inferences. To overcome this problem, the notion of functional equivalence comes into play. It “refers to the requirement that concepts should be related to other concepts in other settings in more or less the same way” (van Deth 1998).

All indicators have been constructed pretty much in isolation from others. It seems that researchers have their favorite indicator that they use for empirical analysis. To look at an example, consider a young graduate who tries to enter the labor market. His reasons for not finding a job quickly are manifold. Some consider EPL and strict insider rules responsible, others see a high tax wedge that makes an employer reluctant to offer a job, and still others claim that the social security system with its negative impact on the reservation wage or the search effort is responsible. Something like an overall indicator that describes the labor market’s flexibility does not yet seem in sight. Not a specific single institution hinders a young graduate from entering the labor market quickly. There are a plethora of institutions that work with and against each other. To account for them seems to be the challenge.

Hence, some path for future work on indicators could lie in the development of indicators with a high “information content” that take the actual implementation and relevance for actors’ behavior into account. Given that institutions are not iso-
lated from each other, the development of indicators should provide a reliable picture of the complex and multi-dimensional institutional environment that influences actors’ behavior in the labor market. However, one must be aware of potential endogeneity problems then.

4 The Period of Strong Growth

Towards the end of the 1990s general conditions for econometric studies on the effects of LMI were favorable. “Supply-side conditions” had improved enormously. Gathering data no longer had the character of a Herculean task. The theoretical basis was solidly established. But there were also “demand-side” factors which spurred research activities. The then existing work had certainly provoked the wish for confirmation, but also for refutation. Besides, unemployment patterns across the OECD and in particular across Europe raised additional questions about the causes of unemployment. While average unemployment remained high, some countries (e.g. the Netherlands and the UK) performed better than others. Differences in labor market institutions were named as explanations for the divergent patterns and empirical work should prove this hypothesis.

Emphasis on Interactions

Thus, the research question serving as the title of an early version of the paper “Unemployment and Labor Market Institutions: An Empirical Analysis” by Belot and van Ours (2001) was rather straightforward: “Does the recent success of some OECD countries in lowering their unemployment rates lie in the clever design of their labour market reforms?” Taking up the point of possible interactions between different labor market institutions, which had already been scrutinized to some extent by Elmeskov et al. (1998), Belot and van Ours were among the first to contribute to a quickly growing literature. Based on data from 18 OECD countries and seven five-year time spans, for which averages are constructed (NT=119), different panel models (fixed effects) are estimated. The basic set-up is very much in line with Nickell (1997); i.e. apart from the change in inflation only labor market institutions are used to explain standardized unemployment rates. An important result of this exercise is the importance of fixed effects. In a pooled regression all institutional variables are significant, in a fixed-effects model they are not. Adding interaction terms leads to more significant coefficients. Interestingly, Belot and van Ours (2001) find strong interactions between taxes and the replacement rate. Their results also indicate that high union density only raises unemployment in economies with decentralized wage-bargaining. Finally they find evidence for a negatively signed interaction term of employment protection and decentralized bargaining.
At the turn of the century another “interaction hypothesis” arose. While macroeconomic variables had certainly been in the equation for a long time, it was only Blanchard and Wolfers (2000) who put forth the hypothesis that in order to understand the evolution of unemployment across (European) countries and through time, the interaction of shocks and institutions has to be considered. Consequently, their paper tries to show that satisfying estimates can only be obtained by interacting shocks and institutions. While the econometric results do not reject the “institutions only” version, Blanchard and Wolfers quite convincingly argue their point. In a nonlinear specification combining three shock variables (TFP growth, real interest rate, a shift in labor demand) six out of eight labor market institutions show significant correlations, and seven out of eight show the results expected. Active labor market policies are found to be insignificant, as is union coverage. Thus, according to Blanchard and Wolfers, even employment protection legislation, which has hardly been found to be significant, must be seen as a cause of unemployment.

Bertola, Blau and Kahn (2002) perform a quasi-evaluation of Blanchard and Wolfers (2000), but they also extend and modify the previous study. While their results are not as “nice,” they largely confirm the findings of Blanchard and Wolfers. An interesting finding of their work is that 50 percent of the difference between unemployment rates in the United States and those in other countries (1970-1996) can be explained by a model containing shocks and institutions. In comparison, excluding institutions diminishes the ratio to 11 percent. The authors conclude that “a large proportion of the reversal of unemployment fortunes between the United States and the other OECD countries appears to be due to the interaction between the laissez-faire institutions in the United States and the macroeconomic shocks of the 1980s and 1990s”.

New Work on Institutional Explanations

Around the same time as Blanchard and Wolfers, Fitoussi et al. (2000) came up with empirical work also relying on shocks and institutions. Their approach to institutions differs from most of the previous papers by adopting a two-step strategy. They first run regressions where unemployment rates are explained by macroeconomic variables and fixed effects. The adjustment to shocks is country specific. The estimates for both the fixed effects and the ‘sensitivity-to-shocks’ parameters are then explained in a second step by country-specific variables for unemployment benefits, trade union strength and active labor market policies. All variables show the expected signs. In a second step, Fitoussi et al. first estimate “pure” institution models. While institutions can explain the heterogeneity in unemployment rates across countries in the 1980s, they fail to explain changes in unemployment from the 1980s to the 1990s. Adding macroeconomic shocks to the institutions makes
Coefficient estimates for union density and union co-ordination significant, leading Fitoussi et al. to conclusions similar to those of Blanchard and Wolfers (2000).

In two papers, Nickell, Nunziata, Ochel and Quintini (2003) and Nickell, Nunziata and Ochel (2005) argue the case for the sole importance of institutions. Extending previous work by Layard, Nickell and Jackman (1991), Nickell (1997) and Nickell and Layard (1999), they regress institutional and shock variables on standardized unemployment and employment rates. Their estimated models for unemployment use time series from 1960 to 1995 and include the lagged unemployment rate as an explanatory variable. The baseline and preferred specification contains institutional variables (some of them interacted) and measures of macroeconomic shocks such as labor demand, TFP and real import price shocks. The estimates for all institutions are significant and correctly signed, except for employment protection and total employment taxes, which are insignificant. By comparing the basic model with an enriched model containing interaction terms between time dummies (representing shocks) and institutions, they find that “the interacted time effects are, first, [jointly] insignificant and second make no contribution to the overall rise unemployment.” Whether this research strategy actually allows the conclusion that interactions do not contribute to the explanation of the evolution of OECD unemployment appears questionable. Nickell et al. neither discuss their dynamic modeling strategy of including the lagged independent variable nor do they try to explain why in Blanchard and Wolfers’ work the interactions of shocks and institutions have such importance.

Critical Work

In a series of papers (Baker et al. 2004, 2005, Howell et. al 2007), Baker et al. critically review all studies that have been discussed so far. Starting from the alternative hypothesis that labor market institutions are not responsible for high unemployment rates, they try to assess the robustness and reliability of the macroeconomic evidence. Their main conclusion of the exercise is that the effects of institutions on unemployment are distinctly shaky with widely divergent coefficients and levels of significance. They go on to argue that the latest work by the OECD (2006) basically confirms the lack of robustness in panel studies.

To highlight the work by Baker et al., we give two examples of their experiments. In the 2002 paper, Nickell’s (1997) model is re-estimated using data from Nickell et al. (2001). While seven out of eight institutional variables are significant in Nickell’s paper, none are in Baker et al.. In another paper (2004), the IMF study (2003) is analyzed at length. One issue explored is the correct modeling approach to unemployment dynamics, a topic also implicitly dealt with by Nickell et al. (2003, 2005) by including the lagged dependent variable. By replacing country-specific time trends in the IMF specification and, probably much more important, replacing some of the series of the institutional variables by (slightly) revised ver-
sions, the coefficient estimates all become insignificant. Finally, Baker et al. (2004) chose a different set of interaction terms. Altogether these changes result in almost completely insignificant coefficient estimates. Unfortunately, Baker et al. do not justify the changes in the econometric model.

The contributions by Baker et al. are highly valuable for understanding and evaluating the prevailing studies. They are right in pointing out that practically none of the major studies contain comprehensive specification tests or other measures to check their robustness. Most of the time, only the ‘preferred’ or best-fitting models are presented without discussing the problems that were encountered in the estimation process. While this problem is certainly not confined to macro-econometric work on labor market institutions, it appears highly debatable whether policy advice on reforming labor markets could be based on “fragile” econometric results. Thus the question is, as Blanchard (2006) puts it, “Do we really know enough to give advice?” Baker et al. conclude that there is no convincing evidence for the “orthodox” case. While they certainly have a point in asking for robustness, it appears questionable whether their approaches to test for robustness are adequate.

Concentrating on econometric specification, Baccaro and Rei (2005) estimate models in the style of the IMF (2003). Using the data set of Baker et al., which in turn is built on the institutional data set by Nickell and Nunziata (2001), they particularly discuss the right approach to dynamic modeling. Leaving aside the details of an interesting set of alternative ways to deal with serial correlation, their main result is that none of their models lend support to the “orthodox” view. There are two specification issues which deserve further attention in our review. One is the inclusion of country-specific time trends, the other is cointegration. With respect to the former, Baccaro and Rei do not see any justification for country-specific time trends. Their replication of the IMF’s (2003) study, however, suggests that it is just this element of the model that makes the difference. According to Baccaro and Rei the time series used are mostly non-stationary and first-order tests for cointegration suggest the existence of a cointegrating relationship. Baccaro and Rei therefore decide to estimate (dynamic) models in differences. They also discuss alternative approaches, among them some ad hoc tools like the insertion of country-specific time trends, which they do not recognize as appropriate, since “we do not want to control for trends. If anything we would like to explain them through our model.” Summarizing tables 4-6, no clear picture in support of the “deregulatory view” emerges. With the exception of union density, which has a significant positive effect on unemployment in most of the models, the rest of the institutional variables show only sporadic signs of significance.

5 Most Recent Approaches
Also dealing heavily with alternative estimation techniques, Amable, Demmou, Gatti (2006) contribute to the debate on robustness. Taking up the issue of slow, if at all, changing institutional variables, they apply fixed effects vector decomposition (FEVD) estimators as well as Beck and Katz’s (1995) method to compute panel corrected standard errors (PCSE). While the latter does not make a big difference to the feasible generalized least squares (FGLS) estimators used otherwise, the FEVD estimates produce significant coefficients for almost all explanatory variables. Amable et al. follow Nickell et al. (2003, 2005) and estimate dynamic models, including the lagged dependent variable, on yearly data from 1980 to 2004. Their results basically confirm the importance of labor market institutions as important determinants of unemployment. In particular, they find significant positive effects of union density and taxes on labor. Product market regulation is always found to increase unemployment. Wage-bargaining co-ordination and, surprisingly, employment protection decrease unemployment.

New OECD Work

Bassanini and Duval (2006), in a paper which underlies Chapter 7 of the OECD Employment Outlook 2006, use new indicators, different lengths of time series and alternative specifications in order to “reassess the role of policies and institutions.” Their work also takes up the reproach of the lack of robustness in estimations. The checks include different choices of the estimation samples, alternative model specifications and estimation techniques. None of these alterations leads to changes in the main findings. The first set of models, which consists of equations in levels, where apart from the institutional variables the output gap enters, confirms the expected effects of institutions on unemployment. Employment protection and union density are the only insignificant variables of the different models.

Bassanini and Duval then go on to test specific and systemic interactions among institutions. In this context, it is important to note that the inclusion of all combinations of institutions is not feasible, since degrees of freedom are simply too small. Thus the choice of interaction terms is always arbitrary in a sense. Overall the models presented lead to the conclusion that there is evidence for systemic interactions, but not for specific interactions, with the exception of unemployment benefits and spending on active labor market policies. This combination of institutions decreases unemployment, probably because higher spending on active labor market policies means stronger activation efforts.

Bassanini and Duval also take up the topic of “shocks and institutions.” In the spirit of Blanchard and Wolfers (2000), they use their data sets to estimate equations including unobserved shocks. These shocks are modeled as common time dummies for all countries. In order to capture at least part of the important macroeconomic shocks of the 1970s, the previously used time series are prolonged backwards, covering a time span from 1970 (1975) to 2003. With four institutions
entered, the coefficients of the average replacement rate, the tax wedge and high
corporatism are found to be significant and correctly signed. Bassanini and Duval
take them as “evidence that direct and indirect effects of policies and institutions
complement each other in explaining unemployment trends.” The same holds for a
second set of regressions, where the unobserved shocks are replaced by the ob-
served shock variables: TFP, terms of trade, interest rates and labor demand. De-
spite the significant estimates of the shocks and institution models, Bassanini and
Duval (2006) see their contribution more in line with Nickell (1997) and Nickell et
al. (2003, 2005), stressing that “changes in policies and institutions appear to ex-
plain almost two-thirds of non-cyclical unemployment.” However, the effects of
adverse shocks are amplified by high unemployment benefits and a low degree of
corporatism.
One or Two Peaks?

While these options can be integrated into the well-established theoretical framework laid out above, other researchers, mainly from the social sciences but also from an economic background, have questioned the idea that there is only one successful policy setting in terms of superior labor market performance. Starting from the observation that institutional factors do not work in isolation but form complex institutional arrangements, they construct typologies of employment systems with internal coherence and assume that diverging but coherent models could have potentially equal capacities to generate favorable employment outcomes, albeit with a different internal economic logic. Most important in this respect were the typologies of welfare states by Esping-Andersen (1990), the varieties of capitalism approach by Hall and Soskice (2001) and Albert’s (1993) and Amable’s (2003) work on diversity in modern capitalism. This strand of literature basically argues that different institutional configurations can be equally successful in terms of economic activity and productivity while relying on diverging patterns of economic specialization that are stabilized by dense and coherent institutional networks, in particular labor market regulation, welfare state provisions, training and wage setting arrangements. The set of labor market institutions used in this type of research is mostly identical to that used in economics (Scharpf/Schmidt 2000), but this approach is more open to accept divergence of institutional patterns and reform paths. The labor market is structured by institutional settings in the productive system, and diverging institutional arrangements on the labor market are associated with specific national patterns of labor market adaptation.

Recent research into alternative regimes has in particular pointed at different models of insurance against labor market risks through strict employment protection or generous unemployment benefits which could also be complemented by effective reintegration-oriented labor market policies (Boeri/Conde-Ruiz/Galasso 2003, Eichhorst/Konle-Seidl 2006). This is related to the idea that different forms of flexibility and security can be facilitated by diverging institutional arrangements (see e.g. Wilthagen/Tros 2004), an idea which has become a prominent feature of some empirical work and European policy initiatives under the label of “flexicurity.” Hence, institutional settings generate national patterns of labor market flexibility that combine different dimensions of flexibility (functional flexibility, external numerical flexibility, internal numerical flexibility and wage flexibility) as well as security (job security, employment security, income security). Most recently, the OECD also emphasized the institutional feasibility and actual existence of at least two different models of superior employment performance (OECD 2006) that allude to the often cited dualism between “liberal” or “Anglo-Saxon” models of flexibility and “corporatist” regimes. Hence, not all successful countries are necessarily “liberal” market economies. In a similar fashion Freeman and Schettkat (2000) argued that homogenous skill levels across the labor force limit the pressure for wage dispersion so that effective training schemes based in part on corporatist arrange-
ments can be substitutes for high wage flexibility in decentralized bargaining systems.

But there is another, much more profound explanation: the potential existence of different peaks of superior labor market performance. In general, one can argue that this type of research is less suitable for regression analysis since it most often relies on complex institutional analyses with strong qualitative evidence, which can be seen as less rigorous in empirical terms (Howell et al. 2007, Scharpf/Schmidt 2000, Schetkat 2003).

There have, though, been some advances in the direction of quantitative analysis. Amable (2003) and Hall/Gingerich (2004) probably represent the most prominent examples. Both Hall/Gingerich and Amable show a positive correlation between institutional coherence embodied in either liberal, market co-ordinated systems or strategically co-ordinated economies and economic growth or other outcome variables such as productivity and inventions. Institutional coherence is measured in terms of an aggregate co-ordination index based on specific institutional variables developed by Hall and Gingerich (2004). They take the two extremes as “pure” models of liberal or co-ordinated market economies. Relying on OECD indicators, Amable identifies the co-ordinated model as a second peak besides the liberal system in terms of low unemployment. Although EPL drives unemployment in his model, co-ordination in industrial relations, public education and welfare state size reduce it. These factors also eliminate the potential negative effects of EPL and product market regulation. Hence, he suggests a dual peak model with liberal systems on the one hand and co-ordinated economies with strong welfare states on the other.

In nearly the same fashion, the OECD most recently argued – based on principal component analysis – that two models of superior labor market performance exist in OECD countries, with one group of countries having low unemployment benefits, taxes and EPL, and the second group achieving broadly similar outcomes, i.e. high employment and low unemployment, with a fully fledged system of benefits, active labor market policies and corporatist cooperation as long as this is interacting with a flexible labor market. The stronger role of the welfare states in corporatist, mostly Northern European systems, however, means that taxes are higher, yet the distribution of incomes is less unequal than in liberal economies. In contrast to the varieties of capitalism literature, however, the OECD sees co-ordinated economies in Continental Europe not as successful but, rather, as problematic in terms of labor market performance as they are associated with a passive welfare state and heavily regulated employment protection (OECD 2006).

6 What Do We Know? What Should We Know?
Over the last two decades there has been considerable progress toward more complex institutional explanations taking a larger number of institutions and interactions between institutions into account, while emphasizing the dynamic aspect of labor market adaptation to a changing economic environment at the same time. There has been considerable development regarding both the construction of aggregate institutional indicators and empirical macro-econometric research into the determinants of employment performance (Arpaia/Mourre 2005) if we take Nickell’s (1997) influential paper as the starting point. Data sets have grown as has the number of studies. A lot of effort has been put into better, at least more detailed, time series for labor market institutions. Additional covariates have been tested. Important econometric issues, such as dealing with the peculiarities of the institutional variables and cointegration, have been discussed. Robustness has been an issue, at least since Baker et al. (2002) started their critical work. Thus a lot of scientific effort has been put into the quest for empirical evidence on the effects of labor market institutions.

Summarizing the existing theoretical work on comparing national labor markets, there is now a strong argument in favor of a dynamic and interactive framework that conceives labor markets as determined by a complex set of institutions that not only determine the adaptive potential of the labor market but also form different patterns of labor market flexibility. Adaptability, in this framework, means the capacity of labor markets to adjust to structural changes or business cycle variations. If labor market institutions work in the right direction, unemployment persistence will be low and employment high, whereas a less-favorable institutional arrangement will result in persistent unemployment and structural problems in the labor market. Labor market reforms to enhance labor market adaptability should help overcome these structural problems.

There is good reason to argue that there are different channels of flexibility on the labor market, which can – at least partly – be substitutes for each other, i.e. they can be seen as functional equivalents so that not all parameters have to be close to the market optimum in order to achieve a functioning labor market. One core element is the relative role of flexibility/security provisions embedded in employment protection, wage-setting and active and passive labor market policies, i.e. the diverging role of public intervention with respect to dismissal protection, wage floors, training and other labor market policies to counter potential disincentive effects arising from more generous benefits. Functional equivalence allows for different models of good employment performance – even if some policy areas are characterized by some sort of “rigidity” – as long as they can be compensated for by other elements of flexibility. Different modes of adaptation can lead to a similar amount of overall adaptability so that there can not only be more than one peak of labor market performance, but also different reform paths. However, the benefits of alternative institutional patterns are associated with specific costs in terms of taxes or inequality, for instance.
Given the co-evolution of empirical research and institutional indicators (as well as facts and ideas), we can now see a broad analytical consensus on the role of institutions, interactions between institutions and, last but not least, between institutions and shocks so that a dynamic and interactive framework can be seen as widely accepted. Most empirical studies converge at least to the point that the majority of the regressions – despite major differences in the models – show significant results for core labor market institutions, interactions and shocks, and mostly the results conform to expectations.

However, most studies only report “preferred” results. Hence, whereas many researchers agree that institutions and institutional reforms explain a significant part of cross-country differences in labor market performance, it is hard to single out the most relevant variables in terms of particular institutions or interactions in an unambiguous way. To a certain extent, empirical findings vary depending on the model specifications, the countries and period covered and the variables used. The review of the empirical studies also shows that robust correlations between individual institutional variables and labor markets are hard to identify. The same is true for patterns of institutional interactions or interaction between shocks and institutions. Hence, while the theoretical argument is convincing, empirical evidence is less clear.

We thus conclude that we do not really know which institutions and which interactions have a substantial influence on labor market outcomes. Findings from one study can be neutralized by findings from other studies. Hence, the robustness of empirical findings is still under debate. The series of studies that is now available does not lead to unambiguous empirical findings regarding significant correlations between individual institutional variables and labor market outcomes. This lack of confidence also holds for attempts at identifying the beneficial effects of institutional configurations that represent different types of labor markets or economic systems. While there is evidence in favor of the “single peak” model, the “twin peak” alternative cannot unambiguously be ruled out. There certainly is some evidence in support of the “deregulatory view” but it is not very difficult to come up with empirical estimates that reject this view. Notwithstanding the vast research effort, the case has to be recognized as largely unsolved. Given this uncertainty, it does not seem appropriate to make strong statements on the role of individual institutional variables and potential policy recommendations based solely upon macro-econometric studies. What we have learned is that the empirical evidence is uncertain and that real processes within the labor market are more complex than originally assumed.

One has, however, to bear in mind the very nature of empirical research. If we agree that causal effects cannot be defined outside theory (Heckman 2005), then we should not expect irrefutable results in an absolute sense from empirical work. To put it differently, in the spirit of Karl Popper: there is no verification of theory, only falsification. It is thus basically up to the researcher to decide whether the
empirical evidence on labor market institutions falsifies the “deregulatory view” or alternative theories.

Criticism with respect to a “lack of robustness” is often uttered. While the request for robust specifications is certainly legitimate, one has to be aware of its meaning in macro-econometrics. Here it is rather common that minor changes to “nice” empirical models can produce quite tremendous changes of the parameter estimates. Besides, the notion of robustness, at least in a very broad sense, is not well defined. A significant part of the critique is raising very general points, even touching the philosophy of science. It is hard to see how any econometric model can either be irrefutably verified or falsified. Thus, there is always the question of what actually constitutes evidence and what does not. Here again, it is finally up to the researcher to assess the existing information. There is, however, no absolute criterion for the acceptance or rejection of specific results.

Some issues for future research remain. First, the role of interactions between institutions is still not clarified enough in econometric terms. Available studies and theoretical contributions point at a potential value added from deeper analysis of institutional interactions – in particular when it comes to diverging patterns of labor market adaptability. Empirical research in this direction is not yet conclusive. More specifically, the potential expected from interaction models has not materialized in a robust and theoretically convincing way so far. However, available evidence seems to suggest that different models of superior employment performance are possible and that it is not the presence of protective mechanisms as such that causes persistent economic problems, but rather an inappropriate institutional setting that allows only for an insufficient amount of adaptation on the labor market. In particular there seems to be a dualism between liberal, market-oriented arrangements and corporatist ones. Yet the debate between “single peak” and “twin peak” advocates is still open. By the same token, one might argue that a simple linear model of causal relations between single institutions and labor market outcomes is not suitable, given the complex relationship between institutions and the labor market.

Second, despite the fact that considerable resources have been devoted to the development of quantitative institutional indicators over the last two decades, the set of available indicators is still far from being completely reliable and satisfying as they basically represent formal regulations or model calculations. The improvements on the indicator side have not necessarily contributed to more robust empirical findings yet. This may have to do with the fact that we do not know enough about the actual meaning of institutions in practice and the way they influence actors’ behavior. Hence, there is some room for better indicators with a higher “information content” regarding the scope and actual application of formal provisions and with respect to potential functional equivalents. This in particular could help formulate policy advice as indicators available so far are often rather broad and “stylized” so that specific need for institutional reform cannot be derived.
Still, explaining cross-country differences in labor market outcomes is a major objective of theoretical and empirical work in economics. Currently policy making will be informed by more or less reliable statements on reasons why there are differences in labor market functioning across countries. Hence, future work should improve the empirical knowledge on explanations for diverging employment profiles in national labor markets not only for academic, but also for practical reasons. Given the fact that it is never possible to confirm or reject specific hypotheses definitively, it would not be realistic to expect totally unambiguous results from empirical work. Yet, we could try to make some steps forward. Against this background, three major points emerge:

1. Further work should be devoted to the theoretical refinement of interactions between the different institutions that influence the labor market, and between institutions and the economic environment in order to inform empirical work with substantial hypotheses. Up to now, most work on interactions was basically inductive but not based on strong theoretical arguments. In that sense, we need a systematic theory of channels of adaptation and the relevant institutional environment.

2. Additional work seems necessary regarding the substance of quantitative indicators on labor market institutions in order to improve our understanding of the actual role or the “real meaning” and relevance of institutions. In particular, this calls for supplementing existing indicators with information on the implementation or enforcement of formal provisions (e.g. availability criteria, dismissal protection), the scope of application, i.e. coverage, and potential functional equivalents.

3. We could benefit from having a comprehensive set of quantitative indicators of institutional provisions that influence different dimensions of labor market adaptability or flexibility. This could help map national patterns of labor market flexibility. In practical terms, this means selecting individual elements and combining them in a theoretically and empirically sound way. This is possible by building upon existing indicators and databases of reforms, although some empty space will have to be filled. Time series information would allow for the tracking of changes over time that stem from institutional reforms. It might be possible to achieve, with reasonable simplification, a more comprehensive set of indicators of labor market adaptability combining different dimensions of flexibility.
7 References

OECD, annual editions: Taxing Wages, Paris.

OECD, annual editions: Benefits and Wages, Paris.

Table 1: Survey of studies

Dependent variable: standardized unemployment rate

Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States, unless otherwise indicated.

Independent variables include:

Institutional variables: UB = Unemployment Benefits, BRR = benefit replacement rate, BD = benefit duration, CENTR = centralization of collective bargaining, COOR = co-ordination of wage bargaining, COVER = union coverage, UD = union density, EPL = employment protection, ALMP = public spending on active labor market policies, TAX = taxes on labor, TW = tax wedge, EMPCOOR = employer co-ordination, PMR = product market regulation, CBI = central bank independence.

Macroeconomic variables: LD = labor demand shock, TFP = total factor productivity shock, RIP = real import price shock, MS = money supply shock, RER = real exchange rate, RIR = real interest rate, FA = financial assets, Credit = rate of domestic credit to GDP, TTB = trend of trade balance.

<table>
<thead>
<tr>
<th>Study</th>
<th>Independent Variables</th>
<th>Indicators</th>
<th>Countries (N)</th>
<th>Time Span (T)</th>
<th>Econometric Model(s)</th>
<th>Results</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmeskov, Martin, Scarpetta, 1998 (Table 2)</td>
<td>UB (combination of BRR and BD) EPL UD COOR, CENTR CORP (combination of COOR and CENTR) TW, ALMP GAP (output gap) MINWAGE</td>
<td>OECD</td>
<td>N = 19 without Switzerland T = 13 Yearly data, 1983–1995</td>
<td>Random effects Feasible GLS (FGLS),</td>
<td>Significant: UB, EPL, TW ALMP, COOR, CORP, GAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickell, Nunziata, Ochel, 2005 (Table 5)**</td>
<td>lagged unemployment rate EPL EPL x unemployment rate BRR BD (benefit duration) BD x BRR</td>
<td>BRR, BD: OECD EPL UD: Ebbinghaus and Visser (2000), COOR: OECD,</td>
<td>N = 20 T = 36 Yearly data, 1960–1995 NT = 600, due to</td>
<td>FGLS, heteroscedastic errors and country specific first order serial correlation</td>
<td>All significant, except MS and RIR shocks</td>
<td>Additional model to test for interaction terms for shocks and</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Independent Variables</td>
<td>Indicators</td>
<td>Countries (N)</td>
<td>Time Span (T)</td>
<td>Econometric Model(s)</td>
<td>Results</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Δ UD</td>
<td>COOR, COOR x UD</td>
<td>EPL: Blanchard and Wolters (2000), TT: CEP and OECD</td>
<td>missing data</td>
<td>Time and country dummies Country-specific time trends</td>
<td>institutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax</td>
<td>COOR x Tax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home ownership rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shocks: LD, TFP, RIP, MS, RIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belot, van Ours 2001 (Table III)</td>
<td>Tax</td>
<td>BRR: OECD EPL: own calculations CENTR: OECD and Bratt (1996) Tax: CEP and OECD UD: CEP</td>
<td>N = 18 without Portugal and Spain</td>
<td>T = 7 Five-year time spans 1960–1994 NT = 108</td>
<td>OLS (mostly) fixed effects</td>
<td>TAX x BRR significant EPL x CENTR and UD x CENTR only significant for lowest level of centralisation</td>
<td></td>
</tr>
<tr>
<td>Change in inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fixed Effects result in insignificant estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Independent Variables</td>
<td>Indicators</td>
<td>Countries (N)</td>
<td>Time Span (T)</td>
<td>Econometric Model(s)</td>
<td>Results’</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Fitoussi,-Jestaz,-Phelps,-Zoega, 2000 (Tables 4, 6 and 8)</td>
<td>Table 4 and 6: BRR, BD, UD, COOR, COVER EMPCOOR (only Table 6), ALMP</td>
<td>Nickell and Layard (1999)</td>
<td>N = 19 without Switzerland</td>
<td>Table 4: T = 29 1960–1998 Table 6 and 8: averages for 1983–1988</td>
<td>OLS</td>
<td>Table 4: all significant “sensitivity to shocks” first estimated on macro-economic variables.</td>
<td></td>
</tr>
<tr>
<td>Bassanini, Duval, 2006</td>
<td>Table 1.2, column 1: BRR, TW, UD, EPL, PMR, High Corporatism, Output gap</td>
<td>OECD data:</td>
<td>N = 20 T = 24 1982–2003 NT = 434</td>
<td>Table 1.2: FGLS, fixed effects, time dummies</td>
<td>Table 1.2: all significant except for UD and EPL</td>
<td>Table 1.5: all significant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 1.5, column 2 (systemic interactions): BRR, TW, EPL, UD, PMR, High Corporatism Interactions between single institutions and the overall institutional framework: BRR, TW, UD, PMR, Output gap</td>
<td>OECD except for COOR</td>
<td>N = 18, without</td>
<td>Table 1.5: NLS, country and time dummies</td>
<td>all significant except for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amable, Dem-</td>
<td>PMR, EPL x BRR, BRR, COOR, UD, TW,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Independent Variables</td>
<td>Indicators</td>
<td>Countries (N)</td>
<td>Time Span (T)</td>
<td>Econometric Model(s)</td>
<td>Results†</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>mou, Gatti, 2006 (Table 4, col. 3)</td>
<td>CBI, FA, RER, Productivity (-1), Credit, TTB</td>
<td>(Nickell et al. 2005) and BRR (Scruggs, 2004)</td>
<td>New Zealand and Switzerland</td>
<td>NT = 212</td>
<td>mics, AR(1)</td>
<td>TTB</td>
<td></td>
</tr>
</tbody>
</table>

† All signs as expected by standard economic theory unless explicitly mentioned.
* Table 5 in Nickell et al. (2005) is identical to Table 13 in Nickell et al. (2003).