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conditioning on common observed effects the cross section units might remain dependently 
distributed. This could arise when the cross section units are subject to unobserved common 
effects and/or if there are spill over effects due to spatial or other forms of local 
dependencies. The paper provides an overview of the literature on cross section 
dependence, introduces the concepts of time-specific weak and strong cross section 
dependence and shows that the commonly used spatial models are examples of weak cross 
section dependence. It is then established that the Common Correlated Effects (CCE) 
estimator of panel data model with a multifactor error structure, recently advanced by 
Pesaran (2006), continues to provide consistent estimates of the slope coefficient, even in 
the presence of spatial error processes. Small sample properties of the CCE estimator under 
various patterns of cross section dependence, including spatial forms, are investigated by 
Monte Carlo experiments. Results show that the CCE approach works well in the presence of 
weak and/or strong cross sectionally correlated errors. We also explore the role of certain 
characteristics of spatial processes in determining the performance of CCE estimators, such 
as the form and intensity of spatial dependence, and the sparseness of the spatial weight 
matrix. 
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1 Introduction

Over the past few years there has been a growing literature, both empirical and theoretical, on

econometric analysis of panel data models with cross sectionally dependent error processes. Cross

correlations can be due to omitted common e¤ects, spatial e¤ects, or could arise as a result of

interactions within socio-economic networks. Conditioning on variables speci�c to the cross sec-

tion units alone does not deliver cross section error independence; an assumption required by the

standard literature on panel data models. In the presence of such dependence, conventional panel

estimators such as �xed or random e¤ects can result in misleading inference and even inconsistent

estimators. (Phillips and Sul, 2003). Further, conventional panel estimators will be inconsistent

if regressors are correlated with the factors behind the error cross section dependence. (Pesaran,

2006). Correlation across units in panels has also serious drawbacks on commonly used panel unit

root tests, since several of the existing tests assume independence (Levin, Lin and Chu, 2002; Im,

Pesaran and Shin, 2003). As a result, when applied to cross sectional dependent panels, such unit

root tests tend to have substantial size distortions (O�Connell, 1998). This potential problem has

recently given major impetus to the research on panel unit root tests that allow for cross correla-

tions (see, for example, Bai and Ng, 2004, Moon and Perron, 2004, and Pesaran, 2007). These and

other related developments are reviewed in Breitung and Pesaran (2007).

In the case of panel data models where the cross section dimension, N , is small and the time

series dimension, T , is large, the standard approach to cross section dependence is to consider the

equations from di¤erent cross section units as a system of seemingly unrelated regression equations

(SURE), and then estimate it by Generalized Least Squares techniques (Zellner, 1962). If the time

series dimension is not su¢ ciently large, and in particular if N > T , the SURE approach is not

feasible. The approach also fails to yield consistent estimators if the cross dependence is due to an

observed common factor which is correlated with the included observed regressors.

Currently, there are two main strands in the literature for dealing with error cross section

dependence in panels where N is large relative to T , namely the residual multifactor and the

spatial econometric approaches. The multifactor approach assumes that the cross dependence can

be characterized by a �nite number of unobserved common factors, possibly due to economy-wide

shocks that a¤ect all units albeit with di¤erent intensities. Under this framework, the error term is

a linear combination of few common time-speci�c e¤ects with heterogeneous factor loadings plus an

idiosyncratic (individual-speci�c) error term. Estimation of a panel with such multifactor residual

structure can be addressed by full maximum likelihood procedure (Robertson and Symons, 2000),

or by principal component analysis (Coakley, Fuertes and Smith, 2002). A major shortcoming

of these techniques is that they are not applicable when the regressors are correlated with the

common shocks, as in this case they lead to inconsistent estimators. Recently, Pesaran (2006) has

suggested an estimation method, known as Common Correlated E¤ects (CCE), that consists of

approximating the linear combinations of the unobserved factors by cross section averages of the

dependent and explanatory variables and then running standard panel regressions augmented with

the cross section averages. An advantage of this approach is that it yields consistent estimates also

when the regressors are correlated with the factors. Monte Carlo studies have also shown that,
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compared to other existing methods, CCE estimation is the most e¢ cient and robust to alternative

assumptions various hypothesis of non-stationarity of variables and factors (Coakley, Fuertes and

Smith, 2006; Kapetanios and Pesaran, 2007).

The spatial approach assumes that the structure of cross section correlation is related to location

and distance among units, de�ned according to a pre-speci�ed metric. Proximity needs not be

measured in terms of physical space, but can be de�ned using other types of metrics, such as

economic (Conley, 1999, Pesaran, Schuermann and Weiner, 2004), policy, or social distance (Conley

and Topa, 2002). Hence, cross section correlation is represented by means of a spatial process,

which explicitly relates each unit to its neighbours (Whittle, 1954). Spatial econometric literature

has suggested a number of processes for modeling spatial dependence. The most widely applied

are the Spatial Moving Average (SMA) and the Spatial Error Component (SEC) speci�cations,

and the Spatial Autoregressive (SAR) model. They di¤er in the range of dependence implied by

their covariance matrices. Estimation of panels with spatially correlated errors is generally based on

maximum likelihood techniques (Anselin, 1988), or on the generalized method of moments (Kelejian

and Prucha, 1999; Conley, 1999). However, most of the work on spatial econometrics has so far

been carried out in the context of a single cross section, or under strong cross section homogeneity

and time invariance assumptions. While few authors consider heterogeneity and time dependency

in spatial panels (Anselin, 1988; Kelejian et al., 2006), the study of local forms of correlation across

units in more general framework of heterogeneous panel regressions still remains a challenging topic.

This paper considers estimation of a panel data model with common factors where the idiosyn-

cratic errors could display spatial dependence. Speci�cally, we consider a panel data model where

the error term is the sum of a multifactor structure and a spatial process. In this setting, we show

that Pesaran�s CCE approach continues to be valid, and under certain standard assumptions on the

spatial error process provides consistent estimates of the slope coe¢ cients. To this end, we intro-

duce the concepts of time-speci�c weak and strong cross section dependence. We de�ne a process to

be cross sectionally weakly dependent at a given point in time if its weighted average at that time

converges to it expectation in quadratic mean, as the cross section dimension is increased without

bounds for all predetermined weights that satisfy certain �granularity�conditions. If this condition

does not hold, then the process is said to be cross sectionally strongly dependent. The distinctive

feature of strong correlation is that it is pervasive, in the sense that it remains common to all units

in a progressively larger cross sectional sample. Convergence properties of weighted averages is

of great importance for the asymptotic theory of various estimators and tests commonly used in

econometrics. From a more general perspective, the time-speci�c notions of weak and strong cross

section dependence is also related to a consistent body of research in �nance, the theory of asset

pricing and portfolio choice (Chamberlain, 1983; Forni and Lippi, 2001).

We also investigate the nature of dependency conveyed by most widely applied processes for

modeling contemporaneous correlation. We prove that common factor models provide a class of

panel data models with both strong and weak dependence, while commonly used spatial processes

are characterizations of weak cross section dependence.

We conclude the paper with a Monte Carlo study investigating the small sample performance of
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the CCE estimator under alternative cross section error correlations. We examine the performance

of the CCE estimator both when the errors display spatial dependence and when they are subject

to unobserved common factors. The mixture case where both sources of cross section dependence

exist is also considered. In particular, we show how certain characteristics of spatial processes, such

as the spatial intensity and the sparseness of the spatial matrix, a¤ect the performance of the CCE

estimator.

The plan of the remainder of the paper is as follows. Section 2 sets out the panel regression

model with common factors and spatial dependence and discusses the idea underlying the CCE

approach. Section 3 introduces the concepts of strong and weak cross section dependence. Section

4 explore the relationship between the dependence structure of processes and the existence of

dominant cross section units. Section 5 presents common factor models as examples of models

with strong dependence. Section 6 investigates the nature of cross section dependence implied by

most commonly used spatial processes. Section 7 introduces the CCE estimator in the context of

panels with common factors and spatial dependence. Section 8 describes the Monte Carlo design

and discusses the results. Finally, Section 9 provides some concluding remarks.

2 Panels with common factors and spatial dependence

Let yit be the observation on the ith cross section unit at time t for i = 1; 2; :::; N ; t = 1; 2; :::; T ,

and suppose that it is generated as

yit = �
0
idt + �

0
ixit + 

0
ift + eit; (1)

where dt is a n� 1 vector of observed common e¤ects, xit is a k � 1 vector of observed individual
speci�c regressors on the ith cross section unit at time t; ft = (f1t; f2t; :::; fmt)0 is an m-dimensional

vector of unobservable variables (known as common shocks/factors), i = (1i; 2i; :::; mi)
0 is the

associated m � 1 vector of factor loadings, and eit is the unit-speci�c (idiosyncratic) error term.
The common factors, ft, are viewed as shocks that simultaneously a¤ect all cross section units,

albeit with di¤erent degrees.

To model the correlation between the individual speci�c regressors, xit, and the common factors

we suppose that

xit = A
0
idt + �

0
ift + vit; (2)

where Ai and �i are n � k and m � k factor loading matrices with �xed components, and vit is
the individual component of xit; assumed to be distributed independently of the common factors

gt = (d
0
t; f

0
t)
0.

Equations (1) and (2) can be written more compactly as

zit =

 
yit

xit

!
= B0idt +C

0
ift +D

0
iuit; (3)
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where

uit =

 
eit

vit

!
, Di =

 
1 0

�i Ik

!
;

Bi = ( �i Ai )Di, Ci = ( i �i )Di:

The idea underlying the CCE approach is that the unobserved factors can be well approximated by

the cross section averages of zit. Hence, estimation can be carried out by least squares applied to

auxiliary regressions where the observed regressors are augmented with these cross section averages

plus the observed common factors, dt.

As a way of illustrating this result, consider a set of �xed weights fwig that add up to unity
and satisfy the condition

PN
i=1w

2
i = O

�
N�1�. Let

�it = D
0
iuit =

 
eit + �

0
ivit

vit

!
: (4)

Then the cross section average of (3), using the weights wi yields

�zwt = �B0wdt + �C0wft + ��wt; (5)

�zwt =
NX
i=1

wizit, ��wt =
NX
i=1

wi�it;

�Bw =

NX
i=1

wiBi; and �Cw =

NX
i=1

wiCi:

If we assume

Rank(�Cw) = m � k + 1, for all N; (6)

it follows that

ft = (�Cw
�C0w)

�1 �Cw

�
�zwt � �B0wdt � ��wt

�
:

Therefore, ft can be approximated by linear combinations of (�zwt;dt), if

��wt
q:m:! 0: (7)

In such a case we obtain

ft � (CC0)�1C
�
�zwt � �B0wdt

� q:m:! 0; as N !1; (8)

where

�Cw
p! C = ~�

 
1 0

� Ik

!
, as N !1; (9)
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~� = (E(i); E(�i)), and � = E(�i).
1 One of the main contributions of this paper is to investigate

general conditions under which ��wt
q:m:! 0; in particular in cases where the individual speci�c errors,

eit, display spatial dependence.

To this end we now introduce some de�nitions and notations to be used throughout the paper:

�1(A) � ::: � �n(A) are the eigenvalues of a matrix A 2 Mn, where Mn is the space of real n� n
matrices. A� denotes a generalized inverse of A. R is the set of real numbers, N the set of natural
numbers, and Z is the set of integers. The following de�nitions establish some useful terminologies
(see, for example, Horn and Johnson (1985, p.35, pp.290-291).

De�nition 1 Let A 2Mn. The spectral radius �(A) of A is

�(A) � max
1�i�n

fj�i (A)jg :

De�nition 2 Let A 2Mn. The column norm of A is

kAkc = max
1�j�n

nX
i=1

jaij j :

The row norm of A is

kAkr = max
1�i�n

nX
j=1

jaij j :

The Euclidean norm of A is

kAk2 =
�
Tr(AA0)

�1=2
:

De�nition 3 Let fang be a non-stochastic sequence (Lee, 2002).

(i) fang is bounded (denoted by O(1)) if there exist a �nite constant K that does not depend on

n such that janj � K for all n.

(ii) fang is at most of order bn (denoted by O(bn)) if there exists a constant K independent of n

such that janj � Kbn for all n.

(iii) fang is bounded away from zero at a rate bn if there exist a positive sequence fbng and a
constant K > 0 independent of n such that K � janj

bn
for n su¢ ciently large.

We make the following assumptions on the common factors, their loadings, and the individual

or unit speci�c errors:

Assumption 1: The (n +m) � 1 vector gt = (d0t; f 0t)0 is a covariance stationary process, with
absolute summable autocovariances, distributed independently of eit0 and vit0 for all i; t; t0.2

1Pesaran also shows that the CCE continues to be applicable even if the rank condition, (6), is not satis�ed. In
this case the mathematical details are much more complicated.

2This assumption can be relaxed to allow for unit roots in the common factors, along the lines shown in Kapetanios,
Pesaran and Yagamata (2006).
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Assumption 2: The individual-speci�c errors eit and vjt0 are distributed independently for
all i; j; t and t0, and for each i; vit follows a linear stationary process with absolute summable
autocovariances given by

vit =
1X
`=0

�i`�i;t�`;

where for each i, �it is a k � 1 vector of serially uncorrelated random variables with mean zero,

the variance matrix Ik; and �nite fourth-order cumulants. The coe¢ cient matrices �i` satisfy the

condition

V ar(vit) =
1X
`=0

�i`�
0
i` = �vi � ��v <1;

for all i and some constant matrix ��v, where �vi is a positive de�nite matrix.

Assumption 3: The unobserved factor loadings, i and �i are bounded, i.e. kik2 < K and

k�ik2 < K, for all i.
Assumption 4: The slope coe¢ cients �i follow the random coe¢ cient model

�i = � + �i; �i � IID(0;
�) for i = 1; :::; N;

where k�k < K , k
�k2 < K, 
� is a symmetric non negative de�nite matrix, and the random

deviations, �i, are distributed independently of j , �j , ejt;vjt; and gt for all i; j and t:
Finally, we assume that the individual speci�c errors eit follow a Spatial Autoregressive (SAR)

processes (Cli¤ and Ord, 1973, 1981):

eit = ��eit + "it; (10)

where � is a scalar parameter, and �eit is the spatial lag of eit, de�ned by

�eit =
NX
j=1

sij;tejt; (11)

and "it are cross sectionally independently distributed random variables with mean zero and �nite

variances, �2i . But for each i the errors "it can be serially correlated.

Similar spatial models can also be speci�ed for the individual-speci�c errors of the xit equation.

But to keep the exposition simple we shall not be concerned with this problem explicitly, and

assume that vit is cross sectionally weakly dependent (see below). As we shall see this assumption
does allow for the possibility of spatial dependence across the individual speci�c errors of the xit
equation.

In (11), sij;t is the generic element of a N � N matrix St, known as spatial weight matrix,

which provides information on the ordering of cross sectional units and the various network or

neighborhood linkages at time t (Anselin, 1988, 2002). In matrix form, the spatial model (10) can

be written as

et = �Stet + "t; (12)
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where et = (e1t; :::; eNt)0 and "t = ("1t; :::; "Nt)0. Hence, the error term associated to a cross section

unit is modelled as a weighted average of errors corresponding to its neighbouring cross section

units, plus a white noise.

In the following, we introduce the notions of time-speci�c weak and strong cross section de-

pendence for a stochastic process, on the basis of the convergence properties of its cross section

average, as the number of units in the average is allowed to increase without bound. We investigate

the conditions under which the CCE estimator continues to be valid in the presence of spatial

dependence such as the SAR process de�ned by (12).

3 Weak and strong cross section dependence

In this section, we study the structure of correlation of a double index process fzit; i 2 S; t 2 T g
where S � N, T � Z, and zit are random variables de�ned on a probability space (
;F ; P ). In
this paper the index t refers to an ordered set, the time, while the index i indicates the units of

an unordered population. Our primary focus is on characterizing the correlation pattern of the

double index process fzitg over the cross sectional dimension. To this end, we make the following
assumptions:

Assumption 5: Let wt = (w1t; :::; wNt)
0 be a vector of pre-determined weights and assume

that the following �granularity�conditions hold for all t 2 T :

kwtk2 = O
�
N� 1

2

�
(13)

wjt
kwtk2

= O
�
N� 1

2

�
for any j � N (14)

Also, although not necessary for our analysis, it is convenient to assume that the following normal-

ization condition holds
NX
j=1

wjt = 1: (15)

Assumption 6: Let It be the information set at time t containing at least zt; zt�1; ::: andwt;wt�1; :::,

where zt = (z1t; :::; zNt)
0 and wt = (w1t; :::; wNt)

0. For each t 2 T , zt has conditional mean and
variance

E (zt jIt�1 ) = 0; (16)

V ar (zt jIt�1 ) = �t; (17)

where �t is a N � N symmetric, nonnegative de�nite matrix, with generic (i; j)th element �ij;t,

and such that 0 < �ii;t � K, for i = 1; :::; N , where K is a �nite constant independent of N .

Assumption 5, known in �nance as the granularity condition, ensures that the weights fwitg
is not dominated by a few of the cross section units. In Assumption 6 we impose some regularity

conditions on the time series properties of fzitg. Assumption 6 is also standard in �nance and
speci�es that zt has conditional means and variances. The �rst part, (16), can be relaxed to
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E (zt jIt�1 ) = �t�1, with �t�1 being a pre-determined function of the elements of It�1. But to
keep the exposition simple and without loss of generality we have set �t�1 = 0 .

Consider now the weighted averages, �zwt =
PN

i=1wi;t�1zit = w0t�1zt, for t 2 T , where zt and
wt�1 satisfy Assumptions 5 and 6. We are interested in the limiting behaviour of w0t�1zt for each

t 2 T as N !1.

De�nition 4 (weak dependence) The process fzitg is said to be cross sectionally weakly dependent
(CWD) at a given point in time t 2 T , if for all weight vectors, wt�1, satisfying the granularity

conditions (13)-(14) we have

lim
N!1

V ar(w0t�1zt jIt�1 ) = 0: (18)

If (18) holds for all t 2 T , then we say that the process is cross sectionally weakly dependent.

Proposition 5 The process fzitg is CWD at a point in time t 2 T if �1 (�t) is bounded.

Proof. We note that by the Rayleigh-Ritz theorem3

V ar(w0t�1zt jIt�1 ) = w0t�1�twt�1 �
�
w0t�1wt�1

�
�1 (�t) : (19)

Since �1 (�t) is bounded for all N , then under the granularity conditions (13)-(14) we have

lim
N!1

V ar(w0t�1zt jIt�1 ) = 0:

A particular form of a CWD process arises when pairwise correlations take non-zero values

only across �nite subsets of units that do not spread widely as sample size increases. A similar

case occurs in spatial processes, where for example local dependency exists only among adjacent

observations. In Section 6 we will characterize the cross correlations implied by most commonly

used spatial processes.

A number of remarks concerning the above concept of CWD is in order.

Remark 6 The notion of weak dependence does not necessarily involve an ordering of the obser-
vations or the speci�cation of a distance metric.

Remark 7 It is clear from (19) that if �1 (�t) = O(N
1��) for any � 2 ( 0; 1), then

lim
N!1

�
w0t�1wt�1

�
�1 (�t) = 0;

and the underlying process will be CWD. Hence, the bounded eigenvalue condition discussed in the

literature is su¢ cient but not necessary for CWD. According to our de�nition a process could be

CWD even if its maximum eigenvalue is rising with N , so long as its rate of increase is bounded

appropriately.

3See Horn and Johnson (1985, p.176).
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Remark 8 The concept of �idiosyncratic� developed in Forni and Lippi (2001) can be derived
from our notion of CWD as a special case. Forni and Lippi (2001) de�ne as �idiosyncratic� any

double sequence, fzitg ; if its weighted average computed both over cross section units and across
time converges to zero in quadratic mean, for all sets of weights satisfying the granularity condition

(13). They show that the boundedness of the largest eigenvalue of the spectral density matrix of fzitg
(at all frequencies) is necessary and su¢ cient for the process to be idiosyncratic. To ensure the

existence of the spectral density, Forni and Lippi assume that the underlying time series processes

are stationary with absolutely summable autocovariances. In contrast, in our development of the

CWD, we consider the asymptotic behaviour of the weighted averages at each point in time, which

does not require any regularity assumptions on the time series properties of the underlying processes

beyond those set out in Assumption 6.

Remark 9 Also in establishing the equivalence of the bounded eigenvalue conditions and the idio-
syncratic property, Forni and Lippi consider weights that are not pre-determined, and in principle

could depend on the elements of � (taken by Forni and Lippi to be time invariant). By focusing

on pre-determined weights, as we shall see below, we are able to provide a more natural link to the

literatures on panel estimation and inference and the portfolio decision theory.

If condition (18) is not satis�ed, then the incidence of non-zero pair-wise correlations across the

elements of �t would be pervasive. More speci�cally, we say the process fzitg is cross sectionally
strongly dependent (CSD) at a point in time t 2 T; if there exists a vector of weights, wt�1; that

satisfy (13)-(14), and a constant K independent of N such that for N su¢ ciently large

V ar(w0t�1zt jIt�1 ) � K > 0: (20)

Proposition 10 Let fzitg be cross sectionally strongly dependent at a point in time t 2 T . Then
�1 (�t) and k�tkc are bounded away from zero at rate

�
w0t�1wt�1

��1.
Proof. For a strongly dependent process, under the granularity conditions (13)-(14) we can �nd a
set of weights wt�1 such that

0 < K � V ar(w0t�1zt jIt�1 ) �
�
w0t�1wt�1

�
�1 (�t) ; (21)

which proves that �1 (�t) diverges to in�nity at least at rate
�
w0t�1wt�1

��1. Further, we know
that4

�1 (�t) � k�tkc :

It follows from (21) that

0 < K �
�
w0t�1wt�1

�
�1 (�t) �

�
w0t�1wt�1

�
k�tkc ;

which proves that k�tkc must tend to in�nity at least at rate
�
w0t�1wt�1

��1.
4See Horn and Johnstone (1985, pp. 297-298).
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From the above proposition, both the spectral radius and the column norm of the covariance

matrix of a CSD process are unbounded in N . This result for a CSD process is similar to the

condition of not absolutely summable autocorrelations that characterizes time series processes with

strong autocorrelation (Robinson, 2003). We observe that for any process fzitg either weak or
strongly correlated, �1 (�t) and k�tkc cannot diverge to in�nity at a rate larger than N . Indeed,
since

�1 (�t) �
NX
i=1

�ii;t, and k�tkc �
�
max
1�j�N

�
1=2
jj;t

� NX
i=1

�
1=2
ii;t ;

and given that by Assumption 6 �ii;t, the diagonal elements of �t, are �nite, it follows that �1 (�t)

and k�tkc approach in�nity at most at rate N .

Remark 11 The above concepts of weak and strong cross section dependence are also related to the
notion of diversi�ability provided by the asset pricing theory (Chamberlain, 1983). In this context,

�t represents the covariance matrix of a vector of random returns on N di¤erent assets, and

wi;t�1; for i = 1; 2; :::; N , denote the proportion of investor�s wealth allocated to the ith asset. From

De�nition 4 it follows that the part of asset returns that is weakly dependent will be fully diversi�ed

by portfolios constructed using wt�1 as the portfolio weights, and as N ! 1. The part of asset
returns that is strongly dependent can only be diversi�ed with portfolio weights that are dependent

on the factor loadings. Indeed, assume for simplicity that returns fritg have the one-factor structure

rit = ift + eit;

where ft v IID(0; 1), and feitg is a CWD process distributed independently of ft and i. Consider
the portfolio weights

w�i =
1

N

�
1�

�
s2
(i � �)

�
;

where

� =
1

N

NX
i=1

i, s
2
 = N

�1
NX
i=1

�
i � �

�2
> 0:

It is then easily veri�ed that these weights satisfy the granularity conditions, (13)-(14), and since

feitg is CWD then
lim
N!1

V ar
�
�Ni=1w

�
i rit jft

�
= f2t lim

N!1

�
�Ni=1w

�
i i
�2
:

However

�Ni=1w
�
i i = 0, for all N;

and the variance of the portfolio return, �w�t = �
N
i=1w

�
i rit; tends to zero as N !1. Note that for

all � 6= 0, the underlying return fritg is a CSD process.

We conclude this section with two results concerning the relationship between strongly corre-

lated and weakly correlated variables. Following De�nition 4, we say that two processes fzit;ag
and fzit;bg are weakly correlated if lim

N!1
E(�zwt;a�zwt;b jIt�1 ) = 0, for all sets of weights at time t

that satisfy the granularity conditions. The next proposition considers correlation of two processes
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with di¤erent cross dependence structures. We then investigate the correlation structure of linear

combinations of strongly correlated and weakly correlated variables.

Proposition 12 Suppose that fzit;ag and fzit;bg are CSD and CWD processes, respectively. Then
for all sets of weights

n
wai;t�1

o
and

n
wbi;t�1

o
satisfying conditions (13)-(14) we have

lim
N!1

E(�zwt;a�zwt;b jIt�1 ) = 0:

Proof. Let
n
wai;t�1

o
and

n
wbi;t�1

o
be two sets of weights satisfying conditions (13)-(14). For t

2 T , we have
[E(�zwt;a�zwt;b jIt�1 )]2 � E(�z2wt;a jIt�1 )E(�z2wt;b jIt�1 ):

Since zit;a is a CSD process then

lim
N!1

E(�z2wt;a jIt�1 ) > K > 0;

where K is a �nite constant. Also from (18), and considering that zit;b is a CWD process we have

lim
N!1

E(�z2wt;b jIt�1 ) = 0:

Therefore, for all sets of weights satisfying (13)-(14), we obtain

lim
N!1

E(�zwt;a�zwt;b jIt�1 ) = 0:

Proposition 13 Consider two independent processes fzit;ag and fzit;bg ; and their linear combina-
tions de�ned by

zit;c = �azit;a + �bzit;b; (22)

where �a and �b are non-zero �xed coe¢ cients. Then the following statements hold:

(i) Suppose fzit;ag and fzit;bg are CSD, then fzit;cg is CSD,

(ii) Suppose fzit;ag and fzit;bg are CWD, then fzit;cg is CWD,

(iii) Suppose fzit;ag is CSD and fzit;bg is CWD, then fzit;cg is CSD.

Proof. Let�t;a and�t;b be the covariance matrices of zt;a = (z1t;a; :::; zNt;a)0 and zt;b = (z1t;b; :::; zNt;b)0,

and �t;c the covariance of their linear combination that is, given the assumption of independence

between zt;a and zt;b
�t;c = �

2
a�t;a + �

2
b�t;b:

The variance of the weighted average w0t�1zt;c satis�es

V ar(w0t�1zt;c jIt�1 ) � �2jV ar(w0t�1zt;j jIt�1 ); j = a; b;
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which implies that, if there exists a weights vector wt�1 satisfying the granularity conditions such

that either V ar(w0t�1zt;a jIt�1 ) or V ar(w0t�1zt;b jIt�1 ) or both are nonzero, then also V ar(w0t�1zt;c jIt�1 )
is bounded away from zero and fzit;cg is cross sectionally strongly dependent (this proves (i) and
(iii)). Also, by Weyl�s theorem5, the largest eigenvalue of �t;c satis�es

�1 (�t;c) � �2a�1 (�t;a) + �
2
b�1 (�t;b) ;

which establishes that if both �1 (�t;a) and �1 (�t;b) are bounded, then also �1 (�t;c) is bounded

in N , and hence fzit;cg is cross sectionally weakly correlated (this proves (ii)).
The above result can be generalized to linear functions of more than two processes. In gen-

eral, linear combinations of independent processes that are strongly (weakly) correlated is strongly

(weakly) dependent, while linear combinations of a �nite number of weakly and strongly correlated

processes is strongly correlated, since on aggregation only terms involving the strong component

will be of any relevance. This result will be employed in Section 5.

4 Strong dependence and dominant e¤ects

In this section we introduce the notion of dominant e¤ects in the covariance matrix of strongly

dependent processes. We then explore the relationship between dominant units and the asymptotic

behaviour of eigenvalues of the underlying covariance matrix. The discussion will introduce us to

multifactor models which will be broadly investigated in Section 5.

De�nition 14 Let A = (aij) 2 Mn with �nite elements, aij. We say that A has m dominant

columns if there exists a m-dimensional subset J (m) of the index set J = f1; 2; :::; ng such that

(i)
PN

i=1 jaij j = O(N), for j 2 J (m)

(ii)
PN

i=1 jaij j = O(1) for j 2 J \ J (m)c.

It also follows that matrix A 2 Mn will have m dominant rows if A0 has m dominant columns

according to the above de�nition.

Clearly, if the conditional variance �t of a process fzitg has m dominant columns, it will also

have m dominant rows. In this case, the units corresponding to the unbounded columns and rows

have a strong relationship with all other units. This situation arises in a number of empirical appli-

cations, in particular when it is possible to identify few dominant individuals (regions), the leaders,

that in�uence many others, the followers. For example, in the context of global macroeconomic

modelling, few large economies, such as US, strongly a¤ect small economies, yet impact of small

countries on the rest of the world as a whole is negligible (Pesaran and Chudik, 2007). In the study

of price competition among �rms, it is possible to consider not only localized forms of rivalry, where

�rms compete only with their close neighbours, but also a global or monopolistic competition, in

which all products compete with one or few products of a particular brand (Pinkse et al., 2002). A

5See Horn and Johnson (1985, p. 181).
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further example can be taken from the housing market in a country such as England, where house

price variations in few major urban centres like London have an impact on the dynamics of prices

in all other smaller and medium-sized cities in the country.

In Proposition 10 we have proved that under CSD the largest eigenvalue of the covariance matrix

diverges to in�nity at the rate of N . Further, we have seen that this implies that �t has (at least)

one dominant cross section unit. Under some general conditions the reverse is also true, that is if

�t has unbounded column norm, then the largest eigenvalue of �t is also unbounded in N . Since

�t is a symmetric positive semi-de�nite matrix it can be decomposed as �t = RtR
0
t, where Rt is

an N � r (r � N) matrix with bounded row norm. The following inequalities hold6

�1(�t) � k�tkc � kRtkc kRtkr ; (23)
kRtkcp
N

� [�1(�t)]
1=2 : (24)

From (24), if kRtkc is bounded away from zero at a rate greater than
p
N , then �1(�t) also diverges

to in�nity. Note that if the largest eigenvalue is bounded, the column norm of Rt (and hence of �t)

can still diverge to in�nity at a rate at most equal to
p
N . As we will see in Section 6 below, this

result has a nice intuitive interpretation when dealing with spatial processes, where the Rt matrix

is a function of the spatial weight matrix.

We now consider the case where a strongly dependent process has more than one characteristic

root that increases with N . As we will see in the following section, this is the case of common

factor models (Chamberlain and Rothschild, 1983, Forni and Lippi, 2001). The following theorem

holds.

Theorem 15 Consider a process fzitg which is cross sectionally strongly dependent at time t 2 T .
Let m be a �xed number. Then the following statements hold:

(i) Suppose �m(�t) = O(N), then the process underlying �t has at least m dominant cross

section units

(ii) Suppose �t has m dominant cross section units, then �j(�t) = O(N), for 1 � j � m, and

�m+1(�t) is bounded.

Proof. Suppose for simplicity that the columns and rows of �t are arranged so that �rst column

vector has the largest absolute sum norm, the second column vector has the second largest absolute

sum norm, and so on. Call �1t the matrix obtained from �t by deleting its �rst row and �rst

column. Let �2t be the the matrix obtained from �1t by deleting its �rst row and �rst column, �
3
t

that obtained dropping the �rst row and column of �2t and so forth, to obtain the set of interlacing

matrices �1t ; :::;�
m
t . From the interlacing eigenvalues theorem (see Horn and Johnson, 1985; p.

186) we know that

�m(�
1
t ) � �m(�t) � �m�1(�1t ) � ::: � �2(�t) � �1(�1t ) � �1(�t)

6For (23) see Bernstein (2005, p.351), and for (24) see Bernstein (2005, p.368, eq. xiv).
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From the above relation, the following inequalities can be established

�m(�t) � �m�1(�1t ) � �m�2(�2t ) � ::: � �2(�m�2
t ) � �1(�m�1

t ) (25)

�m+1(�t) � �m(�1t ) � �m�1(�2t ) � ::: � �2(�m�1
t ) � �1(�m

t ) (26)

�1(�
m�1
t ) � ::: � �1(�2t ) � �1(�1t ) � �1(�t) (27)

Also, recall that

�1(�
j
t ) �

�j
t


c

(28)

Suppose �rst that �m(�t) = O(N). Then from (25) �1(�m�1
t ) is also unbounded, implying (from

(28)) that
�m�1

t


c
= O(N). Hence, �t has at least m dominant units, which proves (i). Vice

versa, suppose that �t has m dominant units. Then we know from (24) that �t has at least one

eigenvalue unbounded in N . Further, note that, by the de�nition of dominant units, k�m
t kc is

bounded, and hence, from (28), �1(�m
t ) is also bounded. From (26) it follows that �m+1(�t) is

bounded, which proves (ii).
Note that in several cases the number of column vectors in �t having unbounded sums largely

exceeds the number of unbounded characteristic roots. In the extreme case, �t could have N

dominant units, with only one eigenvalues exploding to in�nity, as in the following example of

equicorrelation

�t = �
2

0BBBBBBB@

1 � ::: � �

� 1 ::: � �
...
...

...
...
...

� � ::: 1 �

� � ::: � 1

1CCCCCCCA
; (29)

where j�j < 1. In this case all column sums are unbounded. However, the characteristic roots of

the above matrix are

�1(�t) = �2 [1 + (N � 1) �]

�j(�t) = �2 (1� �) for j = 2; :::; N;

namely only the largest eigenvalue is unbounded in N . In the next section we will see that processes

with a covariance matrix like (29) can be well represented by the means of common factor models.

5 Common factor models

Originally proposed in the psychometric literature (Spearman, 1904), factor models are extensively

used in macroeconomics and �nance to represent the evolution of large cross sectional samples

with strong co-movements. Panels with common factors have been applied to characterize the

dynamic of stock and bond returns (Chamberlain and Rothschild 1983; Connor and Korajczyk,

1993; Kapetanios and Pesaran, 2007), and in macroeconomics to summarize the empirical content
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of a large number of variables by a small set of factors (Stone, 1947; Forni and Reichlin, 1998;

Gregory and Head, 1999; Stock and Watson, 2002).

Factor models are typically used in the literature to represent CSD processes. However, ac-

cording to our de�nition there are special cases where the factor representation could yield a CWD

process. To see this, consider the following multifactor process for fzitg

zit = uit + eit; i = 1; :::; N; (30)

uit = i1f1t + i2f2t + :::+ imfmt; (31)

where the number of factors, m, is assumed to be smaller than the number of cross sectional units,

N . The factors, f`t, and their loadings, i`; satisfy Assumptions 1 and 3, respectively. Without

loss of generality we assume that E(f2`t jIt�1 ) = 1 and E(f`tfpt jIt�1 ) = 0; for ` 6= p = 1; 2; :::;m.
We also make the following standard assumption to distinguish the common factors from the

individual-speci�c component, et = (e1t; e2t; :::; eNt)0, with V ar (et jIt�1 ) = �et.

Assumption 7: For a given t 2 T , �1 (�et) is bounded, namely feitg is a CWD process.

Theorem 16 Consider the factor model (30)-(31), and suppose that assumption 1, 3 and 7 hold.
The process fzitg is cross sectionally weakly dependent at a given point in time t 2 T , if and only
if limN!1 �wt�1;` = 0, for ` = 1; :::;m, and for all weights fwi;t�1g satisfying (13)-(14).

Proof. From De�nition 1, zit is CWD for at a given point in time t 2 T , if

lim
N!1

V ar(�zwt jIt�1 ) = lim
N!1

[V ar(�uwt jIt�1 ) + V ar(�ewt jIt�1 )] = 0:

Since eit is CWD it immediately follows that lim
N!1

V ar(�ewt jIt�1 ) = 0. Consider now the �rst

component of zit and note that under our assumptions

lim
N!1

V ar(�uwt jIt�1 ) = lim
N!1

NX
i=1

NX
j=1

wi;t�1wj;t�1
�
i1j1 + :::+ imjm

�
= lim

N!1

�
�2wt�1;1 + :::+ �

2
wt�1;m

�
where �wt�1;` =

PN
i=1wi;t�1i`. This establishes that weak cross section dependence of zit is

equivalent to lim
N!1

�wt�1;` = 0, for ` = 1; 2; :::;m, for all sets of weights satisfying (13)-(14).

As a consequence, if zit is CWD then weighted averages of the factor loadings converge to zero as

N !1. Conversely, for a strongly dependent process, there must exist a set of weights satisfying
(13)-(14) such that

lim
N!1

V ar(�uwt jIt�1 ) = �2wt�1;1 + :::+ �
2
wt�1;m > 0; (32)

which implies that there must at least be one factor f`t such that its loadings satisfy the condition,

lim
N!1

�wt�1;` 6= 0.
In the literature on factor models, it is quite common to impose conditions on the loadings or on

the eigenvalues of the conditional covariance matrix, �ut, of ut = (u1t; :::; uNt)
0 that constrain the

15



form of cross section dependence carried by the factor structure. For example, Bai (2005) assumes

that the factor loadings satisfy
PN

i=1 
2
i` = O(N), for ` = 1; :::;m. But this condition does not

necessarily imply lim
N!1

�wt�1;` 6= 0. It is, therefore, possible for a factor structure to exhibit weak
cross section dependence in the sense of De�nition 1. This, for example, could arise in the case

where the factor loadings are independent draws from random a coe¢ cient model with zero means

and �nite variances.

In the literature on asset pricing models, one common assumption is that �m (�ut) is bounded

away from zero at rate N (Chamberlain, 1983; Forni and Lippi, 2001). Under this assumption, since

rank (�ut) = m, and �i (�ut) > 0, for i = 1; 2; ::;m, and �i (�ut) = 0, for i = m+ 1;m+ 2; :::; N .

Noting that under Assumption 7 �1 (�et) = O(1), we have

�m (�t) � �m (�ut) ;

and

�m+1 (�t) � �m+1 (�ut) + �1 (�et) = �1 (�et) :

Hence, it follows that �1 (�t) ; :::; �m (�t) increase without bound asN !1, while �m+1 (�t) ; :::; �N (�t)

satisfy the bounded eigenvalue condition. Such a model is generally referred to as an approximate

factor model. Most factor structures yield eigenvalues that increase at rate N . But as shown by

Kapetanios and Marcellino (2006), it is possible to devise factor models that generate eigenvalues

that rise at rate Nd, for 0 < d < 1.

6 Weak cross section dependence in spatial models

When a metric of distance is available, spatial techniques can be used to allow for interactions and

cross dependencies in regression model. Important applications of spatial models in economics can

be found in the literature on regional income growth (Rivera-Batiz and Romer, 1991), in the �eld

of microeconomics that analyses the di¤usion processes of certain behaviours across a population

(Brock and Durlauf, 2001), and in a recent strand of public economics that studies the role of

interaction among policy makers (Brueckner, 2003).

In the space-time process fzit; i 2 S; t 2 T g, the index i denotes the ith spatial unit whose
location si is known and varies over a �xed subset of the k-dimensional Euclidean space Rk. The
spatial approach to cross section dependence assumes that the covariance between any two random

variables depends on their relative distance. The ordering or neighbour relation among the variables

(z1t; :::; zNt) is expressed by means of the spatial weights matrix St (Anselin, 1988, 2002). The

speci�cation of St is in general arbitrary, typically based on some measures of distance between

units. A range of suggestions have been o¤ered in the literature, based on geographic distance

(Cli¤ and Ord, 1981; Anselin, 1988), as well as more general metrics, such as the ones based on

economic (Conley, 1999; Pesaran, Schuermann and Weiner, 2004), or social proximity (Conley and

Topa, 2002). When dealing with geographic distance, it is common to de�ne weights using the
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notion of contiguity between units, and assigning a nonzero weight only when units i and j are

contiguous. There exists a number of di¤erent ways to build a matrix that contains contiguity

information for the same spatial layout; the essential point is deciding whether units that only

share a common vertex should be considered neighbours or not. In the example of a regular square

lattice, these alternatives are denoted as the rook formation under which two units are considered as

neighbours if they share common boundaries; the bishop formation, if they share common vertices,

and the queen formation if they share both boundaries and vertices. Alternatively, weights can have

continuous values, in general a declining function of the distance between spatial observations, such

as sij;t = e�'dij;t , or sij;t = 1=d
'
ij;t, where dij;t is the distance between units at time t, and ' is a

parameter that can be set a priori, or estimated jointly (Haining, 2003). Finally, some authors have

suggested to use a block structure for the weighs matrix, by dividing the population into groups,

and considering as neighbours only those units that belong to the same group (Case, 1991).

In this section we show that, under certain regularity conditions, cross section correlations

arising from most widely applied spatial models can be considered as particular examples of CWD

processes. We prove that, given certain conditions on the weights matrix, the largest eigenvalue of

the covariance matrix of our sequence of variables is bounded as the number of cross section units

is increased.

Consider the variables eit for i = 1; :::; N collected in the vector et = (e1t; :::; eNt)
0, for t =

1; 2; :::; T . The process feitg follows a Spatial Moving Average (SMA) process (Haining, 1978) if

et = �St"t + "t; (33)

where � is a scalar parameter and "t = ("1t; :::; "Nt)
0 : In the spatial econometric literature where

the focus is often on a single cross section, it is typically assumed that "it � IID(0; �2). But in

what follows we consider a less restrictive set up and allow the idiosyncratic errors, "it; to be serially

correlated with mean zero and a �nite variance 0 < �2i < K <1: However, we continue to assume
that "it and "jt0 are independently distributed for all t; t0; and for all i 6= j.

For the spatial weight matrix, St, we make the following assumption:

Assumption 8: The main diagonal elements of St are zero,

(a) � 2
�
� 1
�S
; 1�S

�
, where �S = max

1�t�T
f� (St)g ;

(b) kStkr is bounded for all t,

(c) kStkc is bounded for all t:

For the SMA model the covariance matrix of et is

�t = (IN + �St)�"
�
IN + �S

0
t

�
;

where �" is a diagonal matrix with �2i on its diagonal. We note that the SMA speci�cation

induces a short-range correlation across section, since the only o¤-diagonal non-zero elements of
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the covariance matrix are those corresponding to non-zero elements in St. Given the properties of

matrix norms, the largest eigenvalue of �t satis�es the following inequality

�1 (�t) = �1[(IN + �St)�"
�
IN + �S

0
t

�
] � �2max kIN + �Stkc

IN + �S0tc ;
where �2max = max

1�i�N

�
�2i
	
< K. Hence, under Assumptions 8(b) and 8(c), eit is a weakly cross

sectionally correlated process. As we will see later on in this section, bounded row and column

norms of the weights matrix is a very common assumption in the spatial econometric literature.

Note that this assumption rules out the case where, for some t, St has dominant units.

We say that feitg follows a Spatial Error Component (SEC) process (Kelejian and Robinson,
1995) if

et = �St t + "t; (34)

where  t and "t are two uncorrelated vectors of random variables, with zero mean and diagonal

variance matrices � and �", with elements !2i and �
2
i , respectively. In this case et has covariance

matrix

�t = �
2St� S

0
t +�":

The range of spatial correlation induced by the SEC is very similar to that in the SMA, since it

is constrained to close neighbours, for which the o¤-diagonal elements of the weighting matrix are

non-zero. The largest eigenvalue of �t satis�es

�1 (�t) � �2!2max kStkc kStkr + �
2
max:

where !2max = max
1�i�N

�
!2i
	
< K. As for the SMA process, Assumptions 8(b) and 8(c) ensure that

the SEC model is cross sectionally weakly dependent.

Consider now the Spatial Autoregressive (SAR) process introduced at the end of Section 2:

et = �Stet + "t: (35)

Under Assumption 8(a), this is an invertible process and can be expanded according to the geometric

series (Horn and Johnson, 1985, p. 301)

et =

1X
h=0

(�St)
h "t:

The covariance matrix of the SAR process is

�t = (IN � �St)�1�"(IN � �S0t)�1 =
" 1X
h=0

(�St)
h

#
�"

" 1X
h=0

�
�S0t
�h#

:

As �t contains matrix powers and products of St, even if St contains few non-zero values, the

covariance structure induced by the SAR model is not sparse. This argument has been used in

spatial econometrics literature to claim that the SAR process describes a global pattern of spatial
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correlation, since it links all units in the system to each other (Anselin, 2002). As a result, the cross

section correlation carried by a Spatial Autoregressive representation can be much more extensive

than that implied by a SMA or SEC processes. However, we note that the SAR model, under some

regularity conditions, is weakly cross sectionally correlated. Indeed, the largest eigenvalue of �t

satis�es the following inequality

�1 (�t) � �2max

1X
h=0

j�jh
Sht 

c

1X
h=0

j�jh
Sht  r;

� �2max

1X
h=0

j�jh kStkhc
1X
h=0

j�jh kStkhr :

Hence, under Assumptions 8(b) and 8(c), and under the condition

� < 1= kStkc , and � < 1= kStkr ; (36)

we have

�1 (�t) < k�tkc � �
2
max

�
1

1� j�j kStkc

��
1

1� j�j kStkr

�
< K;

namely et is a CWD process. Note that (36) also implies that the spatial autoregressive process is

invertible, hence, under (36), Assumption 8(a) is not needed.

The conditions on bounded row and column norms of St implies that each unit has a �nite num-

ber of neighbours that does not increase with N , namely St has no dominant units (columns/rows).

This way of expanding the spatial weight matrix as the number of cross section units gets larger

corresponds to the notion of increasing-domain asymptotics, which is the asymptotic based on a

growing spatial domain, rather than on increasingly dense observations in a �xed and bounded

region (Cressie, 1993).

We conclude this section noting that the SMA and the SAR processes, under the assumption

of invertibility (i.e. Assumption 8(a) for the SAR process), are particular cases of the following

general process

et = Rt"t; (37)

where Rt is a given N �N matrix. Speci�cally, for a SMA process Rt = (IN + �St), and for a SAR

process Rt = (IN � �St)�1. This matrix plays a crucial role in the analysis of spatial models, and
as we shall see below typically satis�es the following assumption:

Assumption 9: Rt has bounded row and column norms for all t.

The key result for the cross section averages of et is summarized in the following theorem.

Theorem 17 Consider the process (37), where Rt satis�es Assumption 9, and for each t, "it is

distributed independently across i with mean zero, �nite variances 0 < �2i < �
2
max < 1, and �nite

fourth-order moments, E("4it) = �
0
i4 < K <1. Then for all sets of weights satisfying (13)-(14),

E
�
�e2wt jIt�1

�
= O(N�1); and V ar

�
�e2wt jIt�1

�
= O(N�2):

19



Proof. First note that

E
�
�e2wt jIt�1

�
= w0t�1Rt�"R

0
twt�1 � �2max

�
w0t�1wt�1

�
�1
�
RtR

0
t

�
:

But since Rt has bounded row and column norms, �1 (RtR
0
t) is bounded, and for all sets of weights

satisfying (13)-(14) we have

E
�
�e2wt jIt�1

�
= O(N�1):

To prove the second part of the theorem, let

zt = (�
0
t�t)

�1=2�0t�t;

where

�t = �
1=2
" R0twt�1, and �t = �

�1=2
" "t: (38)

Then

�e2wt =
�
w0t�1Rt"t"

0
tR

0
twt�1

�2
= (�0t�t)z

2
t ;

and

V ar
�
�e2wt jIt�1

�
= (�0t�t)

2V ar(z2t ):

But for each t, zt is a scalar random variable with mean zero, a unit variance, and �nite fourth

order moment (since it is a linear function of "t). Note also that since "it are cross sectionally

independently distributed then by standard central limit theorems z2t
av �21 as N ! 1. Hence

V ar(z2t ) is �nite for all N . As a result

V ar
�
�e2wt jIt�1

�
� K(�0t�t)2:

Now substituting for �t from (38) we have

V ar
�
�e2wt jIt�1

�
� �4max

�
w0t�1wt�1

�2 �
�1
�
RtR

0
t

��2
:

As �1 (RtR
0
t) and �

2
max are bounded, then in view of (13)-(14), it follows that

V ar
�
�e2wt jIt�1

�
= O(N�2):

Therefore, for any invertible spatial process feitg ; where the spatial weight matrix St has
bounded row and column norms, �e2wt converges to zero in quadratic mean as N ! 1, for all sets
of predetermined weights satisfying the granularity conditions. It is worth emphasizing that this

result holds even if the idiosyncratic errors, "it, follow heterogeneous processes that are serially

correlated over time. But to identify the spatial model we would need some restrictions on their

cross section correlations. For the purpose of proving the consistency of the CCE estimator it is

su¢ cient that �e2wt
q:m:! 0 as N !1. (see Section 7).

20



The assumptions required for spatial correlation to be weak are often adopted in spatial econo-

metric literature as regularity conditions, since they ensure consistency and asymptotic normality

of maximum likelihood estimators (Lee, 2004; Kelejian and Prucha, 1999; Mardia and Marshall,

1984). Kelejian and Prucha (1999) prove consistency of their GMM estimator in the context of a

single cross section under the assumption that the matrices S and (IN � �S)�1, for j�j < 1, have
bounded row and column norms. The proofs of consistency of GMM estimator (and also of ML) are

based on a central limit theorem for quadratic forms in " (see Kelejian and Prucha, 1999, 2001). Lee

(2004) has studied the properties of ML and quasi-ML estimators of a spatial process where each

unit is in�uenced by few neighboring units. The author shows that ML and quasi-ML estimators

are consistent and asymptotic normal under the assumption that the matrix S has bounded row

and column norms, and that (IN � �S)�1 has bounded row and column norms at the true value of
� (say �0), and is uniformly bounded in either row or column sums for any other value of � in a

compact set around �0.

Mardia and Marshall (1984) have demonstrated that in a regression equation with correlated

errors, bounds on the largest eigenvalues of the error covariance matrix and of its �rst and second

order derivatives (with respect to the unknown parameters) are su¢ cient for weak consistency and

asymptotic normality of the ML estimator of the spatial parameters.

7 Estimating panels with common factors and spatial correlation

Consider the panel data model with common factors set out in equations (1)-(2), where eit is

an invertible spatial process of the type (37). From the discussion on strong and weak cross

section correlation, it follows that Assumption 9 guarantees that (8) holds. Hence, the unobservable

common factors can be well approximated by the cross section averages of the dependent variable

and individual speci�c regressors. We now focus on estimation and inference on the means of the

slope parameters �i. To this end, we assume for ease of exposition that the rank condition (6) is

satis�ed, though this assumption can be relaxed. Let �Mw be de�ned by

�Mw = IT � �Hw(�H
0
w
�Hw)

�1 �H0
w;

�Hw = (D; �Zw); where D and �Zw are, respectively, the matrices of observations on dt and �zwt =

(�ywt; �xwt). We make the following additional assumption:

Assumption 10: Consider the cross section averages of the individual speci�c variables, zit =

(yit;x
0
it)
0 de�ned by �zwt =

PN
i=1wizit, with time-invariant weights fwjg satisfying Assumption 5.

Then the following conditions hold:

(a) The k � k matrices 	̂iT = T�1(X0i
�MwXi) and 	̂ig = T�1(X0iMgXi), where �Mg = IT �

G(G0G)�1G0 and G = (D;F); are non-singular and 	̂�1
iT and 	̂�1

ig have �nite second order

moments, for all i
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(b) The matrix 	̂NT =
NX
i=1

wi
X0
i
�MwXi

T is non-singular.

Pesaran (2006) has suggested two alternative estimators for the means � of the individual slope

coe¢ cients. The Common Correlated E¤ects Mean Group (CCEMG) estimator and the Common

Correlated E¤ects Pooled (CCEP) estimator. The latter is de�ned by

b̂MG = N
�1

NX
i=1

b̂i; (39)

where

b̂i = (X
0
i
�MwXi)

�1X0i �Mwyi; (40)

and Xi = (xi1; :::;xiT )
0, yi = (yi1; :::; yiT )0: The following theorem applies to this estimator.

Theorem 18 Consider the panel data model (1)-(2) with errors eit given by (37). Suppose that
Assumptions 1-5, 9 and 10(a) hold. Then the common correlated e¤ects mean group estimator b̂MG

given by (39) is asymptotically (for �xed T and N ! 1) unbiased for �; and as (N;T ) j! 1 we

have p
N
�
b̂MG � �

�
! N(0;�MG);

where

�MG = 
�:

A proof is provided in the Appendix. The covariance matrix. �MG; can be consistently esti-

mated by

�̂MG =
1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
: (41)

The CCEP estimator, which gains e¢ ciency from pooling observations if �i = �, is de�ned by

b̂P =

 
NX
i=1

X0i �MwXi

!�1 NX
i=1

X0i �Mwyi: (42)

The following theorem applies to this estimator.

Theorem 19 Consider the panel data model (1)-(2) with errors eit given by (37). Suppose that
Assumptions 1-5, 9 and 10(b) hold. Then the common correlated e¤ects pooled estimator b̂P given

by (42) is asymptotically unbiased for � and as (N;T )
j!1 we have

 
NX
i=1

w2i

!�1=2 �
b̂P � �

�
! N(0;�P );

where

�P = 	
��1R�	��1;
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with

	� = lim
N!1

 
NX
i=1

wi�i

!
;

R� = lim
N!1

"
N�1

NX
i=1

~w2i (�i
��i)

#
;

~wi =
wivuutN�1

NX
i=1

w2i

:

See the Appendix for a proof. A consistent estimator for �P is (Pesaran, 2006)

�̂P =

 
NX
i=1

w2i

!
	̂��1R̂�	̂��1; (43)

with

	̂� =

NX
i=1

wi
X0i
�MwXi

T
;

R̂� =
1

N � 1

NX
i=1

~wi
X0i
�MwXi

T

n
(b̂i � b̂MG)(b̂i � b̂MG)

0
o X0i �MwXi

T
:

In the rest of the paper, we study the small sample properties of CCE estimators in a model

with common factors and/or spatial correlations.

8 Monte Carlo experiments

8.1 Monte Carlo design

This section provides Monte Carlo evidence on the small sample properties of CCE estimators,

under di¤erent assumptions on the stochastic process generating the error terms. The study is

comprised of four sets of experiments. In the �rst set to be used as a benchmark, we replicate

the Monte Carlo study in Pesaran (2006), where the dependent variable and the regressors are

assumed to depend on a linear combination of unobserved common factors. In a second set of

experiments, we consider a panel where the error terms are generated by a spatial autoregressive

(SAR) process. In the third set, we combine the two sources of cross section dependence, assuming

that the error term is the orthogonal sum of a factors structure and a spatial process. In the fourth

set of experiments, we allow the source of cross section dependence to vary over time, assuming

that in a certain interval of time the error term follows a factor structure, and in the remaining

time periods is generated by a pure spatial process.
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For all experiments we considered the following data generating process

yit = �id1t + �i1x1it + �i2x2it + i1f1t + i2f2t + eit;

xjit = aij1d1t + aij2d2t + ij1f1t + ij2f3t + vijt; j = 1; 2;

for i = 1; :::; N and t = 1; :::; T; where we assume homogeneous slopes with �i = � = (1; 1)
0. In the

above equation, d1t and d2t are observed common factors, f1t, f2t, and f3t are unobserved common

e¤ects, and eit are idiosyncratic errors. We adopt the following data generating processes:

d1t = 1; d2t = �dd2t�1 + vdt, t = 1; :::; T;

vdt � IIDN(0; 1� �2d); �d = 0:5; d2;0 = 0;

fjt = �fjf1t�1 + vfjt , j = 1; 2; 3; t = 1; ::; T;

vfjt � IIDN(0; 1� �2fj ); �fj = 0:5; fj0 = 0;

and

vijt = ��ijtvijt�1 + �ijt, t = 1; :::; T;

�ijt � IIDN(0; 1� �2�ijt); vij0 = 0;

��ijt � IIDU(0:05; 0:95) for j = 1; 2.

The factor loadings of the observed common e¤ects do not change across replications and are

generated as

�i � IIDN(1; 1); i = 1; :::; N;

(ai11; ai21; ai12; ai22) � IIDN(0:5� 4; 0:5I4);

where � 4 = (1; 1; 1; 1)0 and I4 is a 4� 4 identity matrix.
The various experiments involve di¤erent hypothesis on the loadings of the unobserved common

factors, and on the way the errors eit are generated. In particular, we have carried out the following

sets of experiments:

Experiment A

The parameters of the unobserved common e¤ects in the xit equation are generated as 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;
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the parameters of the unobserved common e¤ects in the yit equation are7

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2):

Finally, in this experiment the errors are independently distributed across i, namely

eit � IIDN(0; �2i ); �2i � IIDU [0:5; 1:5]; for i = 1; :::; N:

Experiment B

The factor loadings of the unobserved common e¤ects are set to zero, i11 = i13 = i21 = i23 =

i1 = i2 = 0. In other words, the regressors and the dependent variable do not depend on

the unobserved factors ft. The individual speci�c errors eit are generated according to a spatial

autoregressive process

eit = �

NX
j=1

sijejt + "it; for i = 1; :::; N , t = 1; :::; T

"it � IIDN(0; �2); �2 = 1;

where � is the spatial autoregressive coe¢ cient, sij , for i; j = 1; :::; N , are elements of a spatial

weight matrix S, assumed to be time-invariant.

In this experiment we consider a spatial weight matrix S with elements sij = 1 if units i and

j are adjacent and sij = 0 otherwise. Further, we assume that cross section units are ordered so

that the pth order neighbours of the ith cross section unit can be de�ned as i � p and i + p cross
section units. The spatial weight matrix is de�ned in a circular world, where the �rst observation

is adjacent to the last observation. Finally the weighting matrix is row-standardized, so that all its

non-zero elements are equal 1=2p. We note that such spatial weight matrix has bounded row and

column sums.

We have experimented with two di¤erent values of the spatial coe¢ cient, � = 0:8, which corre-

sponds to a sizeable level of cross section error correlation, and � = 0:4 which correspond to a more

moderate level of spatial error correlation. Further, we have experimented with a spatial weight

matrix of order p = 2, and a sparser matrix of order p = 1. In total, Experiment B consists of four

di¤erent sub-experiments.

This experiment is intended to illustrate the extent to which the inclusion of cross section

averages of the dependent variable and regressors as in the CCE approach is able to capture spatial

correlations.
7These parameters are drawn such that the rank condition (6) is satis�ed.
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Experiment C

The parameters of the unobserved common e¤ects in the xit and in the yit equations are generated

as in Experiment A 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2):

The individual speci�c errors eit are generated as in Experiment B, that is

eit = �

NX
j=1

sijejt + "it; for i = 1; :::; N , t = 1; :::; T

"it � IIDN(0; �2); �2 = 1;

where � is the spatial autoregressive coe¢ cient, sij are the spatial weights.

Again, we have experimented the case of high spatial correlation � = 0:8, and the case of

moderate spatial dependence � = 0:4, and changed the order of the weights matrix from p = 1 to

p = 2. This set of experiments aims at verifying to what extent CCE estimators capture both local

and global cross section dependence.

Experiment D

In these experiments the source of cross section dependence is allowed to vary over time. In

particular, we assume that common factors have nonzero loadings in the equations for yit and

xit only over a certain interval of time, and assume that cross section dependence is generated

by a spatial process for the remaining sample period. We consider the following two sub-sets of

experiments, where the cross dependence changes from strong to weak and back to strong; and

a second sub-set under which the cross dependence begins to be weak, turns into strong before

reverting back to the weak form.

Experiment D1

� For t = 1; :::;
�
T
3

�
parameters of the unobserved common e¤ects in the xit and in the yit

equations are generated as in Experiment A 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2):

� t =
�
T
3

�
+ 1; :::;

�
2T
3

�
, we set i11 = i13 = i21 = i23 = i1 = i2 = 0 (as in Experiment B),
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and assume

eit = �

NX
j=1

sijejt + "it; for i = 1; :::; N , t = 1; :::; T

"it � IIDN(0; �2); �2 = 1;

with � = 0:4.

� For t =
�
2T
3

�
+1; :::; T parameters of the unobserved common e¤ects in the xit and in the yit

equations are generated as in Experiment A 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2):

Experiment D2

� For t = 1; :::;
�
T
3

�
we set i11 = i13 = i21 = i23 = i1 = i2 = 0 (as in Experiment B), and

assume

eit = �
NX
j=1

sijejt + "it; for i = 1; :::; N , t = 1; :::; T

"it � IIDN(0; �2); �2 = 1;

with � = 0:4

� t =
�
T
3

�
+ 1; :::;

�
2T
3

�
the parameters of the unobserved common e¤ects in the xit and in the

yit equations are generated as in Experiment A 
i11 0 i13

i21 0 i23

!
� IID

 
N(0:5; 0:5) 0 N(0; 0:5)

N(0; 0:5) 0 N(0:5; 0:5)

!
;

i1 � IIDN(1; 0:2); i2 � IIDN(1; 0:2):

� For t =
�
2T
3

�
+1; :::; T we set i11 = i13 = i21 = i23 = i1 = i2 = 0 (as in Experiment B),

and assume

eit = �

NX
j=1

sijejt + "it; for i = 1; :::; N , t = 1; :::; T

"it � IIDN(0; �2); �2 = 1;

with � = 0:4:

The aim of this set of experiments is to investigate the robustness of CCE estimators to the

possible time variations in the nature of cross section dependence.
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Each experiment was replicated 2,000 times for the (N;T ) pairs with N;T = 20; 30; 50; 100; 200:

In each experiment we computed the CCE Mean Group and the CCE Pooled estimator provided

by formula (39) and (42), assuming equal weights wi = 1
N , i = 1; :::; N . We further considered a

misspeci�ed structure that ignores the presence of common factors and/or spatial correlations, i.e.

the �xed e¤ects estimator

b̂FE =

 
NX
i=1

X0iM�Xi

!�1 NX
i=1

X0iM�yi; (44)

where Md = IT � � (� 0� )�1� 0, and � is a vector of ones.
To facilitate the interpretation of results, in each experiment we computed a statistic of cross

section dependence, the CD test (Pesaran, 2004), a statistic of local cross section correlation, the

CD(p), and the simple average of pair-wise cross section correlation coe¢ cients of the residuals, r̂.

We have chosen these tests because they do not require the speci�cation of a generating process

for the error term. The CD statistic is

CD =

s
2T

N(N � 1)

0@N�1X
i=1

NX
j=i+1

r̂ij

1A ;
where r̂ij is the sample estimate of the pair-wise correlation of the residuals, speci�cally

r̂ij =

TX
t=1

ûitûjt 
TX
t=1

û2it

!1=2 TX
t=1

û2jt

!1=2 ;

and ûit is an estimate of the regression residuals uit = yit��id1t��0xit, using the pooled estimator
b̂P of �. Pesaran (2004) has shown that the CD test is suitable under global alternatives such as

the multi-factor residual models. However, when the cross section units can be ordered, it is more

appropriate to compute the following CD(p) test statistic

CD(p) =

s
2T

p(2N � p� 1)

 
pX
s=1

NX
i=s+1

r̂i;i�s

!
;

where p is the order of the spatial weight matrix. Finally, the average of pair-wise cross section

correlation coe¢ cients is

r̂ =
2

N(N � 1)

0@N�1X
i=1

NX
j=i+1

r̂ij

1A :
This Monte Carlo study is intended to investigate the relationship between the small sample proper-

ties of a number of estimators and the source of cross section dependence. In addition, this analysis

provides interesting results for a number of issues. First, the performance of the �xed e¤ects estima-
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tor in Experiment B highlights the consequences of ignoring spatial correlation in panels. Further,

we can verify whether various assumptions of weak dependence in the error term have an impact

on the asymptotic behaviour of the statistics of global and local cross section dependence. Finally,

we can explore whether there is a link between the range and intensity of cross section dependence

and the performance of estimators.

8.2 Monte Carlo results

Results on the estimation of the slope parameters for Experiments A, B, C and D are summarized

in Tables 1, 2, 3, and 4, respectively. In what follows we focus on the estimation of �1; results for

�2 are very similar and are not reported. Further, we only provide results for the spatial weight

matrix of order p = 2, since a more sparse weights matrix (case p = 1) leads to very similar results.

Finally, to save space, we only provide Size and Power of estimators for Experiments B and C,

while we do not report their Bias and RMSE, since these are very close to Bias and RMSE values

in Experiments A. Note that the power of the various tests are computed under the alternative

H1 : �1 = 0:95.

Table 1 shows results that are very similar to those in Pesaran (2006). First, the �xed e¤ects

estimator, ignoring the factor structure, performs very poorly, is substantially biased, and is subject

to large size distortions. Further, as expected in the case of homogeneous slopes, the RMSE of the

CCE Pooled estimators is lower than the RMSE of the CCE Mean Group estimator, although

the di¤erence between them becomes very small as N and T increase. Finally, tests using the

CCE Mean Group and the CCE Pooled estimators are correctly sized, re�ecting the fact that the

estimated variance is a consistent estimate of the true variance.

Moving to Experiments B, Table 2 refers to the case where the error term is generated by a

spatial autoregressive process. Monte Carlo results show that the �xed e¤ects estimator, ignoring

the spatial correlation, over-rejects the null hypothesis. The over-rejection tendency is due to the

use of inappropriate standard errors, and appears to be substantial only in the case of the large

value of the spatial parameter (namely when � = 0:8). Note that in the case of these experiments

the FE estimator is consistent.

Focusing on the tests that use CCE Mean Group and CCE Pooled estimators, their empirical

sizes are very close to the nominal size, for both values of the spatial parameter. Similarly, in

Experiments C (Table 3), the combination of common factors and spatial correlation in the error

term does not a¤ect the empirical size of CCE estimators, which is close to the level of 5%. These

Monte Carlo results clearly show that the CCE approach seems to work well not only in the case

of global cross section dependence but also in the presence of spatial correlation. Finally, results

from Experiments D (Table 4) suggest that CCE estimators are also robust to time variations in

the source of cross section dependence.

Table 5 reports some statistics of cross section dependence for the above experiments, based on

residuals from the CCE Pooled estimation. The average cross section correlation in Experiments A

is high and persistent as N increases, for all values of T . Conversely, in Experiments B, r̂ declines

rapidly to zero as the sample size is increased. In fact, local correlation implies that units have a
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limited number of neighbours regardless of the sample size. Therefore, the average of local cross

section correlation computed over all units decreases as N increases. This also a¤ects the CD

statistic, which slightly diminishes as N is increased, for all values of T .

9 Concluding remarks

Cross section dependence is a rapidly growing �eld of study in panel data analysis. In the case of

panels with large cross section dimension, unobserved factor models, or when a measure of distance

among units is available, spatial processes are used. The essential aim of this paper has been to

discuss the estimation of a panel regression model with common factors and spatial dependence.

To this end, we introduced the notions of strong and weak cross section dependence, and show

that these notions are critical to the distinction that prevails in the literature between the two

approaches advanced for modelling of cross section dependence. An important extension of this

paper would be to study of the properties of classical estimation techniques in regression models

with cross sectionally weakly correlated errors. It might also be worth considering spatial patterns

that are not weak and are dominated by one or more cross section units. This is likely to be a

theoretically more meaningful approach to investigate common e¤ects as compared to the purely

statistical factor models the results of which are often di¢ cult to interpret.
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Appendix

We now sketch the proofs of Theorems 18 and 19. We refer to Pesaran (2006) for further details.

Lemma 20 Let et = Rt"t, where Rt satis�es Assumption 9, and for each t, "it is distributed

independently across i and t with mean zero, �nite variances 0 < �2i < K < 1, and �nite fourth-
order moments, E("4it) = �

0
i4 < K <1. Then under Assumptions 1, and 2 we have for all sets of

weights fwig satisfying (13)-(14)

�e0w�ew
T

= Op

�
1

N

�
; (45)

F0�ew
T

= Op

�
1p
NT

�
;
D0�ew
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�
1p
NT

�
; (46)

V0
i�ew
T

= Op

�
1p
NT

�
;
e0i�ew
T

= Op

�
1p
NT

�
; (47)

where �ew = (�ew1; :::; �ewT )
0 ; �ewt =

PN
i=1wieit, D and F are T � n and T �m matrices on observed

and unobserved common factors, and Vi = (vi1; :::;viT )
0.

Proof. Note that T�1�e0w�ew = T
�1PT

t=1 �e
2
wt, by Theorem 17

E
�
T�1�e0w�ew

�
= T�1

TX
t=1

E
�
�e2wt
�
= O

�
1

N

�
: (48)

Similarly, since "it are serially independent

V ar
�
T�1�e0w�ew

�
= T�2
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V ar
�
�e2wt
�
;

and by Theorem 17
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�
T�1�e0w�ew

�
= O

�
1

N2T

�
:

which proves (45). As for (46), consider the `th row of T�1F0�ew and note that it can be writ-

ten as T�1
PT

t=1 f`t�ewt, where f`t and �ewt are distributed independently of each other. Then

T�1
PT

t=1 f`t�ewt has zero mean and variance

V ar

 
T�1

TX
t=1

f`t�ewt

!
= T�2

TX
t=1

E
�
f2`t
�
E
�
�e2wt
�
� �2maxO

�
1

N

�(
T�2

TX
t=1

E
�
f2`t
�)

= O

�
1
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�
:
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This establishes (46). The second result in (46) and the �rst result in (47) follow similarly. As for

the second result in (47), note that, since wi = O(1=N) and given that eit is CWD

E
�
T�1e0i�ew

�
= T�1

TX
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E (eit�ewt)

= T�1
TX
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[w1E (eite1t) + :::+ wNE (eiteNt)] = O

�
1

N

�

Denote the ith row of Rt by rit and note that8

r0itrit =
NX
j=1

r2ij;t � kritk
2
1 = O(1):

Hence we have

E
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and the second moment of T�1e0i�ew satis�es (recall that E

�
�e4wt
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= O(N�2))
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The above results can be used to prove further results that are helpful in deriving the asymptotic

distribution of CCE estimators. Let

�it =

 
eit + �

0
ivit

vit

!
:

8Let x = (x1; :::; xn)0, we de�ne the vector norm k�k1 of x as kxk1 = jx1j+ :::+ jxN j.
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From Lemma 20 it follows that (see also Lemma 2 and 3 in Pesaran (2006))
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The above results prove the fundamental relations (under the assumption that the rank condition

is satis�ed)
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�Mwei
T

=
X0i
�Mgei
T

+Op

�
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�
; (51)

where �Mg = IT �G(G0G)�1G0. Note that (49)-(51) are identical to relations (40), (43) and (44)

in Pesaran (2006), and will be used to derive the asymptotic distribution of CCE Mean Group and

CCE Pooled estimators.

Proof of Theorem 18. Consider
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where by assumption 	̂�1
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and hence, since by assumption factor loadings are bounded, we have (Pesaran, 2006, p. 983)
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where
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where rit is the ith row of the matrix Rt. Given that the matrix Rt has bounded absolute column

and row sums, it follows that the diagonal elements of the matrix E
�
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0
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Proof of Theorem 19. Consider 
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Table 1: Small Sample Properties of CCE Type Estimators in Experiments A
Bias (�100) RMSE (�100)
T T

N 10 20 30 50 100 200 10 20 30 50 100 200
CCE Mean Group

20 0.68 0.00 -0.07 -0.08 0.04 0.02 21.54 8.15 5.86 4.29 2.96 2.21
30 0.12 -0.05 0.05 0.03 -0.02 0.04 18.40 6.69 4.81 3.30 2.22 1.66
50 -0.26 0.00 0.12 -0.02 0.03 0.06 14.35 5.17 3.61 2.51 1.62 1.17
100 -0.19 -0.02 0.02 -0.02 0.02 0.01 10.39 3.65 2.56 1.77 1.11 0.74
200 0.13 0.06 -0.00 -0.03 0.01 -0.00 7.55 2.70 1.85 1.21 0.78 0.53

CCE Pooled
20 0.19 -0.01 -0.02 -0.06 -0.00 0.03 12.06 6.92 5.14 4.03 2.96 2.28
30 0.05 -0.06 -0.04 0.06 -0.03 0.03 10.14 5.48 4.15 3.06 2.16 1.68
50 -0.36 -0.02 0.09 -0.04 0.03 0.07 7.91 4.24 3.15 2.26 1.58 1.16
100 0.02 0.06 0.07 -0.01 0.01 0.01 5.70 2.95 2.23 1.63 1.06 0.72
200 0.09 0.02 0.006 -0.01 0.01 -0.00 4.01 2.09 1.59 1.11 0.74 0.52

Fixed E¤ects Estimator
20 17.43 17.23 17.13 17.52 17.20 17.48 23.44 20.98 20.03 19.62 18.70 18.67
30 16.62 17.00 17.08 17.41 17.55 17.51 23.34 20.90 20.03 19.36 18.83 18.53
50 17.50 18.14 18.41 18.34 18.33 18.10 21.65 20.62 20.17 19.67 19.17 18.75
100 16.57 17.26 17.09 17.59 17.25 17.11 21.08 19.86 18.90 18.79 17.95 17.56
200 16.33 17.24 17.28 17.35 17.37 17.35 20.31 19.65 18.91 18.41 17.97 17.69

Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)
T T

N 10 20 30 50 100 200 10 20 30 50 100 200
CCE Mean Group

20 5.90 6.45 6.45 8.25 7.25 7.25 6.65 12.50 17.25 26.85 45.90 67.30
30 6.05 6.25 6.95 6.85 5.85 6.80 7.15 13.15 20.80 35.70 62.95 87.15
50 4.80 6.15 5.50 5.05 5.70 6.20 6.90 17.15 31.30 52.70 86.60 98.85
100 5.35 5.10 5.60 5.85 5.35 3.85 7.50 27.80 50.65 81.90 99.25 100.00
200 5.15 5.25 5.75 4.65 5.15 4.75 10.75 48.50 78.80 98.30 100.00 100.00

CCE Pooled
20 5.30 6.60 6.80 7.70 7.90 7.45 6.75 14.30 19.15 30.05 46.95 66.25
30 5.30 6.30 6.65 6.45 6.30 6.50 7.90 16.60 24.05 39.60 65.90 85.70
50 4.95 5.85 5.95 5.40 5.95 5.95 9.80 23.90 38.20 58.75 88.55 98.85
100 5.50 5.00 5.45 5.95 5.40 4.55 15.35 39.40 63.15 86.80 99.55 100.00
200 5.60 4.95 5.35 5.20 5.00 5.10 25.85 65.85 88.65 99.35 100.00 100.00

Fixed E¤ects estimator
20 50.25 68.20 79.00 89.70 96.20 98.75 63.40 82.80 91.50 97.05 99.10 99.80
30 59.95 75.25 83.65 93.05 98.15 99.45 70.50 86.55 92.70 98.05 99.80 99.75
50 70.55 87.80 95.65 98.70 99.90 100.00 84.40 96.70 99.40 99.80 100.00 100.00
100 80.00 92.05 96.20 99.50 99.90 100.00 89.25 97.75 99.50 100.00 100.00 100.00
200 86.25 95.45 98.20 99.70 100.00 100.00 93.80 99.00 99.90 100.00 100.00 100.00
Note: The model has common factors but no spatial dependence. CCE Mean Group, CCE Pooled and the
�xed e¤ects estimator are de�ned by (39), (42) and (44).
Variances of CCE Mean Group and CCE Pooled are, respectively, (41) and (43).
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Table 2: Size and Power of CCE Type Estimators in Experiments B
Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)

T T
�= 0:8

N 10 20 30 50 100 200 10 20 30 50 100 200
CCE Mean Group

20 6.55 7.00 6.55 5.55 6.65 6.55 6.40 9.35 11.40 16.85 31.60 53.65
30 6.15 5.75 6.00 6.05 5.70 6.80 6.10 9.25 11.50 18.60 22.00 64.45
50 4.60 4.65 5.30 6.40 4.45 6.45 5.90 9.25 12.75 23.15 48.20 80.95
100 5.15 4.90 5.70 4.70 5.20 6.05 5.65 12.60 22.00 40.50 73.10 97.40
200 4.75 5.30 5.50 4.60 5.05 5.00 6.20 20.65 35.55 61.80 95.60 100.00

CCE Pooled
20 4.60 6.70 7.05 6.35 7.40 7.15 5.55 9.15 11.95 17.65 33.85 54.45
30 5.20 5.80 6.75 5.70 5.30 7.30 6.65 10.05 13.05 20.30 26.55 66.15
50 5.15 5.50 5.15 6.85 5.05 6.10 6.85 11.15 15.70 26.90 52.00 81.70
100 5.45 5.05 5.30 5.65 4.95 5.55 8.45 15.95 26.55 45.40 76.85 97.60
200 5.30 5.60 5.20 4.75 4.75 4.90 11.55 29.00 44.25 70.80 96.60 100.00

Fixed E¤ects estimator
20 10.65 11.05 11.00 9.65 10.85 10.60 13.40 15.90 18.60 22.65 38.15 55.70
30 16.50 17.15 17.45 17.15 13.35 18.80 18.55 22.55 25.55 33.55 46.15 68.80
50 8.55 8.30 8.25 9.55 8.05 9.60 14.35 18.75 24.25 37.55 61.80 87.65
100 13.60 14.35 13.35 13.10 14.75 14.30 23.55 35.00 46.15 65.30 87.30 98.25
200 12.90 13.70 12.35 13.20 12.80 13.85 30.85 52.35 68.30 85.70 98.75 100.00

Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)
T T

�= 0:4
N 10 20 30 50 100 200 10 20 30 50 100 200

CCE Mean Group
20 5.55 7.35 6.50 6.35 5.75 6.90 6.75 12.00 15.90 25.90 51.80 80.45
30 5.80 6.05 5.90 5.45 6.90 6.50 7.15 13.50 19.40 34.60 64.30 93.40
50 4.80 4.50 4.55 6.15 5.50 5.90 6.15 14.80 25.15 47.75 84.50 99.00
100 4.65 5.00 5.45 5.20 5.65 5.25 7.75 26.25 44.80 77.10 98.45 100.00
200 5.15 5.60 5.80 4.65 5.60 4.75 9.75 44.15 73.65 96.85 100.00 100.00

CCE Pooled
20 4.60 6.80 6.85 6.50 6.55 7.05 6.40 12.30 17.80 26.90 53.90 81.00
30 5.25 5.75 6.00 5.60 7.05 6.60 7.75 14.60 22.30 38.50 67.70 94.15
50 5.00 5.55 5.95 6.25 5.55 5.95 9.05 21.05 32.05 54.45 87.30 99.20
100 4.50 5.20 5.50 4.85 5.30 5.25 13.80 34.20 55.10 83.90 99.00 100.00
200 5.30 4.95 5.45 4.65 5.10 4.60 21.55 60.90 85.40 98.75 100.00 100.00

Fixed E¤ects estimator
20 6.85 6.70 7.40 6.15 6.60 5.95 13.30 21.45 27.00 41.85 72.45 94.20
30 8.40 7.05 7.10 6.85 7.90 7.95 15.65 27.50 37.45 57.75 84.35 99.25
50 6.30 5.35 5.45 6.55 5.70 6.25 20.90 37.10 50.25 75.55 97.00 100.00
100 6.95 6.90 7.35 6.65 7.10 7.35 34.50 65.15 83.40 96.85 99.95 100.00
200 6.70 6.70 6.30 6.45 7.00 7.15 56.05 90.35 98.65 99.90 100.00 100.00

Note: The model has common factors but no spatial dependence. CCE Mean Group, CCE Pooled and the
�xed e¤ects estimator are de�ned by (39), (42) and (44).
Variances of CCE Mean Group and CCE Pooled are, respectively, (41) and (43).
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Table 3: Size and Power of CCE Type Estimators in Experiments C
Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)

T T
�= 0:8

N 10 20 30 50 100 200 20 30 50 100 200
CCE Mean Group

20 5.95 6.30 7.80 7.85 6.30 6.65 6.85 9.30 13.25 17.40 30.20 46.90
30 5.70 5.60 6.05 6.50 5.75 6.65 6.50 8.90 12.25 19.35 35.00 62.50
50 5.60 5.75 5.25 5.80 5.30 5.80 6.65 9.25 15.30 24.25 49.05 79.05
100 5.55 5.20 5.25 5.35 4.60 4.95 5.45 12.25 22.00 37.50 7375 96.80
200 5.55 5.20 5.50 5.05 5.60 4.80 7.45 19.00 33.70 62.55 95.50 99.95

CCE Pooled
20 4.85 6.85 7.05 7.50 6.60 7.05 5.95 10.60 14.10 19.55 31.40 48.40
30 5.35 6.35 5.85 6.80 6.15 6.80 6.60 10.95 13.85 20.90 36.95 63.00
50 5.80 4.95 5.60 5.45 5.55 5.75 7.40 12.10 17.80 27.20 52.40 80.90
100 4.65 5.20 5.55 5.55 4.60 4.80 8.00 17.00 27.40 43.30 77.90 97.85
200 5.50 5.25 4.15 4.50 5.65 5.35 12.75 27.70 44.25 70.55 96.00 99.95

Fixed E¤ects estimator
20 40.30 56.15 67.10 80.75 92.60 97.75 48.65 68.95 81.35 92.50 98.55 99.45
30 48.55 64.80 74.70 86.20 96.00 99.05 57.70 77.10 86.25 95.35 99.35 99.70
50 58.80 78.65 88.80 95.80 99.70 100.00 70.10 90.05 97.40 99.50 99.95 100.00
100 70.95 86.65 93.05 98.95 99.80 100.00 81.50 95.20 98.80 99.85 100.00 100.00
200 80.05 92.05 96.70 99.50 100.00 100.00 90.00 98.10 99.75 100.00 100.00 100.00

Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)
T T

�= 0:4
N 10 20 30 50 100 200 10 20 30 50 100 200

CCE Mean Group
20 5.90 6.85 7.15 8.40 7.05 7.35 7.05 12.05 17.15 25.80 44.45 65.30
30 5.00 5.95 7.20 6.75 6.00 6.75 6.85 12.55 19.15 33.20 59.80 85.55
50 5.90 5.75 5.05 5.20 5.80 6.10 7.35 15.40 27.80 47.90 83.40 98.25
100 5.50 5.20 5.30 5.95 4.90 4.25 6.85 24.25 45.25 76.25 98.75 100.00
200 5.65 5.45 5.85 4.70 5.60 5.05 10.35 42.45 71.55 96.70 100.00 100.00

CCE Pooled
20 5.05 6.85 7.10 7.80 7.25 7.10 7.05 13.75 19.10 28.20 45.15 63.80
30 5.70 6.80 6.60 6.65 5.85 7.00 7.65 15.90 22.95 37.25 62.30 83.90
50 5.75 5.40 6.00 5.45 5.65 5.95 10.00 21.05 33.85 54.60 85.80 98.35
100 5.15 5.05 5.45 5.90 5.40 4.30 14.45 35.70 56.95 82.65 99.00 100.00
200 5.90 5.05 5.30 4.45 5.60 5.05 23.40 58.50 83.85 98.35 100.00 100.00

Fixed E¤ects estimator
20 49.25 67.45 78.15 89.55 96.05 98.65 61.50 81.25 91.05 96.90 99.25 99.75
30 57.70 74.05 82.70 92.60 97.90 99.45 69.45 86.60 92.45 98.00 99.80 99.75
50 69.25 87.15 95.40 98.50 99.90 100.00 82.15 95.95 99.30 99.85 100.00 100.00
100 79.15 91.60 96.10 99.45 99.90 100.00 88.70 97.60 99.45 100.00 100.00 100.00
200 85.80 95.40 98.00 99.70 100.00 100.00 93.80 98.95 99.90 100.00 100.00 100.00
Note: The model has common factors but no spatial dependence. CCE Mean Group, CCE Pooled and the
�xed e¤ects estimator are de�ned by (39), (42) and (44).
Variances of CCE Mean Group and CCE Pooled are, respectively, (41) and (43).
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Table 4: Size and Power of CCE Type Estimators in Experiments D
Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)

T T
Experiment D1

N 10 20 30 50 100 200 10 20 30 50 100 200
CCE Mean Group

20 6.80 6.00 6.60 7.60 6.95 6.94 7.00 13.75 17.85 27.10 48.30 68.37
30 6.40 5.60 6.50 6.05 6.00 5.60 7.05 14.20 21.30 35.75 65.05 87.60
50 5.70 5.55 5.55 5.85 5.25 6.00 7.40 16.95 29.75 53.30 85.15 98.90
100 4.25 5.55 5.60 5.00 5.50 4.65 7.85 27.90 48.10 79.05 99.05 100.00
200 4.31 4.91 5.30 5.80 5.29 4.90 11.23 47.81 77.65 96.30 100.00 100.00

CCE Pooled
20 6.30 6.80 7.00 7.25 7.70 7.76 8.00 15.05 19.75 28.80 50.35 69.08
30 5.65 5.90 6.40 6.65 6.00 5.85 6.65 18.05 24.20 40.80 67.25 88.40
50 4.15 6.00 5.70 5.60 4.80 6.40 10.30 22.80 36.20 58.80 87.80 0.98
100 5.10 6.05 4.95 5.60 5.55 4.55 15.05 37.95 59.60 85.60 99.50 100.00
200 5.57 4.70 4.70 5.75 4.97 4.72 23.48 64.37 87.95 98.15 100.00 100.00

Fixed E¤ects estimator
20 36.90 71.00 80.70 81.85 94.05 97.35 46.65 88.65 89.75 95.15 99.10 99.74
30 49.20 73.05 75.55 87.55 94.85 99.05 62.75 78.00 90.05 96.45 99.20 99.95
50 60.55 80.45 89.40 96.10 99.70 100.00 77.15 94.10 97.75 99.55 100.00 100.00
100 71.40 85.05 91.95 97.65 99.55 99.95 84.95 95.90 98.25 99.90 100.00 100.00
200 79.05 90.76 95.45 97.70 100.00 100.00 89.95 97.81 99.70 99.85 100.00 100.00

Size (5% level) (�100)(H0: �1= 1) Power (5% level) (�100)(H1: �1= 0:95)
T T

Experiment D2
N 10 20 30 50 100 200 10 20 30 50 100 200

CCE Mean Group
20 6.55 6.70 7.10 7.50 7.65 7.15 7.60 11.85 17.75 27.90 49.30 77.15
30 5.30 6.30 6.20 5.95 6.55 6.00 6.15 13.55 21.05 34.05 66.50 92.00
50 5.15 5.55 5.35 5.95 5.70 5.55 7.10 16.55 27.25 50.45 84.75 99.40
100 4.95 4.70 5.25 5.05 5.95 5.19 7.90 25.10 45.60 77.95 99.15 100.00
200 4.90 5.35 6.10 5.10 5.20 5.35 10.85 44.90 74.45 97.21 100.00 100.00

CCE Pooled
20 6.35 7.05 6.85 7.15 7.60 7.05 8.10 14.15 19.35 30.35 51.70 76.85
30 4.95 5.55 6.50 6.90 6.45 5.80 7.55 17.15 25.10 36.80 68.00 92.55
50 5.85 5.95 6.20 5.95 5.75 6.00 9.10 22.25 34.35 56.60 86.35 99.45
100 4.85 4.90 5.55 5.30 5.90 5.43 13.95 37.05 56.25 84.10 99.35 100.00
200 5.15 6.15 5.35 5.24 5.45 4.95 23.30 62.00 87.25 99.18 100.00 100.00

Fixed E¤ects estimator
20 29.20 35.10 49.00 57.30 78.90 91.40 44.45 58.25 74.40 86.55 97.25 99.55
30 40.20 45.50 57.10 66.15 85.35 94.10 52.20 67.60 80.15 89.40 98.80 99.90
50 47.30 54.75 68.90 81.65 93.70 98.90 66.55 80.35 92.15 98.35 99.90 100.00
100 59.85 66.00 76.00 86.20 96.30 99.64 78.40 88.75 95.70 98.90 99.95 100.00
200 68.60 73.55 85.05 92.93 98.80 100.00 87.25 94.40 97.80 99.73 100.00 100.00
Note: The model has common factors but no spatial dependence. CCE Mean Group, CCE Pooled and the
�xed e¤ects estimator are de�ned by (39), (42) and (44).
Variances of CCE Mean Group and CCE Pooled are, respectively, (41) and (43).
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